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Abstract
One of the most effective ways to minimize polluted water consumption is to arrange quality sensors properly in the water 
distribution networks (WDNs). In this study, the NSGA-III algorithm is developed to improve the optimal locations of sensors 
by balancing four conflicting objectives: (1) detection likelihood, (2) expected detection time, (3) detection redundancy, and 
(4) the affected nodes before detection. The research procedure proposed the dynamic variations of chlorine between defined 
upper and lower bounds, which were determined utilizing the Monte Carlo simulation model. For selecting a contamination 
matrix with the same characteristics and effects of all possible events, a heuristic method was applied. The coefficients of 
importance are introduced in this study for the assessment of contamination events and network nodes. The Pareto fronts for 
each of the two sets of conflicting objectives were computed for benchmark and real water distribution networks using the 
proposed simulation–optimization approach. Results indicated that sensors should be installed downstream of the network 
to maximize sensor detection likelihood; however, this increases detection time. For the benchmark network, maximum and 
minimum detection likelihoods were calculated as 92.8% and 61.1%, respectively, which corresponded to the worst detection 
time of 11.58 min and the best detection time of 5.06 min. So, the position of sensors regarding the two objective functions 
conflicts with each other. Also, the sensitivity analysis related to the number of sensors illustrated that the Pareto fronts 
became a more efficient tool when the number of sensors increased. The best pollution detection likelihood in the real water 
network increased by 18.93% and 24.66% by incrementing the number of sensors from 5 to 10 and 5 to 15, respectively. 
Moreover, adding more than 10 sensors to the benchmark network and more than 15 to the real system will provide little 
additional detection likelihood.

Keywords Chlorine concentration · Contaminant detection · Contamination of important nodes · NSGA-III · Water 
distribution networks · Sensor placement strategy

Introduction

The urban water distribution system (WDS) is one of an 
indispensable part of public infrastructure around the globe 
because of its relation to economic and social activities 
(Nafi et al. 2018; Qian et al. 2021). WDS is a complex net-
work consisting of a collection of nodes, pumps, reservoirs, 
valves, storage tanks, treatment facilities, and numerous 
links (Adedoja et al. 2018a; de Winter et al. 2019; Nilsson 
et al. 2005; Palleti et al. 2016, 2018; Preis and Ostfeld 2008). 
The primary function of WDS is to deliver fresh water at 
the standard quantity and quality levels from sources such 
as storage tanks, rivers, lakes, and reservoirs to commercial, 
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industrial and residential users (de Winter et  al. 2019; 
Mazumder et al. 2019; Priya et al. 2018).

Due to WDS’s large size, complex configurations, and 
many access points, they are highly vulnerable to different 
contamination events (radioactive, chemical, or biological 
contaminants) that can be accidental, resulting from cross-
connections, pipe bursts, wastewater backflow, intrusion 
of contaminated water due to pressure reduction, polluted 
source, or deliberate (e.g., terrorist attacks) (Costa et al. 
2013; De Sanctis et al. 2010; Di Nardo et al. 2014; Huang 
and McBean 2009; Ostfeld et al. 2008).

A remarkable number of pollution incidents have been 
recorded in recent decades. Examples of accidental pol-
lutants include Milwaukee, USA (Mac Kenzie et al. 1994; 
Corso et al. 2003), Nokia, Finland (Laine et al. 2011), The 
United States (Adedoja et al. 2018a), Lanzhou, China (Chi-
nadaily 2014), Walkerton, Ontario, Canada (Hrudey et al. 
2003), Tuscany, Italy (Nuvolone et al. 2021), West Virginia 
(Rosen et al. 2014; Whelton et al. 2015; Cooper 2014), Ohio 
(Wilson 2014), and Strasbourg, France (Deshayes et al. 
2001) and recently two accidental events of waterborne dis-
eases due to bacterial infection are recorded in California 
and Norway (Qiu et al. 2020). Also, in recent years, inten-
tional contaminations have been reported, The United States 
is the most famous example of this, especially after 9/11 
(Ostfeld et al. 2008). Other cases include Moscow (Lambrou 
et al. 2015), Scotland (Gavriel et al. 1998), the United States, 
and Japan (Yokoyama 2007) events.

Unfortunately, many of the intentional and accidental pol-
lution events recorded in human history were not identified 
until people consumed the contaminated water for a long 
time, which has caused economic and public health losses 
and adverse social effects (Zheng et al. 2018). Consumers 
can detect some contaminants, such as chlorine, by noticing 
changes in the color and odor of water. But what happens if 
a contaminant enters the network that has no color or odor 
for easy detection by consumers? What happens if a hazard-
ous substance enters the network accidentally or negligently 
from areas where chemicals are used for agriculture, or toxic 
waste is stored? Or even worse, what happens if someone 
deliberately injects a harmful pollutant into the water dis-
tribution network? Studies have confirmed that attacks on 
water distribution networks are actual, as they have occurred 
previously and might happen again (Adedoja et al. 2018b). 
Thus, to prevent significant disasters, it is necessary to iden-
tify and warn about contamination events within the WDS, 
protect water quality against accidental and intentional con-
tamination events, and manage possible pollution events. 
The first step toward achieving this goal is improving the 
physical security of the system (Preis and Ostfeld 2008). The 
second step is utilizing monitoring sensors, a contamination 
warning system (CWS), also known as an early warning sys-
tem (EWS), to monitor water quality (Grayman et al. 2016). 

The third step is to develop effective response plans to neu-
tralize or remove or minimize the impact of contaminants 
entering the network (Harif et al. 2020, 2022). It is possible 
to gain the maximum level of water safety by monitoring all 
nodes in the system, systematically (Adedoja et al. 2018b; 
Yazdi. 2018). But it is not feasible to install sensors at every 
node of the network due to the high cost, budget constraints, 
and maintenance issues (Adedoja et al. 2018a, b). To cope 
with these restrictions, only a limited number of these sen-
sors must be installed at specific vital or critical places in the 
water network. Therefore, to achieve efficient monitoring, it 
is necessary to develop optimal water quality sensor place-
ment (WQSP) strategies for WDSs.

