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Abstract
Land use demand change in the Huaihe River basin (HRB) and ecosystem service values (ESVs) in watersheds are 
important for the sustainable development and use of land resources. This paper takes the HRB as the research object, 
and using remote sensing images of land use as the data source adopts the comprehensive evaluation analysis method of 
ESVs based on equivalent factors and sensitivity analysis of the performance characteristics of ESV changes of different 
land use types. The PLUS model is used to predict spatiotemporal land use change characteristics to 2030 combining 
inertial development, ecological development, and cultivated land development. The spatial distribution and aggregation 
of ESVs at each scale were also explored by analyzing ESVs at municipal, county, and grid scales. Considering also 
hotspots, the contribution of land use conversion to ESVs was quantified. The results showed that (1) from 2000 to 2020, 
cultivated land decreased sharply to 28,344.6875  km2, while construction land increased sharply to 26,914.563  km2, and 
the change of other land types was small. (2) The ESVs in the HRB were 222,019 ×  1012 CNY in 2000, 235,015 ×  1012 
CNY in 2005, 234,419 ×  1012 CNY in 2010, 229,885 ×  1012 CNY in 2015, and 224,759 ×  1012 CNY in 2020, with an 
overall fluctuation, first increasing and then decreasing. (3) The ESVs were 219,977 ×  1012 CNY, 218,098 ×  1012 CNY, 
219,757 ×  1012 CNY, and 213,985 ×  1012 CNY under the four simulation scenarios of inertial development, ecological 
development, cultivated land development, and urban development, respectively. At different scales, the high-value areas 
decreased, and the low-value areas increased. (4) The hot and cold spots of ESV values were relatively clustered, with 
the former mainly clustered in the southeast region and the latter mainly clustered in the northwest region. The sensitiv-
ity of ecological value was lower than 1, while the ESV was inelastic to the ecological coefficient, and the results were 
plausible. The mutual conversion of cultivated land to water contributed the most to ESVs. Based on the multi-scenario 
simulation of land use in the HRB by the PLUS model, we identified the spatial distribution characteristics of ESVs at 
different scales, which can provide a scientific basis and multiple perspectives for the optimization of land use structure 
and socio-economic development decisions.

Keywords Huaihe River basin · Spatiotemporal evolution · Ecosystem service value · Multi-scenario prediction · Multi-
scale effects · PLUS model

Introduction

Ecosystem services (ESs) are those life-support goods 
and services received directly or indirectly through the 
structure, processes, and functions of ecosystems and 

whose formation, supply, and distribution are profoundly 
influenced by land use (Xie et al. 2015). Land creates 
a large amount of ecosystem service value (ESVs) for 
humans, and the majority of social and economic activi-
ties use it as a carrier. Moreover, land plays a fundamen-
tal role in food security and ecological safety, holding 
a supply value (provision of food, raw materials, and 
water resources), regulating value (purification of the 
landscape, gases, climate, and hydrology), supporting 
value (soils, nutrient cycling, and biodiversity), and cul-
tural value (aesthetic landscape; Costanza et al. 1997). 
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With population growth and rapid urbanization (Fan 
et al. 2022), land use patterns are gradually transform-
ing toward semi-natural and semi-artificial ecosystems 
(Cumming et al. 2014; Li et al. 2016), and the resulting 
changes in material and energy flows affect the ability 
of ecosystems to provide services. Therefore, unsuit-
able land use will endanger regional ecological security 
and even limit urban sustainable development (Huang 
et al. 2021). With the construction of large-scale, long 
time series and the diffusion of high-intensity human 
activities, watersheds provide an important material 
base and ecological services for human survival (Xie 
et al. 2022). At the same time, as the population gath-
ers in river basins and the scale of a city expands, the 
demand for ESs such as food supply, water supply, air 
purification, water containment, and cultural recreation 
will continue to increase. The HRB (Huaihe River basin) 
is located in the north–south climate transition zone of 
China. It is an important ecological barrier, as well as a 
significant coal and energy base in eastern China, and 
is a representative case of China for the purposes of this 
study. The ecological environment and socio-economic 
development of this region are particularly sensitive to 
land use changes; hence, it is important to study the land 
use changes in this basin. In this context, the study of 
land use impacts on ESV changes in watersheds under 
multiple scenarios is conducive to the construction of 
a new pattern of spatial development and protection of 
watersheds and provides technical support and scientific 
information.

Changes in land use/land cover directly affect ESVs 
(Gashaw et al. 2018). Therefore, the estimation of ESVs 
based on land use changes is the most direct and effec-
tive method to quantify the loss of EVS over time. The 
spatial pattern of ESVs reflects the spatial and temporal 
evolution of regional ecosystems, which is important to 
identify regional ecosystem service problems, maintain 
balanced regional ecological development, and promote 
regional sustainable development. ESV is a quantitative 
estimate of the capacity of ESs and can be assessed in 
two main ways: monetization and energetic valuation (Li 
2019). The monetary form of ESV can be easily under-
stood by people and used by decision-makers; it can 
effectively assist spatial planning, ecological control, and 
ecological restoration and is widely used (Crossman and 
Bryan 2009; Crossman et al. 2011; Groot et al. 2012). 
ESVs are the basis to describe the spatiotemporal evolu-
tion of ESs; hence, their accurate accounting is critical. 
At present, several scholars in China and abroad have 
generated a wealth of research results on the effects of 
land use change on ESVs (Assefa et al. 2021; Hu et al. 

2022; Song et al. 2017; Tan et al. 2020). In 1997, Con-
stanza et al. developed ESV coefficients for different 
land use types based on an assessment of global ESVs, 
which laid the foundation for related studies. Xie et al. 
(2008) established a base equivalence scale for ESVs 
in different regions of China, which has been used by 
a wide range of scholars. ESVs have been explored in 
relation to three main topics: definition and classifica-
tion (Braat 2012), value assessment (Xie et al. 2017), and 
the relationship between ecosystems and social develop-
ment (Garcia et al. 2018). Specifically, several studies 
focused on the underlying theory, driving mechanisms, 
and spatiotemporal variability of ESs, covering national, 
regional, provincial, municipal, and county scales. In this 
study, we considered the special situations of different 
years and regions, continuously improved the adjustment 
of value coefficients, conducted an assessment of the 
spatiotemporal variation patterns of regional ESV under 
different scales of land use changes, and proposed opti-
mized temporal sequencing schemes and spatial develop-
ment strategies and differences in ESV under different 
scenario simulations.

