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Abstract
This paper proposes a hybrid air relative humidity prediction based on preprocessing signal decomposition. New modelling 
strategy was introduced based on the use of the empirical mode decomposition, variational mode decomposition, and the 
empirical wavelet transform, combined with standalone machine learning to increase their numerical performances. First, 
standalone models, i.e., extreme learning machine, multilayer perceptron neural network, and random forest regression, 
were used for predicting daily air relative humidity using various daily meteorological variables, i.e., maximal and minimal 
air temperatures, precipitation, solar radiation, and wind speed, measured at two meteorological stations located in Algeria. 
Second, meteorological variables are decomposed into several intrinsic mode functions and presented as new input vari-
ables to the hybrid models. The comparison between the models was achieved based on numerical and graphical indices, 
and obtained results demonstrate the superiority of the proposed hybrid models compared to the standalone models. Further 
analysis revealed that using standalone models, the best performances are obtained using the multilayer perceptron neural 
network with Pearson correlation coefficient, Nash–Sutcliffe efficiency, root-mean-square error, and mean absolute error 
of approximately ≈0.939, ≈0.882, ≈7.44, and ≈5.62 at Constantine station, and ≈0.943, ≈0.887, ≈7.72, and ≈5.93 at Sétif 
station, respectively. The hybrid models based on the empirical wavelet transform decomposition exhibited high perfor-
mances with Pearson correlation coefficient, Nash–Sutcliffe efficiency, root-mean-square error, and mean absolute error of 
approximately ≈0.950, ≈0.902, ≈6.79, and ≈5.24, at Constantine station, and ≈0.955, ≈0.912, ≈6.82, and ≈5.29, at Sétif 
station. Finally, we show that the new hybrid approaches delivered high predictive accuracies of air relative humidity, and 
it was concluded that the contribution of the signal decomposition was demonstrated and justified.
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Nomenclature
ANN	� Artificial neural networks
DT	� Decision trees
DTR	� Decision tree regression
ELM	� Extreme learning machine
EMD	� Empirical mode decomposition
EWT	� Empirical wavelet transform
ET0	� Reference evapotranspiration
GBT	� Gradient boosting tree
IMFs	� Intrinsic mode functions
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Highlights   
• Predicting air relative humidity using three models, i.e., ELM, 
MLPNN, and RFR.
• Preprocessing signal decomposition for improving models 
performances.
• The EMD, VMD, and EWT were used and compared.
• Signal decomposition contributes to the models performances 
improvement.
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KNN	� K-nearest neighbor
LR	� Linear regression
LSTM	� Long-short term memory
M5Tree	� M5 model tree
MAE	� Mean absolute error
MAPE	� Mean absolute percentage error
MARS	� Multivariate adaptive regression spline
MLPNN	� Multilayer perceptron neural network
MLR	� Multiple linear regression
MRA	� Multiresolution analysis
NNARX	� Nonlinear autoregressive with external input
NSE	� Nash-Sutcliffe efficiency
OOB	� Out-of-bag
P	� Precipitation
Pa	� Air pressure
RH	� Air relative humidity
R	� Correlation coefficient
R2	� Determination coefficient
RBFNN	� Radial basis function neural network
RFR	� Random forest regression
RMSE	� Root-mean-square error
RNN	� Recurrent neural networks
SARIMA	� Seasonal autoregressive integrated moving 

average
SLFN	� Single-layer feedforward neural network
SR	� Solar radiation
SS	� Sunshine hours
SVR	� Support vector regression
Tmax	� Maximum air temperature
Tmean	� Mean temperature
Tmin	� Minimum air temperature
U2	� Wind speed
VMD	� Variational mode decomposition
WD	� Wind direction
XGBoost	� Extreme gradient boosting

Introduction

Air relative humidity (RH) can be defined as the quantity of 
water available in the air, and it is one of the most critical 
weather variables for hydrological and climatic studies, and 
it was also included in various climatic change investigations 
(Gunawardhana et al.2017; Sein et al. 2022). One of the 
most important uses of RH in water resource management 
is its inclusion in the standard Penman–Monteith method for 
reference evapotranspiration (ET0) calculation (Eccel 2012). 
Air temperature and RH are considered the most important 
factors of the thermal environment (Kuang 2020), and their 
accurate estimation is of great importance. The RH is a 
highly sensitive weather variable, and it affects several other 
processes especially the agro-food and the biological items, 
and it is highly influenced by several other weather variables 

especially air temperature, precipitation, and solar radiation 
(Shrestha et al. 2019). During the last few years, the appli-
cation of machine learning for water resources planning 
and management has received great importance and several 
application can be found in the literature, i.e., modelling 
pan evaporation (Kisi et al. 2022), predicting solar radiation 
in semi-arid regions (Jamei et al. 2023), modeling average 
grain velocity for rectangular channel (Kumari et al. 2022), 
and also for watershed prioritization (Sarkar et al. 2022). 
The RH data can be obtained from direct in situ measure-
ment; however, alternatives methods based on modelling 
approaches can be a good alternative and several applica-
tions can be found in the literature.

Tao et al. (2022) used several weather variables collected 
at two meteorological stations in Irak, i.e., maximum air 
temperature (Tmax), minimum air temperature (Tmin), ref-
erence evapotranspiration (ET0), sunshine hours (SS), and 
wind speed (U2) for modelling monthly air relative humid-
ity (RH). The authors used the extreme gradient boosting 
(XGBoost) algorithm for better input variables selection, 
and they compared the performances of three machines 
learning models, i.e., support vector regression (SVR), 
random forest regression (RFR), and multivariate adaptive 
regression spline (MARS), according to several input vari-
ables combinations. According to the obtained results, the 
RFR was the most accurate at Kut station, exhibiting root-
mean-square error (RMSE), mean absolute error (MAE), 
and Nash–Sutcliffe efficiency (NSE) values of approximately 
≈4.92%, ≈3.89%, and 0.916, respectively, while at Mosul 
station, MARS model was the most accurate exhibiting 
RMSE, MAE, and NSE values of ≈3.80%, ≈2.86%, and 
0.967, respectively. Yasar et al. (2012) compared between 
multilayer perceptron neural networks (MLPNN) and mul-
tiple linear regression (MLR) in modelling monthly RH 
in Turkey. For calibrating the models, they used five input 
variables, namely, monthly precipitation (P), latitude, lon-
gitude, altitude, and the month number. It was found that 
the MLPNN was more accurate exhibiting a correlation 
coefficient (R) values ranging from ≈0.96 to ≈0.99, and 
from ≈0.73 to ≈0.94 for the MLPNN and MLR, respec-
tively, while the mean absolute percentage error (MAPE) 
was ranged from ≈1.56 to ≈3.32% and from 3.88 to 8.56%, 
respectively, showing the high contribution of the topo-
graphical information, i.e., latitude, longitude, and altitude 
in improving the forecasting accuracies of the monthly RH. 
Hanoon et al. (2021) compared between gradient boosting 
tree (GBT), RFR, linear regression (LR), MLPNN, and 
radial basis function neural network (RBFNN) in predict-
ing daily and monthly RH in Malaysia. For developing the 
models, the authors used the RH measured at previous lags 
times from (t − 1) to (t − 6) without the inclusion of other 
climatic variables. From the obtained results, it was found 
that (i) at daily time scale, the MLPNN was more accurate 
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exhibiting R, RMSE, and MAE values of approximately 
≈0.634, ≈2.6%, and ≈3.9%, and (ii) at monthly time scale, 
the RBFNN was the most accurate with R, RMSE, and MAE 
values of approximately ≈0.713, ≈1.6%, and ≈2%, respec-
tively. Adnan et al. (2021) compared between MARS and 
M5Tree model for predicting daily RH using P, solar radia-
tion (SR), and mean temperature (Tmean) measured at the 
Hunza River basin, Pakistan. Obtained results revealed that 
MARS model was more accurate compared to the M5Tree 
exhibiting RMSE, MAE, and coefficient of determination 
(R2) ranging from ≈5.86 to ≈6.58%, ≈4.97 to ≈5.43%, and 
≈0.806 to ≈0.815, respectively, compared to the value of 
≈6.08 to ≈6.19%, ≈5.46 to ≈5.58%, and ≈0.762 to ≈0.783 
obtained using the M5Tree. In addition, they reported that 
the best forecasting accuracies were obtained using RH and 
Tmean measured at three previous lags as input variables. Shi 
et al. (2018) applied the MLPNN model for forecasting RH 
at 6 h, 24 h, and 72 h in advance. High forecasting accuracy 
was obtained with R2 values ranging from ≈0.654 to ≈0.977.

