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Abstract
Calibration methodologies must extract as much information as possible from available data, but it is not well understood in 
investigating the multi-objective synchronous calibration strategy by using multiple sources of information and by exploit-
ing the data in better ways. The non-dominated sorting genetic algorithm II (NSGA-II) is introduced to study the calibration 
performance of runoff and sediment parameters under nine targeted scenarios, which considers the best choice to obtain high-
cost performance results for decision makers through multi-objective optimization and the calculation of Pareto-optimal front 
with a high precision. (i) SWAT model has good adaptability in the runoff simulation of the Yanhe River watershed. Both the 
calibration results of NSGA-II and sequential uncertainty fitting approach-version 2 (SUFI-2) can meet the accuracy require-
ments of runoff simulation. Particularly, the NSGA-II based on multiple objective functions not only has strong applicability 
but also can better constrain the parameter process, making the calibrated model more in line with the physical conditions 
of the watershed. (ii) The two-site synchronous calibration of runoff or sediment can make full use of data information of 
different sites, reduce the impact of spatial heterogeneity on model parameters, and improve the calibration efficiency of 
the model. The single-site synchronous calibration of runoff and sediment based on NSGA-II not only has high calibration 
efficiency but also can avoid the tedious steps of calibrating runoff and sediment separately. (iii) The two-site synchronous 
calibration of runoff and sediment based on NSGA-II combines the advantages of the above synchronous calibration strate-
gies, which can get Pareto-optimal front and represent the best trade-offs among different objectives, and its applicability is 
stronger than the traditional single-site or single-element calibration strategy. This study provides new and competing ways 
to evaluate hydrological models and their performance, and the multiple criteria approach for watershed modeling is one of 
the focuses in future research extensions.

Keywords SWAT Model · NSGA-II · Synchronization calibration · Multi-objective · Pareto-optimal front · Yanhe River 
Watershed

Introduction

Parameter calibration in a hydrological model is a process 
of constantly trying and adjusting the parameter values 
by various means to make the calculated flow, as closely 
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and consistently as possible, appropriate to the measured 
flow of the watershed (Duan et al. 1992; Rui 2017). From 
a mathematical point of view, parameter calibration is an 
optimization problem (Yapo et al. 1998; Fan et al. 2015). 
The calibration method consists of objective function and 
constraints (Yen et al. 2019). At present, most of the param-
eter calibration methods of hydrological model studied in 
the world are single-objective calibration procedures, such 
as the simplex method and the shuffled complex evolution 
algorithm (SCE-UA) (Daggupati et al. 2015). The sequential 
uncertainty fitting approach-version 2 (SUFI-2), generalized 
likelihood uncertainty estimation (GLUE), particle swarm 
optimization (PSO), parametric solutions (parasol), and 
Markov chain Monte Carlo (MCMC) embedded in SWAT 
calibration and uncertainty programs (SWAT-CUP) are also 
single-objective algorithms (Jiang et al. 2017; Liu et al. 
2019). The fundamental challenge stems from the effec-
tive design of multiple objective calibration strategies to 
find Pareto-optimal solutions in a single run and, therefore, 
eliminate the need for running a sequence of single-objective 
optimization problems.

The calibration methodology based on a single optimi-
zation objective only considers one aspect of the complex 
hydrological process, cannot fully mine other characteris-
tic information contained in hydrological data (Chen et al. 
2008; Li et al. 2010), and may not be enough to capture 
all the aspects of the system response that the model is 
supposed to reproduce. Therefore, several criteria need to 
be considered simultaneously, so that the multi-objective 
automatic calibration algorithms have been widely used 
in the hydrological models (Yang and Wang 2010). For 
example, Cao (2010) proposed the multi-objective differ-
ential evolution adaptive metropolis (MODREAM) and 
applied it to the runoff simulation of catchment moisture 
deficit loss equation-three parallel linear reservoirs (CMD-
3PAR) model and found the automatic calibration algorithm 
could better reflect the actual hydrological characteristics 
of the watershed and showed higher simulation accuracy 
than the traditional single objective algorithm. Guo (2013) 
proposed the multi-objective culture shuffled complex dif-
ferential evolution (MOCSCDE), analyzed its performance 
in the calibration of lumped Xin’anjiang model, distributed 
Xin’anjiang model and support vector regression model, 
and considered the MOCSCDE calibration method could 
reflect the hydrological characteristics in different periods, 
effectively avoid the “homogenization effect” produced by 
the single-objective algorithm, and significantly improve the 
simulation performance.

The non-dominated sorting genetic algorithm II (NSGA-
II), developed by Ercan and Goodall (2016), is a fast and effi-
cient multi-objective genetic algorithm (MOGAS) (Ander-
ton et al. 2002). NSGA-II algorithm has been applied in the 
calibration of hydrological model and is an effective tool for 

the multi-objective calibration of watershed model param-
eters (Chen et al. 2018). For example, Bekele and Nicklow 
(2007) used NSGA-II to optimize the runoff parameters of 
different hydrological stations at the same time, which made 
the simulation performance higher than other single-objec-
tive scenarios. Guo et al. (2013) found that the NSGA-II 
method could obtain better simulation results in Xin’anjiang 
model than the single-objective method by reasonably 
selecting the type and number of objective functions. Over-
all, multiple objective optimization is used to solve coupled 
inverse problems that can extract information from multiple 
data sources or multi-sites, or both to reduce uncertainty of 
the inverse solution. Examples of such multiple objectives 
include the objective function value such as NSE, BIAS, 
and R2 calculated separately on low and high flows, timing 
errors, and error in reproducing water balance (Chilkoti et al. 
2018). More importantly, the models constituting the Pareto 
in criteria space can be seen as the best models, since there 
are no models better than these on all criteria (Vallerio et al. 
2015). This is critical to test hypotheses regarding the need 
to design additional criteria to determine a Pareto-optimal 
solution for the multiple objective optimization.

