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Abstract
Sustainable development in ecologically fragile areas (EFAs) has faced significant challenges in recent years, but the 
traditional analytical approaches fail to provide an ideal assessment for ecological performance due to spatiotemporal 
variability in EFAs. This paper evaluates the ecological performance of EFAs based on a modified ecological footprint 
model, and ecological footprint intensity (EFI) is considered an essential indicator to measure ecological performance, 
especially for EFAs. Empirically, taking the Π-shaped Curve Area in the Yellow River basin of China as the study area, the 
spatiotemporal heterogeneity of EFI of 17 cities in the area is analyzed. Then, the extended STIRPAT and geographically 
and temporally weighted regression (GTWR) models are employed to explore the spatiotemporal heterogeneity of the factors 
driving EFI. The results show that from 2006 to 2019, the overall level of EFI in the area has decreased; EFI of the area offers 
a significant spatial agglomeration effect; results of the GTWR model suggest that factors driving EFI have spatiotemporal 
heterogeneity; the impact of population size, openness, marketization, technology, industrial structure rationalization, and 
information communication level on EFI was two-sided, while that of affluence, government scale, environmental regulation, 
and industrial structure advancement show inhibitory impact with the intensity of inhibition varying across periods and cities.

Keywords  Ecologically fragile areas · Ecological performance · Spatiotemporal heterogeneity · GTWR​ · Driving factors

Introduction

Ecologically fragile areas (EFAs), also known as ecotone, 
account for more than half of the total land surface areas 
(Nguyen and Liou 2019) and usually locate in transitional 

areas between different landscapes (Chen et al. 2022). These 
areas perform as essential places of human settlement and 
cultural intermingling in human history. According to 
statistics (Huang et al. 2009), Asia has the largest fraction of 
EFAs (74.6%), followed by Africa (19.6%). Simultaneously, 
inevitable overlap exists between EFAs and poverty-stricken 
areas (Hu et al. 2021). Hence, equally significant attention 
attached to the regional development in EFAs is necessary 
for the sustainability of the whole region.

The ecosystems in EFAs have substantial spatiotemporal 
volatility, weak anti-interference ability, significant 
edge effects, and poor spontaneous recovery ability (Qiu 
et  al. 2022; Yan et  al. 2017) but play critical roles in 
environmental diversity and ecological barriers. However, 
anthropogenic interference in local areas has caused 
severe damage to the local ecosystem (e.g., soil erosion, 
land desertification, and natural disasters) during the 
past decades. Due to historical reasons, most EFAs are 
relatively less developed compared to those coastal cities 
at both economic and institutional levels (Li et al. 2022a, 
b). Meanwhile, the crossing areas of different landscapes, 
where EFAs locate, are often rich in mineral resources due 
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to Paleo-activities and crustal movement (Nguyen and Liou 
2019). Thus, despite that EFAs are ecologically vulnerable, 
large-scale industrial activities that will cause severe 
environmental damage are often located in these areas. 
The natural conditions and anthropogenic interventions in 
EFAs have led to unsustainable development in these areas. 
Consequently, to defuse the dilemma of coordinating eco-
environment and socioeconomic development in EFAs, it is 
essential to investigate sustainable performance considering 
the characteristics of EFAs and coordinate the relationships 
between local economic growth and ecological quality from 
a sustainable perspective.

The connotation of sustainable development is to 
acquire the most remarkable development with a minor 
ecological cost (Ruggerio 2021), which provides the basic 
idea for coordinating the nexus between eco-environment 
and economic development. It serves as a reference for the 
coordination of their relationship (Dong et al. 2021). To 
balance this relationship, a considerable amount of literature 
on maximizing economic benefits while minimizing ecological 
costs has been conducted (Liu et al. 2020; Wang et al. 2015). 
These studies mainly focus on the measurement and force 
identification of environmental efficiency (Guo & Luo 2021; 
Kaneko & Managi 2004; Liu et al. 2021; Long et al. 2018; 
Song et al. 2013) and eco-efficiency (de Araújo et al. 2021; 
Han et al. 2021; Liu et al. 2020; Long et al. 2017; Passetti 
& Tenucci 2016; Tang et al. 2022; Van Caneghem et al. 
2010) with the scope of countries, regions, industrial sectors, 
and even companies. Ecological performance proposed by 
Schaltegger and Sturm (1990) is prevalently used to measure 
the impact of economic development on the eco-environment.

Approaches to evaluating ecological performance

Since the concept of ecological performance has been put 
forward, the evaluation methods of this indicator have 
gradually developed. Ratio approach (Callens & Tyteca 
1999; Jin et al. 2020; Yang & Yang 2019), index system 
approach (Passetti & Tenucci 2016), material flow analysis 
(Besné et al. 2018; Wang et al. 2016), frontier approach 
(Long et al. 2018; Rebolledo-Leiva et al. 2017; Xing et al. 
2018), input-output analysis (Zurano-Cervelló et al. 2018), 
life cycle assessment (Valente et al. 2019), and emergy 
analysis (Li et al. 2011) are several common approaches to 
evaluate ecological performance.

Among all the methods mentioned above, the ratio 
approach, index system approach, and frontier approach 
are the three most frequently used methods of ecological 
performance measurement (Chen et al. 2021a, b). The ratio 
approach defines eco-efficiency as the ratio of the economic 
value added to eco-environmental impacts added (Yang & 
Yang 2019). Maxime et al. (2006) argued that eco-efficiency 
is essentially an “eco-intensity” and can be given by the 

total eco-environmental impact divided by the amount of the 
economic value added. The difficulty of the ratio approach 
is to accurately measure the economic value added and the 
environmental impacts added. The index system approach 
incorporates various efficiency indicators to measure eco-
efficiency. It can comprehensively reflect the degree of 
sustainable development, but it is limited to overcoming the 
influence of subjective factors in empowering environmental 
and economic indicators. The frontier method contains 
multiple inputs and outputs of various dimensions, and no 
weight is determined to obtain comprehensive indicators. 
The estimation results, which are relative values and 
cannot be confirmed using specific test standards, are 
impressionable to the choice of inputs and outputs (Yang & 
Zhang 2018). Meanwhile, the frontier approach (e.g., data 
envelopment analysis) widely adopted by most existing 
studies cannot reflect the objective conditions of the eco-
environment from the long-term time series, and they merely 
focus on the link between economic growth and pollutant 
discharge, ignoring the impact of human activities (Yang & 
Yang 2019). In contrast, the ratio approach reports the actual 
condition between economic growth and eco-environmental 
pressure through an absolute value, ensuring that efficiency 
is authentic and comparable across periods.