Metaheuristic algorithms were extensively utilized in the 
optimization of different types of water systems (Dehghani 
Darmian et al. 2018; Khodabandeh et al. 2021). Sensor opti-
mization investigation in the network started in the 1990s 
and has continued up to now. The issue based on the number 
of objective functions is classified as a single objective opti-
mization problem (Al-Zahrani and Moeid 2001; Berry et al. 
2006, 2009; Cheifetz et al. 2015; Comboul and Ghanem 
2013; harif et al. 2021; Hu et al. 2017; Kessler et al. 1998; 
Ohar et al. 2015; Ostfeld and Salomons 2004, 2005; Propato 
2006; Propato and Piller 2006; Schwartz et al. 2014a, 2014b; 
Shastri and Diwekar 2006; Woo et al. 2001) and multiple 
objective optimization problems (Afshar and Miri Khombi 
2015; Bazargan-Lari 2014; de Winter et al. 2019; Dorini 
et al. 2008; Eliades and Polycarpou 2006; Gueli 2008; He 
et al. 2018; Huang et al. 2008; Khorshidi et al. 2018, 2019; 
McKenna et al. 2006; Naserizade et al. 2018; Nazempour 
et al. 2018; Ostfeld et al. 2008; Ostfeld and Salomons 2008; 
Preis and Ostfeld 2008; Wu and Walski 2006).

Among the single-objective methods, Lee and Deininger 
(1992) defined the total demands of nodes monitored by 
sensors as demand coverage (DC). They utilized mixed-inte-
ger linear programming (MILP) to optimally locate qual-
ity sensors in the network to maximize DC. Kumar et al. 
(1997) developed the method used by Lee and Deininger. 
They calculated the residual chlorine concentration at each 
node and estimated the DC values based on it. Kessler et al. 
(1998) defined the level of service as the maximum volume 
of contaminated water that is in a concentration more than 
the minimum danger level and consumed before the con-
tamination is detected. They presented an algorithm to deter-
mine the optimal location of sensors based on the level of 
service. Kumar et al. (1999) defined time of detection as the 
time that elapsed from the entry of the contaminant into the 
network to the time detected by the sensors. Al-Zahrani and 
Moeid (2001, 2003) modified the demand coverage using a 
genetic algorithm (GA). Ostfeld and Salomons (2004) used a 
genetic algorithm to find the optimal layout of sensors based 
on the level of service for accidental or deliberate events. 
Ostfeld and Salomons (2005) developed their previous work 
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by considering uncertainties regarding the demands and pol-
lution events. Comboul and Ghanem (2013) described the 
uncertainty analysis for the best sensor location to maxi-
mize the percentage of contamination detection. Schwartz 
et al. (2014a, 2014b) employed genetic algorithm to deter-
mine the optimal location of quality sensors to minimize 
the exposed consumers. Cheifetz et al. (2015) introduced a 
greedy incremental sensor placement method to be utilized 
for the optimization of quality sensors in a large real-world 
water distribution network. Rathi and Gupta (2016) consid-
ered maximizing the detection likelihood and water demand 
coverage as objective functions to determine the optimal 
location of sensors in water networks. They first normalized 
two objectives and then weighted them in a linear single-
objective function. Hu et al. (2017) investigated the sensor 
placement in a large water network, utilizing a Spark-based 
genetic algorithm. In their study, the objective was to mini-
mize the impact of contamination. Comparing the results of 
the proposed model with the experimental results illustrated 
that the proposed model has a good performance.

Simultaneous, In the context of multi-objective optimi-
zation, McKenna et al. (2006) examined the ability of sen-
sors to minimize the detection time of events, the population 
exposed to pollution, and the contamination extent within 
the network by considering the number and detection limits 
for sensors. They illustrated that the discovery of contamina-
tion events is reliant on the detection limits. Preis and Ostfeld 
(2008) utilized a multi-objective model for designing quality 
sensors to maximize two objectives of detection likelihood 
and sensor detection redundancy and minimize detection 
time. Dorini et al. (2008) employed the noisy cross-entropy 
(nCE) algorithm for solving the optimization problem to 
minimize the detection time, the expected demand for pol-
luted water, the affected population, and the maximization 
of detection likelihood. Aral et al. (2010) to optimally locate 
the sensors in the network, four different objective functions: 
detection time, affected population, consumed contaminated 
water, and detection likelihood using a genetic algorithm 
considered. Bazargan-Lari (2014) proposed a methodology 
to minimize four conflict objectives, including detection 
time, undetected contamination events, affected population 
before detection, and the number of sensors using NSGA 
II. Schwartz et al. (2014a, 2014b) investigated the effect 
of changes in chlorine concentration, pH, and alkalinity to 
identify the pollutant entering the distribution network. They 
injected two organophosphates into Net 3 of EPANET. The 
first is the pesticide chlorpyrifos (CP), and the second is the 
potent insecticide parathion (PA). The result illustrates the 
change in total free chlorine is the value employed as the 
main indication of an external intrusion and the changes in 
alkalinity and pH are used to confirm this indication in order 
to reduce the probability of false positive alarms Afshar and 
Miri Khombi (2015) presented two mathematical models for 

the best layout of sensors as the dynamic double-use benefit 
model (DDUBM) and the static double-use benefit model 
(SDUBM) that provide a tradeoff between demand coverage 
and consumption of polluted water. They tested the validity 
of their proposed models utilizing two example problems 
with multi-objective ant colony optimization (ACO) algo-
rithm. Du et al. (2015) proposed an algorithm to determine 
the activation time of wireless sensor nodes in each times-
lot to prolong network lifetime with guaranteed monitoring 
quality in water distribution networks. Antunes and Dolores 
(2016) employed the NSGA-II algorithm to determine the 
optimal locations for a set of sensors by considering four 
objective functions detection likelihood, detection time, 
consumption of contaminated water, and affected consum-
ers before detection. Nazempour et al. (2018) presented a 
new model applying complex network theory by considering 
that a WDS is a compound system. Two objective functions 
of maximizing the coverage of sensors and water demand 
coverage are studied by the authors. Naserizade et al. (2018) 
presented a new model based on conditional value at risk 
(CVaR) for best sensor placement in water systems. Four 
objective functions using the NSGA-II algorithm are devel-
oped to minimize detection time, affected population, cost, 
and the percentage of undetected events. Khorshidi et al. 
(2019) used a decision support framework based on the 
game theory by considering the two goals of minimizing 
the detection time and the sensor cost for the optimal loca-
tions of quality sensors. Ponti et al. (2021) proposed a novel 
evolutionary algorithm to estimate and analyze the optimal 
solutions of Pareto for sensor placement problems. Evalu-
ation of the results of the new algorithm with the NSGA-II 
algorithm on a water distribution system through applying 
two objective functions demonstrated an improvement of 
this algorithm compared with NSGA-II, especially for low 
iteration counts. Xu et al. (2022) developed a new sensor 
placement approach, integrating multi-objective optimiza-
tion and a reduced order model, to minimize costs and maxi-
mize monitoring performance. Recently, Shahmirnoori et al. 
(2022) utilized the particle swarm optimization algorithm 
to determine the optimal location of the fixed and mobile 
sensors by considering three objective functions detection 
likelihood, detection time, and consumption of contaminated 
water. The results show that increasing mobile sensors from 
1 unit to 3 or 5 units, decreased the detection time by 14% 
and 22%, increased the detection likelihood by 102% and 
159%, and reduced the contaminated water consumption by 
52% and 70%, respectively.