The objectives of this study are to (i) compare the runoff 
calibration performance between the non-dominated sort-
ing genetic algorithm-II (NSGA-II) and the single-objective 
SUFI-2 method, (ii) evaluate the single and synchronous 
calibration efficiency of runoff and sediment by NSGA-II at 
different sites, and (iii) demonstrate the possible advantages 
of multiple objective synchronous calibration over single-
site or single-element calibration for the SWAT model. The 
findings of this study can provide suggested possible rem-
edies for the certain deficiencies of single-objective function 
and single-element calibration.

Materials and method

Study region

Yanhe River Watershed (108°39′E ~ 110°29′E and 
36°22′N ~ 37°20′N) is located in the north of Shaanxi Prov-
ince, belonging to the loess hilly and gully region (Fig. 1). 
The total area of Yanhe River Watershed is about 7725  km2. 
The altitude is about 471 ~ 1213 m. The terrain is high in the 
northwest and low in the southeast, with an average slope 
angle of 17°. From the headwater to the estuary, the Yanhe 
River is divided into upper, middle, and lower reaches with 
Huaziping and Ganguyi as the dividing point. The upper, 
middle, and lower reaches are the loess hilly and gully area 
with dominated ridges and hills, the loess hilly and gully 
area with dominated hills, and the crushing table plateau, 
respectively. The interannual difference of precipitation 
in Yanhe River watershed is obvious, and the distribution 
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within a year is very uneven. The annual average tempera-
ture is about 9.3 ℃, and the annual average precipitation for 
many years is 482.3 mm, which is mostly concentrated in 
June to August, accounting for 68.55% of the annual precipi-
tation (Liu et al. 2010). Its runoff accounts for 99.95 ~ 100% 
of the annual runoff, and the scouring amount of sediment 
accounts for 94 ~ 100% of the whole year (Wu et al. 2020). 
The month with monthly precipitation frequency greater 
than 50% is from May to October, which can be considered 
as the wet season, and the runoff in wet season accounts for 
more than 90% of the whole year. Loessial soil is the most 
widely distributed soil type in the Yanhe River watershed, 
accounting for more than 85% of the total area. The loessial 
soil is loose, and the particle size is mainly silt, belonging 
to cultivated soil. It is very easy to be eroded by rainfall 

runoff and is widely distributed in ridge and hill tops, slopes, 
tablelands, and ditches.

The basic data used for the establishment of SWAT model 
of runoff and sediment mainly include digital elevation 
model (DEM), land use types, soil types, meteorological 
data, runoff, and sediment (Table 1).

Construction of SWAT model

In the modeling process using ArcSWAT 2012, the river 
network is generated through DEM, and the catchment 
area threshold is set as the default value (15095  hm2). In 
addition, two hydrological stations, Ganguyi and Yan’an, 
were added to the river channel for hydrological calibra-
tion. By setting the total outlet of the watershed to obtain 

Fig. 1  Study region: a the 
relative location of the Yanhe 
River watershed in China, and b 
digital elevation model (DEM), 
longitude and latitude coordi-
nates, and the upper reaches of 
Ganguyi and Yan’an hydrologi-
cal stations in the Yanhe River 
watershed

Table 1  Data types, descriptions, and sources of the SWAT model in the Yanhe River watershed

Data types Descriptions Data sources Notes

DEM Digital elevation model Geospatial Data Cloud http:// www. gsclo ud. cn/ 30 m resolution
Land use Dryland, grassland, forestland, etc Geographical Information Monitoring Cloud 

Platform http:// www. dsac. cn/
100 m resolution (1995)

Soil Soil mechanical composition, organic matter, 
density, water conductivity, etc

Cold and Arid Regions Sciences Data Center 
at Lanzhou (http:// westdc. westg is. ac. cn) 
China Soil Map Based Harmonized World 
Soil Database(v1.1)

1: 1,000,000

Meteorological data Precipitation, maximum and minimum temper-
ature, solar radiation, wind speed and relative 
humidity in Yan’an, Ansai, Luochuan, Suide, 
Wuqi, Xixian, and Zichang weather stations

National Meteorological Information Center 
(http:// www. nmic. cn/) and Shaanxi Provin-
cial Meteorological Burea (http:// sn. cma. 
gov. cn/)

1965–2012

Runoff Annual and monthly runoff of Ganguyi hydro-
logical station

National Science & Technology Infrastructure 
of China, Data Sharing Infrastructure of 
Earth System Science (http:// loess. geoda ta. 
cn)

m3/s
(1979–1997)

Sediment Annual and monthly sediment of Ganguyi 
hydrological station

kg/m3

(1979–1997)

http://www.gscloud.cn/
http://www.dsac.cn/
http://westdc.westgis.ac.cn
http://www.nmic.cn/
http://sn.cma.gov.cn/
http://sn.cma.gov.cn/
http://loess.geodata.cn
http://loess.geodata.cn
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a total of 27 sub-watersheds. In this study, the preheating 
period of the model is 1989–1990, the calibration period 
is 1991–1995, and the validation period is designed as 
1996–2000 or 1996–1997. First, the NSGA-II and SUFI-2 
algorithms were adopted with SWAT to compare the 
calibration performance of runoff parameters (Wu et al. 
2022a).

