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Abstract
Modification of photocatalysts to improve their adsorption and photocatalytic activity in the oxidative desulfurization 
of liquid fuels has been reported by many investigators. In this study, Pt-decorated carbon-doped  TiO2 nanoparti-
cles were synthesized by hydrothermal and photo-deposition techniques and were subsequently used in photocatalytic 
oxidative desulfurization of dibenzothiophene (DBT) in n-heptane as a simulated liquid fuel with methanol as the 
extracting solvent. Carbon-doped  TiO2 was first synthesized by a simple self-doping method. Pt was then loaded by a 
photo-deposition technique. The synthesized photocatalysts (labeled as YPt-CT where Y is percent Pt loading) were 
characterized by of X-ray diffraction (XRD), photoluminescence (PL), field emission scanning electron microscopy 
(FESEM),  N2-physisorption, UV-Vis diffusive reflectance spectra (UV-Vis DRS), transmission electron microscopy 
(TEM), Fourier transform infrared spectra (FTIR), and nitrogen sorption measurements. The removal efficiency of DBT 
was 98% in the presence of 2 g/l of 0.5Pt-CT catalyst under visible-light irradiation (λ > 400 nm), ambient pressure, 
and reaction temperature of 40°C.

Keywords Oxidative desulfurization · Photooxidative degredation · Photocatalysis · Titanium dioxide · Visible-light 
active · First-order reaction

Introduction

Combustion of fuels containing various sulfur species 
including mercaptans, sulfides, and thiophenes by mov-
ing and stationary sources can lead to significant forma-
tion of  SOx that is of serious environmental concern (Pil-
lai et al. 2012; Song 2003). Various processes including 
catalytic hydrodesulfurization (HDS) (Shang et al. 2020), 

adsorption (Song et al. 2017), and oxidative desulfuriza-
tion (ODS) (Zhang et al. 2013, 2017) can be used for sulfur 
removal from liquid fuels. HDS is the most common method 
used in refineries to reduce the sulfur content (Boonyasuwat 
& Tscheikuna 2017; Shang et al. 2020). HDS processes, 
however, require severe process conditions as well as sig-
nificant hydrogen consumption in the presence of a catalyst. 
Alternative desulfurization approach, among them oxida-
tive desulfurization, have therefore received considerable 
attentions due to the mild conditions they employ as well 
as their cost effectiveness (Song 2003). Photocatalysts have 
attracted great attentions to promote many reactions (Tayyab 
et al. 2022) (Liu et al. 2021) (Tayyab et al. 2022) (Dan-
ish et al. 2021) (Chamack et al. 2022) (Moradi et al. 2020) 
(Nematollahi et  al.  2020) (Larimi et  al.  2022) (Chi 
et al. 2022) including ODS given their low cost, good stabil-
ity, and reusability. In photocatalytic ODS, light irradiation 
would generate electrons and holes that lead to the formation 
of highly active radicals that would oxidize the sulfur com-
pounds to the corresponding sulfones (Huang et al. 2020; Li 
et al. 2016; Yaghoot-Nezhad et al. 2020). The highly polar 
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sulfones can be removed by extraction (Anpo et al. 2009; 
Kalantari et al. 2016; Masoomi et al. 2015).

Non-metal doping is an effective strategy to reduce 
the energy band gap of titanium dioxide  TiO2 (Abdol-
lahi et al. 2022). Non-metal dopants including N (Nasirian 
Bachelor 2021), S (McManamon et al. 2015), B (Giannakas 
et al. 2016), and F (Samsudin et al. 2016) have been success-
fully used to enhance the photocatalytic activity by limiting 
electron-hole recombination and narrowing the band gap. 
Carbon doping of  TiO2 would enhance the light absorption 
and expand it into the visible light by generating a new energy 
level in the band gap. It would also result in enhanced adsorp-
tion of reactants by providing greater catalyst surface site den-
sity. In a recent self-doped method,  TiO2-N-C photocatalysts 
were prepared by passing  N2 and CO over Ti at 450–550°C to 
form thin films that showed superior efficiency in self-reduc-
tion under visible light (Choi et al. 2006). C-doped anatase 
 TiO2 was also synthesized by a sol gel method that showed 
enhanced photocatalytic efficiency under visible light irradia-
tion (λ > 400 nm) (Liu et al. 2014). Carbon self-doped  TiO2 
was also recently synthesized by a hydrothermal technique for 
remediation of acid orange that showed superior activity as 
compared with C-doped  TiO2 prepared by the sol gel method 
(Ochoa Rodríguez et al. 2019).

