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Abstract
The existence of antibiotics in aquatic streams destroys water quality and thereby poses serious ecological hitches. Photoca-
talysis involving nanosemiconductors is an environmentally benign technique for the mineralization of antibiotics. Herein, 
we prepared a new visible light–sensitive photocatalyst, zeolite Y-supported carbon-doped TiO2 nanocomposite (zeolite 
Y-c-TiO2), for the elimination of cefazolin antibiotic in wastewater systems. The structural and optical properties of the 
synthesized nanocomposites were investigated by Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffrac-
tion analysis (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), transmission electron 
microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller surface area analysis (BET) as 
well as diffuse reflectance spectroscopy (UV-DRS) and photoluminescence spectroscopy (PL). The UV-Vis absorbance 
spectrum of zeolite Y-c-TiO2 exhibited a red shift towards longer wavelength with an increase in visible light absorption 
as compared to pure TiO2 nanoparticles and zeolite Y-supported TiO2 nanocomposites (zeolite Y-TiO2). Accordingly, the 
photocatalytic action of the zeolite Y-c-TiO2 for the degradation of methylene blue was evaluated under solar simulator, and 
it turned out to be highly efficient (100%) mineralization as compared to TiO2-nanoparticles (42%) and zeolite Y-TiO2 (62%) 
after 70 min irradiation for a 50mg L−1 methylene blue solution. Radical scavenging experiments revealed the involvement of 
hydroxyl radicals, superoxide radicals, and photogenerated holes in the degradation process. Consequently, zeolite Y-c-TiO2 
was applied for the photocatalytic degradation of the cefazolin antibiotic in water, and complete degradation of cefazolin (50 
mg L−1) was observed within 6 h of solar light irradiation on zeolite Y-c-TiO2. The degradation pathway of cefazolin was 
proposed by considering various intermediates detected via LC-MS analysis. The study points to the significant potential of 
zeolite Y-c-TiO2 photocatalyst for the purification of medicinal wastewater under sunlight.
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Introduction

Nowadays, excessive usage of antibiotics and their disposal 
to the aquatic environment exert undesirable influences on 
all living systems (Polianciuc et al. 2020). About 50–70% of 
the entire antibiotics used by human beings come under the 
group of cephalosporins, which contains beta lactam moiety 

(Das et al. 2019). The first-generation cephalosporin antibi-
otic, cefazolin, which is widely used for bacterial disinfec-
tion, leads to the generation of antibiotic resistant patho-
gens when it gets discharged into the environment (Das et al. 
2019; Mutuku et al. 2022). Hence, its removal from aquatic 
streams requires great attention (Das et al. 2019; Iskender 
et al. 2007). Conventional removal of antibiotics from water 
used to be managed by ozonation, chlorination, electrochem-
ical oxidation, potassium permanganate, and sulfate radical 
anion oxidation (Iskender et al. 2007; Chen et al. 2021) or 
adsorption by clay and activated carbon (Das et al. 2019). 
However, these methods are found to be less efficient and 
cost ineffective. In this context, photocatalysis becomes one 
of the most attractive advanced oxidation processes (AOPs) 
for the degradation of organic pollutants in water (Davies 
et al. 2021; Elmolla and Chaudhuri 2010).
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Among various photocatalysts, TiO2 nanoparticles have 
been the most popular because of their high catalytic effi-
ciency, low cost, as well as eco-friendly behavior with their 
chemical and thermal stabilities (Rajan et al. 2022a; Pawar 
et al. 2018). Nevertheless, they have drawbacks such as 
wide band gap (3.2 eV) to absorb UV light, which limits 
in using solar light of which visible light provides 42.3% 
radiation in contrast to 8.2% UV (Rajan et al. 2022a; Van 
et al. 2022; López-Ortiz et al. 2021). In fact, solar photo-
catalysis to detoxify the contaminated antibiotics in water 
resources has become attractive because solar irradiation 
is saving energy and improves the performance of the AOP 
technology. TiO2 nanomaterials which are active under vis-
ible light have been developed by doping metals such as Fe, 
V, Cr, and Tm (Ali et al. 2017; Rossi et al. 2021; Wang et al. 
2012; Mazierski et al. 2019) or non-metals such as N and C 
(Gurkan et al. 2012; Pandi et al. 2022) into the lattices of the 
TiO2 nanocrystals. Doping leads to the declination of band 
gap and also slows down the electron-hole recombination 
rate which could enhance the photocatalytic activity (Amran 
et al. 2019). Some of these photocatalysts have been applied 
to the degradation of antibiotics in water under visible light 
or solar light irradiation (Gurkan et al. 2012; Pandi et al. 
2022). However, they have absorption in the narrow vis-
ible region, leading to low photocatalytic efficiency under 
visible light, and they still leave room for improvement in 
the optical properties. In addition, surface areas of these 
TiO2 nanomaterials themselves are limited in enhancing 
adsorption of pollutants to increase the catalytic reaction 
sites. Thus, TiO2 nanoparticles require hybridization with 
some support materials of large surface area to enhance the 
adsorption of pollutants. The common support materials for 
this purpose are clays (Zhou et al. 2022; Rajan et al. 2022b), 
mesoporous materials (Vanichvattanadecha et al. 2021), and 
zeolites (Abbas et al. 2020; Saqib et al. 2019).