In this study, twelve parameters related to runoff and 
eight parameters related to sediment are selected with the 
help of relevant literatures to study the calibration perfor-
mance of runoff and sediment under different scenarios. 
The parameters, parameter range, optimal parameters, and 
the physical meaning of parameters are shown in Table 2. 

Among them, the parameter range is based on SWAT input 
and output manual (Abbaspour et al. 2007).

Calibration scenario design

This study explores and evaluates the calibration strat-
egy and the efficiency of NSGA-II through nine designed 
scenarios.

Firstly, the scenarios of S1, S2, and S3 (Table 3) were, 
respectively, designed to calibrate and validate the runoff 
parameters of SWAT model by NSGA-II and to compare the 
simulation results of single and synchronous calibration in 
the Yanhe River watershed. The initial population was set to 

Table 2  Variable name and definition, minimum, maximum, and optimal parameters by the NSGA-II calibration method

“r” means the initial value of the parameter multiplied by (1 + calibration value); “v” means the initial value of the parameter is replaced by the 
calibration value

Number Parameter 
change 
way

Variable name Minimum Maximum Optimal parameters Definition

1 r CN2.mgt  − 0.25 0.25 0.17549 Moisture condition II curve number
2 v ESCO.hru 0 1 0.384314 Soil evaporation compensation coefficient
3 v EPCO.hru 0 1 0.4 Plant uptake compensation factor
4 v CANMX.hru 0 10 0.54902 Maximum amount of water that can be trapped in the 

canopy when the canopy is fully developed (mm 
 H2O)

5 v TRNSRCH.bsn 0 1 0.372549 Fraction of transmission losses partitioned to the deep 
aquifer

6 v SURLAG.bsn 0.05 24 19.30392 the surface runoff lag coefficient
7 v CH_N2.rte 0.01 0.3 0.251098 Manning’s “n” value for the main channel
8 v CH_K2.rte 0.01 500 128.2498 Effective hydraulic conductivity in main channel 

alluvium (mm/hr)
9 v ALPHA_BF.gw 0 1 0.705882 Bank flow recession constant or constant of propor-

tionality
10 r SOL_K().sol  − 0.25 0.25  − 0.04412 Saturated hydraulic conductivity (mm/hr)
11 r SOL_AWC().sol  − 0.25 0.25 0.208824 Available water capacity of the soil layer (mm  H2O/

mm soil)
12 r SOL_BD().sol  − 0.25 0.25 0.234314 Moist bulk density (g/cm3)
13 r USLE_P.mgt  − 0.25 0.25 0.118627 USLE equation support practice factor
14 r USLE_C.plant.dat  − 0.25 0.25  − 0.03824 Minimum value of USLE_C factor for water erosion 

applicable to the land cover/plant
15 r USLE_K.sol  − 0.25 0.25 0.042157 USLE equation soil erodibility (K) factor
16 v PRF_BSN.bsn 0 2 1.639216 Peak rate adjustment factor for sediment routing in the 

main channel
17 v ADJ_PKR.bsn 0.5 2 1.929412 Peak rate adjustment factor for sediment routing in the 

sub-basin (tributary channels)
18 v SPCON.bsn 0.0001 0.01 0.000255 Linear parameter for calculating the maximum amount 

of sediment that can be reentrained during channel 
sediment routing

19 v CH_COV1.rte  − 0.05 0.6 0.55302 Channel erodibility factor
20 v CH_COV2.rte  − 0.001 1 0.960745 Channel cover factor
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1000, the population size of offspring is 50, and the number 
of generations is 50. The objective functions of the single-
site calibration were set as NSE (1) and PBIAS (2), and the 
objective functions of the two-site calibration are NSE (3) 
and PBIAS (4), respectively.

where Qsi is the simulated value  (m3/s), Qoi is the observed 
value  (m3/s), Qo is the average observed value  (m3/s), and m 
is the site number, m = 2.

Secondly, the scenarios of S4, S5, and S6 (Table 3) were, 
respectively, designed to calibrate and validate the runoff 
and sediment parameters of SWAT model by NSGA-II and 
to compare the simulation results of single and synchro-
nous calibration in the Yanhe River watershed. The initial 
population was set to 1000, the population size of offspring 
is 50, and the number of generations is 50. The objective 
functions of S4 and S5 were set as NSE (5) and PBIAS (6), 
and the objective functions of S6 are NSE (7) and PBIAS 
(8), respectively.