Doping with metals such as Ni (Nematollahi et al. 2021), 
Cu (Hitam et al. 2016), Fe (Kalantari et al. 2017), Pt (Larimi & 
Khorasheh 2020), Bi (Nematollahi et al. 2019), and Ag (Jaafar 
et al. 2015) have enhanced the sensitivity of  TiO2 to irradia-
tion in the visible region, thereby promoting the photocatalytic 
activity. These metals, however, can intensify the production 
of charge carriers by acting as active sites. Platinum (Pt) has 
been widely investigated as a promoter for photocatalytic activ-
ity (Liu et al. 2021) (Moradi et al. 2019). Bi-doped  TiO2 was 
decorated with Pt nanoparticles and showed enhanced activity 
in the photo-reduction of  CO2 due to the desirable effect of Pt 
for electron trapping (Moradi et al. 2020). The enhanced pho-
todegradation activity of Pt/TiO2 was shown to be mainly due 
to the oxidized Pt species and not the metallic nanoparticles 
of Pt (Shu et al. 2020). Pt-N-TiO2 nanomaterials were also 
synthesized to investigate their performance in benzoic acid 
photo-oxidation with N-doped  TiO2 having a higher visible-
light absorbance than pure  TiO2 while additional Pt loading by 
a sol gel impregnation method significantly enhanced the life 
of holes and positively influenced the photo induced electrons 
(Giannakas et al. 2017).

To the best of our knowledge, there has not been a pub-
lished report on simultaneous modification of  TiO2-based 
photocatalysts with Pt metal loading and C non-metal dop-
ing for oxidative desulfurization of liquid fuels. Herein, we 
have investigated both non-metal doping of  TiO2 and metal 
decorating for photocatalytic oxidative desulfurization. First, 
carbon-doped  TiO2 was prepared using a self-doped method 
followed by Pt loading by a photo-deposition technique.

Materials and methods

Materials

Titanium n–butoxide (Ti (OBu)4, 98%), nitric acid (>65%), 
dibenzothiophene (DBT), methanol (absolute, >98%), and 
n-heptane were purchased from Sigma-Aldrich and ethanol 
(absolute, >96%) from Golriz company in Iran. All materials 
were used without further treatments.

Synthesis

Synthesis of carbon-doped  TiO2

Carbon-doped  TiO2 was prepared by a method reported 
in the literature (Ochoa Rodríguez et al. 2019). Solution 
A was first prepared by dissolving 6 ml of Ti(OBu)4 in 
20 ml of ethanol. Solution B was prepared by mixing 0.4 
ml of nitric acid, 17 ml of ethanol, and 1.6 ml of water. 
Both solutions were stirred for 30 min at room temperature 
and then mixed and stirred for an additional 30 min. The 
resulting mixture was left in a dark place at ambient con-
ditions for 48 h and was subsequently placed in a Teflon-
lined autoclave reactor for hydrothermal treatment for 10 
h under self-generated pressure at 180°C. The resulting 
white solid was separated by filtration and dried at 60°C 
and subsequently calcined at three different temperatures 
of 200, 400, and 600°C and were designated as CT200, 
CT400, and CT600, respectively.

Photo-deposition of platinum on carbon-doped  TiO2

Three Pt-loaded samples containing 0.5%, 1%, and 2% (by 
mass) of Pt were synthesized by a photo-deposition method. 
An aqueous solution of 20 vol% methanol was used to sus-
pend 0.25 g of carbon-doped  TiO2 into a 100-ml quartz cell 
and the required amount of 4 g per liter of  H2PtCl6 solution 
was then added to the cell. Prior to illumination, inert  N2 gas 
was purged into the cell to remove dissolved oxygen so to pre-
vent Pt from oxidation. After 4 h of UV irradiation by a 250 
W Hg lamp, the gray-colored precipitate was collected using 
a filter paper. The adsorbed ions on surface of the collected 
solid were then removed by washing with distilled water sev-
eral times. The sample was then dried at 90°C for 12 h. The 
samples were designated as YPt-CT where Y is the mass per-
cent of Pt. The entire synthesis process is illustrated in Fig. 1.