Thapliyal et al. (2014) used a linear regression model for 
RH retrieval showing good predictive accuracy with R-value 
of approximately ≈0.91. Lu and Viljanen (2009) used the 
nonlinear autoregressive with external input (NNARX) 
model for predicting RH using Tmean and RH measured at 
previous lags times from (t − 1) to (t − 5) as input variables 
showing high predictive accuracy with R value of approxi-
mately ≈0.99. Bregaglio et al. (2010) investigated the feasi-
bility of thirteen hourly air relative humidity modelling solu-
tions based on different empirical formula and showing high 
to moderate correlation between measured and calculated 
RH with R-values ranging from ≈0.660 to ≈0.858. Hus-
sein et al. (2021) compared between five machines learning 
models, namely, RFR, MLPNN, MLR, XGBoost, and the 
k-nearest neighbor (KNN) for predicting RH using monthly 
image data. The image data collected and used were avail-
able from NASA GESDISC data archive, and several cli-
matic variables are available, namely, rainfall, evaporation, 
humidity, temperature, and wind speed. From the obtained 
results, it was found that the proposed models were able 
to accurately predict RH with R2 ranging from ≈0.960 to 
≈0.999. Suradhaniwar et  al. (2021) developed one-step 
and multi-step ahead forecasting frameworks for RH using 
suite of machines learning models. They applied the recur-
rent neural networks (RNN), the long-short term memory 
(LSTM), the support vector regression (SVR), the seasonal 
autoregressive integrated moving average (SARIMA), and 
the MLPNN models. Based on the RMSE values, it was 
found that the SVR and SARIMA models were more accu-
rate than the MLPNN and the two deep learning models, 
i.e., the LSTM and RNN. Taking into account the RMSE 
values, it was found that the SARIMA (RMSE ≈ 1.87) and 
SVR (RMSE ≈ 1.97) outperformed the MLPNN (RMSE ≈ 
2.83), LSTM (RMSE ≈ 2.12), and RNN (RMSE ≈ 2.13) for 

one-step and multi-step ahead forecasting: SARIMA (RMSE 
≈ 11.31%) and SVR (RMSE ≈ 11.30%), MLPNN (RMSE 
≈ 18.11%), LSTM (RMSE ≈ 12.02%), and RNN (RMSE 
≈ 14.74%), respectively. Qadeer et al. (2021) used RFR 
and SVR for modelling RH using two predictors, namely, 
dry-bulb temperature and wet-bulb temperature, and they 
reported slightly and negligible difference between the two 
models. Arulmozhi et al. (2021) selected a large number of 
predictors for modelling RH, namely, wind direction (WD), 
U2, Tmean, air pressure (Pa), P, SR, and net radiation, and 
they compared between MLR, MLPNN, RFR, SVR, and 
decision tree regression (DTR). From the obtained results, 
the RFR was found to be more accurate and outperformed all 
others models with R2, RMSE, and MAE of 0.954, 2.429%, 
and 1.470%, respectively.

According to the literature discussed above, it is clear 
that several attempts have been made for better prediction 
of RH based on machine learning models. The above listed 
models, i.e., SVR, MLPNN, DTR, and RNN, have been used 
in RH modelling studies, whereas many other methods have 
not. Furthermore, we can argue about the advantages and 
limitations of each model were governed by the type of data 
and varied from one region to another. Because air relative 
humidity and meteorological variables were characterized 
by linear and nonlinear properties, it become particularly 
challenging to directly builds robust single machine learning 
models. In order to overcome the limitations of some single 
machine learning models, the hybridization based on pre-
processing signal decomposition has become very popular 
lately because it can be easily used and their robustness has 
been demonstrated. Furthermore, to the best of the author’s 
knowledge; no study has reported the application of the pre-
processing signal decomposition for predicting RH using 
climatic variables as predictors. Consequently, there is still-
room to investigate new modelling framework and to com-
pare their performances relative to those of already reported 
in the literature, in an attempt to improve our understanding 
of the RH prediction. This study is the first to use a num-
ber of algorithms, i.e., the empirical mode decomposition 
(EMD), variational mode decomposition (VMD), and the 
empirical wavelet transform (EWT) for improving the pre-
dictive accuracy of the RH. In this study, we conduct also a 
comprehensive comparison of the performances of three dif-
ferent machine learning models (MLPNN, extreme learning 
machine (ELM), and RFR) with and without combination 
with the EMD, VMD, and EWT algorithms, which make 
the present study a deeply comparison between single and 
hybrid models.

Through these intercomparisons, the present investigation 
could be a sound argument for the judgment of the real benefit 
and the added utility of the signal decomposition in improv-
ing the retrieval of the RH. The paper is organized as fol-
low. "Introduction" is an introduction with in depth literature 
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review. In "Materials and methods", we present the case study, 
data used, and the mathematical description of the proposed 
models. "Study area and data" is reserved to the presentation of 
the results and discussion. Finally, the conclusion is provided 
in "Performance assessment of the models".

Materials and methods

Study area and data

The present investigation was carried out in two sites areas 
in the East of Algeria, where meteorological information are 
available, as it is detailed in the following paragraphs. The 
selected two stations were the following (see Fig. 1): (i) Con-
stantine station (Latitude: 36.374°, longitude: 6.562°, and 
altitude: 698 m) and (ii) Sétif (latitude: 36.374°, longitude: 
5.312°, and altitude: 1094 m). For each station, we use data 
for a total period of 10 years ranging from 2000 to 2009, with 
total patterns of 3653. For each station, 70% of the data are 
used for model calibration (training) and 30% for model vali-
dation. The meteorological data sets used in the present study 
are composed from five predictors combined for better predic-
tion of air relative humidity (RH). The selected variables are 
(i) solar radiation (SR: MJ/m2), (ii) the precipitation (P: mm), 
(iii) the wind speed (U2: m/s), and (iv) the maximal and mini-
mal air temperature (Tmax and Tmin: °C). The RH is measured 
in percent (RH: %). Descriptive statistics parameters for all 
variables are calculated and provided in Table 1 for the two 
stations, with the mean, maximal, minimal, standard devia-
tion, coefficient of variation, and the coefficient of correlation 
calculated between each variable and the RH, which have help 
in selecting the best input combination, and in total six were 
selected having various input variables starting from five and 
ending by two (Table 2). Furthermore, all variables used in the 
present study were standardized using the Z-score method by 
subtracting the mean and dividing by the standard deviation.

Performance assessment of the models

In the present study, four performance metrics were selected 
for model comparison and evaluation: the root-mean-square 
error (RMSE), mean absolute error (MAE), correlation coef-
ficient (R), and Nash–Sutcliffe efficiency (NSE).

(1)MAE =

∑N

i=1
�RHpre,i − RHobs,i�

N

(2)RMSE =

�∑N

i=1
(RHobs,i − RHpre,i)

2

N

RHobs and RHpre are the mean measured, and mean fore-
casted air relative humidity, respectively;RHobs and RHpre 
specifies the observed and forecasted air relative humidity; 
and N shows the number of data points.

Machine learning models

ANN model

Artificial neural networks (ANN) are mathematical mod-
els biologically inspired from the function of the human 
brain. The ANN model is composed from an ensemble of 
units called neurons and arranged in a successive parallel 
layers. In the present paper, we use the multilayer percep-
tron neural network (MLPNN) model reported as univer-
sal approximator (Fig. 2). The basic element of the ANN 
model is called the neuron, and it can play a key dual role 
in providing the final response of the model: the summa-
tion, and the activation using an activation function. The 
summation is calculated based on the weighted sum of the 
inputs variables, while the activation is calculated using 
an activation function, generally the sigmoidal function 
(Eq. 5).

The neurons from the input to the output layers are con-
nected among them through an ensemble of parameters 
called weights similar to the biological neurons (Haykin 
1999; Hornik 1991). The structure of the MLPNN model 
is determined based on the number of neurons in each layer 
and the total number of layers. For the input and the output 
layers, the total number of neurons corresponds exactly to 
the number of input and output variables, while the number 
of the neuron in the hidden layer is determined by trial and 
error. The success of the MLPNN comes from the back-
propagation training algorithm, which was developed for 
improving the capability of the model in handling a non-
linear function approximation. During the training process, 
the cost function calculated between the actual (i.e., meas-
ured) and the calculated outputs is minimized. In addition, 
during the training process, there is a continuous updating 
of all model parameters (i.e., weights and biases) in both 

(3)NSE = 1 −

⎡
⎢⎢⎣

∑N

i=1
(RHobs,i − RHpre,i)

2

∑N

i=1
(RHobs,i − RHobs)

2

⎤
⎥⎥⎦

(4)R =

∑N

i=1

�
RHobs,i − RHobs

��
RHpre,i − RHpre

�
�∑N

i=1
(RHobs,i − RHobs)

2 ∑N

i=1
(RHpre,i − RHpre)

2

(5)f (x) =
1

1 + e−x
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directions: forward and backward propagation of the gradi-
ent. More detail about the ANN can be found in Haykin 
(1999) and Hornik (1991).