Particularly, zeolites are the most attractive support 
materials due to their unique physicochemical/adsorp-
tion properties for catalytic efficiency (Saqib et al. 2019; 
Payra and Dutta 2003). Various zeolites including zeolites 
L, Y, and ZSM-5 are crystalline aluminosilicates form-
ing microporous framework enclosing uniform cages and 
channels of molecular/nanoscales, which provide a novel 
environment for photo-chemical reactions of molecules 
and nanoparticles as well as large surface area to adsorb 
pollutants well enough to increase the surface catalytic 
sites. Furthermore, it is interesting that muti-electron/
hole transfer can take place within and at the interfaces 
of zeolites (Yoon et al. 2007; Dutta and Severance 2011) 
to control exciton recombination from the semiconductor 
photocatalysts. The issues associated with the aggregation 
of TiO2 nanoparticles could be cracked by incorporating 
TiO2 clusters inside the microporous structure of zeolites 
(Aprile et al. 2008). In this logic, numerous research works 

addressing the photocatalytic applications of TiO2-zeolites 
can be observed (Saqib et  al. 2019). Liu et  al. (2018) 
studied the degradation of antibiotic, sulfadiazine, by 
developing a composite photocatalytic material based 
on natural zeolite coated with TiO2 synthesized through 
sol-gel method. The results showed that photodegradation 
response of sulfadiazine using TiO2/zeolite photocatalyst 
is due to the synergistic effect of zeolite adsorbent and 
TiO2 photocatalyst. The catalyst could remove 90% of sul-
fadiazine within 120 min of UV light irradiation. However, 
this catalyst is not sensitive to visible light. Thus, the vis-
ible light–sensitive Fe3+ or Fe2O3-incorporated zeolite-
supported TiO2 was developed and successfully applied for 
the degradation of tetracycline and ciprofloxacin under the 
visible LED light irradiation (Jalloul et al. 2022; Liu et al. 
2017). Nevertheless, using metals in the zeolite supported 
TiO2 may not be eco-friendly, and hybridization of C or 
N-doped TiO2 with zeolite would be highly desirable for 
the visible light– or solar light–sensitive photocatalysts. 
Numerous works have been published on the photocata-
lytic applications of C- or N-doped TiO2 for the degrada-
tion of refractory pollutants (Oseghe and Ofomaja 2018; 
Xu et al. 2018; Shao et al. 2017; He et al. 2013; Navarra 
et al. 2022), but carbon-doped TiO2 supported by zeolites 
has not been studied yet especially for the solar catalytic 
degradation of medicinal wastewater.

In this work, in order to develop solar photocatalytic puri-
fication technique of medicinal wastewater, we synthesized 
zeolite Y-supported carbon-doped TiO2 nanocomposites 
(zeolite Y-c-TiO2 nanocomposites) as new visible light–sen-
sitive photocatalyst through hydrothermal treatment of zeo-
lite mixed with Ti (IV) isopropoxide and sucrose as titanium 
precursor and carbon source, respectively, in contrast to the 
conventional hydrothermal method employing tetra butyl 
titanate as titanium precursor and glucose as carbon source 
(He et al. 2013), and investigated their physicochemical 
properties and solar photocatalytic activities on degradation 
of antibiotic, cefazolin, in water. Hence, the photocatalytic 
reaction of the as-prepared zeolite Y-c-TiO2 nanocomposite 
was preliminarily evaluated by observing the photocatalytic 
degradation of methylene blue as a model reaction, exhibit-
ing complete (100%) mineralization of methylene blue under 
the short-time irradiation of solar light. Accordingly, the 
nanocomposites exhibited highly efficient photocatalytic 
degradation of cefazolin. The present study also focused on 
the degradation pathway of cefazolin via LC-MS analysis, 
and the obtained results suggested the destruction of beta 
lactam ring in cefazolin which leads to the loss of antibi-
otic activity. To the best of our knowledge, no systematic 
assessment and degradation pathway are available on the 
photocatalytic degradation of cefazolin using carbon-doped 
TiO2 supported by zeolite Y. Hence, this research aims to 
eliminate cefazolin toxicity from aqueous streams with the 
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aid of zeolite Y-c-TiO2 photocatalyst. The results suggest 
that the new photocatalyst can be applied to efficient puri-
fication of medicinal wastewater under sunlight irradiation.

Experimental

Materials and methods

Analytical grade titanium (IV) isopropoxide [Ti(OC3H7)4], 
zeolite Y, sucrose [C12H22O11], and methylene blue dye 
[C16H18N3SCl] were purchased from Sigma-Aldrich. The 
antibiotic, cefazolin [C14H14N8O4S3], was obtained from 
Sance Laboratories Pvt. Ltd., Kerala. All chemicals were 
used without additional purification methods. Distilled water 
was used all over the experiments.

Synthesis of zeolite Y‑supported carbon‑doped TiO2 
nanocomposites

The photocatalyst, zeolite Y-c-TiO2 nanocomposite, was pre-
pared via hydrothermal reaction. For this, 0.5 g of zeolite Y 
was mixed with 5.0 mL Ti(IV) isopropoxide, followed by the 
addition of 0.03 g of sucrose dissolved in 10.0 mL of water. 
The mixture was stirred well, and distilled water was further 
added till the white precipitate formation was stopped. The 
pH of the sol was then adjusted to 7.0 and was then subjected 
to hydrothermal reaction at 180 °C for 2 h. The same experi-
mental process was adopted to get zeolite Y-supported TiO2 
(zeolite Y-TiO2), excluding the step involving the addition 
of sucrose. Undoped TiO2 was also synthesized by the same 
procedure without the addition of sucrose and zeolite Y.