(1)NSE = 1 −

∑n

i=1
(Qsi(m) − Qoi(m))

2

∑n

i=1
(Qsi(m) − Qo(m))

2

(2)PBIAS =

∑n

i=1
(Qoi(m) − Qsi(m))
∑n

i=1
Qoi(m)

× 100

(3)NSE =
1

m
(NSE(1) + NSE(2) + ... + NSE(m))

(4)PBIAS =
1

m
(PBIAS(1) + PBIAS(2) + ... + PBIAS(m))

where Qsi is the simulated value (runoff,  m3/s; sediment, 
t), Qoi is the observed value (runoff,  m3/s; sediment, t), Qo 
is the average observed value ( runoff,  m3/s; sediment, t), 
“ k = 1 ” indicates the runoff data, and “ k = 2 ” indicates the 
sediment data.

Thirdly, the scenarios of S7, S8, and S9 (Table 3) were 
respectively designed to calibrate and validate the runoff and 
sediment parameters of SWAT model by NSGA-II and to 
compare the simulation results of the synchronous calibra-
tion in single-site and two-site in the Yanhe River watershed. 
The initial population was set to 1000, the population size 
of offspring is 50, and the number of generations is 50. The 
objective functions of S7 and S8 were set as NSE (9) and 
PBIAS (10), and the objective functions of S9 are NSE2 (11) 
and PBIAS2 (12), respectively.

(5)NSE = 1 −

∑n

i=1
(Qsi(k) − Qoi(k))

2

∑n

i=1
(Qsi(k) − Qo(k))

2

(6)PBIAS =

∑n

i=1
(Qoi(k) − Qsi(k))
∑n

i=1
Qoi(k)

× 100

(7)NSE =
1

2
(NSE(1) + NSE(2))

(8)PBIAS =
1

2
(PBIAS(1) + PBIAS(2))

(9)NSE(k,m) = 1 −

∑n

i=1
(Qsi(k,m) − Qoi(k,m))

2

∑n

i=1
(Qsi(k,m) − Qo(k,m))

2

Table 3  Different scenario designs of single and synchronous calibration in runoff and sediment parameters of Ganguyi and Yan’an hydrological 
stations by NSGA-II

Scenarios S1 S2 S3 S4 S5 S6 S7 S8 S9
Observed 
element

Runoff Runoff and sediment

Calibration 
strategy

Single Single Synchroni-
zation

Single Single Synchroni-
zation

Synchroni-
zation

Synchroni-
zation

Synchroni-
zation

Calibration 
tips

Gangguyi Yan’an Ganguyi and 
Yan’an

Runoff in 
Ganguyi 
or Yan’an

Sediment in 
Ganguyi 
or Yan’an

Runoff and 
sediment 
in Gan-
guyi or 
Yan’an

Runoff and 
sediment 
in Gan-
guyi

Runoff and 
sediment 
in Yan’an

Runoff and 
sediment 
in Gan-
guyi and 
Yan’an

Simulated 
elements

Runoff in 
Ganguyi 
and Yan’an

Runoff in 
Ganguyi 
and Yan’an

Runoff in 
Ganguyi 
and Yan’an

Runoff and 
sediment 
in Ganguyi 
or Yan’an

Runoff and 
sediment 
in Ganguyi 
or Yan’an

Runoff and 
sediment 
in Gan-
guyi or 
Yan’an

Runoff and 
sediment 
in Gan-
guyi and 
Yan’an

Runoff and 
sediment 
in Gan-
guyi and 
Yan’an

Runoff and 
sediment 
in Gan-
guyi and 
Yan’an
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where Qsi is the simulated value (runoff,  m3/s; sediment, 
t), Qoi is the observed value (runoff,  m3/s; sediment, t), Qo 
is the average observed value (runoff,  m3/s; sediment, t), 
“ k = 1 ” indicates the runoff data, and “ k = 2 ” indicates the 
sediment data. “ m = 1 ” indicates data from Yan’an station, 
and “ m = 2 ” indicates data from Ganguyi station.

Results

Calibration and validation by NSGA‑II and SUFI‑2

NSGA-II and SUFI-2 algorithms are, respectively, used 
to calibrate runoff parameters of Ganguyi catchment and 
Yan’an catchment (Table 4). During the calibration period 
from 1991 to 1995, both R2 and NSE of Ganguyi catchment 

(10)PBIAS(k,m) =

∑n

i=1

�

Qoi(k,m) − Qsi(k,m)
�

∑n

i=1
Qoi(k,m)

× 100

(11)
NSE2 =

1

4
(NSE(1, 1) + NSE(1, 2) + NSE(2, 1) + NSE(2, 2))

(12)
PBIAS2 =

1

4
(PBIAS(1,1) + PBIAS(1,2) + PBIAS(2,1) + PBIAS(2,2))

reached > 0.7, PBIAS were < 20%, and R2 and NSE of 
Yan’an catchment reached > 0.65; PBIAS were also < 20%. 
These data indicate that the two calibration methodologies 
can meet the accuracy requirements of hydrological mod-
eling in the Yanhe River watershed. Moreover, R2 and NSE 
at both sites are satisfactory in the validation period from 
1996 to 1997, although R2 and NSE decreased significantly 
or even negative in the validation period from 1998 to 2000. 
More significantly, NSGA-II algorithm presents an obvi-
ous advantage that its PBIAS is better than that of SUFI-2 
method in the calibration and validation period of the two 
sites.