Determinants of ecological performance

In the research regarding driving factors of ecological 
performance, econometric models are widely adopted. 
Whether a spatial matrix is introduced into the regression 
formula, the regression models can be divided into 
non-spatial and spatial regression models. For the non-
spatial econometric model, it is confirmed that economic 
development, openness, environmental protection, 
and population density are the key factors influencing 
environmental efficiency via a panel tobit model (Song 
et  al. 2013); it is also found that economic growth, 
industrial structure, openness, technological progress, and 
environmental regulation significantly affect the ecological 
efficiency of Guangdong Province via a panel regression 
model (Zhou et al. 2018). For the spatial econometric model, 
it is demonstrated that regional GDP per capita, science and 
technology expenditure, retail sales of social consumer 
goods, and population size are the factors influencing 
the ecological efficiency of Chengdu-Chongqing urban 
agglomeration via a spatial panel model (He & Hu 2022); 
it is also found that the factors influencing China’s urban 
ecological efficiency include economic development, 
industrial structure, import and export trade, information 
level, local government expenditure, and retail sales of 
social consumer goods via a spatial autocorrelation panel 
regression model (Liu et al. 2020). However, the results of 
these studies are not consistent; for instance, Zhou et al. 
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(2018) found that the level of technology is conducive 
to the improvement of ecological efficiency, while He 
and Hu (2022) presented the opposite result; He and Hu 
(2022) found that the retail sales of social consumer goods 
promote the improvement of ecological efficiency, while 
Liu et al. (2020) showed the opposite result. The reason 
for this inconsistency is that the geographic spatiotemporal 
data is highly non-stationary, and the changes in time and 
geospatial location will lead to changes in the relationship 
and structure between variables (Chen et  al. 2021a, b). 
The ubiquitous temporal and spatial effect involving 
spatiotemporal dependence and heterogeneity was neglected 
by multitudinous econometric technology. Therefore, the 
traditional econometric regression models cannot meet the 
analysis requirements of complex spatiotemporal data.

Perspective of the research layer

Most of the existing literature surrounding ecological 
performance has studied at the national level (Dong et al. 
2021; Song et al. 2013) and urban level (Guo & Luo 2021; 
Liu et al. 2020; Ren et al. 2020; Zhou et al. 2018), which 
undoubtedly provide potent tools for the design of ecological 
protection and management policies at the national and 
urban levels.

In terms of EFAs, these studies either place the EFAs 
within a country or evaluate the ecological performance of 
the EFAs in the same pattern as other regions and expect 
to provide decision-making support for the sustainable 
development of EFAs through a “facet-to-point” approach. 
However, due to the unique characteristics of EFAs, such 
as substantial spatiotemporal volatility and extraordinary 
physical and geographical conditions, their sustainable 
development conditions differ from other areas, and the 
common treatment approach is unsuitable for providing 
policy support for the development of EFAs. As far as 
we know, the current research lacks a comprehensive 
assessment of ecological performance based on the complex 
environmental conditions of EFAs, which is unfavorable to 
comprehensively grasp the sustainable level and alleviate the 
increasingly acute contradiction between eco-environment 
and economic development in EFAs. Therefore, targeted 
research on ecological performance in EFAs is necessary.

Based on the aforementioned analysis, scholars have 
conducted extensive and in-depth research on ecological 
performance, which has deepened the understanding of 
sustainable development and provided a basis for policy 
formulation. However, the reality shows that the EFAs are 
widely distributed. Their geographical location and lagging 
economic development stage lead to the spatial and temporal 
differentiation of their sustainable development status. The 
multitudinous econometric technology used in the existing 
research does not conform to the characteristics of the 

changeability of the objective conditions in EFAs and the 
resulting spatiotemporal fluctuations of the drivers. Thus, 
different from other regions, spatiotemporal differentiation 
has to be taken into account in the assessment of ecological 
performance in EFAs. The geographically and temporally 
weighted regression (GTWR) model proposed by Huang 
et  al. (2010) adds both temporal and spatial effects to 
the ordinary panel regression model, thus providing the 
possibility to evaluate the heterogeneity of temporal 
and spatial dimension parameters. Therefore, it is more 
appropriate to apply GTWR to the assessment of ecological 
performance drivers in EFAs.

Contributions of this paper are (1) the shortcomings that 
previous studies attempted to support policy formulation for 
EFAs through a “facet-to-point” approach were pointed out. 
Accordingly, this study specifically evaluates the ecological 
performance of EFAs. The ecological performance of EFAs 
is evaluated by adopting the ratio approach, and objective 
conditions of local eco-environment and anthropogenic 
activities are considered using a modified ecological footprint 
model. Specifically, the equivalent factors applicable to local 
conditions are employed, and the ecological footprint account 
is enriched. (2) The factors driving EFI are discussed from 
the perspective of the operation of industrial and residential 
systems. Meanwhile, the GTWR model compatible with 
EFAs is creatively employed to analyze the evolution trend 
of each driver from temporal and spatial dimensions, which 
aims to overcome the defect that most previous studies did 
not focus on the spatiotemporal integration of ecological 
performance. (3) The research area selected in this paper is 
of practical significance to the sustainable development of 
EFAs. The Π-shaped Curve Area in the Yellow River Basin 
of China, a representative area of EFAs and a significant 
ecological barrier to Central and Western China, has not 
received enough attention regarding the dynamic relationship 
between the eco-environment and economic development in 
existing research.

Methodology and materials

In this paper, eco-intensity is employed to characterize 
ecological performance where the gross domestic product 
(GDP) serves as a denominator, and ecological footprint is 
used as a numerator, namely, ecological footprint intensity 
(EFI). Ecological footprint considers the environmental 
impact caused by resource utilization and human activities 
and converts them into biologically productive land areas. It 
not only reflects the sustainability of a region to some extent, 
but also warns against ecological risks with an absolute 
value. Meanwhile, the calculation of ecological footprint in 
this study takes the natural conditions and human activities 
of EFAs into consideration, which is more appropriate for 
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the analysis requirements of ecological performance in 
EFAs. Meanwhile, the GTWR model is employed to analyze 
driving factors, while the panel regression model is used as 
a benchmark reference. Overall, the aims of this study are 
first, assessing the ecological performance in EFAs based 
on the constructed ecological footprint model and second, 
investigating the spatial and temporal variation of factors 
driving ecological performance in EFAs.

Measurement of EFI

EFI is used to characterize the ecological performance. The 
smaller the EFI is, the higher the utilization efficiency of the 
eco-environment is. EFI can be expressed as

where EF represents ecological footprint and GDP 
represents economic output. The calculation formula of EF 
is as follows:

where rj is the equivalence factor; j=1, 2, 3,…, 7 represent 
seven ecological footprint land-use types, respectively: 
arable land, forest land, grassland, water area, water resource 
land, fossil energy land, and construction land; i represents 
the type of consumption items; Ci is the annual consumption 
of i; and Pi is the global average output of i produced by 
bio-productive land.

The indicators of the EF account are determined 
according to the conceptual model of EF and the actual 
situation of the study area. The modified equivalence 
factors of seven types of bio-productive land applicable to 
local conditions are determined by referring to the existing 
literature (Li et al. 2022a, b; Sun & Wang 2022; Huang et al. 
2018). Due to the space limitation, detailed information on 
the EF account is shown in Appendix 1.

Method of driving factors analysis

Extended STIRPAT model of EFI

EFI is affected by various factors in the regional 
socioeconomic system. Theoretically, the IPAT equation 
was first proposed to reflect the relationship between 
various socioeconomic factors and eco-environmental 
indicators (Ehrlich et  al.,1972). Since there is only the 
same transformation proportion between the driving factors 
and eco-environmental indicators in the IPAT model, the 
influence of driving factors on eco-environmental indicators 
cannot be objectively reflected. Based on the IPAT model, 

(1)EFI =
EF

GDP

(2)EF =
∑7

j=1

∑n

i=1
(rj ×

Ci

Pi

)

the stochastic impacts by regression on population, 
affluence, and technology (STIRPAT) model was established 
(Dietz&Rosa.,1994), which is expressed as

where I, P, A, and T represent impact, population, affluence, 
and technology, respectively; a is the model coefficient; e is 
the model error term; b, c, and d are the condition indices of 
population, affluence, and technology, respectively. For ease 
of parameter estimation, the logarithmic model is

The regular operation of industrial and residential systems 
requires a large number of various material resources. This 
process will produce masses of pollutants while bringing 
economic output, resulting in the EFI. Based on the STIRPAT 
model and previous research, population size, affluence, and 
technology have been selected as the variables of P, A, and T, 
respectively. Additionally, industrial structure advancement 
and rationalization, openness, information communication 
level, government scale, environmental regulation, and 
marketization were added to the STIRRPAT model. The 
influencing paths of drivers (M1–M10) are shown in Fig. 1.