Land use patterns can affect ESVs. With the advance-
ment of research, scholars have tried to analyze future 
land use changes and their impacts on regional ESVs to 
develop sustainable land use measures Land use simu-
lation is a current research hotspot, and related studies 
have been conducted using CLUE-S (Niu et al. 2021), 
SLEUTH (Niu et al. 2021), SD (Bing et al. 2016), FLUS 
(Liu et al. 2021), and CA-Markov (Guzman et al. 2020), 
among others. The Patch-generating land use simulation 
(PLUS; Liang et al. 2021), as a new land use simulation 
model, has higher simulation accuracy than the com-
monly used prediction models, and its results can better 
support policies and sustainable development. Xie et al. 
(2022) found that ESVs were assessed based on general 
scenarios and single scales, and comparisons of eco-
logical conservation, cultivated land conservation, and 
multi-scenario ESVs have been relatively weak. Previ-
ous studies focused on a single scale based on macro- 
(Ye et al. 2021) or micro-scale grid cells (Gao et al. 
2021), thereby lacking multi-scale coupled exploration. 
For example, Liu et al. (2019) assessed the impact of 
urbanization-induced land use change on ESs under a 
general scenario and developed an ESV matrix of land 
use shifts; while Arowolo et al. (2018) assessed ESV 
changes in response to land use dynamics in Nigeria 
based on a graphical use shift approach. However, ESVs 
under a single scenario cannot reveal the differences 
between natural development and ESVs under the con-
straints of other policy scenarios, which hinders their 
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ability to optimize land use structure and measure the 
trade-offs between socio-economic development and 
ecological conservation.

Therefore, this paper simulated use changes in the HRB 
under four scenarios of natural development, ecological 
development, cultivated land development, and urban 
development to 2030. Five periods of land use data were 
used from 2000, 2005, 2010, 2015, and 2020, with the 
help of the PLUS model. The spatial distribution of ESVs 
at different scales was explored by combining municipal, 
county, and grid scales. On this basis, a hotspot analysis 
was performed to assess the spatial distribution of ESVs 
under different preferences and the degree of aggregation; 
moreover, the contribution of land use transformation to 
ESV change was introduced to explore the influence of 
land use transformation on ESVs. The results provide a 
scientific basis for optimizing land use structure and envi-
ronmental protection in the HRB.

Materials and methods

Overview of the study area

The Huaihe River is one of the seven major rivers in 
China, originating at the northern foot of Taibai Peak in 
Tongbai Mountain, Henan Province, and flowing from 
west to east through the four provinces of Henan, Hubei, 
Anhui, and Jiangsu, with a total length of about 1000 km. 
The HRB (30°55′–36°36′N, 111°55′–121°25′E) spans 47 
prefectures in the five provinces of Henan, Anhui, Hubei, 
Jiangsu, and Shandong. It has an area of 480,000  km2, 
with an average annual temperature of 11–16 °C and an 
average annual precipitation of about 927 mm. With a 
dense population, fertile land, abundant resources, and 
convenient transportation, it is an important base for grain 
production, energy and mineral extraction, and manufac-
turing in China (Fig. 1).

Fig. 1  Geographical location of the study area: (a) location of the HRB in China; (b) location of administrative cities within the HRB; (c) eleva-
tion distribution of the HRB
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Data sources

Total crop coverage, production, and yields for 2000, 2005, 
2010, 2015, and 2020 were obtained from the statistical 
yearbooks of each municipality in the study area and the 
National Compilation of Agricultural Product Cost Craft 
Resources for 2000–2020. Data such as constraints used to 
describe land use conversion (Table 1) were employed to 
determine meta-cellular conversion rules.

Research framework

In this study, we analyzed the spatial and temporal evo-
lution of land use in the HRB from 2000 to 2020. We 
simulated scenarios for inertia, ecological land, culti-
vated land, and urban development in 2030 based on the 
PLUS model combining five-dimensional drivers. We 
quantified the ESVs and ESVs granularity of land use 

at municipal, county, and grid scales. Then, we explored 
the spatial distribution of ESVs at multiple scales based 
on hotspot analysis and introduced the degree of contri-
bution of land use conversion to ESVs within a specific 
framework (Fig. 2).

Research methods

Ecosystem service value (ESV) estimation

In this paper, the equivalence factor method (Table 2) estab-
lished by Xie et al. (2008) was used to estimate the ESVs in 
the HRB for five periods from 2000 to 2020, based on the 
actual land types of the study area. Changes in ESVs were 
analyzed over multiple years.

(1) Determination of the economic value of one standard 
unit of ESs

Table 1  Description of driver 
factor data

Data type Data name Data source

Land use data Land use in 2000 http:// data. ess. tsing hua. edu. cn/
Land use in 2010
Land use in 2020

Land use conversion-
limiting factors

Open water http:// data. ess. tsing hua. edu. cn/
Nature Reserves http:// www. geoda ta. cn/ data/
Impervious surface https:// data. casea rth. cn/
Cultivated land http:// data. ess. tsing hua. edu. cn/

Driving factors DEM https:// www. resdc. cn/
Slope by DEM data
Aspect by DEM data
Temperatures https:// www. resdc. cn/
Precipitation https:// www. resdc. cn/
Potential evapotranspiration https:// www. resdc. cn/
Population density https:// www. world pop. org/
GDP https:// www. resdc. cn/
Nighttime lighting data https:// www. ngdc. noaa. gov/ eog/ viirs/

download_dnb_composites.html
Distance from road https:// master. apis. dev. opens treet map. org

/#map = 4/36.96/104.17
Distance from railroads https:// master. apis. dev. opens treet map. org