ELM

Suppose we have N observations with input variables xi 
and its corresponding output yi. We do not know any pos-
sible relation between x and y variables, and we suppose 
that the xi can provide some useful information’s for pre-
dicting yi with an acceptable accuracy level. In order to 
solve the approximation function linking the input (xi) to 
the output (yi), Huang et al. (2006a, b) propose an extreme 
learning machine algorithm (ELM) for training the single 
layer feedforward neural network (SLFN) having three lay-
ers: input layer (xi), one hidden layer, and one output layer 
(yi) as shown in Fig. 3. Compared to the standalone ANN 
for which all parameters were updated during the training 
process, in the ELM model, the input weights and the hid-
den layer biases were “randomly” selected (i.e., the wij and 
bj), and the output weights linking the hidden layer to the 
output layer were analytically determined (i.e., the βj) using 
the Moore Penrose generalized inverse operation, making 
the training algorithm a simple linear system.

Suppose that the hidden layer is composed with L hidden 
neurons, it is assumed that there exist a series of models 

parameters designated as: wij, bj, βj, and a nonlinear trans-
formation function G for which the following formulation 
can be drawn:

where f is the final response of the ELM model, the xn are 
the input variables, βj is the output weights matrix, wij is the 
weights linking the input to the hidden layers, bj is the bias 
of the hidden layer neuron j, and G is the sigmoid activation 
function. H is called the hidden layer output matrix (Huang 
et al. 2006a, b).

RFR

Random forest regression (RFR) is an ensemble method 
composed of several decision trees models (DT) intro-
duced by Breiman (2001). Each DT is constructed based 
on a recursive splitting strategy of the input training data 
(Fig. 4). It is important to note that for each root node, the 
calibration datasets are arranged into a unique partition, 
and each DT is induced by an out-of-bag (OOB) approach, 
which is a sampling with replacement. The OOB leads to 
two kind of data: a part will be “left out,” while the second 

(6)f
(
xn
)
=

L∑
j=1

�j ⋅ G
(
wij ⋅ xi + bj

)
= H�

Fig. 1   Location map showing the two stations in the east of Algeria
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part will be repeated in the sample. By achieving the train-
ing of all DT, RFR model uses an average or majority vote 
depending on whether a classification or regression task is 
handled form all the predictions of the single trees.

Signal decomposition methods

In the present paper, three-signal decomposition were 
used, namely, the empirical mode decomposition (EMD), 

Table 1   Summary statistics of 
variables

Xmean mean, Xmax maximum, Xmin minimum, Sx standard deviation, Cv coefficient of variation, R coefficient 
of correlation with RH

Variables Subset Unit Xmean Xmax Xmin Sx Cv R

Constantine weather station
RH Training % 63.724 99.667 8.587 21.892 0.344 1.000

Validation % 64.048 99.618 10.170 21.656 0.338 1.000
All data % 63.821 99.667 8.581 21.819 0.342 1.000

Tmax Training °C 22.858 44.976 1.215 9.735 0.426  − 0.895
Validation °C 22.568 42.691 0.071 9.592 0.425  − 0.884
All data °C 22.771 44.976 0.071 9.692 0.426  − 0.892

Tmin Training °C 9.700 27.201  − 5.335 6.749 0.696  − 0.742
Validation °C 9.541 28.207  − 4.159 6.621 0.694  − 0.735
All data °C 9.653 28.207  − 5.335 6.711 0.695  − 0.740

p Training mm 1.755 62.366 0.000 4.967 2.831 0.405
Validation mm 1.606 32.956 0.000 3.945 2.463 0.447
All data mm 1.710 62.366 0.000 4.686 2.741 0.414

U2 Training m/s 1.983 6.223 0.590 0.583 0.294  − 0.114
Validation m/s 1.988 6.757 0.785 0.597 0.300  − 0.198
All data m/s 1.984 6.757 0.590 0.587 0.296  − 0.139

SR Training MJ/m2 17.768 32.476 0.357 8.848 0.498  − 0.695
Validation MJ/m2 17.995 32.087 0.430 8.983 0.499  − 0.676
All data MJ/m2 17.836 32.476 0.357 8.888 0.498  − 0.689

Sétif weather station
RH Training % 64.701 99.665 10.235 23.427 0.362 1.000

Validation % 64.340 99.666 9.743 23.053 0.358 1.000
All data % 64.593 99.666 9.743 23.313 0.361 1.000

Tmax Training °C 20.972 42.559  − 2.737 9.983 0.476  − 0.900
Validation °C 21.000 41.423  − 1.274 9.773 0.465  − 0.898
All data °C 20.980 42.559  − 2.737 9.920 0.473  − 0.900

Tmin Training °C 8.436 26.185  − 6.272 6.839 0.811  − 0.743
Validation °C 8.294 25.945  − 8.398 6.739 0.813  − 0.739
All data °C 8.393 26.185  − 8.398 6.809 0.811  − 0.742

p Training mm 2.381 56.023 0.000 5.453 2.290 0.432
Validation mm 2.178 46.656 0.000 5.142 2.360 0.414
All data mm 2.321 56.023 0.000 5.362 2.311 0.427

U2 Training m/s 1.849 6.256 0.554 0.610 0.330  − 0.083
Validation m/s 1.827 4.948 0.664 0.588 0.322  − 0.107
All data m/s 1.842 6.256 0.554 0.603 0.327  − 0.090

SR Training MJ/m2 17.295 32.709 0.377 8.975 0.519  − 0.717
Validation MJ/m2 17.485 32.295 0.435 8.964 0.513  − 0.702
All data MJ/m2 17.352 32.709 0.377 8.971 0.517  − 0.713

Table 2   The input combinations of different models

ELM ANN RFR Input combination Output

ELM1 MLPNN1 RFR1 Tmax, Tmin, P, U2, SR RH
ELM2 MLPNN2 RFR2 Tmax, Tmin, U2, SR RH
ELM3 MLPNN3 RFR3 Tmax, P, U2, SR RH
ELM4 MLPNN4 RFR4 Tmax, P, U2 RH
ELM5 MLPNN5 RFR5 Tmax, P, SR RH
ELM6 MLPNN6 RFR6 Tmax, P RH
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the variational mode decomposition (VMD), and the 
empirical wavelet transform (EWT). An example of the 
application of the three algorithms for maximal air tem-
perature decomposition is provided in Fig. 5.

Empirical mode decomposition

Empirical mode decomposition (EMD) was proposed by Huang 
et al. (1998). The EMD algorithm is a preprocessing signal 
decomposition mainly used for filtering any nonlinear signal and 
making it as a series of sub signal called intrinsic mode functions 
(IMFs). In order to be an IMF oscillatory component, some con-
ditions should be respected as the phase and amplitude of each 
one changes slowly: (i) only one zero value is attributed to one 
IMF between two consecutive extremes and (ii) the local average 
of the IMF is equal to zero (Alaodolehei et al. 2020; Abdulhay 
et al. 2020). Decomposition of nonlinear signal using the EMD, 
i.e., the “sifting” process, involves several stages, which can be 
summarized as follows (Abdollahpoor and Lotfivand 2020):

1.	 The calculated IMFs should be ordered from lower scale 
to higher scale.

2.	 The process of extracting the IMF will start by calculat-
ing the local maxima and minima if the signal x (t).

3.	 The obtained local maxima and minima are used by the 
cubic spline curve for setting the upper and lower enve-
lopes, and their average value, i.e., the m1 (t), is then 
calculated.

4.	 Calculates the first component, i.e., C1(t) as follow:

5.	 This process (i.e., the “sifting” process) is iterative and 
will continue until the first IMF is extracted.

6.	 While the process is iterative, there is a shutoff param-
eter for stopping the “sifting” process, i.e., the standard 
deviation (SD) calculated as follows (Abdollahpoor and 
Lotfivand 2020):

7.	 Finally, the original signal x(t) can be reformulated as 
follow:

where N is the number of IMF and the RN is called the resi-
due (El Bouny et al. 2019).