Characterizations

Fourier transform infrared (FT-IR) spectral analysis of 
the synthesized samples were examined in a Perkin Elmer 
spectrum Two FT-IR Spectrometer in the range 4000-400 
cm-1. X-ray diffraction patterns (XRD) were recorded on 
a Rigaku Miniflex 600 diffractometer using Cu Kα (λ = 
0.15418 nm) radiation in the range of 5–80°. Scanning 
electron microscopy combined with energy-dispersive 
X-ray analysis (SEM-EDX) of the samples was analyzed 
using a Jeol 6390LA/OXFORD XMX N instrument. Trans-
mission electron microscopic images (TEM) of the samples 
were recorded on a Jeol/JEM-2100 field emission electron 
microscope. The X-ray photoelectron spectroscopy (XPS) 
analysis was executed on a Kratos Axis Ultra X-ray pho-
toelectron spectrometer, with Al Kα radiation as the excit-
ing source. The specific surface area of the samples was 
measured using Brunauer-Emmett-Teller (BET) surface area 
analyzer (Tristar II, Micrometrics, USA). The diffuse reflec-
tance spectra (DRS) of the samples were executed using a 

UV-2600 Shimadzu UV-visible spectrophotometer. The pho-
toluminescence (PL) spectral measurements were performed 
using the Fluorolog Horiba spectrofluorometer. Systronics 
2203 Double beam UV-Vis spectrophotometer was used to 
evaluate the photocatalytic activity of the synthesized nano-
composites. The intermediate products formed during the 
degradation process, and the mechanistic pathways were 
investigated by a liquid chromatography-mass spectrometer 
(LC-MS, Shimadzu, Japan).

Photocatalytic activity measurements

The photocatalytic degradation of methylene blue dye solu-
tion was assessed using the synthesized bare TiO2, zeolite 
Y-TiO2, and zeolite Y-c-TiO2 samples. For a typical photo-
catalytic experiment, 500 mg L−1 of synthesized samples 
was suspended separately in 30 mL of 50 mg L−1 methylene 
blue (MB) aqueous solution. The suspension thus obtained 
was equilibrated by stirring in the dark for 30 min. After 
equilibration, the sample solution was irradiated with solar 
simulator (Heber Scientific, model no: HMV-88123) which 
consists of visible light source (tungsten halogen lamp) and 
UV light source (mercury vapor lamp) with A.M 1.5G filter. 
The samples were collected at different time intervals, and 
they were centrifuged to measure the absorbance of methyl-
ene blue solution at 660 nm using a Systronics 2203 Double 
beam spectrophotometer. The % degradation of dye solution 
was evaluated using the equation C0−Ct

C0

 × 100, where C0 and 
Ct denote the initial and final concentration of MB dye solu-
tion. When using solar light irradiation alone or in the 
absence of the photocatalyst, there was no degradation 
observed for MB.
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Fig. 1   FT-IR spectra of (a) zeolite Y, (b) TiO2, (c) zeolite Y-TiO2, and 
(d) zeolite Y-c-TiO2
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The degradation of the cephalosporin antibiotic, cefazo-
lin, was investigated using the most active catalyst, zeolite 
Y-supported carbon-doped TiO2 (zeolite Y-c-TiO2). For this 
study, 500 mg L−1 of zeolite Y-c-TiO2 was added into 30 
mL cefazolin solution with a concentration of 50 mg L−1. 
Prior to solar light irradiation, the solution containing cefa-
zolin and catalyst was stirred in the dark for 30 min to attain 
adsorption-desorption equilibrium. At regular time intermis-
sions, 5.0 mL aliquots were separated from the suspension 
and directly centrifuged and examined by recording dispari-
ties of the absorbance at the absorption band maximum (273 
nm) of cefazolin using a Systronics 2203 Double beam spec-
trophotometer. The degradation intermediates formed during 
the photocatalytic removal of cefazolin were investigated by 

taking liquid chromatography-mass spectroscopy (LC-MS) 
of the aliquots of cefazolin after 0 min, 180 min, and 360 
min of solar irradiation. Electrospray ionization in positive 
ion mode (ES+) was executed to get the mass spectra, and 
the mobile phase used was 0.1% formic acid in water (15%) 
and acetonitrile (85%) in isocratic mode. The degradation 
pathway of cefazolin was proposed using the mass spec-
tra analysis, which provided evidence concerning various 
intermediates.

Analysis of photocatalytic mechanism

To study the involvement of active radical species in the 
degradation process of MB, isopropyl alcohol (IPA), ascor-
bic acid (AA), and ammonium oxalate (AO) were used to 
capture •OH, •O2

−, and h+, respectively. The experimental 
backgrounds were like the photocatalytic activity test for 
MB degradation.

The hydroxyl radicals (•OH) formed during the photo-
catalytic reaction process can be detected from the reaction 
between coumarin and photocatalysts. For this experiment, 
20.0 mL of coumarin aqueous solution (10−4 M) was added 
to 500 mg L−1 of photocatalyst and placed under sunlight 
after permitting it to reach the adsorption-desorption equi-
librium in the dark. The photoluminescent intensity of the 
reaction solution at various time intervals was then measured 
at an excitation wavelength of 332 nm.

The formation of superoxide radicals was detected by 
studying the absorption of nitro blue tetrazolium (NBT) 
aqueous solution treated with photocatalyst. For this study, 
5 × 10−5 M NBT solution (20.0 mL) was mixed with 500 mg 
L−1 of photocatalyst and kept under solar light irradiation 
after 30 min of stirring in dark. The generation of •O2

− radi-
cals was then examined by observing the absorption of NBT 
solution using UV-Vis spectrophotometer at 259 nm.
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Fig. 2   XRD patterns of the synthesized samples: (a) zeolite Y, (b) 
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Fig. 3   a SEM image and b EDX spectrum of zeolite Y-c-TiO2
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Results and discussion

Surface morphology and structural characterization

In order to investigate the interaction between TiO2 and zeo-
lite Y in the synthesized zeolite Y-c-TiO2 nanocomposite, 
FT-IR spectra of zeolite Y-c-TiO2 and zeolite Y-TiO2 nano-
composites were measured and compared with that of zeolite 
Y or TiO2 nanoparticles as shown in Fig. 1. The prominent 
IR peaks of zeolite Y (Fig. 1(a)) and TiO2 (Fig. 1(b)) nan-
oparticles were retained in both spectra of zeolite Y-TiO2 
(Fig. 1(c)) and zeolite Y-c-TiO2 (Fig. 1(d)) catalysts, sup-
porting the existence of TiO2 nanoparticles and zeolite Y in 
zeolite Y-TiO2 and zeolite Y-c-TiO2 nanocomposite samples. 
In the spectra of zeolite Y-TiO2 and zeolite Y-c-TiO2, there 
noticed a slight shift in the bands/peaks position and also a 
change in the band intensity which may be credited to the 
existence of carbon as a dopant. No new bands were noticed 
after doping carbon into zeolite Y-TiO2. All the samples 
exhibited a strong broad peak in the range of 3000–3400 
cm−1 and a small peak in the range of 1620–1640 cm−1 
which can be attributed to the stretching and bending vibra-
tions of the H-O-H group, respectively (Wang et al. 2012).