Population size (POP)  On the one hand, population 
agglomeration may cause a “crowding effect,” which 
not only increases the consumption of regional material 
resources but also reduces the efficiency of regional 
economic operation; on the other hand, population 
agglomeration may bring a “scale effect” (ren et al. 2020), 
which exerts great importance in optimizing the regional 
input-output structure and improving regional economic 
operation efficiency.

M1: POP affects the EFI by influencing the demand for material 
resources and the regional economic operation efficiency.

Affluence (GDPPC)  For affluence, it represents the level 
of regional economic development. On the one hand, 
production and consumption would be driven by a higher 
level of economic development, thereby creating more 
demand for material resources. On the other hand, economic 
development promotes the living standards of city residents, 
and high requirements for a better life can strengthen the 
construction of eco-environment.

M2: GDPPC affects the EFI by stimulating the vitality 
of the material resources demand and promoting the 
construction of eco-environment.

Technology (TECL)  Technological progress would alter the 
operational pattern of industrial and residential systems, 

(3)I = aPbAcTde

(4)lnI = lna + b(lnP) + c(lnA) + d(lnT) + lne
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that is, the production mode of industries and the residents’ 
lifestyles (Zhou et al. 2018). The total factor productivity 
of industrial and residential systems can be promoted, and 
thereby, resource utilization efficiency can be enhanced.

M3: TECL affects EFI by enhancing resource utilization 
efficiency through promoting operational efficiency of 
industrial and residential systems.

Marketization (MAR)  Marketization not only represents the 
market transaction level but also potentially indicates the 
consumption status of society. Previous studies have shown 
that the social consumption level has different effects on the 
eco-environment (He & Hu 2022; Liu et al. 2020). Therefore, 
marketization may affect the EFI in the Curve Area.

M4: MAR affects EFI by influencing market transactions 
and thus the vitality of material resource consumption.

Government scale (GOVS)  Governments often give guidance 
on how to stimulate economic growth and protect the eco-
environment. The scale of the government plays a crucial 
role in the protection of eco-environment and enhancement 
of economic development. Therefore, the scale of 
government may have an impact on the EFI.

M5: GOVS affects EFI by promulgating economic and 
environmental policies and legal regulatory institutions.

Openness (OPEN)  Openness shows the frequency of 
economic activities between regions and other countries. 
First, while expanding the demand for material resources, 

regional foreign trade helps areas enjoy the fruits of world 
technological progress and thereby improve local economic 
efficiency; second, under the assumptions of “pollution 
paradise” and “pollution halo,” openness may have distinct 
effects on the eco-environment (Liu et al. 2020).

M6: OPEN affects EFI by expanding the demand for 
material resources and altering the state of regional 
industrial and residential systems.

Industrial structure advancement (ISA)  Industrial structure 
advancement is a dynamic change process of the industrial 
structure center, mainly manifested in the continuous transfer 
from the primary sector to the secondary and tertiary sectors 
(Zhao et al. 2020). The input-output efficiency of the three 
sectors is different. Generally, the input-output efficiency 
of the expected output in the tertiary sector is the highest 
while that of the unexpected output in the secondary sector 
is the highest.

M7: ISA affects EFI by influencing the input-output 
efficiency in industries.

Industrial structure rationalization (ISR)  Industrial 
structure rationalization refers to the effective allocation 
of elements among sectors, which reflects the coupling 
degree of the input and output structure of elements 
(Shen et  al. 2021). When the industrial structure is 
unreasonable, the allocation of factors is blocked, and 
the economic system will be distorted. Hence, the 
low efficiency of economic operation will lead to the 
reduction of output.

Fig. 1   The extended STIRRPAT 
model of EFI
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M8: ISR affects EFI by influencing economic productivity 
via the efficiency of resource allocation among sectors.

Information communication level (INL)  The improvement 
of information communication level is conducive to 
reducing information asymmetry, thereby increasing 
the market transaction volume and stimulating regional 
economic output. Besides, the progress in information 
communication level potentially increases the demand for 
material resources (Usman et al. 2021; Van Heddeghem 
et al. 2014).

M9: INL affects EFI by stimulating economic 
development and furthering the demand for material 
resources.

Environmental regulation (ERI)  Previous studies have studied 
the relationship between environmental regulation and the 
environmental impact, mainly including theoretical disputes 
such as “follow cost,” “pollution shelter hypothesis,” and 
“Porter Hypothesis” (Yin & Wu 2021; Zheng 2018), which 
emphasize the importance of environmental regulation to 
altering the operational mode of enterprises (e.g., mode of 
production and waste treatment). These studies show that 
environmental regulation may improve or exacerbate the 
eco-environment.

M10: ERI may improve or exacerbate the eco-
environment by altering the operational mode of 
enterprises, thus affecting EFI.

Based on the analysis of determinants of EFI, the 
extended STIRPAT model of EFI is constructed as follows:

Appendix 2 shows the details of the variables used in the 
formula. The actual GDP was deflated to the 2006 constant 
price.

Global econometric model

Global and local regression models are two common 
forms of multivariate regression analysis (Wang 
et al. 2014). The global regression model reflects the 
relationship between independent and dependent variables 
under the assumption of stationary space and time. In 
contrast, the relationship in the local regression model 
is assumed to change in the spatiotemporal dimension. 
A local regression model can be adopted to solve the 
heterogeneity dilemma.

(5)

lnEFIit = �0 + �1lnPOPit + �2lnGDPPCit + �3lnOPENit + �4lnMARLit

+ �5lnGOVSit + �6lnISRit + �7lnTECLit + �8lnINLit + �9lnERIit

+ �10lnISAit + �it

The ordinary panel regression model is the most 
commonly used global regression model. The formula of 
the model is as follows:

where the subscript i represents the city, t represents the 
year, and k represents the number of explanatory variables; � 
denotes the regression parameter; �i is the urban fixed effect; 
�t is the year fixed effect; and �it is the stochastic error term.

Exploratory spatial data analysis (ESDA)

The core of ESDA is to measure the correlation of 
geographical elements in different spatial locations and 
reflect the spatial distribution of geographical segments 
(Huang et al. 2021). Global Moran’s I index is applied to 
judge the spatial correlation of EFI. The calculation formula 
is shown below:

where n represents 17 cities in the Curve Area, xi and xj 
represent the EFI of cities i and j, respectively, x is the mean 
value of EFI, and wij denotes the unit in the spatial weight 
matrix W, and the specific form of W is shown as follows:

where dij is the Euclidean distance between cities i and j. 
The value of Global Moran’s I is between −1 and 1, with 
closer proximity to −1 indicating a more pronounced spatial 
dispersion trend. In comparison, closer proximity to 1 means 
a more pronounced spatial aggregation trend. A Moran 
index equal to 0 indicates that there is no spatial correlation 
between the units.