Comparison of single‑site and two‑site calibration 
by NSGA‑II

After the parameters of S1, S2, and S3 scenarios are cali-
brated, the simulation performance of each station in the 
calibration and validation period was statistically shown in 
Table 5. Generally, NSGA-II method has more constraints 
than SUFI-2 on the parameter calibration process, and 
the simulation results are more reasonable. However, the 
parameters corresponding to S1 and S2 scenarios have obvi-
ous spatial limitations. For example, the NSE coefficients 
of S1 in Ganguyi station are respectively 0.72 and 0.77 in 
the calibration and validation period (96–97), but the NSE 

Table 4  Comparison of runoff 
calibration and validation 
results between NSGA-II and 
SUFI-2 in different periods

The bold part in the table is the better value

station Objective function R2 NSE PBIAS (%)

Methodology NSGA-II SUFI-2 NSGA-II SUFI-2 NSGA-II SUFI-2

Ganguyi Calibration (91–95) 0.75 0.76 0.72 0.72 2.55 15.27
Validation (96–00) 0.77 0.75 0.59 0.64 0.44 18.58
Validation (96–97) 0.86 0.88 0.77 0.85 0.17 19.18
Validation (98–00) 0.56 0.54 0.03 0.00 0.68 18.03

Yan’an Calibration (91–95) 0.80 0.69 0.76 0.68 12.03 15.22
Validation (96–00) 0.65 0.69 0.58 0.68 11.74 17.31
Validation (96–97) 0.82 0.83 0.81 0.77 23.76 28.23
Validation (98–00) 0.44 0.52  − 0.90 0.09  − 3.22 3.73

Table 5  Comparison of runoff 
calibration and validation 
results under single-site (S1, S2) 
and two-site (S3) scenarios

Station Objective function R2 NSE PBIAS (%)

Scenario S1 S2 S3 S1 S2 S3 S1 S2 S3

Ganguyi Calibration (91–95) 0.75 0.73 0.73 0.72 0.60 0.63 2.55 31.38 38.23
Validation (96–00) 0.77 0.62 0.75 0.59 0.19 0.58 0.44 35.98 45.81
Validation (96–97) 0.86 0.71 0.83 0.77 0.45 0.72 0.17 36.07 42.47
Validation (98–00) 0.56 0.47 0.56 0.03 -0.65 0.10 0.68 35.90 48.90

Yan’an Calibration (91–95) 0.67 0.80 0.79  − 1.04 0.76 0.75  − 126.24 12.03 0.42
Validation (96–00) 0.68 0.65 0.75  − 0.54 0.58 0.74  − 131.54 11.74 3.92
Validation (96–97) 0.84 0.82 0.89 0.42 0.81 0.87  − 88.87 23.76 15.30
Validation (98–00) 0.59 0.44 0.57  − 6.62  − 0.90  − 0.15  − 184.61  − 3.22  − 10.23
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coefficients in Yan’an station are reduced to − 1.04 and 0.42 
in the calibration and validation period (96–97). The NSE 
coefficients of S2 in Yan’an station were, respectively, 0.76 
and 0.81 in the calibration and validation period (96–97), but 
in Ganguyi station, the NSE coefficients decreased to 0.60 
and 0.45, respectively. This phenomenon indicates that there 
will be poor NSE and PBIAS, if the S1 scenario parameter 
is used to Yan’an catchment or the S2 scenario parameter 
is applied to Ganguyi catchment regardless of the calibra-
tion and validation period. On the contrary, the parameters 
corresponding to S3 scenario obviously have better appli-
cability. The NSE coefficients of S3 in Ganguyi station are 
0.63 and 0.72, respectively, in the calibration and validation 
periods (91–95, 96–97), and those in Yan’an station are, 
respectively, 0.75 and 0.87. Therefore, the simulation per-
formance of S3 in two hydrological stations is satisfactory 
in the calibration and validation periods (91–95, 96–97).

Comparison between single and synchronous 
calibration of runoff and sediment parameters 
by NSGA‑II

After the parameters in S4, S5, and S6 scenarios are cali-
brated, the simulation performance of each station in the 
calibration and validation period was statistically shown 
in Table 6. The calibration and verification effect of run-
off and sediment in S6 scenario is relatively good, but 
there are obvious differences between S4 and S5 scenarios. 
Firstly, the S4 scenario only uses runoff data for calibra-
tion, but the calibration and validation performance of 
runoff and sediment in these two stations is acceptable. 
The NSE coefficients of the runoff parameters in Ganguyi 
station are 0.72 and 0.77, respectively, in the calibration 
and validation period (91–95, 96–97), and the NSE coef-
ficients of sediment parameters in Ganguyi station are 0.53 
and 0.46 in the calibration and validation period (91–95, 
96–97). The NSE coefficients of the runoff parameters in 
Yan’an station are 0.76 and 0.81, respectively, and the 
NSE coefficients of sediment parameters in Yan’an station 

are 0.51 and 0.56, respectively. Secondly, the S5 scenario 
only uses sediment data for calibration, and the calibra-
tion and validation performance of sediment is better than 
that of S4 scenario, but the runoff effect is relatively poor, 
even negative. Specifically, the NSE coefficients of S5 in 
the sediment parameters of Ganguyi station are 0.71 and 
0.60, respectively, in the calibration and validation period 
(91–95, 96–97), but the NSE coefficients of runoff parame-
ters in Ganguyi station are − 0.93 and − 3.26, respectively; 
the NSE coefficients of S5 in the sediment parameters 
of Yan’an station are, respectively, 0.64 and 0.65 in the 
calibration and validation period (91–95, 96–97), but the 
NSE coefficients of runoff parameters in Yan’an station 
are − 14.83 and − 6.59, respectively.