/#map = 4/36.96/104.17
Distance from rivers https:// master. apis. dev. opens treet map. org

/#map = 4/36.96/104.17
Distance from stations https:// master. apis. dev. opens treet map. org

/#map = 4/36.96/104.17
Distance from buildings https:// master. apis. dev. opens treet map. org

/#map = 4/36.96/104.17
Distance from settlements http:// gaohr. win/ site/ blogs/ china- villa ges. html
Soil types https:// www. resdc. cn/
Soil erosion types https:// www. resdc. cn/
Vegetation types https:// www. resdc. cn/
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The economic value of natural cereal produced by 1 ha 
of plowland was considered an equivalent value of the 
ecosystem. The equivalent value of a standard ES is worth 
seven times the economic value of grain produced per 
unit area in that year. Given the availability of statistical 
data, the economic value of the main food crops (i.e., 
wheat, corn, and soybean) in the urban areas of the study 

region from 2000 to 2020 was selected for correction, and 
their average value was calculated using Eq. (1). The ESV 
of one standard unit in the study area was 45,010.88613 
CNY·hm−2a−1.

(1)Ea =
1

7

n
∑

i=1

mipiqi

M

Fig. 2  Research framework
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where Ea is the economic value of one standard ecosystem 
service unit in CNY·hm−2a−1, i is the type of food crop, mi 
is the average price of the i-th food crop in the study area in 
CNY/kg, Pi is the yield of the i-th food crop in kg/hm2, qi 
is the planted area of the i-th food crop in  hm2, and M is the 
total planted area of the food crop in  hm2.

(2) Calculation of the ESV

The ESV of the study area was calculated as follows:

(2)ESV =

n
∑

i=1

Ai × VCi

(3)VCi =

k
∑

j=1

ECj × Ea

where ESV is ecosystem service value in CNY/year, i is the 
land use type, j is the ecosystem service type, Ai is area of 
type I land use in  hm2, VCi is the ESV per unit area of the 
i-th land use type in CNY and of the i-th food crop in the 
study area in CNY·hm−2a−1, and ECj is the j-th ESV equiva-
lent of a given land use type. Because the ESV indicator of 
construction land was 0 or negative, it was not considered in 
this paper. K is the number of ecosystem service types; and 
Ea is the economic value of one standard ecosystem service 
unit in CNY·hm−2a−1.

(3) Correction based on the biomass factor of the study 
area

Because of the large area of the HRB, the wide distribu-
tion of vegetation cover, and the large differences between 
the ecosystem and other regions in China, the ESV coef-
ficients needed further revision. In this paper, we referred 

Table 2  Ecosystem service value equivalent per unit area

Ecosystem service type Cultivated land Forest Grassland Water Construction 
land

Unused land

Provisioning Food production 0.85 0.23 0.23 0.655 0 0.01
Raw materials 0.4 0.54 0.34 0.365 0 0.03
Water resource supply 0.02 0.28 0.19 5.44 0 0.02

Regulating Gas regulation 0.67 1.76 1.21 1.335 0 0.11
Climate regulation 0.36 5.27 3.19 2.945 0 0.1
Environmental Purification 0.1 1.57 1.05 4.575 0 0.31
Hydrological regulation 0.27 3.81 2.34 63.235 0 0.21

Supporting Soil conservation 1.03 2.14 1.47 1.62 0 0.13
Maintenance of nutrient 

cycling
0.12 0.16 0.11 0.125 0 0.01

Biodiversity 0.13 1.95 1.34 5.21 0 0.12
Culture Aesthetic landscape 0.06 0.86 0.59 3.31 0 0.05

Table 3  Ecosystem service value equivalent per unit area in the HRB

Ecosystem service type Cultivated land Forest Grassland Water Construc-
tion land

Unused land

Provisioning Food production 54,328.14 14,700.56 14,700.56 41,864.63 0.00 639.15
Raw materials 25,566.18 34,514.35 21,731.26 23,329.14 0.00 1917.46
Water resource supply 1278.31 17,896.33 12,143.94 347,700.09 0.00 1278.31

Regulating Gas regulation 42,823.36 112,491.21 77,337.70 85,327.14 0.00 7030.70
Climate regulation 23,009.56 336,834.47 203,890.31 188,231.02 0.00 6391.55
Purification of the environment 6391.55 100,347.27 67,111.23 292,413.22 0.00 19,813.79
Hydrological regulation 17,257.17 243,517.90 149,562.17 4,041,694.01 0.00 13,422.25

Supporting Soil conservation 65,832.92 136,779.08 93,955.72 103,543.04 0.00 8309.01
Maintenance of nutrient cycling 7669.85 10,226.47 7030.70 7989.43 0.00 639.15
Biodiversity 8309.01 124,635.14 85,646.71 332,999.54 0.00 7669.85

Culture Aesthetic landscape 3834.93 54,967.29 37,710.12 211,560.17 0.00 3195.77
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to the ecosystem biomass correction factor proposed by Xie 
et al. (2005) for each province in the study area and selected 
the average value of 1.42 to calculate each ESV coefficient 
for different land use types (Table 3).

ESV under scale effects

Based on the exploration of ESV coupling at multiple scales, 
ESV over different scales can be better analyzed from a spa-
tial perspective. This paper conducted a multi-spatial scale 
ESV relationship study based on municipal administrative 
units, county administrative units, and 7.5-km grid cells and 
used multi-scale cold hotspot spatial clustering to describe 
the ESV spatial distribution.

ESV sensitivity analysis

Ecological sensitivity (CS) is an important indicator of 
the degree of dependence of ESV on the value factor. CS 
was calculated by adjusting the value equivalents of each 
category upward and downward by 50%, respectively, as 
follows:

where the sensitivity index is denoted by CS. If CS > 1, it 
means that ESV is elastic to VC, and if CS < 1, it means 
that ESV is inelastic to VC. ESV represents the total value 
of ecosystem services; VCk is the ESV coefficient of land in 
category K; and j and i represent the ESV before and after 
the value coefficient adjustment case, respectively.