Characterization

A D8 Advance (Bruker AXS, Germany) diffractom-
eter was used to obtain the X-ray diffraction (XRD) 
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patterns of the powder samples with Cu Ka radiation (k 
= 1.5406 Å) and using an X-ray radiation source at 40 
kV and 40 mA. FTIR spectroscopy was performed by 
ABB Bomem model MB100 spectrometer in 500–4000 
 cm−1 wavenumber range. Field emission scanning elec-
tron microscopy (FESEM) images and energy dispersive 
X-ray spectroscopy (EDX) were recorded using MIRA 
TESCAN microscope with 15 kV operating voltage. UV-
vis spectrophotometer (Shimadzu UV-2550) was used 
to obtain diffuse reflectance spectra (DRS) with KBr 
taken as reference in wavelength range of 300–800 nm. 
A F6500 fluorescence photometer equipped with an exci-
tation wavelength of 300 nm was used to obtain photolu-
minescence (PL) spectra at room temperature. TF20 Jeol 
2100F field emission transmission electron microscope 
was used to acquire transmission electron microscopy 
(TEM) images. Nitrogen adsorption–desorption at 77 K 
was obtained by a Belsorp mini II equipment to deter-
mine the Brunauer-Emmett-Teller (BET) surface area, 

Barrett–Joyner–Halenda (BJH) pore size distribution, and 
the total pore volume. Fourier transform infrared spectra 
(FTIR) were obtained using a Thermo Nicolet IR 100 
FTIR spectrometer in the wavelength range of 900–4000 
 cm−1.

Photocatalytic desulfurization

The sulfur containing model fuel was prepared by dissolv-
ing 17.5 mg of dibenzothiophene in 35 ml of n-heptane 
and 35 ml of methanol as extraction solvent. The solution 
was added to a two-necked glass reactor. One hundred 
and forty milligrams of photocatalyst were subsequently 
added to the reactor under constant stirring. The irradia-
tion source was a 250 W sodium vapor lamp which could 
have resulted in a temperature rise during the reaction. A 
cooling system was implemented to maintain the reactor 
temperature at about 40°C. The reactor content was kept 
under dark for 60 min to establish adsorption/desorption 
equilibrium prior to the irradiation source to be turned on. 

Fig. 1  Synthesis procedure of 
photocatalysts

Fig. 2  XRD patterns of samples Fig. 3  FTIR spectra of photocatalyst samples
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During the experiment, samples were regularly taken from 
the reactor and were subsequently filtered and analyzed. 
A UV-visible spectrophotometer was used to measure the 

absorbance at 470 nm to determine the DBT concentration 
for each sample. DBT removal efficiency was calculated 
using the following equation:

Fig. 4  (A, B, C) FESEM images, (D) EDX spectrum, (E, F, G, H) images of elemental mapping, and (I, J) TEM images of 0.5Pt-CT
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where C0 and C are DBT concentrations initially and 
at any time, t, respectively. All reported data were mean 
values of ≥3 experiments and the calculated DBT removal 
efficiency had an accuracy of ± 2% due to analytical error.

Results and discussion

Characterization of photocatalysts

XRD

In order to explore the crystal structure synthesized pho-
tocatalysts, the XRD patterns were obtained and are pre-
sented in Fig. 2. Anatase peaks were observed at 2θ values 
of 25.5, 37.9, 48.1, 53.6, 54.7, 62.2, 68.9, 70.1, and 74.8° in 
all the patterns that corresponded to the characteristic planes 
(101), (004), (200), (105), (211), (204), (116), (220), and 
(215), respectively (Moradi et al. 2018; Ochoa Rodríguez 
et al. 2019). There were no peaks associated with the rutile 
phase. An increase in the calcination temperature led to an 
increase in the crystallinity of CT samples. Crystallinity, how-
ever, decreased when Pt was present. The crystal sizes for 
each sample were calculated from Scherrer equation and are 
presented in Table 2, indicating that the crystals became larger 
with increasing Pt content.

(Eq. 1)Efficiency =

C0 − C

C0

FTIR

Figure 3 presents the FTIR spectra for TC400 and YPt-CT 
samples in the wavelength range of 500 to 4000  cm−1. A 
broad band was observed in all spectra between 800 and 
400  cm−1 that was associated with the vibrations of the Ti-O 
bonds in the anatase phase of  TiO2 (Peng et al. 2017). The 
peaks at 1638 and 3374  cm−1 were associated with the vibra-
tory stretching and bending of O–H, respectively (Huang 
et al. 2009). Reactive oxygen species are created when the 
surface hydroxyl groups interact with photo-generated holes 
and inhibit the recombination of photo generation charges 
(Liu et al. 2012).  TiO2–OH bonds on the surface are often 
believed to originate from an exothermic reaction occurring 
during the preparation process (Huang et al. 2008). A weak 
peak seen at 2923  cm−1 on the TC400 sample that could 
be attributed to the stretching vibrations of –CH3 (Erdem 
et al. 2001). The YPt-CT samples appeared to be free of 
organic species on their surface based on the fact that no 
peaks were observed to coincide with –CH3, –CH2, or –CH 
bonds.

