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Abstract
The increasing usage of an important heavy metal chromium for industrial purposes, such as metallurgy, electroplating, 
leather tanning, and other fields, has contributed to an augmented level of hexavalent chromium (Cr(VI)) in watercourses 
negatively impacting the ecosystems and significantly making Cr(VI) pollution a serious environmental issue. In this regard, 
iron nanoparticles exhibited great reactivity in remediation of Cr(VI)-polluted waters and soils, but, the persistence and 
dispersion of the raw iron should be improved. Herein, this article utilized an environment-friendly celite as a modifying 
reagent and described the preparation of a novel composites namaly celite decorated iron nanoparticles (C-Fe0) and evalu-
ation of C-Fe0 for the sequestration performance of Cr(VI) from aqueous solution. The results indicated that initial Cr(VI) 
concentration, adsorbent dosage, and especially solution pH are all critical factors to control C-Fe0 performance in Cr(VI) 
sequestration. We demonstrated that C-Fe0 could achieve a high Cr(VI) sequestration efficiency with an optimized adsorbent 
dosage. Fitness of the pseudo-second-order kinetics model with data indicated that adsorption was the rate-controlling step 
and chemical interaction controlled Cr(VI) sequestration on C-Fe0. The adsorption isotherm of Cr(VI) could be the best 
depicted by Langmuir model with a monolayer adsorption. The underlying sequestration path of Cr(VI) by C-Fe0 was then 
put forward, and the combined effect of adsorption and reduction implied the potentials of C-Fe0 in Cr(VI) removal.
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Introduction

With the fast advancement of industrial civilization world-
wide, as well as the rapid global economic development, 
a large number of contaminants of metal(loid)s have been 
widely detected in the natural soil and water bodies (Fan 
et al. 2023; Gu et al. 2022; Hao et al. 2023; Li et al. 2021a; 
Ling et al. 2017). These contaminants of metal(loid) ion, 
which mainly included U(VI) (Bone et al. 2017; Hu et al. 

2020; Kou et al. 2022; Pan et al. 2023), Se(IV)/Se(VI) (Hong 
et al. 2020; Kou et al. 2022; Lu et al. 2018; Wu et al. 2021), 
Cr(VI) (Lu et al. 2018; Wu et al. 2021), Mo(VI) (Li et al. 
2020), Re(VII) (Li et al. 2020), 99Tc(VII) (Boglaienko et al. 
2019), Eu(III) (Dong et al. 2018, 2021), Co(II) (Xing et al. 
2016), As(III)/As(V) (Wang et al. 2014), Pb(II) (Zhao et al. 
2018), Cd(II) (Awual et al. 2018; Zhao et al. 2018), Ni(II) 
(Flynn and Catalano 2017), rare earth (Li et al. 2021b), and 
so on, have been commonly reported to pose severe threats 
to aquatic ecosystems and human health even at trace levels 
due to their great toxic effects and have been increasingly 
becoming an ecological concern (Fan et al. 2023; Ling et al. 
2017). So, their decontamination from various soil and water 
bodies has been an important and constant concern. In this 
respect, a variety of treatment approaches which included 
adsorption, coagulation, chemical, and biological treatment 
have been developed to remove metal(loid)s from water 
(Wan et al. 2018).

Among these metal(loid)s as-mentioned above, chromium 
(Cr) is one of the most common contaminants that could be 
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found in the hazardous waste sites, often entering ground-
water and soil environment from industrial effluents (Fan 
et al. 2023; Ling et al. 2017; Liu et al. 2023). Because of 
its high physiological toxicity, Cr has been regarded as a 
priority contaminant and environmental hazard, and thus it 
is very imperative to secure an effective method for the quick 
and complete removal of Cr from contaminated ecological 
environment (Ling et al. 2017). For Cr in the natural envi-
ronment, there are two major oxidation states namely Cr(III) 
that is slightly soluble and considerably less toxic, as well as 
Cr(VI) that is more toxic, soluble, and mobile (Chen et al. 
2021; Kang et al. 2020; Li et al. 2016, 2022; Saslow et al. 
2018; Wu et al. 2020). These are three reasons for the fact 
that Cr(VI) is more toxic than Cr(III). First, Cr(VI) is labile 
but Cr(III) is inert. Then, Cr(VI) enters the cell via sulfate 
uptake pathway because of structural similarity of chromate 
with sulfate but Cr(III) cannot. Finally, Cr(VI) is mobile 
but Cr(III) is not (Saha et al. 2013a, b). Besides, Cr(VI) 
could enter into the natural environment via different sources 
(Saha and Orvig 2010; Saha et al. 2011). Thereby it is more 
important to find an effective and convenient method to con-
trol Cr(VI) exposure and reduce its toxic effect, and reduc-
tion of Cr(VI) into Cr(III) by biological material has been 
regarded as a very useful and cheap process (Mukherjee 
et al. 2014, 2015a, b, 2016; Nandi et al. 2017; Saha and Saha 
2014). Using a high-performance photocatalyst for the effi-
cient photocatalytic reduction of aqueous Cr (VI) into Cr(III) 
was also reported to be an important method (Ge et al. 2021; 
Yao et al. 2022a, b; Zhang et al. 2014, 2018, 2022). Besides, 
lots of other materials have been fabricated for reduction of 
Cr(VI) into Cr(III) from water bodies including iron carbide 
loaded on the N-doped carbon nanotubes, the FeS and titan-
ate nanotubes nanocomposites, the graphene oxide adsorbed 
Fe(II), the h-BN supported nanoscale iron sulfide composite, 
etc. (Chen et al. 2021; Kang et al. 2020; Li et al. 2016, 2022; 
Liu et al. 2023; Saslow et al. 2018; Wu et al. 2020).