PLUS model

The PLUS model is based on raster data. It is a patch-gener-
ated land use change simulation model coupled with a new 
land expansion analysis strategy (LEAS) and a CA model 
based on multiple types of random patch seeds (CARS). 
PLUS can describe the factors influencing land use change 
across categories with higher simulation accuracy. This model 
uses a random forest algorithm to obtain the development 
probability of each class by extracting land use expansion in 
period 2 and then simulates and predicts the future land use 
based on a CA model with multi-class random patch seeds.

Kappa coefficient and FOM coefficient accuracy verifica‑
tion To determine the accuracy of the simulated land use 
data, 2020 land use data were simulated based on the 2000 
and 2010 base period land use data. Actual and simulated 
data accuracy was verified using Kappa and FOM (Figure of 
Merit) coefficients. The FOM index for cell-level agreement 

(4)CS =

(

ESVj − ESVi

)

∕ESVi
(

VCjk − VCik

)

∕VCik

has been widely used to quantify the accuracy of land change 
models (Pontius Jr and Millones 2011; Pontius et al. 2008). 
The 2020 Kappa coefficient was 0.68, and the FOM was 
0.05. The formulas employed are as follows:

where n is the total number of validation pixels, nii is the 
number of correctly classified pixels in class i, ni is the total 
number of classified pixels in class i, n+i is the total number 
of reference pixels in class i, and k is the number of classes.

where A represents the error area caused by actual land use 
change and is predicted to be unchanged, B represents the 
area that was accurately predicted, C represents the error 
area caused by prediction of the wrong land use type, and 
D represents the error area when no change occurred but it 
was predicted.

Different scenario settings Based on the Markov module in 
the PLUS model, four different scenarios of land use types 
in the HRB in 2030 were constructed. More in detail, the 
inertia development scenario was based on current land use 
data for 2020 and predicted the area and spatial distribution 
of each land use type in 2030. Considering the further pro-
motion of policies related to urban development and county 
construction in the HRB, the urban development scenario 
was set to increase the probability of transferring cultivated 
land, forest, and grassland to construction land by 20% and 
reduce the probability of transferring construction land to 
landscape types other than cultivated land by 30%. Consider-
ing the protection of ecological patterns in the HRB, in the 
ecological protection scenario, the probability of transferring 
cultivated land and forest to construction land was reduced 
by 40%, while the probability of transferring unused, water, 
and grassland to construction land was reduced by 20%, and 
the probability of transferring construction land to forest was 
increased by 20%. Considering that the HRB is an important 
grain base in China, in the cultivated land protection scenario, 
the probability of transferring forest, grassland, water, and 
unused land to cultivated land was increased by 20%, while 
the probability of transferring construction land to cultivated 
land was increased by 30%, and the probability of transferring 
cultivated land to other land types was reduced by 40%. Under 
the different scenarios, water, nature reserves, construction 
land, and cultivated land were used as constraints to limit their 
arbitrary conversions.

Land use simulation drivers Referring to previous studies 
(Sun et al. 2022; Jiang et al. 2021; Aytac 2022), a total of 18 

(5)Kappa =

∑k

i=1
nii −

∑k

i=1
ni + n+i

n2 −
∑k

i=1
ni + n+i

(6)Fom =
B

A + B + C + D
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Fig. 3  Drivers of land use evolution
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drivers were selected in the PLUS module to simulate land 
use type changes in five dimensions: topographic, climatic, 
social, accessibility, and natural (Fig. 3).

ESV hotspot analysis

Hot spot analysis (Getis-Ord G∗
i
 ; Getis and Ord 1992) 

is commonly used to identify the spatial distribution of 
cold and hot spot areas. In this paper, hot spot analy-
sis reflected whether ESVs in the HRB had high-value 
clustering (hot spot) or low-value clustering (cold spot), 
to determine where clusters occurred in space. The sta-
tistical significance of G∗

i
 was tested using standardized 

Z values, where a positive and higher Z value indicated 
tighter clustering for high values (hot spots) and a nega-
tive and lower Z value indicated tighter clustering for low 
values (cold spots).

where G∗
i
 is the aggregation index for patch i. wij is the spa-

tial weight between raster i and j; if the distance between 
raster i and raster j is within the specified range, wij = 1, 
otherwise wij = 0. n is the total number of patches; X is the 
mean value of all plaques in the space; and S is the stand-
ard deviation of all patch attribute values. The clustering 
characteristics of the low-value (cold spots) and high-value 
(hot spots) areas were determined by the Z-values. The ESV 
cold- and hot-spot partitioning was carried out with refer-
ence to previous studies (Zhao et al. 2022; Table 4).

(7)G∗
i
=

n
∑

j=1

wijxj

n
∑

j=1

xj

(8)
Z
�

G∗
i

�

=

∑n

j=1
wijxj − X

∑n

j=1
wij

�

n
∑n

j=1
w2

ij
−
�

∑n

j=1
wij

�2

(n−1)

(9)S =

√

√

√

√

1

n − 1

n
∑

j=1

x2
j
−
(

X
)2

The contribution of land use conversion to ESV

In this paper, the effect of land use change on ESV was ana-
lyzed following Zhang et al. (2020), and the contribution of 
land use conversion to ESV change was calculated as follows:

where ESCIij is the contribution of land use conversion to 
ESV change, ΔQij quantifies the amount of ESV change from 
the conversion of land use i to land use j, ΔSij is the area of 
land use i converted to land use j, and Pij is the proportion 
of the area of land use i converted to land use j in the total 
converted area. When ESCI > 0, the contribution is positive 
and increases as ESCI increases.

