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Abstract
Barium (Ba) is a non-essential element that can cause toxicity in living organisms and environmental contamination. Plants 
absorb barium predominantly in its divalent cationic form  Ba2+. Sulfur (S) can decrease the availability of  Ba2+ in the soil 
by causing its precipitation as barium sulfate, a compound known for its very low solubility. The objective of this study was 
to evaluate the effect of soil sulfate supply in soil Ba fractions, as well as on plant growth, and Ba and S uptake by lettuce 
plants grown in artificially Ba-contaminated soil under greenhouse conditions. The treatments consisted of five Ba doses (0, 
150, 300, 450, and 600 mg  kg−1 Ba, as barium chloride) combined with three S doses (0, 40, and 80 mg  kg−1 S, as potas-
sium sulfate). The treatments were applied to soil samples (2.5 kg) and placed in plastic pots for plant cultivation. The Ba 
fractions analyzed were extractable-Ba, organic matter-Ba, oxides associated-Ba, and residual-Ba. The results indicate that 
the extractable-Ba fraction was the main one responsible for Ba bioavailability and phytotoxicity, probably corresponding 
to the exchangeable Ba in the soil. The dose of 80 mg  kg−1 of S reduced extractable-Ba by 30% at higher Ba doses while it 
increased the other fractions. Furthermore, S supply attenuated the growth inhibition in plants under Ba exposure. Thus, S 
supply protected the lettuce plants from Ba toxicity by reduction of Ba availability in soil and plant growth enhancement. 
The results suggest that sulfate supply is a suitable strategy for managing Ba-contaminated areas.
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Introduction

Barium (Ba, CAS number 7440-39-3) is a non-essential 
metal element that may cause harmful effects in living 
organisms and ecosystems. Chronic exposure to Ba results 
in hypertension, cardiovascular diseases, and other related 
health problems in humans and animals (WHO 2022). Fur-
thermore, high Ba concentrations can inhibit plant growth 
and development (Peana et al. 2021; Sleimi et al. 2021). The 
recommended environmental safety limit values range from 
0.7 to 1.3 mg  L−1 Ba in water (USEPA 2004; CONAMA 
2005; WHO 2022) and are around 330 mg  kg−1 Ba in soils 

(USEPA 2005), with prevention and investigation threshold 
concentrations in Brazilian soils being set at 150 and 300 mg 
 kg−1 Ba, respectively (CONAMA 2009). Although Ba has 
high safety values compared to other contaminants, some 
studies have reported Ba concentrations above the recom-
mended limits in soils and water bodies contaminated with 
industrial, mining, and domestic waste (Lamb et al. 2013; 
Ferreira et al. 2020; Viana et al. 2021). Thus, Ba contami-
nation can be an environmental and public health problem, 
mainly in waste deposits with high Ba concentrations.

Although Ba has no known benefits for plants, it can 
be absorbed, probably as  Ba2+, a divalent cation similar 
to nutrients like  Ca2+ and  Mg2+ (Kabata-Pendias 2010). 
Indeed, results of sequential extraction experiments indi-
cated that the exchangeable Ba fraction plays an impor-
tant role in the retention of Ba in a tropical climate (Gong 
et al. 2020). Barium plant uptake makes phytoremediation 
a potential strategy for managing Ba-contaminated areas. 
Phytoremediation consists of a low-cost and environmentally 
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friendly strategy to remove contaminants from soil and water 
through plant uptake and extraction (Antoniadis et al. 2017). 
Previous studies have demonstrated that phytoremediation is 
a suitable strategy for managing Ba contamination (Carvalho 
et al. 2019; Ferreira et al. 2019). In contrast, Ba plant uptake 
might increase risks to humans and animals by the possible 
ingestion of edible parts with high Ba content (Kravchenko 
et al. 2014). Thus, studies about Ba uptake are important 
for phytoremediation and risk assessment of contaminated 
areas (Myrvang et al. 2016). Among the aspects that influ-
ence contaminant uptake and extraction, plant nutritional 
status has a crucial role, affecting the amount of contaminant 
extracted through the effect on plant growth and antioxidant 
systems (Anicésio and Monteiro 2022; Cardoso et al. 2022).