Furthermore, the NSE coefficients of S6 scenario in 
the runoff parameters of Ganguyi station are 0.74 and 
0.82, respectively, in the calibration and validation period 
(91–95, 96–97) and 0.56 and 0.58, respectively, in the 
sediment parameters of Ganguyi station. The NSE coef-
ficients of S6 scenario in the runoff parameters of Yan’an 
station are 0.78 and 0.83, respectively, in the calibration 
and validation period (91–95, 96–97) and 0.56 and 0.60, 
respectively, in the sediment parameters of Yan’an station.

Synchronous calibration of runoff and sediment 
parameters in two sites

Like S1–S3 scenarios, the parameters corresponding to S7 
and S8 scenarios still have obvious spatial limitations on 
runoff (Table 7). When S7 scenario parameter is applied to 
the runoff in Yan’an catchment or S8 scenario parameter to 
the runoff in Ganguyi catchment, the simulation effect is 
obviously poor in the calibration and validation period. For 
example, the NSE coefficients of S7 in runoff parameters 
of Ganguyi station are 0.74 and 0.82, respectively, in the 
calibration and validation period (91–95, 96–97), but the 
NSE coefficients in Yan’an station are reduced to − 0.87 
and 0.37 in the calibration and validation period (91–95, 

Table 6  Comparison of single 
and synchronous calibration and 
validation results of runoff and 
sediment in different periods

Values in bold represent the scenarios where the model calibration results are relatively good

Station Hydrologi-
cal elements

Objective function NSE PBIAS (%)

Scenario S4 S5 S6 S4 S5 S6

Ganguyi Runoff Calibration (91–95) 0.72  − 0.93 0.74 2.55 2.55 2.05
Validation (96–97) 0.77  − 3.26 0.82 0.17 0.17 0.17

Sediment Validation (91–95) 0.53 0.71 0.56  − 10.42  − 4.59 3.13
Validation (96–97) 0.46 0.60 0.58  − 22.64  − 16.13  − 15.91

Yan’an Runoff Calibration (91–95) 0.76  − 14.83 0.78 12.03  − 344.84 6.31
Validation (96–97) 0.81  − 6.59 0.83 23.76  − 277.67 22.18

Sediment Validation (91–95) 0.51 0.64 0.56 8.33 0.34  − 4.46
Validation (96–97) 0.56 0.65 0.60 5.51 2.17 5.14
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96–97). The NSE coefficients of S8 in runoff parameters of 
Yan’an station are 0.70 and 0.89, respectively, in the cali-
bration and validation period (91–95, 96–97), but the NSE 
coefficients in Ganguyi station are reduced to 0.67 and 
0.52. The above results indicate again that using a single 
station to calibrate runoff will make the application of the 
model have a large deviation. By contrast, S9 has a good 
runoff simulation effect in the calibration and verification 
period (91–95, 96–97) at Ganguyi and Yan’an stations, 
the two-site method based on NSGA-II can improve the 
adaptability of parameters in runoff simulation.

Discussion

Comparison of the NSGA‑II and SUFI‑2 algorithms

The monthly simulated runoff obtained by the NSGA-II 
and SUFI-2 algorithms is basically consistent with the 
measured runoff at the two stations (Fig. 2), indicating 
that the SWAT model has good adaptability in the runoff 

simulation of Yanhe River watershed. Furthermore, the 
simulation effect of the calibrated model in the wet season 
is significantly better than that in the dry season at the 
two stations. Many scholars have similar results that there 
will be significant differences in the simulation effects 
in wet season and dry season when SWAT is applied to 
watersheds with extreme uneven in inner-annual flow (Gao 
2018). Firstly, SWAT model uses soil conservation service 
curve number (SCS-CN) method to calculate surface run-
off, and dry season factors are not fully considered in the 
equation (Liew and Garbrecht 2003). Secondly, the objec-
tive functions, such as NSE and PBIAS, are more sensitive 
to the peak value, because they mainly characterize the 
overall simulation effect and may not reflect the change in 
dry season (Zhang et al. 2015).