The weak peaks which appeared around 524 cm−1 and 
466 cm−1 in the IR spectrum of TiO2 are due to the vibra-
tion of the Ti-O bond (Mahalingam et al. 2017). The Si-O, 
SiO-Al, and Al-OH asymmetric and symmetric stretching 
vibrations agreeing to the internal TO4 (T = Si, Al) structure 

of zeolite Y at 984 cm−1 display an obvious red shift in the 
cases of zeolite Y-TiO2 and zeolite Y-c-TiO2, which appear at 
1008 cm−1 and 1010 cm−1, respectively (Mekki et al. 2020). 
This outcome established the effect of the Ti species on the 
framework of zeolite. The bands at 1140 and 788 cm−1 sig-
nify the asymmetric and symmetric stretching vibrations in 
the external TO4 structure (T = Si, Al) of zeolite Y (Mekki 
et al. 2020). The band appeared at 572 cm−1 related to the 
double ring external linkage of zeolite Y is blue shifted by 
24 cm−1 and 30 cm−1 in case of zeolite Y-TiO2 and zeolite 
Y-c-TiO2 composites, respectively (Mekki et al. 2020). The 
absence of antisymmetric stretching vibration of the Ti-O-Si 
bond in the range 950–960 cm−1 implies that TiO2 is prob-
ably encapsulated within the zeolite voids without any strong 
chemical interaction between them (Zhang et al. 2010). The 
wide-ranging peak presented between 800 and 400 cm−1 in 
zeolite Y-TiO2 and zeolite Y-c-TiO2 samples may be due 
to the superposition of Ti-O and Si-O bonds (Wang et al. 
2012).

Figure 2 shows XRD patterns of the synthesized samples. 
The diffraction pattern of TiO2 nanoparticles (Fig. 2(b)) 
confirms the presence of anatase (JCPDS-21-1272) phase 
(Nagaraj et al. 2020). The diffraction pattern of the zeolite 
Y (Fig. 2(a)) exhibits that it is highly crystalline, revealing 
the reflections typical to zeolite Y as reported in literature 
(Mekki et al. 2020; Treacy and Higgins 2001). The XRD 
patterns of the composite samples zeolite Y-TiO2 (Fig. 2(c)) 
and zeolite Y-c-TiO2 (Fig.  2(d)) displayed crystallinity 

Fig. 4   a TEM image, b HR-
TEM image, and c SAED pat-
tern of zeolite Y-c-TiO2
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analogous to that of zeolite Y along with anatase phase 
TiO2. The peak locations of the zeolite in the diffractogram 
pattern of zeolite Y-TiO2 are not altered by the integration of 
TiO2, supporting that TiO2 is in captured form in the cages 
or cavities of zeolite, and it thereby authorizes that zeolite 
framework has not varied with the incorporation of TiO2. 
The encapsulated TiO2 gradually occupies the cavities of the 
zeolite, which leads to a declination in the intensity of XRD 
peaks (Easwaramoorthi and Natarajan 2009).

The crystallite size of the synthesized TiO2 nanoparticles 
was assessed using Scherrer’s equation; DXRD = 0.9λ/β cosθ, 
where D is the crystallite size, λ is the wavelength of X-ray 
used, and β and θ are full width at half maximum intensity 

(FWHM) of XRD diffraction lines and half diffraction angle 
2θ, respectively (Zhang et al. 2019). The average crystallite 
size of TiO2 is evaluated to be 6 nm.

The morphology and elemental composition of the zeo-
lite Y-c-TiO2 nanocomposites were further characterized by 
SEM-EDX and TEM analysis. Figure 3(a) shows the SEM 
image of the prepared nanocomposite, exhibiting mostly 
cubic crystals of zeolite Y, even though it is difficult to 
specify incorporation with c-TiO2. Nevertheless, the crystal 
surface looks non-porous in contrast to the typical porous 
surface of pure zeolite-Y as reported (Jansson et al. 2015). 
This again supports encapsulation of c-TiO2 nanoparticles 
in the zeolite cavities through the coprecipitation after 

Fig. 5   XPS spectra of a survey 
scan, b Ti2p, c O1s, d C1s, e 
Si2p, and f Al2p of zeolite Y-c-
TiO2 nanocomposite
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hydrothermal reaction of all the components. The efficacious 
incorporation of c-TiO2 nanoparticles in the zeolite matrix 
could be confirmed from detection of C and Ti together with 
Al, Si, and Na elements on the EDX spectrum (Fig. 3b).