A review of previous studies on the CWS problem shows 
some simplifying assumptions as below: in many previous 
studies, sensors were designed for a fixed demand pattern. 
While in a real water network, owing to many consumers, the 
demand is not constant and fluctuates over time. Fluctuations 
in demand may cause significant variations in pipe flows and 
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change in contaminant propagation across the water network. 
Also, in most of the research, the pollutant entering the net-
work has been considered conservative, which can affect 
sensor’s location. The conservative assumption of pollutant 
may lead to an inaccurate impact approximation and spread 
of the pollutant because a contaminant entering the network 
may decrease its concentration over time or produce a toxic 
substance with its products across the water network. For 
example, the results of Klosterman’s investigation exhibited 
that in the case of employing adsorption models (reaction 
with the wall), the concentration of bulk arsenate and con-
sumer exposure is significantly lower than the conservative 
assumption (Klosterman et al. 2014). Therefore, the optimal 
location of the sensors will be changed. Moreover, the type 
of pollutant detection sensor in previous studies has not been 
determined, and it has been assumed that the sensor in the 
network detects the smallest concentration of conservative 
pollutants using a small and predetermined threshold in the 
network. Unfortunately, this assumption is unrealistic. Due 
to budget constraints, it is impossible to install sensors that 
detect a specific type of contamination with the smallest 
concentration fluctuations, as each network is exposed to 
different contaminants. It has been confirmed that chlorine 
has a significant reaction to both microbial and chemical 
contamination. Thus, in the present study, for a more realis-
tic simulation, chlorine sensors have been utilized to detect 
contaminants entering the distribution network. In previous 
studies, researchers have used a fixed boundary of chlorine 
concentration (minimum permitted levels of chlorine) to 
identify contamination (Shahmirnoori et al. 2022). There-
fore, some contaminant events may not be detected in time 
and may take a longer time to detect. But, in the proposed 
approach, chlorine concentration is compared to certain 
computed lower and upper periodic bounds for each node 
and at various times. Bounds are set to record variations in 
chlorine concentration by several Monte Carlo simulations 
considering uncertainty in demand patterns and roughness 
coefficients. Using chlorine sensors can be an inexpensive 
solution because they are currently used for monitoring 
water quality at many water stations.

In most previous research, sensors have been designed for 
a series of random or specific scenarios with a limited number 
of contaminants. In other words, researchers have considered 
limitations for injection node, starting time, duration, and 
mass rate of pollutants entering to network. Then, based on 
these limitations, they designed the optimal location of the 
sensors. In a real network with a complex topology, contami-
nation events can occur at any node and at any time with any 
mass rate and duration time. Therefore, the number of possible 
events is uncountable, and considering a limited and specific 
number of pollutions is unrealistic. Considering all the differ-
ent possible events makes the design of sensors impossible. 
So, a pollution matrix is employed in this study by utilizing 

a genetic algorithm which represents the most representative 
contaminants entering the network. Unlike previous research, 
the importance of pollutants in the contamination matrix and 
the importance of nodes in the water network are not consid-
ered the same in this investigation. In other words, pollutants 
that have a considerable impact on consumers and nodes that 
could harm more consumers if infected are of greater impor-
tance. So, with the presentation of two new coefficients, the 
sensors have been designed such that important contaminants 
are identified earlier than other contaminants, and important 
nodes are not infected. Finally, a multi-objective optimization 
approach is applied to determine the optimal location of the 
sensors in the WDN to maximize sensor detection likelihood 
and redundancy, as well as minimize sensor expected detec-
tion time, and percentage of affected nodes.

Material and methods

EPANET
In this research, for simulating the chlorine concentration 
and the effect of a contamination event distributed through 
the water network, the EPANET 2.0 and EPANET-MSX 
software were utilized. EPANET is a simulator performing 
an extended period simulation of hydraulic and water quality 
behavior (simulation of residual chlorine) within a drinking 
water distribution system. In the quality analysis, the con-
centration is calculated at each node and time step (Rossman 
2000). The quality analysis in EPANET are advection, diffu-
sion, and reactions that are expressed as follows:

In this equation, ci, ui, and R(ci) are the concentration 
of the contaminant in the ith pipe at time t and location 
x (mg/L), the velocity of water in the ith pipe (m/s), and 
the term for the reaction rate including the wall and bulk 
reactions, respectively.

EPANET‑MSX

EPANET’s limitation in simulating only a single chemical 
species makes it unsuitable for simulating the transport 
and decay of chlorine in response to specific pollutants. An 
extended version of the original EPANET is developed to 
model the transport and the decay of multi-chemical spe-
cies. This software is called EPANET-MSX (multi-species 
extension) (Shang et al. 2008). In the quality analysis, the 
concentration is calculated at each node and time step. The 
quality analysis in EPANET-MSX is expressed as follows:

(1)
�ci

�t
= −ui

�ci

�x
± R

(
ci
)
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In these equations, A, D, and C represent chlorine, dis-
solved organic carbon (DOC), and contaminant concentra-
tion, respectively. k1 and k2 are reaction rate coefficients 
between chlorine and DOC. k3 and k4 are reaction rate coef-
ficients between chlorine and contaminant.

In the present study arsenic, a cheap and available toxic 
heavy metal was selected as the contaminant. In the water 
network, arsenic reacts with chlorine and produces arsenate, 
then arsenate adsorption onto the exposed iron on the pipe 
wall surface occurs.

The EPANET and EPANET-MSX include Programmers 
Toolkit, a dynamic link library, that allows users to cus-
tomize the EPANET and EPANET-MSX computing engine 
according to their requirements (Rossman 2000). The output 
of this can be used as the input to MATLAB. Then, this 
software is utilized for optimizing the location of sensors in 
distribution networks. The methods of evolutionary compu-
tation, such as genetic algorithms are beneficial and power-
ful tools in optimization problems (Hashemi Monfared et al. 
2017, 2023; Dehghani Darmian et al. 2020), and solving 
searches for their unbiased nature allow them to perform 
very well in situations with little domain knowledge (Gong 
et al. 2014, 2015). The NSGA-III, an improved version of 
GA and NSGA-II (Srinivas and Deb 1994), is one of the 
most efficient algorithms for many-objective evolutionary 
algorithms.