FESEM, EDX, and TEM

To shed light on the morphological properties of the pho-
tocatalysts, FESEM and TEM analyses were performed. 
The FESEM images for 0.5Pt-CT photocatalyst are shown 
in Fig. 4(A–C) for different magnifications. Particles were 
spherical and dispersed in a narrow size range with high 
homogeneity. The sample was observed to be uniformly 
shaped with an average diameter of 10 nm.

It may not be a completely superficial method, but EDX 
has an advantage of a quick surface analysis (Ochoa Rod-
ríguez et al. 2019). The EDX spectrum and the mapping 
of the associated elemental distributions are illustrated in 
Figs. 4(D) and 4(E–H), respectively. The metallic elements 
titanium and platinum, unlike oxygen and carbon, have 
multiple peaks in the energy diffraction spectrum, which 
can be due to the ionization of these elements with different 

Table 1  Weight and mole 
percentages of different 
elements in 0.5Pt-CT sample

Element Weight % Mole %

C 5.19 9.84
O 47.7 67.88
Ti 46.8 22.2
Pt 0.31 0.04
Total 100 100

Fig. 5  (A)  N2 adsorption–des-
orption isotherms of samples 
and (B) BJH pore size distribu-
tions of samples



18193Environmental Science and Pollution Research (2024) 31:18188–18199 

1 3

electrical charges. Pt constituted to approximately 0.5% of 
the weight of the catalyst which was different from 0.31% 
that was obtained at the surface of catalyst. As indicated 
in Table 1, the molar ratio of O to Ti was approximately 
3. EDX analysis has shown that Ti-O bonds were highly 
concentrated at the surface. Ti and O displayed similar pro-
files indicating that the elements were dispersed and Pt also 
displayed uniform dispersion within  TiO2 structure (Peng 
et al. 2017).

The TEM images for 0.5Pt-CT sample at 30- and 50-nm 
scales are presented in Fig. 4(J, J) in which the dark patches 
are Pt particles dispersed over the carbon-doped  TiO2 nano-
particles that are spherical in shape. Excessive Pt doping 
could lead to an increase in the catalyst particle size (Ishibai 
et al. 2007).

N2-physisorption analysis

N2 adsorption and desorption isotherms were obtained 
for the synthesized photocatalys in order to investigate 
their specific surface area and pore size distribution 
and the results are presented in Fig. 5(A) and Table 2. 
A typical mesoporous structure was observed for all 
samples that were type IV according to the (Interna-
tional Union of Pure and Applied Chemistry) IUPAC 
classification (Xie et al. 2010). According to Table 2, 
CT400 had the largest specific surface area. Loading 
with Pt led to an increase in crystalline size, thereby 

resulting in a decrease in surface area and total pore 
volume for samples containing Pt.  N2 isotherms also 
showed a narrow hysteresis loop due to the mesoporous 
structure of the samples (Li et al. 2014). Figure 5(B) 
shows the BJH pore size distributions indicating that 
the majority of pores had diameters ranging from 1 to 
10 nm. There was a peak (at about 4.61 nm pore size) 
for all Pt samples that diminished with increasing Pt 
content in accordance with the TEM and XRD results.

UV-vis DRS analysis

UV-vis DRS analysis were performed to reveal the optical 
properties of photocatralysts. The UV-vis diffuse reflectance 
spectra of synthesized samples are shown in Fig. 6(A). An 
extrinsic dopant into the lattice will alter the absorption band 
of a photocatalyst (Mousavi-Kamazani & Ashrafi 2020). In 
comparison with other samples, the 0.5Pt-CT sample had 
a greatest absorption rate of visible light (beyond 400 nm) 
as indicated in Fig. 6(B). The DRS spectra also indicated 
that the 1Pt-CT had lower absorption compared with both 
the 2Pt-CT and CT400 samples. The bands gap energies 
were estimated from DRS spectra using the Kubelka-Munk 
equation as shown in Fig. 6(B) where the intercepts of the 
asymptotes to the plots of (αhv)1/2 versus photon energy (ev) 
were used to estimate the band gap energies as reported in 
Table 3.