Figure 4a and b show low- and high-resolution TEM 
images of zeolite Y-c-TiO2 nanocomposite, respectively. 
The low-resolution TEM image displays some dark colored 

region, suggesting that the zeolites have a certain thickness 
with dispersion of c-TiO2 nanoparticles in zeolite Y as sup-
ported by the high-resolution TEM image which exhibits the 
dark shadow over the zeolite crystalline lattice. The good 
dispersion of TiO2 nanoparticles in zeolite Y may also be 
due to cracking of their aggregation inside the microporous 
cages (Aprile et al. 2008), endorsing their exposure in pho-
todegradation process. Even though XPS spots carbon spe-
cies in zeolite Y-c-TiO2 nanocomposite, its existence is not 
discovered by transmission microscope imaging because of 
the lower surface concentration of carbon species. The par-
ticle sizes were found to be less than 10 nm which agrees 
with the crystallite size obtained from XRD patterns. The 
selected area electron diffraction (SAED) pattern (Fig. 4c) 
exhibited that zeolite Y-c-TiO2 nanocomposite possesses a 
uniform polycrystalline structure.

The surface chemical bonding in the zeolite Y-c-TiO2 sys-
tem was further studied using X-ray photoelectron spectros-
copy (XPS) analysis (Fig. 5). The survey spectrum depicted 
in Fig. 5a shows the presence of Ti, O, C, Si, and Al peaks 
in the XPS spectrum. Specifically, in the Ti2p spectrum 
(Fig. 5b), two peaks observed at 458.1 eV and 463.9 eV are 
associated with the Ti2p3/2 and Ti2p1/2 of TiO2, respectively 
(Oseghe and Ofomaja 2018). As per the reports of Akhavan 
and Ghaderi, the weak peaks existing at 459.7 eV and 465.4 
eV (relating to Ti2p3/2 and Ti2p1/2 peaks) could be ascribed 
to Ti-C bond which supports again the doping of carbon into 
TiO2 (Akhavan and Ghaderi 2009).

The O1s spectrum (Fig. 5c) of zeolite Y-c-TiO2 comprises 
four peaks positioned at 529.4, 530.6, 531.7, and 532.8 eV. 
The peaks at 529.4 eV and 532.8 eV correspond to Ti-O 
and C-O-Tii bonds, respectively (Bao et al. 2021). The bind-
ing energy peaks appeared at 531.7 eV and 530.6 eV were 
related to the surface adsorbed oxygen and hydroxyl groups 
(Bao et al. 2021; Li et al. 2020).

In the C1s spectra of zeolite Y-c-TiO2 (Fig. 5d), seven 
main peaks were detected, which correspond to (i) O-Ti-C 
bond formed due to the substitution of oxygen in the TiO2 
lattice by carbon (283.3 eV) (He et al. 2013; Negi et al. 
2021), (ii) adventitious elemental carbon impurities as well 
as the organic residues of the sample (284.5 eV) (He et al. 
2013; Huang et al. 2021; Ren et al. 2007), (iii) C-OH (285.3 
eV) (Jing et al. 2020), (iv) C-O (286 eV) (Huang et al. 2021), 
(v) C-O-C (287.3 eV) (Jing et al. 2020; Xing et al. 2014), 
(vi) C=O (288.1 eV) (Park et al. 2015), and (vii) Ti-O-C 
structure formed due to the substitution of some lattice tita-
nium atoms by carbon (288.8 eV) (Shao et al. 2017; Bao 
et al. 2021).

The peaks located at binding energies 102.21 eV and 
73.43 eV were attributed to Si2p (Fig. 5e) and Al2p states 
(Fig. 5f) in zeolite Y, respectively (Kadi et al. 2019).

The specific surface areas and porosity in the structure 
of the zeolite Y, TiO2, zeolite Y-TiO2, and zeolite Y-c-TiO2 
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Fig. 6   a N2 adsorption-desorption isotherms and b Barrett-Joyner-
Halenda (BJH) adsorption pore size distribution of the synthesized 
photocatalysts

Table 1   BET surface area, pore volume, and pore diameter distribution 
of prepared samples

Samples Surface area 
(m2 g−1)

Pore volume 
(cm3 g−1)

Pore 
diameter 
(nm)

Zeolite Y 449.5 0.1882 1.675
TiO2 173.12 0.5144 11.884
Zeolite Y-TiO2 360.75 0.4093 4.538
Zeolite Y-c-TiO2 274.73 0.6645 9.675
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samples were examined by their nitrogen adsorption-des-
orption isotherms (Fig. 6a) and BJH pore size distribution 
plots (Fig. 6b).

As described in IUPAC classification, the zeolite Y is 
matching to the type I isotherm, which is representative 
of the microporous solids and others displayed a capillary 
condensation loop at a relative pressure, higher than 0.4, 
which specified that the samples (TiO2, zeolite Y-TiO2, and 
zeolite Y-c-TiO2) owned substantial features of mesoporous 
materials (Abbas et al. 2020; Diao et al. 2019). The type IV 
isotherm displayed by TiO2 nanoparticles is associated with 
the textural porosity existing between TiO2 particles (Guesh 
et al. 2016). After the loading of TiO2 on zeolite, zeolite 
Y-TiO2 was bestowed with a reduction of the BET specific 
surface area attributable to the dispersion of TiO2 nanopar-
ticles in the micropores of zeolite Y, thereby making the 
micropores of zeolite Y jammed (Guesh et al. 2016; Zhang 
et al. 2018). The N2 adsorption-desorption isotherms of the 
zeolite Y-c-TiO2 powders are also type IV as per IUPAC, 

Fig. 7   A The UV-Vis diffuse reflectance spectra of (a) zeolite Y, (b) TiO2, (c) zeolite Y-TiO2, and (d) zeolite Y-c-TiO2 and B Plot of (αhν)2 
against photon energy (hν) of (a) TiO2, (b) zeolite Y-TiO2, and (c) zeolite Y-c-TiO2

Table 2   Band gap of the 
synthesized samples

Samples Absorption edge 
(nm)

Band gap (eV) obtained from 
Eg = 1239.8/λ

Band gap value (eV) 
obtained from (αhν)2 to 
hν plot

TiO2 402 3.08 3.08
Zeolite Y-TiO2 393 3.15 3.15
Zeolite Y-c-TiO2 412 3.00 3.00
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Fig. 8   Photoluminescence spectrum of (a) TiO2, (b) zeolite Y-TiO2, 
and (c) zeolite Y-c-TiO2 (excitation wavelength = 380 nm)
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which shows its mesoporous nature. The hysteresis loop 
noticed in zeolite Y-c-TiO2 in the range of 0.55 < P/Po < 
0.99 is resulting from slit-like pores (Abbas et al. 2020). The 
significant reduction in the surface area of zeolite Y-TiO2 
after carbon doping is good evidence of successful incorpo-
ration of carbon source.