Local econometric model

Different from the traditional temporally weighted 
regression (TWR) and geographically weighted 
regression (GWR) models, only considering the spatial or 
temporal dimension, the geographically and temporally 
weighted regression (GTWR) model can ref lect the 
spatiotemporal evolution relationship of variables, 
and the regression results are closer to reality (Huang 

(6)lnEFIit = �0 +
∑

�kitlnxkit + �i + �t + �it

(7)I =
n
∑n

i=1

∑n

j=1
wij(xi − x)(xj − x)

∑n

i=1

∑n

j=1
wij

∑n

i=1
(xi − x)

2

(8)

⎡⎢⎢⎢⎣

w11 w12 … w1n

w21 w22 … w2n

… … … …

wn1 wn2 … wn3

⎤⎥⎥⎥⎦

(9)wij =

{
1

dij
, i ≠ j

0, i = j
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et al. 2010). Given the temporal and spatial variability 
of EFAs, GTWR, rather than traditional econometric 
technology, is more suitable for analyzing driving 
forces of ecological performance in EFAs. The formula 
is detailed below:

where yi represents the dependent variable, 
(
ui, vi, ti

)
 

represents the Mercator projected coordinates of the city 
i in year t, �0 represents the regression intercept term, �k 
represents the regression parameter estimation value, 
�i represents the stochastic error term, and W is the 
spatiotemporal weight matrix1.

(10)yi = �0
(
ui, vi, ti

)
+
∑K

k=1
�k(ui, vi, ti)xik + �i

(11)�
(
ui, vi, ti

)
= (XTW

(
ui, vi, ti

)
X)

−1
XTW

(
ui, vi, ti

)
Y

(12)W
(
ui, vi, ti

)
= diag(wi1,wi2,⋯wij)

Data

Study area

The study area of this paper is the Π-shaped Curve Area 
across the middle and upper reaches of the Yellow River 
Basin in China, including 17 prefecture cities in four 
provinces (Fig.  2). The Curve Area, which has been 
identified as a distinct area suffering from a “resource 
curse” in numerous studies, has triple characteristics 
of fragile ecology, abundant resources, and economic 
poverty. Besides, in response to vegetation degradation 
and soil erosion in this area, the Chinese government has 
implemented a variety of ecological restoration projects 
(e.g., the projects of returning farmland to forests and 
grasslands). The natural conditions in this area have 
changed dramatically, resulting in changes in ecological 
performance on a spatial and temporal scale. Therefore, 
targeted research regarding the spatiotemporal evolution 
characteristics of the area’s ecological performance is 
required.

Fig. 2   Geographic location of the study area

1  The specific calculation process of the spatiotemporal weight 
matrix is shown in Appendix 3.

52630 Environmental Science and Pollution Research  (2023) 30:52624–52645

1 3



Data source and descriptive statistics

The data used in this paper are from China’s National 
Bureau of Statistics, CEIC database, China Urban Statistical 
Yearbook, China Regional Economic Statistical Yearbook, 
China Urban Construction Statistical Yearbook, Ningxia 
statistical yearbook, Shaanxi statistical yearbook, Shanxi 
statistical yearbook, Inner Mongolia statistical yearbook, 
statistical yearbooks of 17 prefecture cities, and Statistical 
Bulletins of national economic and social development 
of 17 cities over the years. For some missing data, the 
interpolation method is used in this paper. The descriptive 
statistics of relevant data are shown in Appendix 4.

Based on the above models and data, the regression 
analysis is performed (Fig. 3).

Results

Spatiotemporal characteristics of EFI

The spatiotemporal evolution pattern of the EFI of 17 cities 
in the Curve Area from 2006 to 2019 is reflected in Fig. 4. 
Temporally, the EFI of Yinchuan shows a fluctuating and 
stable state during the study period while that of the other 
16 cities shows a gradually decreasing trend in general. 
This indicates that the Curve Area is progressively 
approaching the development vision of ecological balance, 
environmental protection, and economic growth. This 
conclusion is different from that drawn from the national 

scale study: the environmental efficiency of developing 
countries is gradually decreasing (Salman et al. 2022). 
Spatially, significant differences exist in the EFI of different 
cities. Firstly, from the overall trend, the EFI of cities in 
the west of the Curve Area is significantly higher than 
that in the east; the EFI of the northern cities is higher 
than that of the southern cities; the EFI of cities in the 
central area is lower than that of the surrounding area. 
Secondly, from the perspective of provincial administrative 
regions, the overall level of EFI of four cities in Ningxia 
is significantly higher than that of cities in the other three 
provinces during the study period; the EFI of two cities in 
Shaanxi (Yulin and Yanan) is basically at the lowest level 
during the study period; the EFI of cities in Inner Mongolia 
and Shanxi is relatively at a moderate level. Notably, the 
EFI of provincial capital cities is significantly lower than 
that of other cities in the same province, such as Yinchuan 
in Ningxia, Huhehaote in Inner Mongolia, and Taiyuan 
in Shanxi. This is related to the agglomeration strategy 
of “strong provincial capitals” implemented in this area 
since the beginning of this century. As a result, a large 
number of talents and high-tech industries have gathered 
in provincial capitals, which enables the provincial capital 
cities to reduce environmental pollution while improving 
economic efficiency. In addition, the huge difference in the 
quality of ecological development between the provincial 
capital cities and the surrounding cities also indicates that 
the Curve Area is facing the problems of the weak driving 
force of the core cities, low degree of synergy, and low 
level of equalization of public services to a certain extent.

Fig. 3   The flowchart of the methodology
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Meanwhile, we also investigate the EFI of biological 
resource, energy resource, water resource, and pollution 
discharge—four components of the ecological footprint 
account. The evolution trends vary among these four indicators, 
but the spatial distribution trends are roughly the same. For lack 
of space, detailed information is shown in Appendix 5.

Further, it can be inferred from Fig. 4 that the spatial 
distribution of EFI shows a pattern of high-high clustering 
and low-low clustering. To verify this spatial correlation 
feature, Global Moran’s I index of EFI is calculated with 
GeoDa 1.20 (Table 1). Global Moran’s I indices of EFI 
in years except 2006 and 2010 are significantly positive, 
suggesting that the EFI of cities in the Curve Area has a 
significant spatial positive correlation. That is, it shows 
the characteristics of high-high and low-low clustering. 
Meanwhile, Global Moran’s I indices show an increasing 
trend in general, rising from 0.144 in 2006 to 0.413 in 
2019, indicating that the positive spatial correlation of EFI 
intensified successively.

Driving factors of EFI

Before performing the regression, a multicollinearity test 
should be conducted for all independent variables to avoid 
estimation deviation. As shown in Table 2, the VIF values 
of all variables are less than 10, indicating the lack of severe 

multicollinearity and the preparation of global and local 
regression models.