PL

Photoluminescence (PL) spectroscopy was performed to 
investigate the recombination of charge carriers associated 
with the structure of synthesized samples (Dong et al. 2011; 
Moradi, Khorasheh, & Larimi 2020). A comparison of the 
PL spectra at room temperature is presented in Fig. 7. All 
PL signals had a broad peak located at or near 580 nm in 
the visible range that may be due to the traps on the surface 
or to their band gap (Stevanovic et al. 2011). TC400 had 

Table 2  Structural properties of the synthesized photocatalysts

Samples SBET  (m2/g) Total pore vol-
ume  (cm3/g)

Pore diam-
eter (nm)

Crystal 
size 
(nm)

CT400 230 0.635 11.05 6.3
0.5Pt-CT 175.7 0.521 11.86 7.3
1Pt-CT 174 0.587 13.5 7.4
2Pt-CT 156.3 0.467 11.95 7.4

Fig. 6  (A) UV-vis DRS spectra 
of samples and (B) Tauc plots 
of samples
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the highest intensity compared with other samples indicat-
ing significantly more recombination of electron/hole and 
subsequently lower photocatalytic activity.

Photocatalytic activity

The results of photocatalytic oxidative desulfurization of a 
dibenzothiophene (DBT) containing solution in n-heptane as 
a model fuel over Pt-CT samples with varying amounts of Pt 
under visible-light conditions are presented in Fig. 8(A). The 
photodegradation processes occurred after the adsorption of 

DBT on the catalyst had reached an equilibrium in the dark. 
The concentration of DBT remaining in the solution after the 
60-min dark period indicated a significant adsorptive capac-
ity of the catalyst for DBT that was attributed to the adsorp-
tion of electron pairs of the sulfur atoms of DBT on the 
vacancies of catalyst (Pham et al. 2020). The extent of DBT 
removal in the presence of CT400 as catalyst was only 8.1% 
and when methanol was added as a polar solvent it reached 
83%. In the absence of methanol, the photocatalyst formed a 
precipitate. The products from photocatalytic oxidative des-
ulfurization of DBT are the corresponding sulfones that can 
be isolated by solvent extraction (Attar & Corcoran 1978). 
Due to a change in polarity of sulfone compounds upon oxi-
dation of DBT, they are easily separated from hydrocarbon 
fuels (Campos-Martin et al. 2010; Ismagilov et al. 2015). 
Photocatalytic activity increased significantly when Pt was 
loaded onto CT400 with DBT removal reaching its maxi-
mum of 98% with Pt loading of 0.5% that was in accord-
ance with the DRS results that demonstrated this catalyst 
had the highest light absorption as well as the lowest band 
gap energy (2.58 eV).

Figure 8(B) demonstrates the effect of  H2O2 concentra-
tion on photocatalyst efficiency. The oxidation of DBT can 
be facilitated by  H2O2 oxidant combining with electrons/
holes to form OH species (Li et al. 2017). Nevertheless, 
the presence of excess  H2O2 interferes with the degradative 
process due to the scavenging of oxidative species (Moradi 
et al. 2015). As shown in Fig. 8(B), photo-oxidation activity 
was very low in the absence of oxidant. With the addition 
of 0.2 ml of  H2O2 to the reaction mixture, DBT removal 
increased from 80 to 98%. Any further addition of  H2O2, 
however, reduced the DBT removal efficiency.

Both photocatalytic and adsorption activity were 
enhanced by doping of carbon (Table 4). The optimum 
activity was achieved with Pt loading of 0.5%. Total DBT 
removal decreased with increasing Pt content beyond this 
optimum amount as indicated by lower light absorption 
for the for the 1% and 2% Pt samples as indicated by DRS 

Table 3  Band gap energy of 
samples

Sample Band gap (eV)

0.5Pt-CT 2.57
1Pt-CT 2.61
2Pt-CT 2.7
CT400 2.83

Fig. 7  Photoluminescence spectra of prepared photocatalysts

Fig. 8  (A) Photocatalytic oxida-
tive desulfurization of DBT 
over different photocatalyst 
samples and (B) photocatalytic 
activity of 0.5Pt-CT with differ-
ent amounts of  H2O2 oxidant
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results. The higher Pt content also led to a reaction solution 
that was darker thus resulting in a decreased light infiltrating.