Among these materials and Cr(VI) remediation systems 
as-mentioned above, utilizing iron (Fe0) nanoparticles and 
their nanocomposites has been generally regarded as one of 
the most promising methods for the remediation of Cr(VI) 
and other related metal(loid)s from contaminated soil and 
water as a result of their high specific surface area and high 
reactive surface sites (Chen et al. 2017, 2023; Gu et al. 2007; 
Li et al. 2010; Shi et al. 2011a, b; Soliemanzadeh and Fekri 
2017; Wei et al. 2021; Zhang et al. 2013). Besides, iron nan-
oparticles and their nanocomposites were also considered 
a reactive material in permeable reactive barriers (PRBs), 
which could provide enormous flexibility for both in situ 
and ex situ remediation applications of metal(loid)s (Li 
et al. 2010). So, considerable research on Cr(VI) remedia-
tion has been focused on the interaction kinetics and reaction 
mechanisms between Fe0-based materials and Cr(VI). The 
remediation of Cr(VI) in Fe0-based interaction systems was 

mainly ascribed to a procedure that involved the reductive 
precipitation of Cr(VI) into Cr(III), which was resulted from 
an electron transfer interaction between Cr(VI) and Fe(0)/
Fe(II) at a solid/water interface (Shi et al. 2011a, b; Solie-
manzadeh and Fekri 2017; Zhang et al. 2013). In addition, 
during the potential applications, decorated iron nanoparti-
cles could be improved in the dispersion and persistence of 
iron nanoparticles in water, and thus enhancing the speed 
and efficiency of a Fe0-based remediation system. In this 
regard, clay minerals, which are environmental-friendly and 
abundant in nature, are promising modifying reagent, and 
therefore lots of clay minerals like bentonite and montmoril-
lonite have been widely utilized to decorate iron nanopar-
ticles (Shi et al. 2011a, b; Soliemanzadeh and Fekri 2017; 
Zhang et al. 2013). As an inert and porous material, celite 
was mainly composed of silica (SiO2), as well as some other 
inorganic oxides (Abbasi et al. 2023; Chang et al. 2007; Jabli 
et al. 2020; Liu et al. 2009; Meunier et al. 2014; Satar and 
Husain 2009). Since celite has desirable physical properties, 
i.e., inexpensive, chemical inertness, non-biodegradable, as 
well as interconnected pore structure, celite is very suitable 
for support of reactive materials. Thereby, there is a growing 
interest in the utilization of celite as support material of the 
catalyst by providing a better distribution to enhance reac-
tion rates (Abbasi et al. 2023; Chang et al. 2007; Jabli et al. 
2020; Liu et al. 2009; Meunier et al. 2014; Satar and Husain 
2009). Nevertheless, according to our literature survey, no 
attention has been paid to the usage of celite as a modifying 
reagent to decorate iron (Fe0) nanoparticles.

Therefore, in the present paper, we aimed to prepare 
celite decorated iron nanoparticles (C-Fe0) and evaluate 
the sequestration performance of hexavalent chromium by 
C-Fe0 from aqueous solution. The main objectives of this 
paper were: (1) to prepare celite decorated iron nanoparticles 
and characterize the surface structure and properties using 
scanning electron microscopy (SEM), transmission elec-
tron microscopy (TEM), Fourier transform infrared (FTIR) 
spectra, X-ray diffraction (XRD), etc., (2) to investigate the 
adsorption kinetics and isotherms of Cr(VI) on C-Fe0 mate-
rial, and (3) to reveal the interaction mechanisms between 
C-Fe0 and Cr(VI) using X-ray photoelectron spectroscopy 
(XPS).