VMD

Dragomiretskiy and Zosso (2014) propose the variational 
mode decomposition (VMD) for signal decomposition. The 

(7)C1(t) = x(t) − C1(t)

(8)SD =

T∑
t=0

[||hk−1(t) − hk(t)
||2

h2
k−1

(t)

]

(9)x(t) =
∑N

i=1
IMFi(t) + RN(t)

f (x)
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Fig. 2   The multilayer perceptron neural network (MLPNN) architec-
ture
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VMD uses an adaptive decomposition process for extracting 
a series of intrinsic mode functions (IMFs) characterized by 
specific sparsity properties (Li et al. 2022). The VMD esti-
mates the modes, i.e., the IMFs and their respective center 
frequencies using an adaptively and concurrently algorithm 

(Peng et al.2020). Each mode calculated using the VMD 
could be formulated as follow:

(10)uk(t) = Ak(t)cos
[
∅k(t)

]
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Fig. 4   The random forest regression (RFR) architecture

Fig. 5   An example of maximal air temperature (Tmax) signal decomposition using a the EMD, b the VMD. and c the EWT
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where uk (t) is the kth mode component, Ak (t) is a non-
negative envelope, and ϕk (t) is instantaneous phase, respec-
tively (Li et al. 2022). Using the VMD, we suppose that 
each calculated mode corresponds to an IMF having a finite 
bandwidth and a central frequency, which were determined 
using an iterative searching process for an optimal solution 
(Zhang et al. 2020). Given any nonlinear and nonstationar-
ity signal f (t), the VMD can be seen as a minimization of 
a constrained optimization problem and the VMD can be 
constructed a follows:

where uk (k = 1, 2, 3, …, K) represents the K IMFs using 
VMD, wk is the corresponding center frequencies of each 
IMF, t is the time script, K represents the total number of 
sub-signals, δ(t) is the Dirac distribution, j is the imaginary 
unit, and ⊗ is the convolution operator, and finally the 
expression 

(
�(t) +

j

�t

)
 corresponds to the Hilbert transform 

of uk (t) (Liu et al. 2021; Li et al. 2022; Peng et al.2020).

EWT

The empirical wavelet transform (EWT) was introduced 
by Gilles (2013). The EWT was formulated based on the 
assumption that a signal x(t) results from the sum of the 
individual subcomponents characterized by a compact sup-
port in Fourier spectrum (Liu et al. 2020). The EWT is used 
for providing a series of sub signal called multiresolution 
analysis (MRA) (Wang and Hu 2015). The EWT uses two 
distinguished functions, namely: (i) empirical wavelet func-
tions (∅̂n(�)) (i.e., the band-pass filters) and (ii) empirical 
scale function �̂n(�) (i.e., the low-pass filters). The two func-
tions are defined by Eqs. (12) and (13), respectively (Hu 
et al. 2015; Si et al. 2019):

and

For the two above equations, (ω) is the nth maxima of 
the Fourier spectrum. The selection of the best (τ) value 

(11)

⎧
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�∑K
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‖𝜕t

��
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�
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2
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should be proportional to (ωn) for which (τn = γ.ωn) where 
(0 < γ < 1). The function β (x) ∈ Ck ([0, 1]) is an arbitrary 
function and expressed as follows (Liu et al. 2020; Hu et al. 
2015; Si et al. 2019):

Results and discussion

Model development

This study compares between single models, i.e., MLPNN, 
ELM, and RFR, and hybrid models based on signal decom-
position, i.e., the EMD, VMD, and EWT. Hence, the hybrid 
models were designated hereafter as MLPNN_EMD, 
MLPNN_VMD, and MLPNN_EWT, and this is identical 
with the ELM and RFR models. For each single and hybrid 
models, six input combinations were tested and compared 
for showing the effect of varying the models structure on the 
predictive accuracy (Table 3). Furthermore, in this section, 
we try to investigate if we can obtain accurate RH prediction 
values and range, and more precisely, if the signal decompo-
sition algorithms can help in rendering the predictive results 
more accurate. A series of evaluation metrics was used for 
comparison and to determine whether the hybrid models 
were better than the single models, i.e., the R, NSE, RMSE, 
and MAE. In addition, a graphical comparison using the 
scatterplot, boxplot, violin plot, and Taylor diagram between 
measured and predicted data was provided, and the results 
were presented for each station separately. The flowchart 
of the proposed modeling framework is depicted in Fig. 6.

Results at Constantine station

Table 3 lists the numerical performance of the three single 
models used in this study. Hereafter, we focus on the results 
during the validation stage.

According to Table 3, the MLPNN model yields bet-
ter accuracy for all input combinations, but its numerical 
performances were slightly superior to those of the ELM 
and RFR, implying its superiority. First, using all five input 
variables, the MLPNN1 exhibited the high R (≈0.939) and 
NSE (≈0.882) values, and the lowest RMSE (≈7.44) and 
MAE (≈5.62) values, respectively. The ELM1 and the RFR1 
yielded equally numerical performances slightly lower than 
the MLPNN1. The results in Table 3 show that in terms of 
the mean values, the MLPNN models yielded the biggest 
mean R (≈0.924) and NSE (≈0.851) values, and the lower 
mean RMSE (≈8.33) and MAE (≈6.43) values, followed 

(14)�(x) =

{
0x ≤ 0

1x ≥ 1
and �(x) + �(1 − x) = 1∀x ∈ [0, 1]
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by the ELM models, and the RFR models were found to be 
the less accurate.

More precisely, in terms of RMSE and MAE, the big-
gest improvement among all models are gained using the 
MLPNN models with ≈1.662% and ≈3.064% compared 
to the ELM models and ≈4.82% and ≈6.29% compared 
to the RFR models. Beyond the first input combination, it 
is clear from Table 3 that the models based on four input 
variables (i.e., combination two and three) exhibited slightly 
lower performances and it is clear that the inclusion of the 
precipitation plays minor role in models performances 
improvement. The MLPNN2 and ELM2 for which the P 
was excluded worked equally having the same numerical 
performances superior to the RFR2. Furthermore, using only 
three input variables, i.e., the fourth and fifth input combina-
tions, it is clear that the performances of the models were 
significantly decreased from the first to the fifth combination 
and the inferiority of the RFR5 became more obvious. The 
MLPNN1 improve the MLPNN5 by decreasing the RMSE 
and MAE by approximately ≈17.119% and ≈19.611%, 
respectively, and the ELM1 improve the ELM5 by decreas-
ing the RMSE and MAE by approximately ≈12.449% 
and ≈12.802%, respectively, while the RMSE and MAE 
of the RFR5 was improved by ≈15.949% and ≈19.124%, 
respectively.

Finally, our analysis revealed that the poorest perfor-
mances among all proposed models were exhibited using the 
models having only two input variables for which the RMSE 
and MAE were significantly increased and the R and NSE 
values were dramatically decreased, and more precisely, the 

RFR6 is the only one for which the R and the NSE were 
decreased below the values of ≈0.900 and ≈0.800, respec-
tively (Table 3).

In the second part of the present study, we tried to 
improve the RH predictive accuracy by applying the signal 
decomposition, and in total, three algorithms were com-
pared, i.e., the EMD, VMD, and EWT. Obtained results are 
depicted in Table 4. A further discussion of the differences 
between the models with and without signal decomposition 
is warranted hereafter. An analysis of the ensemble results 
obtained using the EMD signal decomposition revealed 
that the contribution of the EMD in improving the perfor-
mances of the ELM and RFR is too small; on the contrary, 
the numerical performances were slightly deteriorated.

The analysis show that the mean RMSE and MAE values 
of the single ELM models were relatively equal to those 
obtained using the ELM_EMD, while the mean R and NSE 
values remained unchangeable, from (≈0.921 and ≈0.845) 
to (≈0.920 and ≈0.846), respectively, showing the limitation 
of the EMD algorithm in improving the performances of the 
single ELM models. Regarding the RFR models, we can 
clearly see that mean RMSE and MAE were increased from 
(≈8.755 and ≈6.866) to (≈9.068 and ≈7.225), respectively. 
However, it is important to note that the performances of 
the single RFR5 and RFR6 were slightly improved using the 
EMD algorithm for which the values of RMSE and MAE 
were dropped from (≈9.424 and ≈7.53) to (≈9.209 and 
≈7.302) between RFR5 and RFR_EMD5, and from (≈9.753 
and ≈7.869) to (≈9.047 and ≈7.246) between RFR6 and 
RFR_EMD6. Concerning the MLPNN models, it is clear 

Table 3   Performances of 
different standalone models at 
the Constantine station