Results of global regression

Table 3 shows the estimation results of panel regression 
models. To screen out the model more compatible with 

Fig. 4   Temporal and spatial 
pattern of EFI in the Curve 
Area

Table 1   Global Moran’s I index of EFI

Year Moran’s I Z P value

2006 0.144 1.282 0.117
2007 0.236 1.848 0.044
2008 0.236 1.760 0.046
2009 0.212 1.622 0.057
2010 0.142 1.243 0.108
2011 0.287 1.881 0.041
2012 0.320 2.054 0.030
2013 0.315 1.990 0.035
2014 0.305 1.936 0.042
2015 0.341 2.114 0.032
2016 0.212 1.583 0.058
2017 0.329 2.001 0.038
2018 0.299 2.061 0.029
2019 0.413 2.637 0.008
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the sample data, relevant statistical tests are carried out. 
Firstly, the Lagrange multiplier (LM) test suggests that 
the random effects model is more suitable than the pooled 
regression model; secondly, the Hausman test shows that 
the individual fixed effects model is more ideal than the 
random effects model. While the time dummy variables 
are added to the model, it is found that the P values of the 
time dummy variables in all years are equal to 0.000, less 
than 0.05, indicating that the null hypothesis of no time 
effects is repelled. Therefore, the two-way fixed effects 
model should be adopted. Column 4 in Table 3 shows 
the estimation results of the two-way fixed effects model. 
According to the estimation results, POP, GDPPC, OPEN, 

MARL, GOVS, INL, ERI, and ISA have a significant 
impact on EFI. In contrast, the effect of ISR and TECL on 
EFI is not statistically significant.

With the other conditions unchanged, EFI will increase 
by 1.213%, 0.037%, 0.873%, and 0.138% for every 1% 
increase in POP, OPEN, MARL, and INL, respectively; 
every increase of 1% in GDPPC, GOVS, ERI, and ISA is 
adjoint with a decrease of 0.550%, 0.343%, 0.139%, and 
0.231% in the EFI, respectively. The results of the two-way 
fixed effects model exhibit that POP enhances the EFI to 
the largest extent, followed by MARL, INL, and OPEN; 
meanwhile, GDPPC exerts the strongest negative effect on 
EFI, followed by GOVS, ISA, and ERI.

Table 2   Results of 
multicollinearity test

Variables lnGDPPC lnINL lnISA lnMARL lnPOP lnGOVS lnISR lnTECL lnERI lnOPEN

VIF 5.28 5.06 4.38 4.16 3.84 3.41 2.45 2.18 2.12 1.87

Table 3   Estimation results of the panel regression model

Note:
***significance at 0.01
**significance at 0.05
*significance at 0.1

Variables Pooled regression model Random effects model Individual fixed 
effects model

Two-way fixed 
effects model (1)

Two-way fixed effects model (2)

(1) (2) (3) (4) (5)

lnPOP 0.019
(0.19)

0.016
(0.10)

−0.456**
(−2.33)

1.213***
(6.24)

1.205***
(6.34)

lnGDPPC −0.383***
(−3.11)

−0.705***
(−3.90)

−0.851***
(−9.03)

−0.550***
(−4.10)

−0.548***
(−4.13)

lnOPEN 0.084
(1.72)

0.026
(0.94)

0.006
(0.3)

0.037**
(2.43)

0.035**
(2.4)

lnMARL −0.142
(−0.85)

−0.078
(−0.45)

−0.287**
(−2.24)

0.873***
(6.62)

0.863***
(6.65)

lnGOVS −0.159
(−0.84)

0.057
(0.55)

0.233**
(2.54)

−0.343***
(−4.59)

−0.341***
(−4.58)

lnISR −0.161**
(−2.27)

−0.057
(−1.19)

−0.028
(−1.13)

−0.002
(−0.13)

lnTECL 0.034
(0.40)

−0.333
(−0.47)

−0.039
(−1.05)

0.017
(0.61)

lnINL −0.171**
(−2.16)

−0.038
(−0.46)

0.025
(0.54)

0.138***
(3.59)

0142***
(3.74)

lnERI −0.501***
(−6.70)

−0.194***
(−2.94)

−0.178***
(−4.96)

−0.139***
(−4.78)

−0.139***
(−4.78)

lnISA −0.349*
(−1.91)

−0.501***
(−3.14)

−0.470***
(−6.53)

−0.231***
(−3.63)

−0.230***
(−3.81)

Constant 0.411
(0.49)

−0.125
(−0.12)

2.294**
(2.36)

−10.424***
(−8.47)

−10.360***
(−8.50)

R2 0.791 0.804 0.815 0.907 0.907
LM test Inspection value: 294.84

P value: 0.0000
Hausman test Inspection value: 35.93

P value: 0.0002
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On this basis, the insignificant variables (ISR and TECL) 
are eliminated, and the two-way fixed effects model has 
performed again. The estimation results are presented in 
column 5 in Table 3. It can be found that after removing 
the variables ISR and TECL, the regression coefficients 
of other variables show inconspicuous change and are still 
significant, indicating that the previous regression results are 
robust. Here, the regression results of the global regression 
model have been analyzed. The result of the ideal two-
way fixed effect model shows that factors affecting EFI 
have prominent individual and time effects. Still, these 
effects cannot be reflected in the global regression model. 
Therefore, the GTWR model that takes into account the 
spatiotemporal heterogeneity should be adopted. The 
conclusion from the global regression model reflects the 
influence of factors from a global perspective and can serve 
as a baseline reference for the local regression model.

Results of local regression

Using ArcGIS 10.2, the GTWR model is performed to 
estimate the regression coefficients of various factors in 
different cities at different times. Table 4 shows the details 
of TWR, GWR, and GTWR. The goodness-of-fit coefficient 
(R2) of the GTWR model is 0.9906, higher than that of the 
TWR (0.8404) or GWR (0.9799) model, thus showing that 
the goodness of fit of the GTWR model exceeds that of 
the TWR and GWR models. Similarly, the residual sum of 
squares, sigma, and Akaike information criterion (AICc) 
values provided by the GTWR model are lower than those 
provided by the GWR or TWR model. In conclusion, the 
local regression details suggest that the optimum model is 
GTWR.

Results of the GTWR model show that all independent 
variables have specific regression coefficients in different 
cities and years, indicating the spatiotemporal volatility of 
EFI drivers. Appendix 6 shows the descriptive statistics of 
the regression parameters of the GTWR model. It can be 
seen that the parameters of some variables vary strikingly 
and have both positive and negative values, indicating that 
spatiotemporal heterogeneity exists in different driving 

factors. Moreover, Fig.  5a–j elaborately illustrates the 
varying influence of each driver over time. Due to the time 
continuity of local coefficients, the varying spatial effect can 
be more intuitively reflected via average coefficients of years 
(Bai et al. 2022). Fig. 6a–j presents the spatial distributions 
of average coefficients of years.

POP exerts both stimulative and inhibitory effects on 
EFI, with values fluctuating between −0.652 and 1.796, 
distinct from the positive impact (1.213) obtained in 
the two-way fixed effects model. Concerning the time 
variation presented in Fig. 5a, the effect shows a slow 
downward trend, and the lowest mean value was achieved 
in 2019. This indicates that the suppressive effect of POP 
on EFI has strengthened in recent years. For the spatial 
variation presented in Fig. 6a, POP was confirmed to play 
an inhibitory role in Eerduosi, Huhehaote, and cities in 
Shanxi province but a positive effect in the west of the 
Curve Area. These results indicate that the enhancement 
of the POP would exert opposite effects in the west and 
east of the Curve Area.