Materials and methods

Chemicals and equipment

All chemicals including potassium dichromate (Shanghai 
Zhanyun Chemical Co. LTD), diphenylarbazone (Shanghai 
Maclin Biochemical Technology Co., LTD), sulfamic acid 
(Shanghai Maclin Biochemical Technology Co., LTD), fer-
rous sulfate heptahydrate (Sinopharm Chemical Reagent 
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Co. LTD), phosphoric acid (Shanghai Zhanyun Chemical 
Co. LTD), sodium hydroxide (Xilong Chemical Co., LTD, 
hydrochloric acid (Zhejiang Zhongxing Chemical Reagent 
Co. LTD), sulfuric acid (Hangzhou Shuanglin Chemical 
Reagent Co. LTD), acetone (Hangzhou Shuanglin Chemi-
cal Reagent Co. LTD) were purchased in analytical purity 
without further treatment. The equipment used in this work 
included electronic analytical balance (EL204, Mettler 
Toledo (Shanghai) Instrument Co., LTD), precision pH 
meter (Five Easy Plus, Mettler Toledo (Shanghai) Instru-
ment Co., LTD), CNC ultrasonic cleaner (KQ5200DA, 
Kunshan Ultrasonic Instrument Co., LTD), ultraviolet–vis-
ible spectrophotometer (SP-756-P, Shanghai Spectrometer 
Co. LTD), constant temperature heating magnetic agitator 
(DF-101S, Gongyi Yuhua Instrument Co., LTD), electric 
blast drying oven (GZX-9070MBE, Shanghai Boxun Indus-
trial Co., LTD. Medical equipment factory), table top high 
speed centrifuge (TG16-WS, Hunan Xiangyi Laboratory 
Instrument Development Co., LTD), temperature controlled 
shaker(IKA KS4000i control, German aika), etc.

Experimental methods

To prepare celite decorated iron nanoparticles (C-Fe0), 
first, a certain amount of celite was put in a 500-mL 
flask, then 250 mL of deoxidized deionized water was 
added, with constant stirring under nitrogen conditions 
to ensure deoxidization. After that, a certain amount of 
FeSO4·7H2O was added, and a peristaltic pump was used 
to add 50 mL of NaBH4 solution at a rate of 4 mL/min (the 
molar ratio of NaBH4 to Fe2+ is ~ 3:1). The reaction is as: 
Fe2+ + 6H2O + 2BH−

4 → Fe0↓ + 2B(OH)3 + 7H2↑ (Liu et al. 
2014; Shi et al. 2011a, b). During the reaction, nitrogen 
was always introduced for deoxidation, and after the add-
ing completion of NaBH4 solution, the stirring is contin-
ued for another 15 min, and thus the generated H2 could be 
completely discharged. The as-prepared material was cen-
trifuged and washed to remove impurity ions, then freeze-
dried, and finally vacuum freeze-dried to obtain powdered 
C-Fe0 material.

To evaluate the sequestration performance of Cr(VI) by 
C-Fe0 from aqueous solution,the batch adsorption experi-
ment was used, wherein the solutions of Cr(VI) with dif-
ferent concentrations are diluted by the stock solution, and 
these solutions were added in a certain volume of reaction 
bottles, then the pH of the reaction solution was adjusted 
with 0.1 mol/L of NaOH or 0.1 mol/L of HCl. Sodium salt 
(Na) was used for the adsorption studies. In order to obtain 
an optimization conditions for the adsorption of Cr(VI), the 
effects of adsorbent dosage, initial pH value of solution, ini-
tial concentration of Cr(VI), and contact time on the adsorp-
tion process were studied respectively. After shaking for a 
certain time with a rotating speed of 220 r/min, a certain 

volume of reaction filtrate was diluted in a 25-mL colorimet-
ric tube to determine the concentration of Cr(VI) by spec-
trophotometry method (Liu et al. 2014; Shi et al. 2011a, b).

Determination methods

The surface morphology was observed with a JEOL, JSM-
6360LV scanning electron microscope (SEM) and trans-
mission electron microscope (TEM, JEO, JEM-1011). The 
elemental composition of the reaction samples was char-
acterized by energy-dispersive X-ray spectroscopy (EDS, 
Oxford instruments X-Max). The phase analysis was deter-
mined by the powder X-ray diffraction (XRD) measurements 
(PANalytical B.V., Empyrean, NL). The Fourier transform 
infrared (FTIR) spectra were measured on a Nicolet 6700 
FTIR spectrometric analyzer using KBr pellets. Surface 
electronic states were analyzed by X-ray photoelectron spec-
troscopy (XPS, ESCALAB 250xi of SEMER Fisher Scien-
tific and Technological Co., Ltd), with a Ka-Al radiation 
(hv = 1486.6 eV). XPS spectra were analyzed by XPS peak 
fitting program for WIN95/98 (XPSPEAK 4.0 Version 4.1) 
using the following asymmetric Gaussian–Lorentzian sum 
function. Line shapes of GL (30) were used for individual 
constituents (i.e., O1s, Fe2p, and Cr2p) (Chen et al. 2022, 
2023; Li et al. 2021a; Wu et al. 2021).