NSGA‑III algorithm

In this study, the objective functions conflict with each other; 
hence, no single answer can be obtained that optimizes all 
functions simultaneously. Therefore, multi-objective opti-
mization or many-objective optimization methods should be 
used. Usually, multi-objective optimization problems (MOP) 
are defined for problems having two or three objectives, 
while optimization problems with four or more objectives 
are categorized as many-objective optimization problems 
(MaOP) (Gu and Wang 2020).

During the past decades, evolutionary algorithms (EAs) 
have been developed to solve multi- and many-objective 
optimization problems. In this research, the evolutionary 
optimization algorithm known as the non-dominated sorting 
genetic algorithm (NSGA-III) has been used (Deb and Jain 
2013). NSGA-III is designed for multi- and many-objective 

(2)
d[A]

dt
= −k1[A][D]−k3[A][C]

(3)
d[D]

dt
= −k2[A][D]

(4)
d[C]

dt
= −k4[A][C]

optimizations. This algorithm has demonstrated its effi-
ciency in solving optimization problems such as economic/
environmental dispatch problems (Bhesdadiya et al. 2016), 
hydro–thermal–wind scheduling (Yuan et al. 2015), engi-
neering design problems (Gaur et  al. 2017), industrial 
symbiosis system (Cao et al. 2020), rush order insertion 
rescheduling (He et al. 2020), feature selection (Zhu et al. 
2017), biomedical search engines (Gupta et al. 2021), and 
air quality in buildings, (Martínez-Comesaña et al. 2022). 
The basic framework of NSGA-III is like the NSGA-II algo-
rithm, but the method of selection in NSGA-III differs from 
the original NSGA-II (Deb and Jain 2013). Figures 1 and 
S1 illustrate the flowchart of NSGA-III algorithm and the 
selection mechanism.

Objective functions

This research aims to optimize the locations of quality sen-
sors in the network as part of the battle of the water sensors 
networks (BWSN) utilizing the NSGA-III algorithm. The 
assumptions of the research are given below:

1. Contamination events can occur at any time of the day.
2. Each contamination event can occur at one point in the 

network.
3. Pollution reacts with other species like residual chlorine 

in the water network.
4. All nodes except booster nodes can be possible locations 

for the monitoring station.
5. The response time of the system is assumed to be 60 and 

90 min for small and large networks, respectively. In the 
other words, when any of the sensors detect contamina-
tion, after 60 or 90 min, the network is closed and during 
this time the monitoring station will record data.

6. Monitoring stations record concentrations every 10 min.
7. The sensors can record concentration fluctuations greater 

than 0.01 mg/L without errors.

Four specific objectives are considered for the optimal 
locations of water quality sensors in the network: 1—sensor 
detection likelihood (f1); 2—sensor expected detection time 
(f2); 3—sensor detection redundancy (f3), and 4—percentage 
of affected consumer nodes (f4).

Sensor detection likelihood (f1)

In a specific layout of sensors, the probability of detection 
is described as below:

In this equation, TS denotes the total number of contamina-
tion scenarios. di equal to one. If the difference between the 

(5)f1 =
1

TS

∑TS

i=1
di
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chlorine concentration and the lower bound of the allowable 
chlorine concentration in the candidate location of the sen-
sor at three consecutive simulation time steps is more than 
0.01 (the least assumed accuracy for the sensors), and di = 0 
otherwise.

It should be noted that in this study, unlike previous stud-
ies, to reduce the false positive detection by sensors, it is 
assumed that if the sensor detects the presence of contami-
nation for at least three consecutive time steps, contamina-
tion will be considered detected contaminants. The optimal 
location of the sensors is where f1 is maximized.

Sensor expected detection time (f2)

For each pollution incident, the elapsed time from the start 
of the contamination event, to the first identified presence of 
contaminant by a sensor is defined as the time of detection 
by a sensor. ti is the time of the first detection by ith sensor. 
The time of detection (td) is the minimum detection time 
among all sensors present in this design.

(6)td= minti

The sensor expected detection time is computed by

where E(td) represents the mathematical expectation of the 
minimum detection time td. As previously stated in this 
study, the importance of contaminants in the contamination 
matrix is not considered the same. The contamination which 
is infected more nodes should be detected quickly than the 
others. This concept is considered in the present study for 
determining the optimal location of the sensors using modi-
fied sensor expected detection time as follows:

(7)E
�
td
�
=

1
∑TS

i=1
di

�TS

i=1
tdi × I

�
td(i, t)

�

(8)

f2 = Modif ied E
�
td
�
=

1
∑TS

i=1
di

�TS

i=1
tdi × I

�
td(i, t) × IFi

�

(9)I[td (i, t)] =

{
1 td(i,t) > 0

0 otherwise

Fig. 1  Flowchart of NSGA-III algorithm
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where N is the total number of nodes in the network,  PNi = 1. 
If the difference between the chlorine concentration and the 
lower bound of the allowable chlorine concentration in the 
node at three consecutive simulation time steps is more than 
0.01 (the minimum assumed accuracy for the sensors), e.g., 
the node is polluted and  PNi = 0 otherwise. I[td(i,t)] = 1, if 
the contamination is identified by sensors and equals zero 
otherwise. IF is the impact factor. Utilizing this coefficient, 
the optimal location of the sensors is selected in such a way 
that the contaminants that infect more nodes of the network 
are detected earlier.

Sensor detection redundancy (f3)

Developing of sensors that detect the contamination in water 
distribution networks in real time is still ongoing research, 
although there will be uncertainty in sensor detections. Then, 
to avoid false positive sensor detections and to increase the 
reliability of sensor detections, it is necessary to increase 
redundancy among sensors. A triply redundant measure that 
three sensors were required at least to detect the presence of 
contaminant concentration at a maximum time of 30 min 
between the first and third detections is considered. For each 
event, the redundancy of a sensor network design is equal to 
1 if all the following conditions are true. Also, if at least one 
of them is false, the redundancy is equal to 0.

Where t1, t2, and t3 are the detection times by sensor 1, 
sensor 2, and sensor 3 respectively.

The redundancy (f3) for a sensor network design is

Percentage of affected consumer nodes (f4)

In previous research, the percentage of affected nodes is 
defined as follows:

where  PNi = 1 if the node is polluted; otherwise,  PNi = 0, and 
N denotes the total number of nodes in the water distribution 

(10)IF =
1

N

∑N

i=1
PNi

(11)
1.||t1 − t2

|
| ≤ 30min

2.||t1 − t3
|| ≤ 30min

3.||t2 − t3
|| ≤ 30min

(12)f3 =
1

∑TS

i=1
di

�TS

r=1
Rr

(13)Rr =

{
1 |
|t1 − t3

|
| ≤ 30min

0 otherwise

(14)PAF =

(
1

N

∑N

i=1
PNi

)
× 100

network. As previously stated in this study, the importance 
of contaminants and nodes in the contamination matrix are 
not considered the same. So, optimal sensor placement in 
the network should prevent infection of nodes with high 
demands.