GDPPC has an inhibitory impact on EFI, with most 
values varying between −1.641 and 0, which is accordant 
with the inhibitory effect (−0.550) obtained in the two-way 
fixed effects model. This result suggests that GDPPC inhibits 
EFI, but the intensity of the inhibitory changes across 
periods and cities. Concerning the time variation illustrated 
in Fig. 5b, the impact presents a downward trend, and the 
lowest mean value was achieved in 2019. This suggests that 
GDPPC exerts a suppressive effect on EFI with a tendency 
to be increasingly strengthened. For spatial variation, as 
depicted in Fig. 6b, the weaker impact of GDPPC occurred 
in Yulin (−0.052), while the more significant effect was 
found in the other 16 cities.

OPEN exerts both stimulative and inhibitory effects 
on EFI, with values fluctuating between −0.168 and 
0.124, distinct from the positive result (0.037) obtained 
in the two-way fixed effects model. Concerning the time 
variation depicted in Fig. 5c, the impacts present a pattern 
of an “inverted-U” shape, with the mean value achieving 
its highest point (0.019) in 2010. This implies that even 
though OPEN once promoted EFI, its promoting effect has 
gradually weakened and turned into an inhibitory impact 
recently. For the spatial variation as illustrated in Fig. 6c, 
the more substantial negative impact appeared in cities on 
the edge of the Curve Area (especially the eastern part), 
including Bayannaoer (−0.038), Huhehaote (−0.087), 
Shuozhou (−0.049), Datong (−0.023), Xinzhou (−0.044), 
Taiyuan (−0.049), and Linfen (−0.004). In contrast, a 
positive impact appeared in the other cities. This suggests 
that the enhancement of OPEN would bring a better decrease 
in EFI in the eastern part of the Curve Area.

Table 4   Assessment of the TWR, GWR, and GTWR models

Model TWR​ GWR​ GTWR​

R2 0.8404 0.9799 0.9906
AICc 82.96 −278.33 −304.73
Residual sum of 

squares
15.0075 1.8918 0.8819

Sigma 0.2511 0.0892 0.0609
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MARL has both stimulative and inhibitory effects on 
EFI, with values waving between −1.498 and 0.903, distinct 
from the positive impact (0.873) obtained in the two-way 

fixed effects model. For the time change plotted in Fig. 5d, 
the effect presents a pattern similar to that of OPEN, with 
the mean value achieving its highest point (0.112) in 2016. 

Fig. 5   a–j Boxplots of local coefficients for different factors, 2006–2019
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Fig. 6   a–j The spatial distribution of annual mean value for different factors
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This indicates that although MARL has promoted the EFI in 
recent years, the promoting effect has gradually weakened. 
Concerning the spatial variation mapped in Fig. 6d, cities 
with stronger negative effects are primarily located in the 
east of the region. In contrast, cities in the west perform a 
slightly negative or positive impact.

GOVS has an inhibitory impact on EFI, with most 
values waving between −0.961 and 0, which is accordant 
with the negative effect (−0.343) reported by the two-way 
fixed effects model. This result implies that GOVS inhibits 
EFI, despite the intensity of the inhabitation changes across 
different years and cities. As per the time variation illustrated 
in Fig. 5e, the inhibitory impact presents a tendency of first 
stability followed by a fall, with the mean value reaching its 
lowest point (−0.422) in 2019, indicating that the negative 
effect of GOVS has strengthened recently. Regarding the 
spatial variation shown in Fig. 6e, the favorable outcome 
(0.329) occurred in Yanan, while the inhibitory effect was 
recorded in the other 16 cities. Besides, the inhibitory effect 
of the cities in the east of the region is more potent than that 
of the western cities.

ISR exerts both stimulative and inhibitory effects on 
EFI, with values fluctuating between −0.121 and 0.678, 
distinct from the insignificant negative outcome (−0.002) 
obtained in the two-way fixed effects model. Concerning the 
time variation presented in Fig. 5f, the overall state shows 
a trend of initial plateaus and then rising, with the mean 
values waving reposefully between 0.031 and 0.046 during 
2006–2018 and achieving the highest point (0.066) in 2019, 
indicating that the effect of ISR has strengthened during 
the past few years. For the spatial variation, as presented 
in Fig. 6f, the greater promoting effect (0.467) occurred 
in Yanan. In comparison, the greater inhibitory effect 
was recorded in Bayannaoer (−0.064), Wuhai (−0.059), 
Shizuishan (−0.060), Yinchuan (−0.046), Wuzhong 
(−0.031), and Lvliang (−0.024).

TECL exerts both stimulative and inhibitory effects on 
EFI, with values fluctuating between −0.309 and 0.273, 
distinct from the insignificant positive impact (0.017) 
reported by the two-way fixed effects model. For time 
variation (Fig. 5g), the mean values of the coefficients 
exhibit a slow downward trend, indicating that the inhibitory 
effect has strengthened recently. This trend may be related 
to China’s green innovation in recent years to curb the 
emission of sulfur dioxide and other pollutants (Luo et al. 
2023). Regarding the spatial distribution mapped in Fig. 6g, 
promoting effect exists in cities in the east of the region, 
while the inhibitory effect occurs in the west. This implies 
that the promotion of TECL would exert opposite effects in 
the western and eastern cities of the area.

INL exerts both positive and negative effects on EFI, with 
values waving between −0.413 and 0.468. The result differs 

from the positive impact (0.138) obtained in the two-way 
fixed effects model. For the temporal variation depicted 
in Fig. 5h, the mean values show a gradually rising trend, 
with the highest point (0.011) in 2019. This result indicates 
that the inhibitory effect has weakened and turned into a 
promoting effect. Regarding spatial distribution (Fig. 6h), 
a positive impact occurred in cities in Ningxia and Shanxi 
province except for Zhongwei, Datong, and Shuozhou. In 
contrast, a negative impact was found in the other nine cities. 
This suggests that the improvement of INL is probably not 
conducive to the reduction of EFI in Ningxia and Shanxi.

ERI exerts a negative impact on EFI, with most values 
fluctuating between −0.495 and 0. This result is accordant 
with the effect (−0.139) observed in the two-way fixed 
effects model, suggesting that ERI facilitates the EFI, despite 
the strength of the facilitation changes across periods and 
cities. As per the time variation illustrated in Fig. 5i, the 
negative effects present a tendency of first stability followed 
by a rise, with values varying between −0.164 and −0.086. 
This result suggests that the negative effects have weakened 
recently. For the spatial distribution (Fig. 6i), promoting 
effect appeared in Huhehaote (0.159), while a negative 
impact occurred in the rest of the cities.

ISA harms EFI, with most values waving between 
−0.871 and 0, which is principally accordant with the result 
(−0.231) found in the two-way fixed effects model. From the 
temporal trend in Fig. 5j, the mean values exhibit a U-shaped 
trend with the lowest point (−0.354) in 2014, indicating that 
ISA weakens EFI, despite the intensity changes in different 
years and cities. For the spatial distribution in Fig. 6j, a 
promising effect was found in cities of the central region, 
including Eerduosi (0.133), Yulin (0.065), Lvliang (0.003), 
and Yanan (0.311). At the same time, a negative impact 
appeared in the other cities of the region.

Discussion

The overall level of EFI in the Curve Area continued to 
decrease during the study period, which is similar to those 
of earlier studies (Han et al. 2021; Song et al. 2013). This 
result indicates that the reduction of EFI in the region has 
made great progress. Besides, the EFI exhibits significant 
spatiotemporal differences, probably due to the strategic 
difference in provincial development and orientation of 
economic interaction. The result also implies that the 
spatiotemporal heterogeneity of EFI should be considered 
when designing sustainable strategies.