Results and discussion

Batch adsorption results

Figure 1 displayed the experimental results of the seques-
tration performance of Cr(VI) by C-Fe0 via an adsorption 
process from aqueous solution as a function of solution 
pH, adsorbent dosage, and contact time. The optimization 
of pH played an important role in Cr(VI) adsorption on 
C-Fe0 due to the direct determination of the species of 
Cr(VI) and surface charge of C-Fe0 in water by the initial 
pH value. Previous studies have showed that Cr(VI) was 
mainly existed in the form of HCrO4

− at low pH values and 
CrO4

2− was in a dominant position with pH increasing (Su 
et al. 2020). The effect of pH on sequestration performance 
of Cr(VI) by C-Fe0 was presented in Fig. 1A. The effi-
ciency of Cr(VI) sequestration slightly increased with pH 
increased from 2 to 3 and then obviously decreased with 
pH increasing from 3 to 8. This was mainly because the 
corrosion of C-Fe0 was accelerated at lower pH values, and 
the rate of reaction was also accelerated (Li et al. 2012). 
The products of Fe2+ promoted the reductive conversion 
of Cr(VI) into Cr(III); thereby, the sequestration of Cr(VI) 
on C-Fe0 might involve a combined reduction and co-pre-
cipitation processes. Figure 1B exhibited the efficiency of 
Cr(VI) sequestration as a function of C-Fe0 dosage in the 
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range from 0.1 to 1.0 g/L, which exhibited that the incre-
ment in C-Fe0 dosage was beneficial to the improvement in 
Cr(VI) sequestration efficiency. This result was mainly due 
to the factor that more C-Fe0 dosage could supply more 
surface reactive sites for Cr(VI) sequestration (Li et al. 
2021a; Soliemanzadeh and Fekri 2017). Besides, more 
C-Fe0 addition would lead to the reduction of C-Fe0 utili-
zation and the inconvenience of separation. So it is neces-
sary to choose a suitable C-Fe0 dosage in the real applica-
tion of Cr(VI) sequestration. The effect of contact time in 
Cr(VI) sequestration was also conducted in the adsorption 
experiment, and the results are displayed in Fig. 1C. The 
tend of Cr(VI) sequestration on C-Fe0 surface increased 
sharply from 5 to 60 min, then slowed down from 60 to 
120 min, and finally reached adsorption equilibrium. There 
was a large number of adsorption sites on C-Fe0, and the 
high Cr(VI) concentration in solution makes it very easy 

to be removed on C-Fe0 at the initial adsorption stage. 
With the adsorption progressing, the adsorption sites on 
C-Fe0 surface and the Cr(VI) concentration decreased, and 
the adsorption slowed down until it reached equilibrium 
(Wang et al. 2022).

Figures  2 and 3 displayed the adsorption kinet-
ics of Cr(VI) sequestration on C-Fe0 as a function of 
pH, Cr(VI) concentration, and adsorbent dosage, and 
the related fitting of pseudo-first-order kinetic model, 
pseudo-second-order kinetics model, intraparticle diffu-
sion model. It was generally reported that the adsorption 
kinetics of metal(loid)s can be fitted accurately by the 
pseudo-first-order kinetic model, pseudo-second-order 
kinetics model, intraparticle diffusion model (Kong et al. 
2016; Shi et al. 2011a, b).

The pseudo-first-order kinetic model could be depicted 
as Eq. (1):
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Fig. 1   The effect of pH (A), sorbent dosage (B), and reaction time (C), on the sequestration of Cr(VI) on C-Fe0 material
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The pseudo-second-order kinetics model could be 
depicted as Eq. (2):

The intraparticle diffusion model could be depicted as 
Eq. (3):

where qe (mg/g) and qt (min) are the adsorption capacities 
at equilibrium and at time t, respectively, k1 (min−1) and k2 
(g/(mg min)) are the pseudo-first-order rate constant and 
pseudo-second-order rate constant, respectively, kp (mg/

(1)log
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= logqe −
k
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t
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1∕2 + I

(min1/2 g)) is the intraparticle diffusion rate constant, and I is 
the intercept (Kong et al. 2016; Shi et al. 2011a, b). And the 
kinetic fitting parameters were all presented in Tables 1, 2, 
3 and 4, respectively. Comparing the correlation coefficient 
value (R2) for different modes, we can see that the pseudo-
second-order model fitted the adsorption Cr(VI) on C-Fe0 
the best. So, the pseudo-second-order was dominant, and 
the potential rate-determining step in Cr(VI) adsorption on 
C-Fe0 was chemical interaction which involved sharing and 
exchanging of electrons between the binding site and Cr(VI) 
ions (Gerente et al. 2007; Luo et al. 2015; Su et al. 2020).