Models Training Validation

R NSE RMSE MAE R NSE RMSE MAE

ELM1 0.938 0.880 7.568 5.822 0.931 0.865 7.940 6.096
ELM2 0.935 0.875 7.745 5.849 0.932 0.868 7.861 6.009
ELM3 0.935 0.874 7.779 5.983 0.925 0.855 8.235 6.303
ELM4 0.932 0.868 7.960 6.170 0.925 0.852 8.333 6.551
ELM5 0.923 0.852 8.429 6.550 0.911 0.824 9.069 6.991
ELM6 0.918 0.843 8.670 6.751 0.903 0.811 9.400 7.870
MLPNN1 0.946 0.895 7.093 5.407 0.939 0.882 7.446 5.628
MLPNN2 0.937 0.877 7.674 5.827 0.932 0.868 7.871 6.062
MLPNN3 0.938 0.878 7.635 5.850 0.930 0.861 8.066 6.229
MLPNN4 0.932 0.869 7.919 6.115 0.925 0.853 8.313 6.494
MLPNN5 0.923 0.852 8.420 6.546 0.912 0.828 8.984 7.001
MLPNN6 0.915 0.837 8.825 6.858 0.904 0.815 9.313 7.186
RFR1 0.975 0.950 4.890 3.704 0.931 0.866 7.921 6.090
RFR2 0.971 0.940 5.339 3.967 0.922 0.850 8.376 6.303
RFR3 0.974 0.947 5.056 3.837 0.926 0.856 8.207 6.310
RFR4 0.955 0.908 6.641 5.166 0.915 0.833 8.847 7.092
RFR5 0.950 0.899 6.959 5.417 0.902 0.810 9.424 7.530
RFR6 0.940 0.880 7.586 5.910 0.894 0.797 9.753 7.869
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Fig. 6   Flowchart of the modelling strategy for air relative humidity
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from the results reported in Table 4 that the MLPNN mod-
els are the only models for which significant improvement 
was gained using the EMD algorithm. All six models (i.e., 
from MLPNN1 to MLPNN6) showed their numerical per-
formances improved by an increase in the R and NSE val-
ues and a decrease in the RMSE and MAE values. Overall 
comparison between models revealed that the mean RMSE 
and MAE values calculated using the MLPNN models 
were decreased from (≈8.332 and ≈6.433) to (≈7.371 and 
≈5.795) exhibiting an improvement rates of approximately 
≈11.532% and ≈9.917%, respectively. Among the six input 
combination, it is clear that the MLPNN_EMD1 is the 
unique model that benefit most from the EMD showing it 
performances significantly increased with an improvement 
rates of approximately ≈1.064%, ≈2.040%, ≈7.89%, and 
≈4.47% in terms of R, NSE, RMSE, and MAE, respectively. 
As we can conclude that the EMD is an interesting algorithm 
for improving the MLPNN performances, but this cannot be 
generalized to the other machines learning models, i.e., the 
ELM and the RFR for which no improvement was gained.

It can be seen from Table 4 that when the VMD algorithm 
was used for signal decomposition, no improvement was 
gained and all machine-learning models have shown their 
performances decreased significantly, highlighting the limi-
tation and the poor contribution of the VMD in improving 
the predictive accuracy of the RH. In order to evaluate the 
prediction performance of the proposed hybrid VMD mod-
els compared to the single models, the comparison between 
the mean four metrics, i.e., the R, NSE, RMSE, and MAE 
values, is discussed hereafter (Table 4). We can see that the 
mean R (≈0.908), NSE (≈0.823), RMSE (≈9.100), and 
MAE (≈7.211) of the ELM_VMD, the mean R (≈0.921), 
NSE (≈0.841), RMSE (≈8.555), and MAE (≈6.656) of the 
MLPNN_VMD, and the mean R (≈0.890), NSE (≈0.776), 
RMSE (≈10.259), and MAE (≈8.321) of the RFR_VMD 
were all less than the values obtained using the single ELM, 
MLPNN, and RFR models, which leads to the conclusion 
that further efforts are required to understand the very limi-
tation and the poor contribution of the VMD in improving 
the accuracy of the RH estimation.

As shown in Table  4, compared with the VMD, the 
results of the EWT algorithm are more practical and can 
provide more support to the prediction of the RH. As 
shown in Table 4, it is obvious that the performances of the 
MLPNN and RFR models were improved and the used of 
the EWT leads to a significant increase in the mean R, NSE, 
RMSE, and MAE values, while the performances of the 
ELM models were decreased. Using the EWT, the mean R, 
NSE, RMSE, and MAE values of the MLPNN models were 
improved by ≈1.516%, ≈3.250%, ≈9.853% and ≈8.528%, 
respectively. Similarly, the mean R, NSE, RMSE, and MAE 
values of the RFR models were improved by ≈1.494%, 
≈2.035%, ≈4.959%, and ≈3.442%, respectively. Among 

all proposed models, it is clear that the MLPNN_EWT1 
was the best model showing its performances significantly 
improved compared to the single MLPNN1 model, exhibit-
ing improvement rates of approximately ≈1.171%, ≈2.267%, 
≈8.796%, and ≈6.876%, in terms of R, NSE, RMSE, and 
MAE values, respectively.

Furthermore, if all models were compared one by one, 
the mean RMSE and MAE values of the MLPNN6 hav-
ing only the Tmax and P as input variables were decreased 
by approximately ≈15.215% and ≈13.665%, respectively, 
which constitute the high improvement rates among all pro-
posed models. From Tables 3 and 4, the numerical values of 
the performances metrics lead to conclude that the perfor-
mances of the hybrid models based on signal decomposition 
are generally higher than the single models except the VMD 
algorithm who failed to give any improvement in terms of 
predictive accuracy. In addition, the experimental results 
show that the RMSE and MAE values of the EWT based 
models are the lowest, while the R and NSE values were 
the highest compared to the values obtained using the EMD 
algorithm. In conclusion, the hybrid EWT–based models 
have the best predictive performance and the relatively better 
air relative humidity estimation.

The models were further compared based on graphi-
cal comparison as shown in Figs. 7 and 8. In Fig. 7, we 
drawn the scatterplot of measured and predicted air rela-
tive humidity for the best single and hybrid models for 
which we can conclude that plotted data were less scattered 
using the MLPNN models with and without decomposition 
and the models based on the EWT were the best accurate 
models. According to the boxplot (Fig. 8a) and the violin 
plot (Fig. 8b), the models based on EWT were the most 
accurate and the MLPNN with and without decomposition 
improve all other models showing the high similarity with 
the measured one. However, according to the Taylor diagram 
(Fig. 8c), the RFR_VMD was the poorest model among all 
proposed models.

Results at Sétif station

Table 5 shows the predictive results for the training and 
validation data using the different singles methods and 
based on the six input combinations for Sétif station. 
When comparing the three single models (ELM, MLPNN, 
and RFR) taking into account the mean values of the per-
formances metrics, it is obvious that the RFR models were 
worse than the ELM and the MLPNN models.

The ELM models yielded an R and NSE values rang-
ing from ≈0.905 to ≈0.938 (mean ≈ 0.924), and from 
≈0.818 to ≈0.879 (mean ≈ 0.854), the MLPNN models 
yielded an R and NSE values ranging from ≈0.908 to 
≈0.943 (mean≈0.926), and from ≈0.824 to ≈0.887 (mean 
≈ 0.857), while the values obtained using the RFR were 
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Table 4   Performances of hybrid 
models based on EMD, VMD 
and EWT at the Constantine 
station