For each water distribution network, several nodes have 
no demand. In other words, they do not have a consumer. 
These nodes are considered inactive nodes (internal nodes), 
and nodes with demand are considered active nodes. There-
fore, in this section, the percentage of nodes that have 
demand and have been infected before the system response 
has been calculated. This objective function should be mini-
mized and could be expressed as follows:

Di is the demand of nodes, it equals one if the node 
demand is greater than zero; otherwise, it is equal to zero. 
D(i,t), tr, and IF are the demand of node i at time t, the 
response time, and the impact factor respectively. According 
to this factor, the nodes that have more demands should be 
protected by sensors before being infected.

Case studies

In this study, to design water quality sensors by applying 
the proposed approach, two different networks with differ-
ent complexity and characteristics are considered: a small 
benchmark network (44 nodes) and a real water network of 
large size (916 nodes). Various analyses were conducted for 
every network, including a base run, contamination simula-
tions, and sensitivity analyses.

Case study 1

Various researchers have used the southern region of Central 
Connecticut water distribution network to test and validate 
water quality models numerous times. Munavalli and Kumar 
(2003) modified the reaction coefficient (i.e., bulk and wall 
coefficients) and the location of booster stations of this net-
work. In this study, the modified network of Munavalli and 
Kumar, shown in Fig. 2a, was employed. This network con-
sists of 37 nodes (32 consumer and 5 internal nodes), 48 
pipes linking the nodes, one elevated storage tank, one pump 
station, and six booster stations, represented by letters A to 
F. Time steps for water quality and hydraulic simulations 
were 10 min, and the demand flow patterns were 24 h.

(15)

f4 = Modif iedPAF =
1

N

(∑N

i=1
PNi × Di × IFi

)
× 100

(16)IF =

∑t=td+tr

t=0
D(i, t)

∑N

i=1

∑t=td+tr

t=0
D(i, t)
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Case study 2

The proposed approach was applied to a real water distribu-
tion network in southeastern Iran (Zahedan city) shown in 
Fig. 2b. This network is more complex and larger than case 
study 1. The topology of this network consists of 916 nodes 
(804 consumer and 112 internal nodes), 1025 pipes linking 
the nodes, two pump stations, two reservoirs, and ten booster 
stations. Time steps for water quality and hydraulic simula-
tions were 10 min, and the demand flow patterns were 24 h.

Contamination matrix

To evaluate the fitness function of the sensor network detec-
tion likelihood (f1), the sensor network detection redundancy 
(f3), and to evaluate the cost function of sensor expected 
detection time (f2), and percentage of affected consumer 
nodes (f4), a contamination matrix should be produced. To 
construct a contamination matrix, assumptions about the 
number, starting time, mass rate, duration of injection, and 
location of contaminations must be considered. In this study, 
the following assumptions for networks are considered:

1. Number of injections: one node.
2. Starting time of injection: randomly selected from the 

beginning to the end of the simulation.
3. The mass rate of injection: randomly selected between 

0.03 and 0.12 gr/min and between 0.05 and 0.2 gr/min 
for benchmark and real network, respectively.

4. Duration of injection: randomly selected between 30 and 
240 and between 10 and 100 min for benchmark and real 
network, respectively.

5. Location of injection: randomly selected from all nodes, 
excluding dead ends.

The contamination matrix in this research for benchmark 
network has 26,112 contamination events, which is obtained as 
follows: injecting at 34 nodes (the number of dead-end nodes 
is 4, which is subtracted from the total number of network 
nodes as well as the tank is added), every 30 min for 24 h, with 
four mass injection rates of 0.03, 0.06, 0.09, and 0.12 gr/min, 
at four injection durations of 40, 80, 150, and 220 min (i.e., 
34*48*4*4 = 26,112 events). Also, the contamination matrix 
for the real network has 463,872 contamination events, inject-
ing at 604 nodes (the number of dead-ends and booster nodes 
is 312, which is subtracted from the total number of network 
nodes) every 30 min for 24 h, with four mass injection rates of 
0.05, 0.1, 0.15, and 0.2 gr/min, at four injection durations of 
10, 20, 60, and 90 min (i.e., 604*48*4*4 = 463,872 events).

Construction of reduced contamination matrix

Contamination events can occur at any node and at any time 
with any mass rate and duration times. Therefore, as the size 
of the system increases, the number of possible contamination 
events increases and is uncountable. To deal with this prob-
lem, Preis and Ostfeld (2008) presented a heuristic process 
that utilized a small sample of contaminants representing the 
total possible contaminants. Instead of employing the entire 
contamination matrix, they used a sampling approach to select 
the most representative contaminations and obtained similar 
results to those achieved utilizing the full matrix. They devel-
oped the following formulas to create a set of contaminants 
that included a reduced contamination matrix:

(17)Minimize:

5∑

i=1

|ASi − ANi| + |�Si - �Ni|

(18)Subject to ∶ qj > 0 j = 1, 2,… ,N

Fig. 2  (a) Benchmark WDN. 
(b) Real WDN
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where ASi and �Si are average and standard deviation values 
of the geographical x coordinate of a sampled contamination 
events set. ANi and �Ni are average and standard deviation 
values of the geographical x coordinate of the water distri-
bution system nodes. qj is discharge flow from node j, and 
N is the total number of system nodes. In these equations, 
i = 2 refers to the geographical y coordinate; i = 3 represents 
the injection mass rate; i = 4 expresses the injection starting 
time, and i = 5 is the injection duration time.

Equation (18) states that when searching for the sample, 
network’s endpoints should not be used because if the infec-
tion enters the network in these nodes, the infection will not 
spread in the network.

By solving the optimization problem presented in Eqs. 
(17) and (18), we come to a sample of pollution, which 

represents the total pollution of the pollution matrix. This 
optimization problem is solved using a genetic algorithm. 
To create a reduced matrix by Eqs. (17) and (18), 1000 con-
tamination events were selected. These reduced matrices 
were utilized as contamination events that are injected into 
the two networks (case studies 1 and 2), and optimization is 
performed based on these contamination events. This study’s 
general outline is presented in Fig. 3.