The isotherm data is very important for depicting the 
adsorption state at equilibrium, which can provide the basic 
information about thermodynamic performance (Niu et al. 
2013; Zhao et al. 2018). The isotherm adsorption curves 
of Cr(VI) sequestration on C-Fe0 materials were shown 
in Fig. 4. We can clearly see that the adsorption increased 

Fig. 2   The sequestration of Cr(VI) on C-Fe0 as a function of pH and Cr(VI) concentration (A), and the related kinetic fitting of (B) pseudo-first-
order kinetic model, (C) pseudo-second-order kinetics model, (D) intraparticle diffusion model
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Fig. 3   The sequestration of Cr(VI) on C-Fe0 as a function of pH and sorbent dosage (A), and the related kinetic fitting of (B) pseudo-first-order 
kinetic model, (C) pseudo-second-order kinetics model, (D) intraparticle diffusion model

Table 1   Fitting parameters of pseudo-first-order kinetic model for Cr(VI) adsorption

Model Conditions Parameters

K1 qe R2

Pseudo-first-order kinetic model pH = 3
C-Fe0 = 10 mg

C0 = 5 mg L−1 7.780 ± 0.001 × 10−3 1.07 ± 0.01 0.9384 ± 0.0001
C0 = 10 mg L−1 1.559 ± 0.001 × 10−2 4.19 ± 0.01 0.9653 ± 0.0001
C0 = 20 mg L−1 1.001 ± 0.001 × 10−2 4.59 ± 0.01 0.7176 ± 0.0001

pH = 4
C-Fe0 = 10 mg

C0 = 10 mg L−1 1.063 ± 0.001 × 10−2 4.11 ± 0.01 0.9815 ± 0.0001
C0 = 20 mg L−1 8.418 ± 0.001 × 10−3 4.56 ± 0.01 0.9188 ± 0.0001

pH = 5
C-Fe0 = 10 mg

C0 = 10 mg L−1 1.436 ± 0.001 × 10−2 4.32 ± 0.01 0.9416 ± 0.0001
C0 = 20 mg L−1 1.225 ± 0.001 × 10−2 4.29 ± 0.01 0.9948 ± 0.0001

pH = 4
C0 = 10 mg L−1

C-Fe0 = 20 mg 1.088 ± 0.001 × 10−2 3.76 ± 0.01 0.9707 ± 0.0001
C-Fe0 = 30 mg 7.560 ± 0.001 × 10−3 4.41 ± 0.01 0.9518 ± 0.0001

pH = 5
C0 = 10 mg L−1

C-Fe0 = 20 mg 9.957 ± 0.001 × 10−3 3.97 ± 0.01 0.9337 ± 0.0001
C-Fe0 = 30 mg 9.210 ± 0.001 × 10−3 2.73 ± 0.01 09,133 ± 0.0001

pH = 6
C0 = 10 mg L−1

C-Fe0 = 20 mg 1.755 ± 0.001 × 10−2 4.42 ± 0.01 0.9683 ± 0.0001
C-Fe0 = 30 mg 9.970 ± 0.001 × 10−3 2.41 ± 0.01 0.9978 ± 0.0001



63541Environmental Science and Pollution Research (2023) 30:63535–63548	

1 3

with the increase of initial Cr(VI) concentration, suggest-
ing that the adsorption of Cr(VI) on C-Fe0 favored high 
concentration because of the larger driving force that arose 
from high concentration gradient (Zhao et al. 2018). Herein, 
the Langmuir, Dubinin-Radushkevich (D-R), and Freun-
dlich isotherm models were used to described the isotherm 
adsorption data, in order to reveal the isotherm adsorption 
mechanism (Niu et al. 2013, 2014; Zhao et al. 2018).

The linear equation of Langmuir model could be depicted 
by Eq. (4):

The linear equation of Freundlich model could be 
depicted by Eq. (5):

(4)
Ce

qe
=

Ce

qm
+

1

qmKL

The linear equation of D-R model could be depicted by 
Eq. (6):

where Ce (mg L−1) and qe (mg g−1) are the equilibrium 
Cr(VI) concentration and adsorption capacity, respectively, 
qm (mg g−1) is the maximum adsorption amount, KL (L 
mg−1) is the Langmuir constant, KF (mg·g−1) is the Freun-
dlich constant, and n is adsorption intensity index related to 
adsorption intensity. Besides, ε (kJ2 mol−2) is a Polanyi 
potential that could be obtained by ε = RTln(1 + 1/Ce), β 
(mol2 J−2) is an activity coefficient that was related to a mean 