From the BJH plot, clearly the pore volume of zeo-
lite Y-TiO2 upsurges compared to zeolite Y, owing to the 
mesoporous structure provided by TiO2 nanoparticles. 
Furthermore, a significant increase in pore volume and 
pore diameter upon carbon doping makes zeolite Y-c-TiO2, 
a more efficient photocatalyst by enhancing the adsorption 
of toxic contaminants which agrees with previous reports 
(Zhang et al. 2018; Amran et al. 2019). Table 1 shows the 
BET surface area, pore volume, and pore diameter distri-
bution of prepared samples. The porous zeolite Y possess-
ing large surface area is a good support for the dispersion 
of carbon-doped TiO2 nanoparticles. The aggregation of 
particles is verboten after the integration of zeolite Y to 
carbon-doped TiO2. The zeolite Y-supported carbon-doped 
TiO2 sample will positively offer more surface area to 
absorb arriving photons as well as to adsorb contaminant 
molecules (Li et al. 2020).

Optical properties

In order to investigate optical properties, UV-Vis diffuse 
reflectance and photoluminescence spectral studies were 
carried out. Figure 7A shows the UV-Vis diffuse reflectance 
spectra (UV-Vis DRS) analysis for TiO2, zeolite Y-TiO2, and 
zeolite Y-c-TiO2. UV region of both zeolite Y-TiO2 and zeo-
lite Y-c-TiO2 shows a considerable blue shift with respect 
to free TiO2 nanoparticles due to the quantum confinement 
effect of the TiO2 nanoparticles lodging inside the voids of 
zeolite Y (Alvaro et al. 2006). However, zeolite Y-c-TiO2 
exhibited much higher absorption of visible light beyond 400 
nm as compared to both free TiO2 and zeolite Y-TiO2. The 
equation Eg = 1239.8/λ was used to measure the band gap 
energies of the samples. In this equation, Eg is the band gap 
(eV) and λ (nm) is the wavelength of the absorption edges in 
the spectrum (O’regan and Grätzel 1991, Chuang et al. 2015).

Tauc plot (hυ-(αhυ)2) was also plotted (Fig. 7B) to esti-
mate the band gap energy of synthesized nanosemiconduc-
tors, where α is the absorption coefficient, h is the Planck 
constant, and υ is the light frequency. The hv-(αhv)2 plot is 
valid to direct-band gap material. The results obtained are 
given in Table 2, and it demonstrates that carbon doping and 
the zeolite loading decreased the band gap and increased the 
visible light absorption of TiO2.

The photoluminescence emission spectra (PL) of TiO2, 
zeolite Y-TiO2 and zeolite Y-c-TiO2 samples were studied 
in the range of 390–550 nm to examine the separation effi-
ciency of photo-induced charge carriers, and the results are 
depicted in Fig. 8. It is evident that all the samples exhibit 
PL signal centered around 467 nm, which is an outcome of 
surface oxygen vacancies and defects in TiO2 (Wang et al. 
2012). The PL intensities of the samples decrease in the 
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order zeolite Y-TiO2 > zeolite Y-c-TiO2 > TiO2. The zeolite-
incorporated TiO2 samples exhibit much higher PL inten-
sity than bare TiO2 as zeolite upsurges the oxygen vacancy 
and intrinsic defects of TiO2. The enhancement in oxygen 
vacancies and defects makes PL signals stronger which con-
tributes to higher photocatalytic activity (Xiao et al. 2007). 
Generally, a lower PL intensity specifies a lower recombina-
tion rate of excitons (electron-hole pairs) as well as higher 
separation efficiency which leads to improved photocatalytic 
activity (Wang and Li 2014). The PL intensity of zeolite Y-c-
TiO2 nanocomposite is lesser than that of zeolite Y-TiO2, 
demonstrating the role of carbon doping in the separation 
of electron-hole pairs.

Photocatalytic activity

The solar light photocatalytic activities of the syn-
thesized photocatalysts were assessed by observing 

degradation of methylene blue as a model pollutant in 
water, and the results are portrayed in Fig. 9. The pho-
tocatalytic activity increases in the order TiO2 < zeolite 
Y-TiO2 < zeolite Y-c-TiO2, indicating that the use of 
the zeolite Y, as a support in the zeolite Y-TiO2 system, 
plays a crucial role in enhancing the photocatalytic deg-
radation of pollutants. In the adsorption process before 
solar light irradiation, the methylene blue adsorbed by 
anatase TiO2 was quite low and was greatly enhanced by 
zeolite incorporation. The incorporation of zeolite onto 
TiO2 expands the photodegradation ability of TiO2 by 
providing high surface area, good adsorption property, 
and ability to disperse TiO2 nanoparticles. The result 
also specifies that the photocatalytic activity of zeolite 
Y-TiO2 can be significantly enhanced with carbon dop-
ing. Almost 100% of methylene blue was mineralized to 
exhibit bleached water by the zeolite Y-c-TiO2 system 
within 70 min as displayed in the picture of the dye 

Scheme 1   Degradation pathway of cefazolin
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solution bottles in Fig. 9. The high visible light absorp-
tion and prolonged separation between the photoinduced 
charge carriers (excitons) assisted the improvement of 
photocatalytic activity of the zeolite Y-c-TiO2 sample. 
Since C-doped TiO2 is a good visible light responsive 
photocatalyst and zeolite Y is a good adsorbent, the cou-
pling of these two effects could result in a synergistic 
outcome on photocatalysis.