Results

Analysis of land use time series change

From 2000 to 2020, the main land use types in the HRB 
were cultivated land, construction land, and forest (Fig. 4). 
Cultivated land was the most dominant land type, accounting 
for 77.80% of the total study area, followed by construc-
tion land, accounting for 11.56%, and forest, accounting for 
6.35%. Each land type in the district was relatively concen-
trated; cultivated land was distributed across all directions, 
while construction land was mainly concentrated in the cen-
tral and northern parts. Forest was concentrated in the south-
west and grassland in the north and west. Except for large 
lakes where water was concentrated, other water bodies were 
scattered in patches. Unused land was concentrated in the 
northern fringe area. Changes in land use type area mainly 
showed a continuous decrease in cultivated land, grassland, 
and unused land, a continuous increase in construction land 
and forest, and an increase followed by a decrease in water. 
The cultivated land area decreased by 28,344.69  km2, the 
grassland area decreased by 2087.81  km2, the unused land 
area decreased by 581.88  km2, the water body area increased 
by 1511.875  km2, and the construction land area increased 
by 26,914.56  km2. From 2000 to 2010, the cultivated land 
area changed significantly, decreasing by 15,139.94  km2. 

(10)ESCIij =
ΔQij

ΔSij
× Pij

Table 4  ESV cold and hot spot partitioning

Z
(

G∗
i

)

Value range
 ≥ 1.35 [0.9, 1.35) [0.55, 0.9) (− 0.55, 0.55) (− 0.90, − 0.55] (− 1.35, − 0.90]  ≤  − 1.35

Zoning type 1 2 3 4 5 6 7
Highly significant
hot spot

Significant hot spot Hot spot No significant area Cold spot Significant cold spot Highly 
significant 
cold spot
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The most significant change in construction land area was 
an increase of 14,630.19  km2 from 2010 to 2020 (Table 5).

Multi‑scale ESV estimation and variability analysis

Land use change can cause regional ESV changes. The 
ESV in the HRB was 222,019 ×  1012 CNY in 2000, 
235,015 ×  1012 CNY in 2005, 234,419 ×  1012 CNY in 2010, 
229,885 ×  1012 CNY in 2015, and 224,759 ×  1012 CNY in 
2020, following an overall pattern of a first increase, fol-
lowed by a decrease. Over the 20 years investigated, the 
largest change in ESV for water was 0.86 ×  1016 CNY. Cul-
tivated land contributed the most to ESV, with a decrease 
of 0.73 ×  1016 CNY over 20 years. In parallel, forest ESV 
increased by 0.31 ×  1016 CNY, grassland ESV decreased 
by 0.16 ×  1016 CNY, and the ESV of unused land changed 
the least, decreasing by 409,098.86 CNY.

The total ESV in the HRB was calculated using the Arc-
GIS 10.3 spatial statistics tool and was classified into five 
major categories using the natural breakpoint method: low, 
lower, medium, medium–high, and high values (Fig. 5). 

Municipal scale, high-value ESVs were located mainly in 
the south and east, and low-value ESVs were distributed 
the research area around. At the county scale, ESVs were 
mainly distributed with low and lower values, with less 
distribution of medium–high and high values. The low 
and lower values were mainly distributed in the northwest 
and west, whereas medium–high and high values were 
mainly distributed in the south, and medium values were 
distributed in the central and northern parts of the region. 
At grid scale, low and lower values occupied most of the 
area. The median zone was mainly located in the south. 
Medium–high and high-value grids were clustered and dis-
tributed in strips in the middle of the region.

The distribution of land use ESV granularity data classes 
was not consistent across years at different scales (Fig. 6). 
Municipal scales were largely unchanged except for 2015, 
when low-value areas dominated. At the county scale, the 
distribution was more regular across the years, with mainly 
low-value areas, followed by lower values. At the grid scale, 
the variability was higher in 2010 and 2020, lower values 
dominating in 2010 and 2020.

Fig. 4  Land use in the study area from 2000 to 2020

Table 5  Area of land use types 
(unit:  km2)

Year Cultivated land Forest Grassland Water Unused land Construction land

2000 378,337.13 30,861.56 5299.13 14,847.38 754.94 56,193.00
2005 370,592.06 31,619.94 4667.13 17,414.81 661.00 61,338.19
2010 363,197.19 32,193.63 4317.44 17,572.81 534.69 68,477.38
2015 353,434.69 33,727.63 4229.31 16,907.38 429.56 77,564.56
2020 349,992.44 33,450.13 3211.31 16,359.25 173.06 83,107.56
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Fig. 5  ESV at multiple scales in the HRB, 2000–2020
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Hot spot analysis of ESVs under land use change

The G∗
i
 hotspot analysis tool was used to explore the spa-

tial clustering characteristics of ESVs at different scales by 
mapping ESV cold hotspots for the five periods from 2000 
to 2020 at three scales: municipal, county, and grid (Fig. 7). 
ESV spatial distribution characteristics remained unchanged 
at the same scale, and there were significant differences in 
the spatial distribution at different scales. At the municipal 
scale, very significant cold spots and significant cold spots 
were clustered in the western and northern fringe areas, and 
cold spots were mainly clustered in the central part. Hot 
spots, significant hot spots, and very significant hot spots 
were mainly clustered in the eastern and northeastern edges 
and parts of the southern region, while the non-significant 
areas were more dispersed. The cold hot spots had a simi-
lar spatial distribution at the county and municipal scales; 
however, there was high variability at the grid scale. Very 
significant cold spots were found in scattered patches; sig-
nificant cold spots and cold spots were concentrated in the 
northwestern and central regions; non-significant regions 
were more scattered in distribution; and very significant 
hot spots were mainly located in the eastern, western, and 
northwestern fringes and central part of the region, with 
more significant distribution characteristics.

As can be seen in Fig. 8, the largest percentage of non-
significant granularity was found at the municipal and 
county scales. The cold spot particle size was followed 
by the significant cold spot particle size at the municipal 
and county scales. At the grid scale, the significant cold 
spot particle size was predominant, followed by the non-
significant particle size.