R2, NSE, and PBIAS during the validation period from 
1996 to 2000 were partly worse than that of the calibration 
period, which was related to complex and severe human 
activities after 1996 (Chen et al. 2010). Particularly, the 
decline of validation effect after 1998 may be related to the 
effective implementation of large-scale “Grain for Green” 

Table 7  Comparison of results 
of single and synchronous 
calibration of runoff and 
sediment at two stations

Values in bold represent the scenarios where the model calibration results are relatively good

Station Hydrologi-
cal elements

Objective function NSE PBIAS (%)

Scenario S7 S8 S9 S7 S8 S9

Ganguyi Runoff Calibration (91–95) 0.74 0.54 0.67 2.05 49.8 2.05
Validation (96–97) 0.82 0.68 0.52 0.17 53 0.17

Sediment Calibration (91–95) 0.56 0.5 0.67 3.13  − 50.88 3.13
Validation (96–97) 0.58 0.48 0.64  − 15.91  − 51.19  − 15.91

Yan’an Runoff Calibration (91–95)  − 0.87 0.78 0.70  − 108.98 6.31  − 4.44
Validation (96–97) 0.37 0.83 0.89  − 75.68 22.18 8.48

Sediment Calibration (91–95) 0.6 0.56 0.56 10.81  − 4.46 17.68
Validation (96–97) 0.69 0.6 0.55  − 1.77 5.14 27.26

Fig. 2  Comparison of two 
calibration algorithms in dif-
ferent hydrological stations: a 
Ganguyi and b Yan’an
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projects in the late 1990s in the Yanhe River Watershed (Wu 
et al. 2019), such as the project of “beautiful mountains and 
rivers” implemented in 1997 and the project of “returning 
farmland to forest/grass” implemented in 1999 (Yu 2008). 
These soil conservation practices have greatly changed the 
underlying surface conditions of the watershed, but the 
model does not take this change into account and only uses 
the land use data in 1995, which may be the other important 
reason for the poor simulation performance after 1998.

More importantly, PBAIS is the average deviation 
between the simulated value and the measured value. The 
small PBIAS by NSGA-II algorithm implies that this method 
can not only characterize the consistency of the average 
annual runoff between simulation and observation but also 
can better weaken the impact of peak flow (Gebremariam 
et al. 2014). Therefore, the NSGA-II algorithm based on 
multiple objective functions can better constrain the param-
eter calibration process and make the calibrated model more 
in line with the physical conditions of the watershed.

Calibration of single‑ and multi‑hydrological 
elements

Using NSGA-II algorithm to calibrate runoff or sediment 
alone can effectively improve the simulation performance 
of runoff or sediment. However, using only runoff data to 
calibrate model parameters may improve the calibration 
performance of sediment to a certain extent according 
to the results of S4 and S5 scenarios, while using only 
sediment data to calibrate model parameters has no obvi-
ous effect on runoff performance. This result proves the 
rationality of first calibrating runoff and then calibrating 
sediment in the model calibration. This is because run-
off parameters will not only affect runoff but also affect 
sediment processes (Abbaspour et al. 2007). Although 
the runoff simulation of S5 scenario is relatively poor, 
the simulation effect of sediment is significantly bet-
ter than that of S4 scenario, which can be attributed to 
the differential impact of some parameters on runoff 
and sediment simulation (Ghasemizade et  al. 2017). 
The effect of S6 scenario is better than S4 in the runoff 
simulation of these two stations during the calibration 
and validation period and is equivalent to S5 scenario in 
the sediment simulation of these two stations. Therefore, 
using runoff and sediment data to calibrate hydrological 
parameters may be more reasonable than using runoff 
data only. It is feasible to use the NSGA-II methodol-
ogy and two data sets to calibrate runoff and sediment 
synchronously, which can not only reduce the number of 
parameter iteration (Ercan and Goodall 2016) but also 
improve the simulation effects of runoff and sediment. 
More importantly, the synchronous calibration of runoff 
and sediment parameters avoids the cumbersome steps 

of calibrating runoff and sediment, respectively, and can 
make full use of runoff and sediment data information 
and improve the calibration efficiency of SWAT model 
in hydrological parameters.

Synchronous calibration of runoff and sediment 
at multi‑sites

Single-site calibration is more reliable in small watersheds, 
but it will ignore the spatial heterogeneity of parameters 
and affect the effectiveness of the application of the model 
in the whole large-scale watershed (Anderton et al. 2002). 
Many studies have shown that multi-site calibration meth-
odology is an effective way to solve this problem (Bai et al. 
2017; Molina-Navarro et al. 2017; Gong et al. 2012), which 
can make full use of the existing data and reduce the uncer-
tainty of hydrological model of medium- and large-scale 
watersheds with high spatial heterogeneity (Bekele and 
Nicklow 2007). Some researchers have proved that better 
simulation results can be obtained by using multi-site data in 
the calibration and validation processes (Zhang 2008; Ercan 
and Goodall 2016). For example, Zhang et al. (2013) pro-
posed a multi-algorithm genetically adaptive multi-objective 
(AMALGAM) optimization algorithm, which could not only 
effectively avoid the spatial heterogeneity of parameters but 
also improved the model calibration efficiency and the reli-
ability of simulation results.