As shown in Fig. 7, the impact of POP, OPEN, MARL, 
TECL, ISR, and INL on EFI was verified to be two-sided. 
POP, OPEN, MARL, and TECL have the potential to 
transform the favorable effect into an inhibitory effect, 
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while ISR and INL show the opposite. POP restrains EFI 
in the east of the region but promotes it in the west of the 
region, and this is probably attributed to the fact that cities 
in the eastern region are closer to the developed coastal 
areas in China and thus easier to enjoy the “scale effect” 
brought by population agglomeration. In contrast, cities 
in the western region are relatively closed and difficult 
to introduce high-tech talents, thus accompanied by the 
“crowding effect.” Unlike the western region of the study 
area, the eastern region is close to the coastline, and OPEN 
stimulates the economy of the eastern region and thus 
restrains EFI. The inverted U-shaped influence of MARL 
on EFI shows that the promotion of marketization reduces 
the EFI to a certain extent. However, the marketization level 
of the Curve Area at the current stage is still significantly 
lower than that of the national average level (An & Zhang 
2021), indicating that there is still some room to restrain 
EFI through marketization promotion. TECL hinders EFI 
in the east of the region but promotes it in the west of the 
region, which is related to the fact confirmed by (Ke et al. 
2021) that innovation improvement increases ecological 
footprint in Western China but reduces it in Central China. 
ISR seems not conducive to the reduction of EFI in the 
Curve Area; this is principally attributed to the fact that the 
rationalization of industrial structure is accompanied by 

the transfer of labor among different sectors, and the gap 
between technology required by industries and the existing 
skills of labors leads to the low efficiency of economic 
operation, which is unfavorable to the improvement of 
eco-efficiency. INL significantly reduces EFI in relatively 
developed cities such as Baotou, Huhehaote, Eerduosi, and 
Yulin, while the opposite effect is in poorer cities. This may 
be because the infrastructure support capacity in developed 
cities is completed, and the improvement of information and 
communication level will further improve the eco-efficiency.

Although GDPPC, GOVS, ERI, and ISA significantly 
inhibit EFI (Fig. 7), the intensity of the inhibition varies 
across periods and cities. GDPPC suppresses EFI, which 
is consistent with the previous research (Liu et al. 2020; 
Wang & Chen 2020). The decreasing negative effect of 
GDPPC foregrounds the noticeable improvement in the 
transformation of regional economic development from 
“quantity” to “quality.” GOVS inhibits EFI, which is similar 
to the result of Guangdong (Zhou et al. 2018). However, 
the result is contrary to that at the national level (Liu et al. 
2020). This finding suggests that GOVS is conducive to 
improving the eco-efficiency in EFAs.

The inherent fragile nature of EFAs’ environment 
indicates that GOVS has a higher marginal effect on 
regulating the eco-environment. ERI represses EFI, which 

Fig. 7   Current status and future evolution trend of each driving factor
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aligns with the findings of Ren et al. (2020) and Yu et al. 
(2019). This suggests that environmental regulation is 
an effective policy tool for the governments to improve 
environmental performance in the Curve Area. ISA restrains 
EFI, which is consistent with current relevant studies (Han 
et al. 2021; Wang & Chen 2020) but different from that 
in Chengdu-Chongqing urban agglomeration (He & Hu 
2022). Although the Curve Area is a gathering area for 
heavy industry, the accelerated development of the tertiary 
industry reduces the EFI and is thus beneficial to the 
eco-environment.

According to the summarization of the current status 
and future evolution trend of each driving factor (Fig. 7), 
the decision-making basis for the design of sustainable 
development path in EFAs (the Curve Area) can be 
concluded. Firstly, economic development and government 
support are of primary importance to the sustainable 
development of EFAs. In the future, improving the level of 
economic development and further expanding government 
functions will be the focal points to promote the construction 
of ecological civilization in EFAs. Secondly, POP, TECL, 
MARL, and OPEN have made some achievements in 
accelerating the green and high-quality development of 
EFAs. Controlling population density, increasing investment 
in scientific and technological innovation, optimizing the 
market environment, and rationally introducing foreign 
capital are the aspects that need further efforts in the 
following years. Thirdly, although ISA and ERI are 
conducive to the development of EFAs at the current stage, 
they may not be beneficial to the sustainable development 
of EFAs in the future. Therefore, it is nonnegligible to 
accurately position the current industrial situation, promote 
the optimization of industrial structure, and control the level 
of environmental regulation to coordinate the relationship 
between urban development and resources and environment. 
Fourthly, ISR and INL are the two most unfavorable drivers, 
and their evolutionary trend is worsening. Consequently, on 
the one hand, strengthening human resource management, 
such as providing support for labor distribution among 
industry sectors and reinforcing the skills training of the 
labor force floating among sectors, is extremely essential. On 
the other hand, propelling the construction of information 
infrastructure in backward areas and narrowing the 
information gap between EFAs and other developed areas 
would help curb this negative tendency.

Conclusions

Currently, the eco-environment is deteriorating increasingly 
against the background of global change, and the sustainable 
development of EFAs is facing great challenges. To evaluate 

the ecological performance and its forces in EFAs, a multi-
factor GTWR model of EFI is applied in the selected Curve 
Area. This paper aims to support and theoretically extend 
regional integration and differentiated governance strategies 
for the sustainable development of the Curve Area, providing 
a valuable reference for other EFAs. The main conclusions 
are as follows:

(1) During the study period, the overall level of EFI in the 
Curve Area decreases, and regional ecological performance 
shows a continuously improving trend. (2) The EFI in the 
Curve Area shows a significant spatial agglomeration effect 
of “high-high and low-low clustering.” Urban coordinated 
development is expected to alleviate ecological pressure 
in EFAs. (3) Driving factors of EFI in the Curve Area 
exhibit evident spatiotemporal heterogeneity. Population 
size, openness, marketization, technology, industrial 
structure rationalization, and information communication 
level imparted a two-sided impact on EFI, while affluence, 
government scale, environmental regulation, and industrial 
structure advancement significantly inhibit EFI, with the 
intensity of inhibition varying across periods and cities. 
The formulation of policies supporting the sustainable 
development of EFAs needs to grasp the temporal and 
spatial characteristics of various factors accurately.

From the empirical case in this study, it can be concluded 
that ecological performance and its determinants in EFAs 
have strong spatiotemporal volatility. However, such 
ecological performance and its determinants are specific to the 
context. That is, ecological performance and its determinants 
are distinct in EFAs with different geographical locations 
and development stages. Therefore, to formulate sustainable 
development policies for various EFAs, it is necessary to 
fully consider their geographical conditions and development 
stages to understand the future evolution trend. This study 
combines GIS and econometric methods, providing a 
reference for assessing the current sustainable development 
level and tracking the future development status of EFAs.