Land use change and ESV analysis under multiple 
scenarios

Multi‑scenario land use prediction simulation

Using 2020 as the base period, the land use and expansion 
changes in the study area in 2010 and 2020 were simulated for 
2030 in the HRB under four scenarios by setting different con-
straints (Fig. 9). The statistics showed a decrease of 12,763  km2 
in cultivated land under the inertial development scenario com-
pared to the year 2020. Forest area decreased by 301.188  km2, 
grassland area decreased by 619.063  km2, water area decreased 
by 121.188  km2, and the areas of unused land and construction 
land increased by 164.625  km2 and 13,639.188  km2, respectively. 
Under the ecological development scenario, forest and construc-
tion land areas increased by 652.813  km2 and 7,792  km2, respec-
tively. Under the cultivated land development scenario, cultivated 
land area increased significantly by 20,206.563  km2. Under the 
urban development scenario, there was a significant increase in 
the area of land for construction of 16,634.375  km2.

The spatial distribution (Fig. 9) under inertial develop-
ment (Fig. 9a) exhibited a sharp expansion of construction 
land, spreading around in a star-like pattern and encroach-
ing on most cultivated land. The central and northern parts 
received significantly more land for construction, while 
the southern part had a large area of forest, which was less 
affected by construction land. Under the cultivated land 
development scenario (Fig. 9b), there was a dramatic expan-
sion in the area of cultivated land, a large reduction in con-
struction land and forest, and a significant reduction in the 
area of forest in the south. Under the urban development 
scenario (Fig. 9c), there was a corresponding encroachment 

Fig. 6  Number of multi-scale ESV particle sizes in the HRB in 2000–2020: a municipal scale; b county scale; c grid scale
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Fig. 7  Multi-scale ESV cold hotspots in the HRB, 2000–2020
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Fig. 8  Number of multi-scale ESV cold and hot spot granularity in the HRB, 2000–2020: a municipal scale; b county scale; c grid scale

Fig. 9  Simulation of multi-scenario land use projections for 2030
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of cultivated land area within the expansion of construc-
tion land, and complementary area changes between for-
est, grassland, water, and unused land. Under the ecological 
development scenario (Fig. 9d), forest area expanded but 
was still small compared to the total study area, making for-
estry construction relatively severe.

In relation to land use shifts under multiple scenarios for 
2020–2030 (Fig. 10), under inertia development, the total area 
transferred was 50,430  km2, mainly from cultivated land to con-
struction land. Some forest and water areas were transferred out 
to building sites, resulting in a reduction of water and forest. 
Under the ecological development scenario, the total transferred 
area was 46,584.13  km2, of which 52.82% of the cultivated 
land was transferred out and 43.92% of the construction land 
was transferred in. Cultivated land was developed with a total 
transferred area of 37,682.56  km2, and 70.46% of cultivated 
land transferred in. Under the urban development scenario, the 
total transferred area was 56,352.06  km2, including 58.93% of 
cultivated land and 24.16% of construction land that was trans-
ferred out, and other land types that shifted to a small extent.

Simulated ESV variability at multiple scales

The ESV of the HRB in 2020 was 224,759 ×  1012 CNY. 
ESV declined under all four scenarios, mainly due to 
construction land expansion (Fig. 11). ESVs under the 
inertial development, ecological development, cultivated 
land development, and urban development scenarios were 
219,977 ×  1012 CNY, 218,098 ×  1012 CNY, 219,757 ×  1012 
CNY, and 213,985 ×  1012 CNY, respectively. Compared 
to 2020, in 2030 the inertial development scenario ESV 
declined by 4,782 ×  1012 CNY, the ecological development 
scenario declined by 6,661 ×  1012 CNY, the cultivated land 
development scenario declined by 5,002 ×  1012 CNY, and 
the urban development scenario declined by 10,774 ×  1012 
CNY. The highest ESV for water was found under the 
inertial development scenario, at 9.29 ×  1016 CNY. The 
inertial development scenario ESV in 2030 saw a decrease 
of 687.94 ×  1012 CNY compared to 2020 and the highest 
decrease of cultivated land, 3,271.17 ×  1012 CNY, under 
different scenarios, compared to each category of ESV. 

Fig. 10  Multi-scenario land use 
shifts 2020–2030: a inertia; b 
cultivated land; c construction 
land; d ecology
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Under the four scenarios, the highest ESV was 2.927 ×  1013 
CNY under the ecological development scenario, the high-
est ESV was 8.79 ×  1016 CNY under the cultivated land 
scenario, and the largest decrease in ESV was 10.774 ×  1012 
CNY under the urban development scenario.

Changes in the spatial granularity of land use data 
under different scenarios and scales altered the number 
of ESV classes (Fig. 12). There was particle size variabil-
ity when comparing the municipal, county, and grid scale 

ESV particle sizes. County and grid scale ESV particle 
size variability was similar, with low and medium-value 
areas dominating. At the municipal scale, the median 
value area was dominant under the inertial development, 
ecological development, and cultivated land development 
scenarios, and the low and lower value areas were domi-
nant under the urban development scenario, with small 
fluctuations in the median, medium–high, and high ESV 
granularity.

Fig. 11  Multi-scale ESV in the HRB under different scenarios
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Cold and hot spot analysis of ESV under multiple scenarios 
and scales

Based on the ESVs under four different development sce-
narios in 2030, the spatial distribution of ESV cold and 
hot spots at different scales was determined using the G∗

i
 

hot spot analysis tool (Fig. 13). Spatially, ESV cold and 
hot spots were similar at the same scale, with cold spots 
mainly distributed in the west and central part and hot 
spots mainly distributed in the east and northeast. There 
was greater variability at different scales. At the municipal 
scale, highly significant cold spots, significant cold spots, 
and cold spots were mainly distributed in the southwest 
direction. Significant hot spots and highly significant hot 
spots were mainly distributed in the southeast direction, 
and non-significant spots were distributed in the north and 
south directions. At the county scale, highly significant 
cold spots, significant cold spots, and cold spots were 
mainly clustered in the west. Hot spots, significant hot 
spots, and highly significant hot spots were mainly con-
centrated in the east and south. A small area of highly 
significant cold spots and hot spots was clustered in the 
center. At the grid scale, the zone was dominated by sig-
nificant cold spots and by non-significant and highly sig-
nificant hot spots. The highly significant cold spots were 
scattered in a grid distributed in the northwestern fringe, 
and the highly significant hot spots were mainly distrib-
uted in the southwest, south, and east, except for a strip 
in the center.