There are some differences between the synchronous cali-
bration of runoff and sediment in single-site and the syn-
chronous calibration of runoff and sediment under multi-
sites (Table 7). The applicability of calibrated parameters in 
sediment simulation may be wider than runoff in the Yanhe 
River watershed. For example, the NSE coefficients of S7 
in the sediment parameters of Ganguyi station are 0.56 and 
0.58, respectively, in the calibration and validation period 
(96–97), and even better in Yan’an station, with the NSE 
coefficients of 0.60 and 0.69, respectively; the NSE coeffi-
cients of S8 in the sediment parameters of Yan’an station are 
0.56 and 0.60, respectively, in the calibration and validation 
period (91–95, 96–97), and 0.50 and 0.48 in Ganguyi sta-
tion, respectively. Generally, sediment is usually inseparable 
from runoff when studying sediment yield in a watershed, 
and it is meaningful to assess the adaptability of parameters 
to sediment only when they first have good adaptability to 
runoff. Therefore, both S7 and S8 scenarios still have spa-
tial limitations under certain circumstances. This is because 
single-site calibration may produce local optimal solutions, 
and there are obvious adaptability problems in the appli-
cation of different watershed scales (Huo et al. 2020). S9 
scenario not only realizes the applicability of parameters but 
also its sediment simulation effect is also basically equiva-
lent to that of S7 and S8. The NSE coefficients of monthly 
runoff in Ganguyi station are 0.67 and 0.52, respectively, in 
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the calibration and validation period and 0.70 and 0.89 in 
Yan’an station; the NSE coefficients of monthly sediment in 
Ganguyi station are 0.67 and 0.64, respectively, and 0.56 and 
0.55 in Yan’an station. The NSE coefficients of runoff and 
sediment in Ganguyi and Yan’an stations are all greater than 
0.5, indicating that the synchronous calibration of runoff and 
sediment parameters in these two stations based on NSGA-
II can determine a Pareto-optimal solution for the multiple 
objective optimization scheme in a single run and obtain a 
unique parameter set with wide applicability, which can not 
only improve the calibration performance of model but also 
can provide a robust model basis for watershed management.

The set of all noninferior solutions form the Pareto front. 
The collection of all Pareto-optimal solutions often forms 
an L-shaped curve in the objective space (Jia and Ierapetri-
tou 2007). Figure 3 shows the Pareto front of a bicriterion 
minimization problem, where the dots correspond to Pareto-
optimal solutions. The parameter set with the optimal aver-
age NSE (0.65) is selected as the final solution, meanwhile, 
with the average PBIAS of 0.19%. Practically, the solution 

of a bicriterion optimization problem is a process of mak-
ing tradeoffs between Pareto-optimal solutions (Abdalla 
et al. 2023). By using the Pareto-solution set from multi-site 
calibration, one can generate a Pareto-ensemble of simulated 
outputs for different sites, so that the uncertainty in the model 
simulations due to different ways of trading-off the model 
and data errors can be examined (Salazar and Rocco 2007).

The calibration and validation results of runoff and sedi-
ment corresponding to S9 scenario can be respectively pre-
sented in Figs. 4 and 5. On the whole, the simulation effect 
in the wet season is better than that in dry season, with NSE 
and R2 of 0.67 and 0.77 in Ganguyi station and 0.77 and 0.78 
in Yan’an station, while the simulation effect in the dry sea-
son is relatively poor. The reason is that the runoff genera-
tion in SWAT model is characterized by the SCS-CN method 
and a set of parameters associated with that structure, which 
primarily considers the precipitation and physical factors of 
the watershed (Liew and Garbrecht 2003). Furthermore, the 
validation effect of runoff in Yan’an station is better than that 
of Ganguyi station, but the simulation effect of sediment in 
Yan’an station is relatively poor. This is because the same 
set of parameters cannot fully characterize the spatial hetero-
geneity of the actual underlying surfaces in different catch-
ments (Wu et al. 2022b). The noninferior solution obtained 
by the NSGA-II method is not the optimal solution, and the 
influence of parameters on hydrological elements at different 
stations is not completely consistent, and it also has a certain 
variability and uncertainty (Leta et al. 2017).

Conclusions

This study focuses on the NSGA-II algorithm to compare 
and analyze the impact of nine designed scenarios such 
as single- and two-site calibration, separate and synchro-
nous calibration of runoff and sediment on the simulation 
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performance of SWAT model in an arid and semi-arid water-
shed. Results indicate that (i) both NSGA-II and SUFI-2 
algorithms can meet the accuracy requirements of parameter 
calibration in watershed modeling, but NSGA-II based on 
multiple objective functions can better constrain the param-
eter calibration process and obtain a hydrological model 
more in line with the physical conditions of the watershed. 
(ii) The two-site calibration based on NSGA-II can effec-
tively reduce the impact of spatial heterogeneity on model 
parameters and obtain an optimal parameter set with wide 
applicability. The synchronous calibration of runoff and sed-
iment parameters based on NSGA-II can not only improve 
the calibrating performance but also enhance the calibrating 
efficiency of SWAT model. (iii) The multi-objective two-site 
synchronization calibration of runoff and sediment based 
on NSGA-II combines the advantages of two-site and two-
element synchronization calibration, which can identify a 
Pareto-region of the parameter space and obtain optimal 
parameters in different locations and can also characterize 
the trade-offs that can be made between different “optimal” 
ways of constraining the model to be consistent with the data 
in the presence of model and data error. The finding aims 
to provide insights on the practical implication of multi-
objective optimization for model calibration and leading to 
the elusive goal of finding a unique optimal parameter set 
more efficiently. It is recommended that multi-optimization 
criteria that measure different aspects of system behavior can 
be used to investigate model uncertainty and performance, 
prior to broad use of a watershed water quality model.
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