(5)lnqe = lnKF +
lnCe

n

(6)lnqe = lnqm − ��2

Table 2   Fitting parameters of pseudo-second-order model for Cr(VI) adsorption

Model Conditions Parameters

K2 qe R2

Pseudo-second-order kinetics model pH = 3
C-Fe0 = 10 mg

C0 = 5 mg L−1 1.421 ± 0.001 × 10−2 7.325 ± 0.001 0.9979 ± 0.0001
C0 = 10 mg L−1 1.010 ± 0.001 × 10−2 15.88 ± 0.01 0.9991 ± 0.0001
C0 = 20 mg L−1 4.533 ± 0.001 × 10−1 12.43 ± 0.01 0.9998 ± 0.0001

pH = 4
C-Fe0 = 10 mg

C0 = 10 mg L−1 9.541 ± 0.001 × 10−3 11.81 ± 0.01 0.9998 ± 0.0001
C0 = 20 mg L−1 1.083 ± 0.001 × 10−2 11.24 ± 0.01 0.9991 ± 0.0001

pH = 5
C-Fe0 = 10 mg

C0 = 10 mg L−1 1.052 ± 0.001 × 10−2 8.432 ± 0.001 0.9987 ± 0.0001
C0 = 20 mg L−1 4.533 ± 0.001 × 10−1 5.347 ± 0.001 0.9998 ± 0.0001

pH = 4
C0 = 10 mg L−1

C − Fe0 = 20 mg 2.436 ± 0.001 × 10−2 8.739 ± 0.001 0.9969 ± 0.0001
C − Fe0 = 30 mg 1.010 ± 0.001 × 10−2 7.437 ± 0.001 0.9991 ± 0.0001

pH = 5
C0 = 10 mg L−1

C − Fe0 = 20 mg 1.886 ± 0.001 × 10−2 6.862 ± 0.001 0.9997 ± 0.0001
C − Fe0 = 30 mg 3.713 ± 0.001 × 10−2 5.054 ± 0.001 0.9998 ± 0.0001

pH = 6
C0 = 10 mg L−1

C − Fe0 = 20 mg 3.089 ± 0.001 × 10−2 4.964 ± 0.001 0.9988 ± 0.0001
C − Fe0 = 30 mg 5.245 ± 0.001 × 10−2 4.232 ± 0.001 0.9992 ± 0.0001

Table 3   Fitting parameters of intraparticle diffusion model for Cr(VI) adsorption

Model Conditions Parameters

ki I R2

Intraparticle diffusion model pH = 3
C-Fe0 = 10 mg

C0 = 5 mg L−1 0.3859 ± 0.0001 11.48 ± 0.01 0.8933 ± 0.0001
C0 = 10 mg L−1 0.2859 ± 0.0001 8.469 ± 0.001 0.9157 ± 0.0001
C0 = 20 mg L−1 0.4127 ± 0.0001 7.426 ± 0.001 0.9465 ± 0.0001

pH = 4
C-Fe0 = 10 mg

C0 = 10 mg L−1 0.3388 ± 0.0001 9.724 ± 0.001 0.9543 ± 0.0001
C0 = 20 mg L−1 0.3032 ± 0.0001 9.251 ± 0.001 0.9477 ± 0.0001

pH = 5
C-Fe0 = 10 mg

C0 = 10 mg L−1 0.3336 ± 0.0001 9.218 ± 0.001 0.9422 ± 0.0001
C0 = 20 mg L−1 0.3796 ± 0.0001 4.313 ± 0.001 0.9155 ± 0.0001

pH = 4
C0 = 10 mg L−1

C-Fe0 = 20 mg 0.2242 ± 0.0001 3.969 ± 0.001 0.9173 ± 0.0001
C-Fe0 = 30 mg 0.3174 ± 0.0001 10.46 ± 0.001 0.9590 ± 0.0001

pH = 5
C0 = 10 mg L−1

C-Fe0 = 20 mg 0.1828 ± 0.0001 4.918 ± 0.001 0.9911 ± 0.0001
C-Fe0 = 30 mg 0.1134 ± 0.0001 3.566 ± 0.001 0.7261 ± 0.0001

pH = 6
C0 = 10 mg L−1

C-Fe0 = 20 mg 0.1295 ± 0.0001 4.377 ± 0.001 0.9091 ± 0.0001
C-Fe0 = 30 mg 0.4216 ± 0.0001 3.801 ± 0.001 0.9169 ± 0.0001
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free energy (E, kJ mol−1). The E value could be derived by 
this relationship, E = 1

√

2�
 . We can use the E value to deter-

mine whether the adsorption of Cr(VI) is physical or chemi-
cal. When the value of E is below 8 kJ mol−1, it indicates a 
physical adsorption. When the E value was in the range of 
8–16 kJ mol−1, it suggests a chemical adsorption (Zhao et al. 
2018). According to the fitting parameters, we can see that 
the correlation coefficient of Langmuir (RL

2, 0.994) was 
higher than Freundlich (RF

2, 0.985) and the D-R model 

(RD-R
2, 0.962), indicating the adsorption of Cr(VI) on C-Fe0 

can be the best depicted by Langmuir model with a mon-
olayer adsorption. In addition, the E value was determined 
to be in the range of 8–16 kJ mol−1, which indicated the 
adsorption of C-Fe0 for Cr(VI) was chemical interaction in 
nature.