The distribution of the number of hot and cold spots 
at the municipal and county scales was relatively similar 
in rank. There were mainly non-significant cold and hot 
spots, whereas the grid scale was dominated by significant 
cold spots (Fig. 14). Cold and hot spots under the culti-
vated land development scenario were not consistent in 

their spatial clustering characteristics with those in the 
other three development scenarios. In fact, the non-sig-
nificant data distribution for cultivated land in the former 
scenario was lower than that of the other three scenarios 
at the municipal scale, although there were significantly 
more hot spots. The number of significant and non-signif-
icant cold spots in both the cultivated land development 
scenarios was lower than in the other three development 
scenarios at the county scale. At the grid scale, the four 
development scenarios were mainly clustered around sig-
nificant cold points, and the highly significant cold points 
were the least diffused. The cultivated land development 
scenario had a relatively small percentage of significant 
cold points and a relatively large percentage of non-sig-
nificant points, compared to the other three development 
scenarios.

ESV sensitivity analysis

The sensitivity index values of the value coefficients of 
land use types in the Huaihe River basin for each year 
from 2000 to 2030 ranged from 0 to 0.5 (Table 6). In vari-
ous years, several values of the ESVs sensitivity index CS 
were lower than 1 for different land types, with low vari-
ation inside a same year. This indicated that the ESV in 
the study area was somewhat inelastic relative to VC and 
relatively stable. Overall, the land use types in the study 
area were ranked from highest to lowest in terms of sen-
sitivity index as follows: cultivated land > water > grass-
land > forest > unused land. The highest sensitivity index 
value among these land types was 0.4368 for cultivated 
land in 2000, indicating a 1% reduction in the overall eco-
logical value coefficient, along with a 0.4368% reduction 
in the ESVs. This was followed by water and forest, due to 

Fig. 12  Number of multi-scale ESV particle sizes under different scenarios in 2030: a municipal scale; b county scale; c grid scale
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the relatively large VC of ecosystem service coefficients 
of these two land types. After 2015, the lowest value of 
the sensitivity index of 0.0001 was observed for unused 
land; this was because the area of this category was small 
and the service value per unit area was low, and therefore 
it did not have a significant impact on the total value of 
the study area. Therefore, the selected coefficients VC 
of ecosystem service values had little effect on the total 
ESVs of ESs in the HRB, and the results of the study were 
fully credible.

Analysis of the contribution of land use conversion 
to ESV

Land use change had different effects on the ESV across 
different years (Fig. 15). In the period 2000–2010, the con-
version of cultivated land to water had a significant positive 
impact on ESV, while from 2010 to 2020, the largest positive 
impact on ESV was observed from the conversion of water 
to cultivated land. The most significant positive impact on 
ESV from the transfer of cultivated land and water to each 

Fig. 13  Distribution of ESV multi-scale cold and hot spots under different scenarios in 2030
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other was in the 2020–2030 inertial development scenario. 
The conversion of all land types to unused land had a small 
impact on ESV, and construction land had a large positive 
impact on ESV for both cultivated land and forest.

Discussion

Impact of land use change on ESV

The HRB is an important grain and energy base in China, 
and the conflict between environmental protection and eco-
nomic development has always been prominent. This study 
analyzed five periods of historical land use data from 2000 to 
2020, simulated future land use development changes under 
four development scenarios to 2030, assessed the land use 
changes and ESV in the HRB, and analyzed the spatial dis-
tribution of ESV at different scales. The results of this study 
provide a basis for future land use structure optimization and 
sustainable development goals. In the past, coal and ther-
mal power resources in the HRB have been used to meet 
the energy needs of the Chinese government, entailing a 
serious disturbance of land use and vegetation destruction. 
However, modern coal production in China has now shifted 

from the middle and eastern regions to the west (Wang et al. 
2022), and the intensity of coal mining has weakened (Hao 
et al. 2019). With the rapid development of urbanization and 
industrialization, construction land continues to encroach 
on other land. ESV first increased, and then decreased from 
2000 to 2020, mainly due to the huge increase in ESV from 
water and forests, especially coal mining subsidence that 
created large areas of sunken water (He et al. 2020; Yang 
et al. 2021), which offset the decrease in ESV due to the 
loss of cultivated land and other land types. The loss of ESV 
under multiple scenarios for 2020–2030 was mainly caused 
by the expansion of construction land (Maimaiti et al. 2022), 
especially under the cultivated land development scenario 
where, although the area of cultivated land, water, and con-
struction land increased, this was not sufficient to offset the 
decrease in ESV due to the decrease in forest area.

Overall ESV trends were aggregated at different scales. 
ESVs were localized between the same years at the municipal-
county-grid scale, and especially at the grid scale, where a 
grid of low-value areas occupied large areas. This was mainly 
due to the large area of cultivated land, although the ESV gen-
erated by cultivated land was low. This was consistent with the 
conclusion that cultivated land had a negative effect on ESV 
(Arowolo A O.et al. 2018). In particular, the fragmentation of 

Fig. 14  Number of ESV multi-scale granularity for different scenarios in 2030: a municipal scale; b county scale; c grid scale

Table 6  ESV sensitivity factors for the period 2000–2030

Land use type 2000 2005 2010 2015 2020 Inertial 
development

Ecological 
development

Cultivated land 
development

Construction 
land develop-
ment

Cultivated land 0.4368 0.4042 0.3971 0.3940 0.3991 0.3929 0.4029 0.4318 0.4178
Forest 0.1650 0.1597 0.1630 0.1741 0.1766 0.1789 0.1856 0.1307 0.1832
Grassland 0.0184 0.0153 0.0142 0.0142 0.0110 0.0091 0.0092 0.0108 0.0090
Water 0.3796 0.4206 0.4255 0.4175 0.4132 0.4190 0.4022 0.4266 0.3898
Unused land 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
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cultivated land caused by large-scale and high-intensity culti-
vated land development (Yu et al. 2017) caused a decrease in 
soil fertility and the degradation of large areas of cultivated 
land, which reduced crop yields and decreased cultivated land 
ESV. In the cultivated land development scenario, the relative 
increase in cultivated land area under cultivated land policy 
protection led to a large reduction in forest, which reduced 
overall ESV. This was consistent with the results of Fenta 
et al. (2020), who found that cultivated land-forest conversion 
led to a decrease in forest ESV.