Contamination detection with chlorine boundaries

As previously mentioned, in this study, contamination event 
detection is based on chlorine concentration changes. Utiliz-
ing chlorine concentration sensors is more realistic and cost-
effective. The chlorine concentration in the water network 

Fig. 3  Simulation–optimization 
flowchart of the research
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must first be determined for all nodes at different times under 
normal conditions (without contaminants in the network). 
In general, when chlorine is injected into the distribution 
network, after a period, the chlorine concentration reaches 
a steady condition in the network. Figure 4 illustrates the 
changes in chlorine concentration at node J-11 (see Fig. 2a) 
during a 10-day simulation of the benchmark network. As 
can be seen, the chlorine concentration is in a steady state 
from the fifth day. Therefore, pollutants can enter the net-
work from the beginning to the end of the sixth day. Also, 
the effects of contaminant entry into the network up to 24 h 
after injection have been evaluated to locate the sensors opti-
mally. Therefore, the simulation period time for network 1 
was considered 7 days with 10 min time steps and a response 
time of 60 min.

In a real network, there are uncertainties in various 
parameters, such as demand patterns and roughness of 
pipes. Fluctuations in demand and roughness of pipes may 
cause significant variations in hydraulic (pipe flows) and 
water quality (change in contaminant propagation) across the 
water network. To make the simulation conditions realistic, 
an uncertainty of ± 20% for the demand patterns and ± 10% 
for the pipe roughness coefficient concerning normal values 
is considered. Then, due to these uncertainties, fluctuations 
in chlorine concentration were recorded for all nodes at dif-
ferent times employing the Monte Carlo simulator, and the 

upper and lower bounds of chlorine concentration for each 
node were determined. By injecting a contaminant into the 
network, the sensors detect the presence of a contaminant 
if the chlorine concentration in the network exceeds the 
defined boundaries for more than three-time steps of simu-
lation (30 min).

To explain how the proposed method detects contami-
nation events. We simulated node J-35 due to the entry of 
pollutants into network 1. Figure 5a shows changes in chlo-
rine concentration at node J-35 (see Fig. 2a) during normal 
conditions. As can be seen, the chlorine concentration is 
between the upper and lower boundaries. But Fig. 5b dem-
onstrates variations in chlorine concentration when contami-
nation enters the network (injection at node J-29, starting 
at 20:00 of the 6th simulated day (140 h after simulation 
started) for 100 min with a mass of 0.12 gr/min). The result 
indicates that the concentration of chlorine in the time of 149 
to 151 h due to the reaction with the pollutant is less than the 
lower bound, which means that the contamination enters the 
distribution network, and then sensors can detect it.

It should be noted that if a fixed boundary is set for detec-
tion, some contaminant events may not be detected in time 
and may take a longer time to detect. To understand more, 
Fig. 6a and b illustrates changes in chlorine concentration at 
node J-24 during the normal condition and a contamination 
event, respectively (injection at node J-15, starting at 04:40 

Fig. 4  Chlorine concentration at node J-11
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of the 6th simulated day for 30 min with a mass of 0.03 gr/
min). If we consider a fixed boundary for chlorine concen-
tration, such as 0.15 mg/L, the sensor installed in node 24 
cannot detect the contamination. In summary, the larger 
the contaminant concentration, the faster the detection time 
because of more changes in chlorine concentration.

Results and discussion

The NSGA-III algorithm was applied to determine the 
optimal location of sensors by considering maximizing 
the sensor detection likelihood (f1) and sensor detection 

redundancy (f3), as well as minimizing the modified sen-
sor expected detection time (f2), modified percentage of 
affected consumer nodes (f4), and the number of sen-
sors. The objective functions conflict with each other; 
hence, no single answer can be found that optimizes 
all objective functions simultaneously, and the optimal 
solutions will be a set of Pareto fronts rather than one 
specific solution.

Five sensors have been placed, and sensitivity anal-
ysis has been done for two networks. Various two-
dimensional diagrams have been interpreted as four-
dimensional Pareto because the description is complex, 

Fig. 5  Chlorine concentration at node J-35 during (a) normal conditions and (b) a contamination event

Fig. 6  Chlorine concentration at node J-24 during (a) normal conditions and (b) a contamination event
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according to Hu et al. (2018). Genetic algorithm param-
eters in this study are as follows crossover probability 
is 0.75, and mutation probability is 0.1. The number of 
populations was 1000, and the maximum number of iter-
ations was set to 300. There were two stop conditions for 
the NSGA-III algorithm: either reaching 300 iterations 
or finding no new non-dominated solution after 20 suc-
cessive generations.

Benchmark WDN

Base run results

Figures 7, 8, and 9 show base run results for placing five 
sensors in water network 1. In Fig. 7a, an optimal Pareto 
front for maximizing sensor detection likelihood (f1) versus 
minimizing modified sensor expected detection time (f2) 
is summarized. The interaction between the two objective 

Fig. 7  (a) Optimal Pareto front 
for detection likelihood versus 
sensor expected detection time, 
and (b) selected locations of 
the sensors according to Pareto 
front

Fig. 8  (a) Optimal Pareto front 
for detection likelihood versus 
sensor redundancy, and (b) 
selected locations of the sensors 
according to Pareto front

53240



Environmental Science and Pollution Research (2023) 30:53229–53252

1 3

functions is such that to maximize sensor detection likeli-
hood in the network, sensors should be installed in the down-
stream nodes of the network; Installing sensors downstream 
of the network increases detection time. On the other hand, 
in the second objective function, sensors should be installed 
in nodes close to the input point of infection to minimize the 
detection time of pollutants, especially pollutants that have 
a more significant impact on the consumers, by using the 
introduced importance coefficient; So, the layout of sensors 
according to the two objective functions conflict with each 
other.

Figure 7b illustrates the selected locations of the sensors 
in the network for the three solutions from the Pareto front. 
To place the sensors in the network, three different solutions 
(locations) were selected based on the Pareto front points. 
The first solution has the best answer for objective function 
1 and the worst for objective function 2. The second solution 
has the best answer for objective function 2 and the worst 
for objective function 1. Finally, the third solution is where 
both objective functions have an intermediate state. The sen-
sor locations according to solution 1.2.1 indicate the best 
detection likelihood equal to 92.8% but the worst solution 
for the modified detection time (11.58 min). Solution 1.2.2 
shows the location of the sensors according to the mini-
mum contamination—modified detection time (5.06 min), 
but the worst detection likelihood is 61.1%. In solution 1.2.3, 
the method presented by Young (1993) is used to select the 
optimal point of the Pareto front for locating the sensors 
in the distribution network. According to Young’s method, 
the optimal point has a detection likelihood of 86.8% and a 
modified contamination detection time of 7.03 min.

As expected, the optimal location of the sensors accord-
ing to solution 1.2.1 is the downstream points of the net-
work, and based on solution 1.2.2, the points are close to 
the injection areas.