Characterization results and mechanism insights

Herein, various characterization methods were used to reveal 
the structural changes of the materials before and after reac-
tion. Figure 5 presented the SEM of celite, and C-Fe0, as well 
as TEM and EDS mapping of C-Fe0 before reaction. It could 
be seen from SEM that there existed a little of pores on celite 
particles with some discal structure, which make it a good 
possibility for Fe0 to be decorated on celite surfaces. Accord-
ing to the SEM and TEM of C-Fe0, we could observe that 
the shaped Fe0 particles were dispersed on celite surfaces. 
Elemental analysis from EDS mapping showed the presence 
of Fe, Si, O, and to a smaller extent of Ca, which further 
indicated the successful combination of Fe0 and celite. Fig-
ure 6 presented the FTIR spectra, and XRD patterns of C-Fe0 
before and after reaction with Cr(VI). In the FTIR spectra, 
the band at ~ 3400 cm−1 might be caused by the stretching 
vibration of Si–OH group, the band at ~ 1020 cm−1 might 
be attributed to the bending vibration of Si–OH, the band 
at ~ 540 cm−1 might be attributed to the bending vibration of 

Table 4   Fitting parameters of XPS analysis of C-Fe0 before and after 
reaction

Elements Bond species C-Fe0 C-Fe0/Cr

O O−Fe 529.8 529.3
O−Cr 528.8
O−H 532.6 532.5
O−C 531.3 531.1
O = C 533.8 533.5

Fe Fe0 706.8
Fe(III) 710.8, 719.1 710.9, 719.8
FeOOH 724.8 724.9

Cr Cr2O3 576.1
Cr(OH)3 586.2
Cr(III)-Fe(III) 577.9
Cr(VI) 587.9

Fig. 4   The adsorption isotherm 
of Cr(VI) sequestration on 
C-Fe0 material (A), Langmuir 
model (B), Freundlich model 
(C), and D–R model (D) fitting 
results
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Fe–O. The intensity change of these bands before and after 
reaction suggess the chemical interaction between Cr(VI) 
and C-Fe0. Meanwhile, the XRD patterns indicated that 
C-Fe0 before and after reaction was poorly crystallized. It 
revealed that both samples consist of SiO2 with some other 
oxides. Besides, the reflection at 2θ ~ 44.5° was indicative 

of iron (Jing et al. 2015; Xu et al. 2014). Figure 7 showed 
the nitrogen adsorption–desorption isotherms and pore dis-
tributions of C-Fe0. The BET surface area of C-Fe0 was 9.24 
m2/g, and the corresponding pore size (adsorption average 
pore width) is 11.8 nm, respectively. Figure 8 showed the 
SEM, TEM, and EDS mapping of C-Fe0 after reaction with 

Fig. 5   SEM images of (A) celite, and (B) C-Fe0 samples, and TEM images of (C) C-Fe0, as well as SEM–EDS mapping of (D) C-Fe0 before 
reaction

Fig. 6   FTIR spectra (A), and 
XRD patterns (B) of C-Fe.0 
samples before and after reac-
tion with Cr(VI)
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Cr(VI). Compared with the EDS mapping of C-Fe0 before 
reaction, elemental analysis showed additional Cr in EDS 
mapping of C-Fe0 after reaction, suggesting the surface 
reaction of C-Fe0 and Cr(VI). The surface became scabrous 
after reacting with Cr(VI) and the chain-like aggregates of 
Fe0 became more clear, which might be resulted from the 
gradual cover of iron oxide layers like FeOOH and Fe2O3 on 
C-Fe0 surface (Chen et al. 2011).

It has been widely believed that Cr(VI) sequestration 
by iron and its composites involved a combined processes 
of physical adsorption and chemical reduction (Wang 
et al. 2020). So, in the present work, XPS analysis was 
conducted for characterization of C-Fe0 before and after 
reaction of Cr(VI). Figure 9 showed the surveyed XPS 
spectra of C-Fe0 before and after reaction with Cr(VI), as 
well as the corresponding high XPS spectra of Cr2p, O1s, 
and Fe2p, before and after reaction with Cr(VI). Bind-
ing energies of O1s at ~ 528 eV, ~ 529 eV, ~ 531 eV, ~ 53
2 eV, and 533 eV were assigned to O–Cr, O–Fe, O–C, 
O–H, and O = C, respectively (Li et al. 2022; Wang et al. 