The overall spatial clustering of ESVs at different scales in a 
same year became increasingly focused from the municipal to 
the county and grid scale and top-down. Highly significant hot-
spots gradually expanded and radiated from the edges toward 
the interior, with a significant trend from the southeast toward 
the center. At smaller scales, the regional problem was more 
focused (Chen et al. 2022), which has important implications 

for regional conservation and restoration. Under the 2030 culti-
vated land development scenario at the county scale, there was 
lower aggregation of highly significant cold spots, while at the 
grid scale, there was more aggregation of highly significant 
cold spots. The impact of human activities on ESV was mainly 
reflected at the county and grid levels (Zhang et al. 2020); 
therefore, the systematic explanation of spatial heterogeneity 
at the grid and regional scales needs to be further explored (Pan 
et al. 2020). By introducing the degree of contribution of land 
use conversion to ESV, the impact of the conversion among 
categories on ESV was further explored, with the conversion 
of cultivated land to water contributing the most to ESV in 
2000–2010, 2000–2020, and 2020–2030 under the ecologi-
cal development scenarios and in 2020–2030 under the urban 
development scenario. The highest contribution of the transfer 
of water to cultivated land was in 2010–2020. In the inertial 
development scenario for 2020–2030, the highest impact on 

Fig. 15  Contribution of land use change to ESV (2000–2030)
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ESV was observed from the conversion of cultivated land to 
water and vice versa, while in the 2020–2030 cultivated land 
development scenario, the highest impact was from the conver-
sion of cultivated land to water and the second highest from 
the conversion of water to cultivated land. This was related to 
the size of the area and of the unit ESV values transferred from 
cultivated land and water; moreover, the conversion between 
cultivated land and water indicated increasing disturbance of 
land use by human activities (Li et al. 2022). Apart from that, 
the change in unused land had the least impact on ESV; this 
depended on the size of the transferred area, the low base area 
of unused land in the study area, and the relatively low area 
between the other land types transferred.

Limitations and uncertainties

In this study, ESV was estimated due to the lack of statis-
tical data in some county statistical yearbooks. Only 47 
municipalities in the study area were considered without 
county data; moreover, ESV provided by urban greening 
and ecological parks was ignored, and the ESV generated by 
construction land was not evaluated. Limited by the land use 
classification data, this study only macro-classified land use 
types into six categories; this needs to be further developed 
in the future using more refined classification data and needs 
to be verified by actual survey data. In addition, while the 
PLUS model is a data-driven forecasting model that makes 
predictions based on historical data, the actual situation may 
be influenced by other factors. Lastly, further research on the 
internal drivers of ESs and other service types within cities 
is needed in the future.

Management and implications for land use 
and ecosystems in the HRB

Based on the land use-driven change assessment of ESV, the 
ecological impacts of different land use types were identified. 
These provide support to decision-makers to optimize land 
use structure and achieve the sustainable development goals. 
The rapid urbanization in the southern region of the study 
area accelerated the transfer of forest to other land types, 
leading to a continuous decline in forest ESV. Because the 
southern region is an ecologically protected area, it is neces-
sary to reasonably delineate the urban development boundary 
(Cao et al. 2021), limit the disorderly expansion of urban 
open space, actively build ecological corridors, stabilize the 
ecosystem structure (Andersson et al. 2019), and strictly 
observe the ecological protection red line. Although the 
ESVs for large open water and collapsed water areas formed 
by coal mining subsidence were the highest in the region, 
further water expansion prevention and control measures are 
still needed because natural land use transfer is irreversible. 

In addition, farmland ecosystems represented the largest area 
encroached upon during urbanization; therefore, the red line 
of 1.8 billion acres of cultivated land protection needs to be 
strictly observed (Zhou et al. 2021). Development should 
accommodate increasing ESV under urbanization and socio-
economic development goals. By setting up four scenarios 
for land use simulation and analysis, we optimized land use 
structure, improved land utilization, and provided impor-
tant references for future ecological construction and land 
use expansion in the basin. The selection of corresponding 
scenarios in combination with the development strategy and 
actual development needs of the HRB is of great significance 
to achieve regional ecological-social-economic harmony and 
stability.

Conclusions

(1) From 2000 to 2020, land use patterns in the HRB 
were mainly cultivated land, construction land, 
and forest. Of these, cultivated land, grassland, and 
unused land continued to decline, while construction 
land and forest increased, and water first increased 
and then decreased. Under the multiple scenarios for 
2020–2030, except for the cultivated land develop-
ment scenario, in the other three scenarios, the area 
of cultivated land significantly decreased, the area of 
construction land increased, and there was low vari-
ability among other land types.

(2) From 2000 to 2020, ESV in the HRB first increased and 
then decreased. From 2020 to 2030, the four scenarios 
showed ESV declines, with the lowest ESV under the 
urban development scenario. ESV at different study 
scales was spatially variable, with high-value areas 
concentrated in the eastern and central parts of the 
region and low-value areas concentrated in the west-
ern and northern parts of the region. As the study scale 
declined, the granularity of low-value areas increased, 
while that of high-value areas decreased.

(3) From the multi-scenario ESV hotspot analysis for 
2000–2030, highly significant hot spots and significant 
hot spots were mainly distributed in the south, eastern 
fringe regions, and some central regions. Highly signif-
icant cold spots and significant cold spots were mainly 
distributed in the west, northwest fringe regions, and 
some central regions. The municipal and county scales 
were mainly dominated by non-significant types, and 
the grid was dominated by significant cold spots.

(4) Interconversion between cultivated land and water con-
tributed the most to land use ESV, while the conversion 
of unused land contributed the least to ESV.
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