In Fig. 8a, an optimal Pareto front for maximizing sensor 
detection likelihood (f1) versus maximizing sensor detection 
redundancy (f3) is summarized. The interaction between the 
two objective functions is such that to achieve the maximum 
detection likelihood, the sensors must be spread in the down-
stream nodes of the network to cover more nodes, while in 
objective function 3, to achieve maximum redundancy, the 
sensors must have a short distance from each other. There-
fore, the location of the sensors in two objective functions 
conflicts with each other.

Figure 8b describes the selected locations of the sensors 
in the network for the three solutions from the Pareto front. 
Solution 1.3.1 indicates that the best percentage of detec-
tion likelihood is 92.8%, but the worst value of redundancy 
is 1.19%. Solution 1.3.2 shows the location of the sensors 
according to the best redundancy value of 80.51% but the 
worst detection likelihood (23.6%). In solution 1.3.3, the 
method presented by Young (1993) is used to select the 
optimal point of the Pareto front for locating the sensors 
in the distribution network. According to Young’s method, 
the optimal point has a detection likelihood of 68.2% and a 
redundancy value of 38.12%.

Figure 9a depicts an optimal Pareto front for maximizing 
sensor detection likelihood (f1) versus minimizing the modi-
fied percentage of affected active nodes (f4). To achieve the 
maximum detection likelihood, the sensors must be spread 
across the downstream nodes of the network, which cause 

Fig. 9  (a) Optimal Pareto front 
for detection likelihood versus 
percentage of active polluted 
nodes, and (b) selected loca-
tions of the sensors according to 
Pareto front
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to infect many network nodes. However, in objective func-
tion 4, to achieve the minimum number of infected nodes, 
especially nodes that have more demands, by using the intro-
duced importance coefficient, sensors must be installed in 
locations close to where the pollution enters the network. 
Therefore, the optimal location of the sensors in the two 
objective functions conflicts with each other.

Figure 9b illustrates the selected locations of the sensors 
in the network for the three solutions from the Pareto front. 
The location of the sensors according to solution 1.4.1 indi-
cates the best percentage of detection likelihood equal to 
92.8% but shows the worst modified percentage of infected 
nodes (15.34%). Solution 1.4.2 shows the location of the 
sensors according to the minimum (the best) modified per-
centage of infected nodes equal to 11.59%, but the percent-
age of detection is the lowest (64.3%). In solution 1.4.3, 
according to Young’s method, the optimal point has a detec-
tion likelihood equal to 90.7% and the modified percentage 
of affected nodes of 12.78%.

Optimal Pareto fronts and selected sensor locations for 
objective functions f2, f3, and f4 (Eqs. (8), (12), and (15)) 
were obtained for three solutions. These results are illus-
trated in figures S2 to S4 of the supplementary file.

Sensitivity analysis results

This section investigates the effect of the number of sen-
sors utilized in the network on the objective functions. The 
purpose is to check whether the increase in the number of 
sensors improves the optimal Pareto fronts. For this pur-
pose, the number of sensors was increased from five to seven 
and ten sensors. Figure 10a–f compares the optimal Pareto 
fronts for the five, seven, and ten sensors applied in the base 
and sensitivity analysis runs. As presented in Fig. 10a–f, the 
Pareto fronts for 7 sensors dominate the Pareto fronts of 5 
sensors, and the Pareto fronts for 10 sensors dominate the 
Pareto fronts of 5 and 7 sensors. For example, according to 
Fig. 10a. When employing five sensors, the best detection 
likelihood is 92.8%, and the worst solution for the modified 
detection time is 11.58 min. But with increasing the number 
of sensors to seven, the best detection likelihood by sensors 
increased by 4.85% and reached 97.3%, Also, the worst solu-
tion for the modified detection time decreased by 4.15 min 
(35. 9%) and reached 7.43 min, which has improved the two 
objective functions. Then, with increasing the number of 
sensors to ten, the best detection likelihood compared to 
five and seven sensors increased by 7.65 and 2.67 percent, 
respectively, and reached 99.9 percent. Also, the worst solu-
tion for the modified detection time compared to five and 

seven sensors decreased by 55.35 and 30.42 percent and 
reached 5.17 min.

As observed, with increasing the number of sensors, the 
solutions of different objective functions have improved 
compared to the base run (5 sensors). Figure 11 shows the 
optimal Pareto front for the number of sensors utilized in 
the distribution network 1 versus the best detection like-
lihood. Results express that by installing only one or two 
sensors in the network, 36.4 and 63.2% of pollutants can 
be detected. As can be seen, Initially, when the number of 
sensors is small, the detection percentage changes rapidly 
as the number of sensors increases. But, as the number of 
sensors increases, the detection percentage changes slower. 
So increasing the number of sensors to more than 9 sensors 
in this small system will provide little additional detection 
likelihood. For example, by increasing the number of sensors 
from 1 to 2, the detection likelihood increased by 73.6%, 
but by increasing the number of sensors from 3 to 4, the 
detection likelihood just increased by 12.7%. The maximum 
detection likelihood corresponds to 11 sensors, which means 
that increasing the number of sensors to more than 11 will 
provide any additional detection likelihood of pollutants 
entering the network.

Real WDN

To evaluate the effectiveness of the proposed method in large 
networks, a real water distribution network in southeastern 
Iran (Zahedan city) is used (Fig. 2b). Figure 12 illustrates the 
optimal Pareto front for the number of sensors utilized in the 
distribution network 2 versus the best detection likelihood. 
Results represent by installing only one or two sensors in the 
network, 24.5 and 45.2% of pollutants can be detected. As 
can be seen, the maximum detection likelihood corresponds 
to 20 sensors, which means that increasing the number of 
sensors to more than 20 will provide any additional detec-
tion likelihood of pollutants entering the network. Also, 
increasing the number of sensors to more than 15 in this 
large system will provide little additional detection likeli-
hood. Therefore, in this study, to analyze the sensitivity of 
the number of sensors, the effect of 5, 10, and 15 sensors on 
the network has been investigated.

Figures 13a–f and 14 demonstrate optimal Pareto front 
and sensor locations for placing five sensors in water net-
work 2 according to base run results. Optimal Pareto fronts 
for the four conflict objective functions are plotted in vari-
ous two-dimensional diagrams. According to the Fig. 13a, 
the more the modified detection time, the more the detec-
tion percentage because when the detection percentage is 
maximum, it means that the sensors are installed at the 
end areas of the network, which causes them to be far 
from the entry point of the pollutant; thus, detection time 
increase. Figure 13b exhibits that increasing the detection 

Fig. 10  Comparing the optimal Pareto fronts for 5 sensors with 7 and 
10 sensors utilized in the base and sensitivity analysis runs for differ-
ent objective functions of benchmark network

◂
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percentage reduces redundancy. In order to achieve the 
maximum detection percentage, the sensors must be 
installed across the network and far from each other, which 
reduces redundancy. Also, the more the detection likeli-
hood leads to the more the modified percentage of polluted 
nodes (Fig. 13c). The results of Fig. 13d represent that 
with increasing redundancy, the detection time increases. 
Because the sensors are located close to each other and 
far from the input nodes. Finally, Fig. 13e and f present 

that decreasing the modified percentage of infected nodes 
decreases the redundancy and increase detection time.