Models Training Validation

R NSE RMSE MAE R NSE RMSE MAE

ELM_EMD1 0.945 0.894 7.129 5.659 0.926 0.857 8.173 6.453
ELM_EMD2 0.952 0.907 6.674 5.247 0.915 0.836 8.760 6.906
ELM_EMD3 0.956 0.913 6.448 5.073 0.927 0.858 8.168 6.456
ELM_EMD4 0.958 0.918 6.274 4.907 0.933 0.869 7.843 6.104
ELM_EMD5 0.946 0.895 7.094 5.615 0.910 0.827 9.015 7.159
ELM_EMD6 0.949 0.901 6.878 5.361 0.911 0.829 8.950 6.976
MLPNN_EMD1 0.974 0.947 5.052 3.903 0.949 0.900 6.858 5.376
MLPNN_EMD2 0.969 0.938 5.431 4.237 0.946 0.894 7.044 5.445
MLPNN_EMD3 0.969 0.938 5.433 4.219 0.946 0.896 6.994 5.466
MLPNN_EMD4 0.961 0.918 6.270 4.913 0.938 0.878 7.558 6.061
MLPNN_EMD5 0.955 0.911 6.546 5.075 0.935 0.874 7.669 6.055
MLPNN_EMD6 0.945 0.893 7.176 5.638 0.927 0.860 8.105 6.365
RFR_EMD1 0.982 0.954 4.687 3.657 0.917 0.828 8.989 7.133
RFR_EMD2 0.981 0.953 4.763 3.708 0.916 0.825 9.045 7.184
RFR_EMD3 0.980 0.950 4.887 3.838 0.914 0.822 9.136 7.288
RFR_EMD4 0.979 0.948 4.980 3.912 0.919 0.828 8.979 7.195
RFR_EMD5 0.978 0.947 5.048 3.958 0.912 0.819 9.209 7.302
RFR_EMD6 0.976 0.943 5.231 4.108 0.916 0.825 9.047 7.246
ELM_VMD1 0.938 0.879 7.615 5.995 0.916 0.838 8.722 6.921
ELM_VMD2 0.928 0.861 8.158 6.422 0.897 0.804 9.579 7.613
ELM_VMD3 0.943 0.888 7.313 5.766 0.918 0.841 8.620 6.823
ELM_VMD4 0.941 0.885 7.408 5.817 0.920 0.846 8.485 6.742
ELM_VMD5 0.930 0.865 8.046 6.334 0.898 0.805 9.547 7.514
ELM_VMD6 0.930 0.866 8.022 6.330 0.896 0.801 9.646 7.655
MLPNN_VMD1 0.971 0.942 5.267 4.051 0.937 0.877 7.600 5.906
MLPNN_VMD2 0.957 0.915 6.371 4.966 0.929 0.859 8.122 6.311
MLPNN_VMD3 0.908 0.805 9.661 7.556 0.879 0.736 11.125 8.682
MLPNN_VMD4 0.957 0.915 6.394 4.937 0.936 0.876 7.607 5.933
MLPNN_VMD5 0.949 0.901 6.877 5.314 0.923 0.852 8.322 6.436
MLPNN_VMD6 0.939 0.881 7.559 5.913 0.919 0.844 8.553 6.666
RFR_VMD1 0.981 0.949 4.924 3.925 0.892 0.779 10.177 8.276
RFR_VMD2 0.980 0.946 5.080 4.030 0.892 0.780 10.153 8.227
RFR_VMD3 0.980 0.947 5.043 4.027 0.890 0.775 10.270 8.343
RFR_VMD4 0.979 0.944 5.196 4.145 0.891 0.777 10.232 8.328
RFR_VMD5 0.978 0.943 5.206 4.135 0.886 0.770 10.376 8.372
RFR_VMD6 0.976 0.940 5.355 4.255 0.886 0.772 10.347 8.382
ELM_EWT1 0.959 0.919 6.232 4.904 0.927 0.859 8.139 6.411
ELM_EWT2 0.957 0.915 6.366 5.041 0.919 0.843 8.579 6.792
ELM_EWT3 0.959 0.919 6.230 4.941 0.920 0.845 8.534 6.830
ELM_EWT4 0.959 0.919 6.237 4.905 0.923 0.851 8.344 6.686
ELM_EWT5 0.953 0.908 6.626 5.225 0.904 0.815 9.316 7.323
ELM_EWT6 0.954 0.910 6.566 5.134 0.910 0.828 8.977 6.949
MLPNN_EWT1 0.979 0.957 4.528 3.509 0.950 0.902 6.791 5.241
MLPNN_EWT2 0.974 0.947 5.040 3.929 0.946 0.895 7.014 5.472
MLPNN_EWT3 0.944 0.891 7.239 5.735 0.918 0.842 8.609 6.834
MLPNN_EWT4 0.969 0.938 5.446 4.226 0.947 0.896 6.994 5.479
MLPNN_EWT5 0.962 0.924 6.033 4.703 0.934 0.871 7.763 6.078
MLPNN_EWT6 0.955 0.911 6.528 5.107 0.931 0.867 7.896 6.204
RFR_EWT1 0.985 0.963 4.206 3.266 0.931 0.857 8.193 6.500
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ranged from ≈0.902 to ≈0.933 (mean ≈ 0.919), and from 
≈0.800 to ≈0.871 (mean ≈ 0.834). Using the MLPNN 
instead of the ELM and RFR allows achieving better per-
formances, however, it shows generally slightly better per-
formances compared to the ELM in terms of the mean R, 
NSE, RMSE, and MAE for which the difference was com-
pletely negligible. Overall, among all proposed models, it 
is clear that the MLPNN1 was the most accurate, followed 
by the ELM1 the RFR2, respectively. Regarding our analy-
sis based on the number of input variables included, we 
can conclude that the use of more input leads to more reli-
able prediction. In fact, the fifth and six input combination 
appear the poorest and more precisely, the lowest accuracy 
was obtained with the MLPNN6 having an R ≈ 0.908, NSE 
≈ 0.824, RMSE ≈ 9.660, and MAE ≈ 7.588, followed by 
the ELM6 R ≈ 0.905, NSE ≈ 0.818, RMSE ≈ 9.839, and 
MAE ≈ 7.521, while the RFR6 was the poorest with R ≈ 
0.902, NSE ≈ 0.800, RMSE ≈ 10.316, and MAE ≈ 7.719, 
respectively. We conduct a systematic analysis of the 
model performance based on signal decompositions algo-
rithms. According to Table 6, using the VMD algorithm, 
only the MLPNN models have shown their performances 
improved, while the performances of the ELM and RFR 
have significantly deteriorated. First, the mean R, NSE, 
RMSE, and MAE values of the MLPNN were slightly 
improved using the VMD algorithm showing improve-
ment rates of ≈0.66%, ≈1.342%, ≈3.858%, and ≈1.806%, 
respectively. The improvement begin to be considered as 
significant beyond the third (MLPNN_VMD3) until the 
last input combinations (MLPNN_VMD6), for which the 
most significant improvement was gained exhibiting an 
improvement rates of approximately ≈1.762%, ≈3.641%, 
≈8.820%, and ≈8.448%, respectively (MLPNN_VMD6 
compared to the MLPNN6).

The performances and effectiveness of the hybrid mod-
els based on EMD algorithm are presented and discussed. 
Based on the results in Table 6, the improved percentages of 
each single model by the proposed hybrid models have been 
calculated as follow: (i) the mean R, NSE, RMSE, and MAE 
of the ELM models were decreased by ≈0.25%, ≈0.53%, 
≈1.685%, and ≈3.957%, respectively, showing the limitation 
of the EMD algorithm improving the single ELM models; 
(ii) the mean R, NSE, RMSE, and MAE of the MLPNN 

models were increased by ≈2.753%, ≈5.583%, ≈13.975%, 
and ≈14.51%, respectively, showing the significant contri-
bution of the EMD in improving the performances of the 
MLPNN models; and (iii) the mean R, NSE, and RMSE of 
the RFR models were enhanced by ≈0.363%, ≈0.280%, and 
≈0.455, respectively, exhibiting a negligible improvement of 
the single RFR models.

From Table 6, it can be found that (a) compared with the 
single models, the MLPNN_EMD1 to MLPNN_EMD4 have 
obtained the highest prediction accuracy, and the MLPNN_
EMD1 shows better performances that all other models 
exhibiting the highest R (≈0.949) and NSE (≈0.901) values, 
and the lowest RMSE (≈7.268) and MAE (≈5.609) values; 
(b) the prediction accuracies of the hybrid MLPNN_EMD1 
to MLPNN_EMD4 are little difference and the ELM-based 
hybrid models have a little better prediction performances 
than the RFR-based hybrid models. This indicate that the 
ELM is more appropriate to building robust predictive mod-
els; (c) using only two input variables for all the predic-
tive models, the MLPNN_EMD6 shows the best prediction 
performances with R (≈0.933) and NSE (≈0.870), RMSE 
(≈8.310), and MAE (≈6.487) exhibiting improvement 
rates of approximately ≈2.753%, ≈5.583%, ≈13.975%, and 
≈14.510%, compared to the MLPNN6.