Subsequently, for the purpose to develop the solar pho-
tocatalysts to purify medicinal wastewater, the solar photo-
catalytic activities of zeolite Y-c-TiO2 was evaluated on the 
degradation of the antibiotic, cefazolin, dissolved in water, 
and the results are shown in Fig. 10.

The absorption maxima of cefazolin at 273 nm drops to 
zero within 360 min of solar light irradiation, and complete 
degradation of cefazolin would be anticipated in this time. 
To inspect the various intermediates formed during the deg-
radation process and to predict the degradation pathway, 
samples were withdrawn at 0 min, 180 min, and 360 min of 
solar light irradiation and are named as S0, S180, and S360, 
respectively. Mass spectra of the samples (S0, S180, and S360) 
were obtained from LC-MS analysis, in which sample ioni-
zation was made through electrospray ionization in positive 
mode. The three possible degradation pathways for cefazolin 
degradation are shown in Scheme 1.

The positive ionization of cefazolin generated protonated 
molecular ions [M + H]+. In sample (S0), cefazolin with a 
molecular mass of 454 was spotted at m/z 455 (A). With 
an increase in the irradiation time, the ion peak of m/z 455 
slowly diminished and some extra ion peaks are appearing, 

which directed to the assumption that the antibiotic cefazo-
lin have been degraded. In path 1, the hydrolysis product 
appeared at m/z 475(B) was resulted from the β-lactam ring 
cleavage of cefazolin compound and this was escorted by 
hydroxyl radical attack on the methyl in thiadiazole, forming 
the monohydroxylated derivative C with m/z 305 (Chen et al. 
2021). The C-S bond cleaves to form product D with m/z 
149, which is 5-(hydroxymethyl)-1,3,4-thiadiazole-2(3H)-
thione. In path 2, the formation of products E (m/z 170) 
and F (m/z 277) can be ascribed to the rupture of β-lactam 
from the initial compound A (m/z 455); later, F was further 
decomposed to G (m/z 180) and H (m/z 101) after C-S bond 
breakage. In path 3, the products I (m/z 357) and H (m/z 
101) instigate with the rupture of C-S bond on the parent 
cefazolin; furthermore, I undergoes decarboxylation lead-
ing to the formation of J with m/z 313 which was further 
accompanied amide bond cleavage to form K (m/z 203) and 
L (m/z 129). The fracture of the beta ring existing in K pro-
duces M (m/z 221), which can be degraded to N (m/z 177) 
by decarboxylation.

The assessment of the mass spectral analysis for the sam-
ples, S180 and S360, provided a clear idea about the degrada-
tion pathway of cefazolin in presence of zeolite Y-c-TiO2 
by solar photocatalysis. Since the fracture of β-lactam ring 
could result in destruction of bacterial antimicrobial resist-
ance, most of the degradation products that reported through 
LC-MS analysis possess lower risk to the ecosystem (Chen 
et al. 2021).

The HPLC method (with UV detection at 254 nm) was 
also employed to assess the changes occurring in cefazo-
lin during the photocatalytic degradation process, and the 
results are displayed in Fig. 11. It is clear from the figure that 
the peak detected for cefazolin at the instigation of degrada-
tion slowly declined with increase in irradiation time signi-
fying that cefazolin would be degraded to other molecules. 
These outcomes demonstrated the crucial role played by zeo-
lite Y-c-TiO2 photocatalyst in the degradation of cefazolin 
with the aid of sunlight.

Mechanism of photocatalytic degradation 
of pollutants

For the purpose of recognizing the mechanism behind the 
photocatalytic degradation process, free radical scavenging 
experiments were executed to spot the radicals involved in 
the degradation of methylene blue. Isopropyl alcohol (IPA), 
ascorbic acid (AA), and ammonium oxalate (AO) were used 
to quench hydroxide radicals (•OH), superoxide radicals 
(•O2

−), and hole (h+), respectively (Wang et al. 2019). The 
results are portrayed in Fig. 12a, and it specified a substan-
tial quenching effect on the degradation of MB with trap-
ping agents. The degradation decreases noticeably after the 
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Fig. 11   HPLC (254 nm) chromatograms of cefazolin solution in the 
presence of zeolite Y-c-TiO2 during different degradation times under 
sunlight
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addition of AA, which validates •O2
− as the main active 

species in the photocatalytic degradation process of zeolite 
Y-c-TiO2. The catalytic efficiency of the photocatalyst was 
only slightly reduced when the scavengers are IPA and AO, 
demonstrating that •OH and h+ have least effect on the deg-
radation of pollutants.

The generation of hydroxyl radicals in the photocata-
lytic system was confirmed by investigating the fluores-
cence spectral changes of coumarin solution treated with 
zeolite Y-c-TiO2 photocatalyst under sunlight illumina-
tion (Fig. 12(b)) (Liang et al. 2016). A steady upsurge 
in PL emission intensity at about 450 nm is noticed with 
increase in irradiation time. This outcome can be credited 
to the reaction arising between coumarin and hydroxyl 
radicals formed on the zeolite Y-c-TiO2 surface through 
photocatalytic reaction. In the absence of photocatalyst, no 
emission peak was observed for coumarin solution since 

PL emission peak intensity is connected to the amount 
of •OH radicals formed during the photocatalytic reac-
tion. Figure 12b thus confirms the generation of hydroxyl 
radicals during photocatalytic degradation reaction, which 
agrees well with the results of IPA quenching.