Figure 15 compares the optimal Pareto fronts for five, ten, 
and fifteen sensors utilized in the base and the sensitivity 
analysis runs. As confirmed in Fig. 15–f, the Pareto fronts 
for 10 sensors dominate the Pareto fronts of 5 sensors, and 
the Pareto fronts for 15 sensors dominate the Pareto fronts 
of 5 and 10 sensors. For example, in Fig. 15b, when five 
sensors in the network exists, the best detection likelihood 

Fig. 11  Optimal Pareto front for 
the number of sensors versus 
detection likelihood for bench-
mark network

Fig. 12  Optimal Pareto front for 
the number of sensors versus 
detection likelihood for real 
network
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Fig. 13  Optimal Pareto front for a base run of real network for different objective functions
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Fig. 14  Selected locations of the sensors according to Pareto fronts for a base run of real network for different objective functions
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Fig. 15  Comparing the optimal Pareto fronts for 5 sensors with 10 and 15 sensors utilized in the base and sensitivity analysis runs for different 
objective functions of real network
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is equal to 78.7%, and the best solution for redundancy is 
98.87 percent. But by increasing the number of sensors to 
ten, the best detection likelihood by sensors increased by 
18.93% and reached 93.6%. Moreover, the best solution for 
redundancy increased to 98.94%, which has improved the 
two objective functions. Then, with increasing the number 
of sensors to fifteen, the best detection likelihood compared 
to five and ten sensors increased by 24.66 and 4.8 percent, 
respectively, and reached 98.1 percent. Also, the best solu-
tion for the redundancy related to fifteen sensors increased 
to 99.1 percent.

Conclusions

Water distribution networks (WDNs) are one of the main 
components of public infrastructure that distribute safe 
drinking water to billions of customers worldwide. Due to 
the complexity of their structures and several access points, 
WDNs are vulnerable to intentional or accidental contami-
nation events. Contaminants entering the water distribution 
systems are one of the most dangerous events that may occur 
either deliberately or accidentally. Polluted water can cause 
sickness or even death among consumers. Therefore, the 
protection of WDNs is crucial, and monitoring tools need to 
be improved. This led utilizing of sensors for identifying the 
pollutants in water distribution systems. This study proposes 
a multi-objective optimization approach for sensor network 
design to precisely detect possible pollution events. For the 
evaluation of the presented approach, benchmark and real 
water networks have been selected.

Contamination events are a potential risk, which can 
occur at any node, at any time, with any mass rate, and dura-
tion times. The number of contamination events increases 
with system size. For this reason, a heuristic method was 
employed for selecting a representative sample of contami-
nations that had similar characteristics and effects. A con-
tamination matrix based on 1000 pollutant events was cre-
ated for benchmark and real water networks. The developed 
contamination event detection procedure is based on the 
dynamic change of chlorine concentration relative to defined 
upper and lower bounds. The upper and lower bounds of 
chlorine concentration for each node were determined uti-
lizing the Monte Carlo simulator. The optimal placement of 
five sensors in two networks was analyzed utilizing a simula-
tion–optimization approach. EPANET, EPANET-MSX, and 
NSGA-III were applied as a hydraulic-quality simulator and 
an optimizer approach, respectively. Sensor locations have 
been selected based on the following four objectives: 1—sen-
sor detection likelihood, 2—sensor expected detection time, 
3—sensor detection redundancy, and 4—the affected nodes 
before detection. To consider the importance of contami-
nation events and network nodes, importance coefficients 

based on the amount of damage caused by contamination 
events have been introduced. According to the important 
coefficient 1, the contaminations that cause more damage to 
the distribution network (affect more nodes) are more impor-
tant and should be identified quickly. Also, according to the 
important coefficient 2, nodes with more demands are more 
important, and sensors must be installed in places to detect 
contaminations before infecting these nodes. The optimal 
Pareto fronts were computed for each of the two sets of con-
flicting objectives. For example, the results of investigating 
the first objective function versus the second objective func-
tion showed that to maximize sensor detection likelihood in 
the network, sensors should be installed in the downstream 
nodes of the network. But installing sensors downstream of 
the network increases detection time. So, the layout of sen-
sors according to the two objective functions conflict with 
each other. The optimal Pareto front results of these two 
objective functions for the benchmark network illustrated 
that the best detection likelihood is equal to 92.8%, which 
is equivalent to the worst detection time (11.58 min). Also, 
the best detection time is equal to 5.06 min, which indicates 
the worst detection likelihood (61.1%). In the next step, the 
sensitivity analysis related to the number of sensors on dif-
ferent objective functions was investigated so that the num-
ber of sensors increased from five to seven and ten for the 
benchmark system and increased from five to ten and fifteen 
for a real system. The results illustrated that as the number 
of sensors increased, the Pareto fronts became more efficient 
tools. Also, by increasing the number of sensors, the new 
Pareto front dominates the old Pareto front (the Pareto front 
of fewer sensors). For example, by increasing the number 
of sensors from five to ten for the real network, the best 
detection likelihood increased by 18.93%. Moreover, the best 
solution for redundancy increased from 98.87 to 98.94%, 
which has improved the two objective functions. Then, by 
increasing the number of sensors to fifteen, the best detec-
tion likelihood compared to five and ten sensors increased 
by 24.66 and 4.8 percent, respectively. Also, the best solu-
tion for redundancy increased to 99.1 percent. Finally, the 
optimal Pareto front for the number of sensors versus the 
best detection likelihood was depicted. For example, by 
increasing the number of sensors from 1 to 2, the detection 
likelihood increased by 73.6% for the benchmark network, 
and by installing only one or two sensors in the real network, 
24.5% and 45.2% of pollutants can be detected. Moreover, 
the results demonstrated that increasing the number of sen-
sors to more than 10 and 15 sensors in benchmark and real 
systems respectively, will provide little additional detection 
likelihood. Also, the maximum detection likelihood corre-
sponds to 11 and 20 sensors for benchmark and real water 
systems. It is suggested to study the failure probability of 
different pollution detection scenarios as a limitation of 
this study. In addition, future research could address other 
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uncertainties, such as imperfect water quality sensors, the 
importance of nodes based on their applications, and the 
use of mobile sensors.
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