It can be seen from Table 6 that (a) the improved per-
centages of the three models using the EWT algorithm are 
almost relatively equal just except that the mean values of 
the R (≈0.939), NSE (≈0.875), RMSE (≈8.159), and MAE 
(≈6.468) obtained using the RFR_EWT were slightly supe-
rior to those obtained using the ELM_EWT (R ≈ 0.931, 
NSE ≈ 0.867, RMSE ≈ 8.421, MAE ≈ 6.670), and those 
of the MLPNN_EWT (R ≈ 0.932, NSE ≈ 0.865, RMSE 
≈ 8.400, MAE ≈ 6.662), respectively, which indicates that 
the proposed EWT algorithm has obviously enhanced the 
prediction accuracy; (b) among all proposed models, the 
MLPNN_EWT1 yielded the best prediction performances 
improvement for which the R and NSE values were remark-
ably increased from (≈0.943 and ≈0.887) to (≈0.955 and 
≈0.912) exhibiting an improvement rates of approximately 
≈1.273% and ≈2.818%, and the RMSE and MAE values 
were dramatically decreased from (≈7.729 and ≈5.933) 
to (≈6.820 and ≈5.293) exhibiting an enhancement rates 
of approximately ≈11.761% and ≈10.787%, respectively; 

Table 4   (continued) Models Training Validation

R NSE RMSE MAE R NSE RMSE MAE

RFR_EWT2 0.983 0.961 4.347 3.364 0.928 0.852 8.327 6.603
RFR_EWT3 0.984 0.961 4.322 3.360 0.931 0.856 8.214 6.535
RFR_EWT4 0.983 0.959 4.432 3.470 0.930 0.853 8.309 6.669
RFR_EWT5 0.981 0.956 4.571 3.541 0.927 0.849 8.414 6.700
RFR_EWT6 0.980 0.954 4.719 3.677 0.925 0.847 8.466 6.769
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Fig. 7   Scatterplot of measured against predicted RH using the best single and hybrid models for the Constantine station: validation stage
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Fig. 8   Graphs showing the com-
parison between measured and 
predicted air relative humidity 
during the validation stage: a 
boxplot, b violin plot, and (c) 
Taylor diagram

Table 5   Performances of 
different standalone models at 
the Sétif station

Models Training Validation

R NSE RMSE MAE R NSE RMSE MAE

ELM1 0.942 0.888 7.837 5.930 0.938 0.879 8.016 6.179
ELM2 0.939 0.882 8.045 5.965 0.936 0.877 8.095 6.153
ELM3 0.936 0.876 8.252 6.225 0.927 0.860 8.634 6.695
ELM4 0.935 0.874 8.327 6.298 0.924 0.853 8.830 6.864
ELM5 0.925 0.855 8.919 6.672 0.913 0.834 9.386 7.219
ELM6 0.921 0.849 9.099 6.924 0.905 0.818 9.839 7.521
MLPNN1 0.951 0.903 7.282 5.513 0.943 0.887 7.729 5.933
MLPNN2 0.945 0.892 7.705 5.732 0.939 0.882 7.929 6.038
MLPNN3 0.941 0.884 7.968 5.957 0.930 0.864 8.501 6.467
MLPNN4 0.937 0.876 8.232 6.252 0.925 0.854 8.790 6.810
MLPNN5 0.927 0.858 8.817 6.669 0.912 0.832 9.435 7.316
MLPNN6 0.922 0.850 9.061 6.920 0.908 0.824 9.660 7.588
RFR1 0.975 0.950 5.244 3.835 0.930 0.855 8.779 6.494
RFR2 0.972 0.944 5.556 4.050 0.933 0.871 8.284 6.236
RFR3 0.973 0.946 5.430 3.971 0.923 0.842 9.146 6.788
RFR4 0.960 0.920 6.622 4.964 0.919 0.829 9.540 7.311
RFR5 0.957 0.914 6.866 5.111 0.907 0.806 10.144 7.614
RFR6 0.948 0.897 7.508 5.568 0.902 0.800 10.316 7.719
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Table 6   Performances of hybrid 
models based on EMD, VMD, 
and EWT at the Sétif station

Models Training Validation

R NSE RMSE MAE R NSE RMSE MAE

ELM_EMD1 0.954 0.911 7.001 5.479 0.920 0.847 9.005 7.109
ELM_EMD2 0.952 0.907 7.150 5.582 0.915 0.837 9.296 7.284
ELM_EMD3 0.956 0.915 6.837 5.296 0.930 0.864 8.507 6.699
ELM_EMD4 0.957 0.917 6.767 5.313 0.925 0.856 8.747 6.898
ELM_EMD5 0.953 0.908 7.111 5.544 0.915 0.836 9.343 7.336
ELM_EMD6 0.956 0.914 6.860 5.363 0.924 0.854 8.807 6.979
MLPNN_EMD1 0.975 0.950 5.223 4.051 0.949 0.901 7.268 5.609
MLPNN_EMD2 0.970 0.940 5.738 4.445 0.949 0.899 7.338 5.793
MLPNN_EMD3 0.973 0.947 5.417 4.171 0.949 0.899 7.317 5.717
MLPNN_EMD4 0.967 0.935 5.986 4.619 0.947 0.895 7.450 5.812
MLPNN_EMD5 0.932 0.833 9.574 7.640 0.908 0.795 10.438 8.347
MLPNN_EMD6 0.954 0.910 7.020 5.399 0.933 0.870 8.310 6.487
RFR_EMD1 0.983 0.958 4.794 3.693 0.927 0.845 9.081 7.274
RFR_EMD2 0.982 0.956 4.927 3.784 0.927 0.845 9.061 7.283
RFR_EMD3 0.981 0.954 5.004 3.839 0.923 0.836 9.318 7.455
RFR_EMD4 0.980 0.951 5.203 4.020 0.920 0.830 9.506 7.629
RFR_EMD5 0.979 0.951 5.199 3.984 0.921 0.835 9.374 7.542
RFR_EMD6 0.978 0.948 5.332 4.107 0.916 0.826 9.613 7.715
ELM_VMD1 0.937 0.878 8.179 6.402 0.914 0.835 9.356 7.452
ELM_VMD2 0.928 0.862 8.702 6.917 0.908 0.824 9.661 7.824
ELM_VMD3 0.941 0.886 7.916 6.197 0.918 0.842 9.165 7.256
ELM_VMD4 0.942 0.887 7.863 6.147 0.919 0.844 9.087 7.182
ELM_VMD5 0.936 0.876 8.253 6.475 0.905 0.818 9.831 7.849
ELM_VMD6 0.936 0.876 8.251 6.484 0.908 0.824 9.676 7.639
MLPNN_VMD1 0.971 0.942 5.633 4.370 0.940 0.882 7.906 6.294
MLPNN_VMD2 0.965 0.931 6.170 4.816 0.937 0.878 8.047 6.373
MLPNN_VMD3 0.965 0.931 6.143 4.768 0.934 0.871 8.263 6.435
MLPNN_VMD4 0.961 0.923 6.490 5.006 0.934 0.872 8.230 6.485
MLPNN_VMD5 0.955 0.911 6.972 5.380 0.925 0.855 8.782 6.893
MLPNN_VMD6 0.949 0.901 7.381 5.616 0.924 0.854 8.808 6.947
RFR_VMD1 0.982 0.954 5.001 3.920 0.908 0.812 9.988 8.042
RFR_VMD2 0.981 0.951 5.166 4.045 0.904 0.804 10.193 8.182
RFR_VMD3 0.981 0.952 5.120 4.027 0.909 0.813 9.977 8.090
RFR_VMD4 0.981 0.950 5.231 4.124 0.910 0.813 9.972 8.126
RFR_VMD5 0.979 0.949 5.304 4.126 0.907 0.811 10.025 8.101
RFR_VMD6 0.978 0.947 5.390 4.207 0.909 0.814 9.945 8.057
ELM_EWT1 0.958 0.918 6.704 5.329 0.933 0.871 8.286 6.514
ELM_EWT2 0.957 0.916 6.769 5.384 0.923 0.852 8.878 6.966
ELM_EWT3 0.961 0.924 6.458 5.107 0.937 0.877 8.088 6.478
ELM_EWT4 0.960 0.921 6.564 5.186 0.938 0.880 7.990 6.385
ELM_EWT5 0.957 0.915 6.817 5.379 0.929 0.862 8.556 6.756
ELM_EWT6 0.955 0.912 6.937 5.463 0.926 0.857 8.727 6.921
MLPNN_EWT1 0.979 0.958 4.773 3.722 0.955 0.912 6.820 5.293
MLPNN_EWT2 0.931 0.863 8.680 6.876 0.904 0.816 9.874 7.866
MLPNN_EWT3 0.965 0.931 6.171 4.855 0.943 0.888 7.716 6.022
MLPNN_EWT4 0.951 0.903 7.303 5.759 0.935 0.874 8.185 6.483
MLPNN_EWT5 0.965 0.930 6.184 4.814 0.942 0.887 7.761 6.081
MLPNN_EWT6 0.925 0.831 9.623 7.582 0.914 0.810 10.043 7.984
RFR_EWT1 0.986 0.968 4.201 3.225 0.943 0.880 7.968 6.327
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(c) using only two input variables, we can see that the 
RFR_EWT6 was the best model showing and improvement 
rates of approximately ≈3.659%, ≈8.625%, ≈19.038%, and 
≈14.251% compared to the single RFR6, which is the high 
improvement rate gained using all three signal decomposi-
tion algorithms. The scatterplots of the measured and pre-
dicted air relative humidity for the best single and hybrid 
models are depicted in Fig. 9. The boxplot, violin plot, and 
the Taylor diagram are depicted in Fig. 10.