The production of •O2
− radicals was detected using the 

NBT method (Zhao et al. 2018). Figure 12c shows the 
UV-visible spectra of NBT solution mixed with zeolite 
Y-c-TiO2 photocatalyst taken during different times of 
exposure to solar light. The absorption peak at 259 nm was 
found to be decreased with prolonged solar light irradia-
tion due to the ability of NBT to trap •O2

− radicals evolved 
from the photocatalyst for the formation of formazan pre-
cipitate. The result supports the production of •O2

− radi-
cals, which matches with the result of AA quenching.

The mechanism for the photocatalytic degradation 
of pollutants using the synthesized zeolite Y-c-TiO2 
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Fig. 12   a The percentage degradation of MB in the presence of zeo-
lite Y-c-TiO2 and different radical scavengers, b PL spectral changes 
observed during solar light irradiation of zeolite Y-c-TiO2 dispersed 

in 10−4 M coumarin aqueous solution, and c UV-visible spectra of 
NBT in zeolite Y-c-TiO2 dispersion under solar light irradiation
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nanocomposite in relation with band gap values has been 
shown in Fig. 13. Tauc plot sketched using DRS spectra 
presented the band gap energy (Eg) of TiO2 as 3.08 eV. 
The conduction band (ECB) potential and valence band 
(EVB) potential were calculated using the equations,

χ is the electronegativity of TiO2 (5.81 eV), and Ee 
(4.5 eV) is the energy of free electrons at hydrogen scale 
(Sharma et al. 2018). EVB and ECB were calculated to be 
2.85 and −0.23 eV, respectively.

In c-TiO2, the generation of electron (e−) and holes (h+) 
occurs by the excitation of valence band (VB) electrons 
to conduction band (CB) through the captivation of solar 
light. The photogenerated holes react with OH− or H2O 
molecules adsorbed on the catalyst surface to produce 

EVB = � − Ee
+ 0.5 Eg

ECB = EVB − Eg

hydroxyl radicals (•OH), whereas the excited electrons 
react with adsorbed O2 to produce superoxide radicals 
(•O2

−). The pollutant molecules can thus react with these 
reactive species to get mineralized into CO2, H2O, and 
other simple molecules. The carbon doping into the TiO2 
was useful in improving the photocatalytic activity because 
of its ability to prolong the separation between photoin-
duced charge carriers (e− and h+). It adds new states in 
between the CB and VB of TiO2, which results in band gap 
narrowing (Cinelli et al. 2017). Incorporation with zeolites 
facilitates transfer of the charge carriers (Yoon et al. 2007; 
Dutta and Severance 2011) to O2 and water. In addition, it 
should be noted that the zeolites supporting c-TiO2 serve 
as good adsorbents of the organic molecules, making close 
contact of the pollutants with the photogenerated oxidants 
for the enhanced photocatalytic activity (Noorjahan et al. 
2004). Thus, the zeolite Y-c-TiO2 can be used as a highly 
effective photocatalytic agent for the degradation of per-
sistent organic medicines.

Fig. 13   Mechanism of pollutant 
degradation using zeolite Y-c-
TiO2 under sunlight

Fig. 14   a Cyclic runs of zeolite 
Y-c-TiO2 for the degradation of 
cefazolin under solar irradia-
tion (the error bars correspond 
to standard deviations) and b 
FT-IR spectra of zeolite Y-c-
TiO2 photocatalyst before and 
after five cyclic runs
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Recycling capacity of the catalyst

In the recoverability and reusability assessment of the 
synthesized zeolite Y-c-TiO2 catalyst in the photocatalytic 
degradation of cefazolin under solar light irradiation, five 
repeated cycles were carried out, each lasting for 360 min. 
After each catalytic cycle, the used catalyst was separated by 
filtration and cleaned thoroughly with distilled water, dried, 
and then added to fresh cefazolin (50 mg L−1) solution. From 
Fig. 14a, it is evident that the photocatalyst holds their cat-
alytic activity after being recycled five times. Figure 14b 
depicts that the FT-IR spectrum of the recycled photocatalyst 
is identical to that of the pure photocatalyst. These outcomes 
point to the chemical stability and reusability of the syn-
thesized photocatalyst. The decrease in the photocatalytic 
activity of zeolite Y-c-TiO2 observed after five catalytic runs 
may be attributed to the loss of the catalyst during filtration 
and washing processes. The failure in thorough cleaning of 
the residual products adsorbed on the photocatalyst surfaces 
impacts the surface properties of the photocatalyst that also 
declines the catalytic activity (Huang et al. 2008).

Conclusion

In this study, zeolite Y-supported carbon-doped TiO2 nano-
composites (zeolite Y-c-TiO2) were successfully synthesized 
via hydrothermal route and were utilized for the degradation 
of cefazolin under solar light. The band gap energy of zeolite 
Y-c-TiO2 was decreased (3.00 eV) when compared to that 
of undoped zeolite Y-TiO2 nanocomposite (3.15 eV). Dop-
ing with carbon enhanced the visible light response under 
solar light irradiation, and the sample, zeolite Y-c-TiO2, 
achieved near complete degradation for methylene blue and 
cefazolin within 70 min and 360 min, respectively. Radical 
scavenger experiment displayed that •O2

− is the predominant 
active species in the aqueous suspension of zeolite Y-c-TiO2 
system, while contribution of •OH is secondary and pho-
togenerated holes are the least. LC-MS analysis of cefazo-
lin taken during different degradation stages demonstrated 
the cleavage of beta lactam ring, which could result in the 
destruction of antimicrobial resistance. Hence, zeolite Y-c-
TiO2 nanocomposite can be used as a potential candidate for 
the development of an environmentally sustainable photo-
catalytic treatment process for the purification of medicinal 
wastewater. The study offers a technically viable and inex-
pensive solution for environmental cleaning using sunlight 
in place of an artificial light.
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