Herein, the conclusions of the study are summarized. 
They are not only conducive to understanding the forces 
and spatiotemporal dynamics of ecological performance in 
EFAs, but also provide a decision-making basis for dealing 
with the eco-environmental issues in EFAs and realizing 
sustainable development in the future. However, some 
limitations still exist. Although this paper selects indicators 
as comprehensively as possible when calculating the EFI, 
relevant indicators would still be omitted for the restriction 
of data acquisition, and it might exert a specific influence 
on the calculation results. In addition, a series of human and 
natural factors, including time and space, are considered in 
the analysis of driving forces. Still, due to the difficulty in 
quantifying other factors, such as policies (e.g., ecological 
compensation), climate, and environment, they have to be 
abandoned. Finally, the panel regression model mentioned 
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in most previous studies is adopted to obtain influencing 
factors, and other methods (e.g., the GeoDetector) to 
determine the influencing factors could also be adopted. 
However, due to the limitation of the length of the paper, we 
could not elaborate on all these works clearly in the current 
paper. In future work, we will further excavate the essence of 
sustainable development in EFAs; take complete account of 

the differences in policies, climate, environment, and other 
factors in different regions based on further improving the 
assessment system of EFI; and use methods such as the 
GeoDetector to identify factors driving EFI in EFAs for 
ease of providing support for scientifically formulating and 
implementing focused and localized development strategies 
for EFAs.

Appendix 1 Details of the EF account

     Table 5

It should be noted that the EF of biomass is the 
ecological footprint of local biomass production, while the 
EF of fossil energy is its consumption footprint (Luo et al. 
2018). Therefore, biomass production is used to calculate 
the EF of biological resources, while energy consumption 
is used to calculate the EF of energy. Besides, pollution 
discharge and energy consumption are treated separately 
due to the particularity of the EF accounting methods. For 
pollution discharge, industrial solid waste and domestic 
waste are converted into arable land according to 109,100 
t/hm2; industrial wastewater and urban wastewater are 
converted into water area according to 365 t/hm2; industrial 
sulfur dioxide and industrial smoke dust are converted into 
forest land at the rate of 0.08865 t/hm2 and 10.11 t/hm2, 
respectively (Li et al. 2022). The calculation formula of EF 
of pollutants is as follows:

where ri is the equivalence factor, Qi refers to the emission 
of pollutants, ACi is the ability of different lands to absorb 
pollutants, and i represents different pollutants. The EF of 
energy consumption is calculated according to the method 
proposed by Sun and Wang (2022), which is expressed as follows:

where rj is the equivalence factor, Rj is the total energy 
consumption (10,000 t of standard coal), Vj represents the 
global average energy footprint, and j =1,2,3,4 represent 
coal, natural gas, petroleum, and electricity, respectively.

(13)EFpollutant =
∑3

i=1
ri ×

Qi

ACi

(14)EFenergy =
∑4

j=1
rj ×

Rj × 293080

Vj

Table 5   Information about the EF account

Account Sub-account Products Land type (modified  
equivalence factor)

Biological resource Arable products Wheat, rice, corn, soybean, cotton, potato,  
rapeseed, peanut, vegetable, poultry  
egg, pork, and poultry meat

Arable land (4.02)

Forest products Fruits Forest land (0.63)
Grass products Dairy, beef, and mutton Grassland (0.09)
Aquatic products Freshwater aquaculture Water area (0.05)

Energy consumption Fossil fuel Coal, natural gas, and petroleum Fossil energy land (0.18)
Electricity Electricity Construction land (4.02)

Water resource Water Domestic water, production  
water, public water, and other water

water resource land (5.19)

Pollution discharge Wastewater Industrial wastewater and municipal sewage Water area (0.05)
Waste gas Industrial sulfur dioxide and industrial  

smoke dust
Forest land (0.63)

Solid waste Industrial solid waste and household waste Arable land (4.02)
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Appendix 2 Description of driving factors

         Table 6

Appendix 3 Calculation 
of the spatiotemporal weight matrix

Generally, the Gaussian kernel function is used to define the 
spatial weight matrix, and the formula is as follows:

where dij represents the spatial distance between regions 
i and j and h represents the bandwidth, which refers to 
the non-negative attenuation parameter of the functional 
relationship between weight and distance and is calculated 
by the cross-validation (CV) method according to the 
criterion of minimizing the sum of squared errors. The 
formula of the CV method is as follows:

(15)wij = exp(−(
dij

h
)

2

(16)CV =
1

n

∑n

i=1
[yi − ŷ≠i(h)]

2

where yi is the predicted value and ŷ≠i(h) represents the 
function of bandwidth h , and the bandwidth h takes the 
corresponding value of the minimum CV value.

For the measurement of spatiotemporal distance (dST), 
spatial parameter � and temporal parameter � need to be 
introduced to balance dimensional differences in time and 
space. The formula of dST is as follows:

Combining Eqs. (13) to (15), wij in the spatiotemporal 
weight matrix can be obtained:

 
    Table 7   Figure 8   Table 8

(17)dST
ij

=

√
�
[(
ui − uj

)2
+
(
vi − vj

)2]
+ �(ti − tj)

2

(18)wij = exp(−

�
dST
ij

h

�2

= exp

⎡⎢⎢⎢⎣
−

⎛⎜⎜⎜⎝

�
��
ui − uj

�2
+
�
vi − vj

�2�

h2
+

�(ti − tj)
2

h2

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦

Table 6   Description of driving factors

Note: in the formula of ISR, i = 1,2,3 represent the primary, secondary, and tertiary industries, li∕L refers to the labor force share of the ith 
industry, pi∕P refers to the output value share of the ith industry; in the formula of ERI, j = 1,2,3 represent industrial wastewater, industrial sul-
fur dioxide, and industrial wastewater, ej∕y refers to the emission of pollutant j per unit industrial output value of the region, and Ej∕Y  refers to 
the emission of pollutant j per unit industrial output value in China

Variable name Notation Variable measure

Population size POP Population density
Affluence GDPPC Per capita regional GDP
Technology TECL The proportion of employees in the science and technology industry in 

total employees
Marketization MARL The proportion of retail sales of social consumer goods in regional GDP
Government scale GOVS The proportion of government public financial expenditure in regional GDP
Openness OPEN The proportion of total import and export trade in regional GDP
Industrial structure advancement ISA The ratio of the total output value of the tertiary industry to the total 

output value of the secondary industry
Industrial structure rationality ISR

ISR =

�∑3

i=1
(
li

L
−

pi

P
)
2

(Shen et al. 2021)
Information communication level INL The proportion of Internet-access households in the total population
Environmental regulation ERI ERI =

1

(
∑3

j=1

ej∕y

Ej∕Y
)∕3(Zhang & Qin 2018)
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Table 7   Descriptive statistics of relevant data

Variable Unit Mean Std. dev. Min Max

EFI hm2/10,000 
yuan

0.570 0.350 0.0900 2.020

POP persons/km2162.3 139.9 18.66 751.3
GDPPC 10,000 yuan3.800 2.280 0.640 11.98
TECL % 1.650 1.170 0.200 6.190
MARL % 32.02 15.53 9.380 66.92
GOVS % 21.06 7.980 9.490 44.42
OPEN % 6.440 8.060 0.0500 48.07
ISA — 0.890 0.450 0.190 2.490
ISR — 24.98 16.22 0.910 80.32
INL households/

person
13.81 9.150 1.490 56.78

ERI — 0.290 0.410 0.0300 3.230

Fig. 8   a–d Temporal and spatial pattern of EFI of four subcategories

Appendix 5 Temporal and spatial pattern 
of EFI of four subcategories

Appendix 4 Descriptive statistics of relevant
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