Discussion

This section further discusses the results of the above 
experiments with already published works. To prove that 
the presented combined models based on signal decompo-
sition indeed improves the air relative humidity prediction 
accuracy, the values of the performances indices obtained 
using our approach are compared with those reported in the 
literature in a similar studies. In comparison to our study, 
Tao et al. (2022) produce higher correlations between the 
measured and predicted RH (R ≈ 0.984) using the MARS 
model at Mosul station, Irak, compared to the best value 
obtained in our study (R ≈ 0.955) at Sétif Station, but pro-
duce lower correlation between the measured and predicted 
RH at Kut station with values ranging from R ≈ 0.890 to R 
≈ 0.946, compared to the values of R ≈ 0.955 obtained using 
the MLPNN_EWT proposed in our study. Relative to our 
study, Yasar et al. (2012) have higher correlation between 
measured and predicted RH, exhibiting excellent correlation 
coefficient ranging from R ≈ 0.960 to R ≈ 0.999. Again, 
this leads them to conclude a significant and critical role of 
the latitude, longitude, and altitude in increasing the pre-
dictive accuracy. In the investigation conducted by Hanoon 
et al. (2021), they certainly downplayed the potential advan-
tage of machine leaning models, i.e., the MLPNN and the 
RBFNN used for modelling RH (the R values were ranged 
from ≈0.634 to ≈0.713), and therefore reported a lesser role 
of the modelling scenario based only on the inclusion of the 
RH measured at several time lags.

The motivation of Adnan et al. (2021) study was to inves-
tigate whether the inclusion of the RH measured at previous 
lag combined with mean air temperature can yielded high 

predictive accuracy. They obtained a correlation coefficients 
ranging from ≈0.898 to ≈0.903 using the MARS model, and 
ranging from ≈0.873 to ≈0.885 using the M5Tree model; 
hence, our correlation coefficients are likely more accurate 
(R ≈ 0.955). For instance, Shi et al. (2018) simulate the RH 
at three different time scale, i.e., 6, 24, and 72 h. Depend-
ing on the time scale, they show that there is a significant 
decrease in the MLPNN model performances, and more pre-
cisely, the high R value (≈0.988) obtained for 6-h interval 
of time was dropped to be (≈0.852) for the model based on 
24 h, and further deteriorated to be very low (≈0.806) for the 
model at 72-h interval of time, which are less than the values 
achieved in our present study. Finally, the modelling strategy 
proposed by Hussein et al. (2021) for which the RH was pre-
dicted using monthly image data, it was found that excellent 
predictive accuracy can be achieved with R values ranging 
from ≈0.980 to ≈0.999; however, their approach was criti-
cized for employing high precision satellite images, which 
are not always available for the majors part of the world.

The significant improvements in air relative humidity 
prediction have made the proposed signal decomposi-
tion to be more attractive tool. As the needs for con-
tinuous measurement of air relative humidity continue to 
increase, the issues caused by some single and standalone 
machine learning models have become more relevant, 
which have motivated the introduction of new robust 
modelling frameworks. In this context, the improvement 
of air relative humidity estimation has boosted the devel-
opment of new modelling strategy based on the combi-
nation of two paradigms: machine learning and signal 
decomposition. However, despite the increasing number 
of published paper from different countries, making gen-
eralization and conclusions more difficult because the 
obtained results from one study to another varied accord-
ing to the type of data, the extent of data, how the models 
were evaluated, and how the modelling strategy was for-
mulated. Based on the idea that air relative humidity var-
iability is governed by the fluctuation of various weather 
variables, our approach was based on testing various 
input combination. In summary, to introduce an accu-
rate air relative humidity prediction, a novel combined 
model based on EMD, VMD, EWT, and machine leaning 
models is proposed. Among the proposed decomposition 

Table 6   (continued) Models Training Validation

R NSE RMSE MAE R NSE RMSE MAE

RFR_EWT2 0.985 0.965 4.407 3.376 0.940 0.876 8.130 6.425
RFR_EWT3 0.986 0.966 4.290 3.288 0.941 0.877 8.074 6.391
RFR_EWT4 0.985 0.964 4.437 3.441 0.939 0.874 8.177 6.501
RFR_EWT5 0.984 0.963 4.531 3.477 0.937 0.872 8.255 6.546
RFR_EWT6 0.982 0.960 4.682 3.623 0.935 0.869 8.352 6.619
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Fig. 9   Scatterplot of measured against predicted RH using the best single and hybrid models for Sétif station: validation stage
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algorithms, the EWT was found to be the most signifi-
cant algorithm for improving the estimation of the air rel-
ative humidity, and this was confirmed for all machine-
learning models. Meanwhile, the VMD was found to be 
the poorest algorithm compared to the EMD and EWT. 
Ultimately, the results obtained using the MLPNN was 
clearly superior to those obtained using the RFR and 
the ELM models based on all decomposition algorithms. 
At Constantine station, the MLPNN_EWT1 showed sig-
nificantly better performances than the MLPNN_EMD1 
and the MLPNN_VDM1 with R, NSE, RMSE, and 
MAE of ≈0.950, ≈0.902, ≈6.791, and ≈5.241, respec-
tively. At Sétif station, the same hybrid model, i.e., the 
MLPNN_EWT1, exhibited the high performances with 
R, NSE, RMSE, and MAE of ≈0.955, ≈0.912, ≈6.820, 
and ≈5.293, respectively. In summary, the above experi-
ments show that hybrid model based on EWT algorithm 
predicts the air relative humidity accurately with more 
precision and it leverages the strong correlations between 
measure and calculated data for different sites and they 
significantly enhance the single models and they have 
demonstrated to be more suitable for ensuring better gen-
eralization ability than single machine learning models.

Conclusion

In this paper, we propose a new data driven approaches for 
better prediction of air relative humidity (RH) based on sig-
nal decomposition algorithms and standalone machine learn-
ing hybrid models. While the use of signal decomposition 
algorithms is broadly reported in the literature for hydrologi-
cal modelling studies and agrometeorological variables pre-
diction, few investigations were related to their application 
for RH prediction. Our hybrid models have demonstrated 
their suitability in improving the performances of the stan-
dalone models especially using fewer input variables, and 
it was found that the VMD was the less accurate algorithm 
exhibiting poor performances compared to the EMD and 
EWT algorithms. Further analysis revealed that while the 
two studied stations were located in the same climatic zone, 
i.e., the semi-arid climate, the proposed standalone and 
hybrid models worked differently depending on the input 
variables combinations. In overall, it was demonstrated that 
the MLPNN model was more accurate compared to the 
ELM and RFR with and without signal decomposition, and 
it takes full advantages from the EMD and EWT rather than 
the VMD. More precisely, the improvements rates gained 

Fig. 10   Graphs showing the 
comparison between meas-
ured and predicted air relative 
humidity for Sétif station during 
the validation stage: a boxplot, 
b violin plot, and c Taylor 
diagram
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from the application of the signal decomposition were more 
obvious using the MLPNN compare to the ELM and RFR 
models.

According to the obtained results, we can report the fol-
lowing finding for futures studies:

1.	 In the future, we plan to extend the present modeling 
framework to a large dataset located in different climate 
regions.

2.	 This investigation provides a clear discussion about 
the factors affecting air relative humidity and the sig-
nificant input combinations were selected. It is iden-
tified that, solar radiation, the minimal and maximal 
temperatures are the major’s factors affecting relative 
humidity. Therefore, the predictive accuracy of the 
proposed models can be certainly improved by using 
optimizations algorithms and better selection of the 
studied input variables.

3.	 We also plan to investigate the possible other factors that 
can help in improving the predictive accuracies, espe-
cially the possible inclusion of other weathers variables.

4.	 It is highly recommended to explore new models and 
new signal decompositions algorithms to achieve the 
higher prediction accuracy.

However, at the end of the present study, some limitations of 
our methodology should be highlighted. It is worth mentioning 
that the performances of the hybrid models was significantly 
affected by the change in the meteorological input variables, and 
the high predictive accuracy was guaranteed with the inclusion 
of the variables having high coefficient of correlation with the 
air relative humidity. Secondly, it was found that the robustness 
and success of the signal decomposition algorithms could not 
be generalized and the results of each model will be different. 
For example, it was found that the VMD algorithm does not 
work accurately with all machine learning models. In summary, 
we argue that air relative humidity is affected by many external 
factors such as solar radiation, air temperature, and wind speed, 
making it highly nonlinear. It was demonstrated that single mod-
els often fail to correctly predict air relative humidity; conse-
quently, it is worthwhile to explore the capability of the complex 
hybrid models in order to achieve high predictive accuracies.
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