Fig. 7   Nitrogen adsorption–desorption isotherms and pore distribu-
tions of C-Fe.0

Fig. 8   SEM images (A), and TEM images (B), as well as SEM–EDS mapping (C) of C-Fe.0 after reaction with Cr(VI)
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2020; Wu et al. 2020), suggesting that surface complexa-
tion had an important effect on Cr(VI) sequestration. The 
Fe2p spectrum has three peaks, namely, Fe0 at ~ 706 eV, 
Fe(III) at ~ 710 eV, and FeOOH at ~ 724 eV; meanwhile, 
the Cr2p spectrum has four peaks, i.e., Cr2O3 at ~ 576 eV, 
Cr(III)-Fe(III) at ~ 577  eV, Cr(OH)3 at ~ 586  eV, and 
Cr(VI) at ~ 587 eV (Lyu et al. 2017, 2018; Wang et al. 
2020; Wu et al. 2020), which proved the reduction reaction 
between Cr(VI) and C-Fe0. It was reported by Wang et al. 
(2020) that Cr(VI) sequestration on Fe0-based compos-
ites followed a common process. Namely, when Fe0-based 

composites contacted with Cr(VI), electrons could directly 
transfer from Fe0 to Cr(VI); thus, reduction of Cr(VI) by 
Fe0 is favorable (Eq. (7)). Then, reduction between Cr(VI) 
and Fe(II) could spontaneously happen, which reduces 
Cr(VI) indirectly into Cr(III) (Eq. (8)). Meanwhile, these 
reactive Fe(II) species could be constantly generated 
through electron transfer among different Fe species (Eqs. 
(9) and (10)). Finally, Cr(VI)–Fe(III) and Cr(III)–Fe(III) 
precipitation, as well as iron oxides could be formed on 
solid surface because of pH variations during the reaction 
(Eqs. (11)–(13)) (Wang et al. 2020).

Fig. 9   The surveyed XPS spec-
tra of C-Fe.0 before and after 
reaction with Cr(VI) (A), as 
well as the high XPS spectra of 
Cr1s (B), O1s before (C), and 
after (D), reaction with Cr(VI), 
Fe2p before (E), and after (F), 
reaction with Cr(VI)
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Combining previous reports (Lv et al. 2017) and the 
observed results herein, we could conclude that Cr(VI) 
sequestration on C-Fe0 was mainly composed of both 
adsorption and reduction. Firstly, abundant Cr(VI) in solu-
tion could be quickly adsorbed onto C-Fe0 surface and grad-
ually diffused into interior of C-Fe0, which confirmed with 
rapid decrease of Cr(VI) at the initial stage. When contacted 
with C-Fe0, these adsorbed Cr(VI) were reduced into Cr(III). 
After that, some of these Cr species released back into solu-
tion. Besides, C-Fe0 were oxidized to Fe2+ during reaction, 
which could continue to participate in Cr(VI) reduction. 
Finally, released Cr(III), Fe2+, and Fe3+, as well as remain-
ing Cr(VI) co-precipitated as Cr(III)-Fe(III) (oxy)hydroxides 
to further remove Cr(VI) from aqueous solution (Lv et al. 
2017). The findings indicated that C-Fe0 was a good material 
for Cr(VI) sequestration.

Conclusions

In the present paper, novel composites namely celite deco-
rated iron nanoparticles (C-Fe0) were prepared by an in situ 
reduction method, and the sequestration performance of 
Cr(VI) by C-Fe0 from aqueous solution was evaluated. The 
influence of ambient conditions, including solution pH, 
adsorbent dosage, and initial Cr(VI) concentration on Cr(VI) 
sequestration performance, was studied. The results indicated 
that increasing pH exhibited the most significantly negative 
effect on Cr(VI) sequestration. Kinetics study indicated that 
pseudo-second-order adsorption model was more suitable to 
describe the Cr(VI) sequestration, and the Langmuir adsorp-
tion model fitted the best with the isotherm data of Cr(VI) 
adsorption on C-Fe0. Finally, the possible Cr(VI) sequestra-
tion path by C-Fe0 was analyzed. In general, the C-Fe0 exhib-
its many advantages as low cost and environmental benignity, 

(7)2HCrO−
4
+ 14H+ + 3Fe0 → 3Fe2+ + 8H

2
O

(8)HCrO−
4
+ 7H+ + 3Fe2+ → Cr3+ + 4H

2
O + 3Fe3+

(9)Fe0 − 2e− → Fe2+

(10)2Fe0 − Fe0 → 3Fe2+

(11)2Fe3+ + 6OH−
→ 2Fe(OH)

3
(s) → Fe

2
O

3
(s)3H

2
O

(12)Fe2+ + Cr
2
O2−

4
→ FeCr

2
O

4
(s)

(13)2Cr3+ + 6OH−
→ 2Cr(OH)

3
(s) → Cr

2
O

3
(s)3H

2
O

providing an admirable alternative over the common methods 
in Cr(VI) remediation.
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