DBT degradation could be described as a pseudo first-
order reaction represented by Eq. 2 in terms of illumination 
time (Pham et al. 2020):

where C and C0 are the DBT concentrations (mg/l) at time 
t (h) and the initial concentration at the start of irradiation, 
respectively, and k is the reaction rate constant  (h−1). As shown 
in Fig. 9, first-order kinetics was found to adequately describe 
DBT oxidation. 0.5Pt-CT sample had the highest rate constant 
of 1.04  h−1 followed by CT400, 1Pt-CT, and 2Pt-CT samples 
with corresponding rate constants of 0.69, 0.47, and 0.37  h−1, 
respectively. The 1% Pt sample had a better efficiency as com-
pared with TiOC-400 which may be due to presence of more 
active sites from Pt loading resulting in improved adsorption 
of DBT. CT400, on the other hand, had better photocatalytic 
activity as the reaction mixture for 1Pt-CT sample was darker 
resulting in decreased infiltration of light.

(Eq. 2)−ln

(

C

C0

)

= kt

The C modification is believed to be critical for the visi-
ble-light photocatalysis because it introduces defects in the 
lattice (Yu et al. 2011) and  H2O2 has been used to elevate 
photocatalytic activity in the photocatalytic oxidative desul-
furization experiments (Wang et al. 2014). The mechanism 
presented by Eqs. 3–6 can be proposed for photocatalytic 
oxidative desulfurization of DBT. During the absorption of 
photons, electrons and holes are generated respectively in the 
valence band (VB) and conduction band (CB) of  TiO2. A new 
series of energy states can be generated along the band gap of 
 TiO2 in order to enhance photocatalytic activity through intro-
duction of carbon as dopant in  TiO2 lattice (Lin et al. 2013). 
According to the DRS spectra, 0.5Pt-CT sample had a lower 
band gap energy compared with CT400, indicating that a 
new state of energy had been formed after Pt loading (Li & 
Li 2002). Electrons generated with radiant energy in the con-
duction band will decompose  H2O2 to hydroxyl and hydroxyl 
radical. Photo-generated electrons in the semiconductor also 
transfer to the Pt sites where the same decomposition occurs. 
The hydroxyl groups in the solution react with the  h+ in the 
VB and generate hydroxyl radicals and thus more hydroxyl 
radicals are produced. The degradation of DBT to  DBTO2 
is typically influenced by strong oxidation by •OH species 
(Sood et al. 2015) (Wang et al. 2011). Figure 10 presents the 
schematic illustration of photocatalytic oxidation of model fuel 
over Pt-decorated carbon-doped  TiO2 nanoparticles.

(Eq.3)Photocatalyt + hv → e
−
+ h

+

(Eq.4)e
−
+ H

2
O

2
→ −OH + ∙ OH

(Eq.5)−OH + h
+
→ ∙ OH

Table 4  Comparison of adsorption and total efficiency of photocata-
lysts

Sample Adsorption% Total degradation%

CT400 16.9 83
0.5Pt-CT 80.2 99.3
1Pt-CT 58.5 87.5
2Pt-CT 31.3 66.6

Fig. 9  Plots for pseudo first-order kinetics for DBT removal for dif-
ferent photocatalysts

Fig. 10  Schematic illustration of photocatalytic oxidation of model 
fuel over Pt-decorated carbon-doped  TiO2 nanoparticles
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Stability of photocatalysts is an important criteria for 
practical applications (Yin et al. 2015). The 0.5Pt-CT sam-
ple was removed, washed, and dried for 5 h prior to use in 
five consecutive reaction cycles. As illustrated in Fig. 11, 
DBT removal efficiency decreased only slightly in consecu-
tive cycles under visible-light exposure that could be attrib-
uted to the slight sintering of the catalyst as can be seen in 
Fig. 12.

Conclusions

Photocatalysts were prepared by loading Pt on carbon-doped 
 TiO2 nanoparticles by a photo-deposition method for DBT 
photo-oxidation under visible-light illumination. Methanol 
was used as a polar solvent extractor. Ninety-eight percent 
of DBT removal was achieved in 3.5 h using the 0.5Pt-CT 
sample for an initial DBT concentration of 250 mg/l. Despite 

(Eq.6)DBT + ∙ OH → DBTO
2

Fig. 11  DBT removal efficiency for consecutive reaction cycles over 
0.5Pt-CT sample

Fig. 12  FESEM images after 
consecutive reaction cycles over 
0.5Pt-CT sample
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5 cycles of repeated photocatalytic reactions, the catalyst 
only showed a slight decrease in activity.
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