Among the nutrients that enhance plant resistance, sulfur 
(S) has demonstrated positive effects on plant tolerance to 
several contaminants (Rabêlo et al. 2018; Gonçalves and 
Monteiro 2022), including Ba in nutrient solution (de Souza 
Cardoso and Monteiro, 2021a, b). Some studies indicate that 
sulfate  (SO4

2−) possibly reduces  Ba2+ availability in soils, 
probably by causing the precipitation of Ba as barium sulfate 
(Ippolito and Barbarick 2006; Melo et al. 2014; Cappuyns 
2018). Thus, S supply may reduce Ba availability in soils, 
reducing the toxicity risk. In contrast, S can induce Ba accu-
mulation by plant growth improvement (de Souza Cardoso 
and Monteiro 2021a), enhancing Ba phytoremediation, yet 
it can also increase Ba content in foods and, thus, toxicity 
risks. The study of Ba chemical fractions can elucidate the 
dynamics, mobility, and availability of Ba in soils (Noguei-
rol and Alleoni 2013); however, the influence of sulfate in 
Ba fractions was unknown. Here, we evaluated the effect 
of sulfate supply in Ba chemical soil fractions, as well as 
on plant growth, and Ba and S uptake by lettuce, an impor-
tant vegetable and soil pollution bioindicator, cultivated in a 
tropical soil artificially contaminated with Ba under green-
house conditions.

Material and methods

Experimental design

The experimental design consisted of a completed rand-
omized design with fifteen treatments and four replicates. 
The treatments consisted of combinations between five Ba 
doses (0, 150, 300, 450, and 600 mg  kg−1 Ba) and three S 
doses (0, 40, and 80 mg  kg−1 S) in soil, and each experimen-
tal unit consisted of one pot with 2.5 kg soil and two plants. 
The Ba doses were set based on Ba prevention and inves-
tigation values established for Brazilian soils (CONAMA 
2009), and S doses were determined based on previous stud-
ies about S supply in pot experiments (Huang et al. 2021; 
Cardoso et al. 2022). Barium and S sources were barium 

chloride  (BaCl2·2H2O, CAS number 10326-27-9) and potas-
sium sulfate  (K2SO4, CAS number 7778-80-5), respectively, 
with K and other nutrients being balanced between the treat-
ments (Table S1). The treatments were applied as liquid-
solution form along with basic fertilization.

Experimental conditions

Soil characterization

The soil sample was collected in an Oxisol (0–20-cm depth) 
classified as Rhodic Haplustox under natural vegetation 
(USDA 1999). The sample was grounded, sieved (4-mm 
mesh), and mixed for homogenization, and sub-samples 
were analyzed for chemical and physical attributes. The 
results are presented in Table S2. For Ba pseudo-total deter-
mination, samples (0.5 g) were digested in 10 mL of concen-
trated hydrochloric and nitric acid solution (HCl/HNO3 ratio 
4:1) under heating in a digestion block system (60°C for 180 
min, 105°C for 60 min, and 140°C for 30 min) (McGrath 
and Cunliffe 1985). The analysis quality—QA/QC proto-
col—was verified with certified soil (NIST SRM 2710a, 
Montana Soil). After cooling, the extracts were filtered, 
and the volume was adjusted using deionized water and 
volumetric flasks (10 mL). The extracts were analyzed by 
inductively coupled plasma optical emission spectroscopy 
(ICP-OES), and Ba concentrations were calculated using a 
standard curve. The Ba pseudo-total concentration was 3.9 
mg  kg−1 Ba in soil. For S–SO4 determination, samples (2.5 
g) were reacted with 25 mL calcium phosphate (500 mg  L−1 
P) diluted in an acetic acid solution (2.0 M), and S concen-
trations were determined by the turbidimetric method (Ajwa 
and Tabatabai 1993). The S-SO4 concentration was 12 mg 
 kg−1 S in the soil.

Liming and fertilization

Prior to plant cultivation, soil samples were transferred 
to plastic pots (2.5-L capacity) and received 2.3 g  kg−1 of 
limestone powder (41% CaO and 10.5% MgO), aiming to 
increase base saturation to 80% for soil acidity correction. 
Then, the samples were incubated for 20 days. After the 
incubation period, the samples received the treatments and 
the following basic fertilization, as liquid-solution form (mg 
 kg−1): 200 N  (NH4H2PO4 and  NH4NO3), 450 P  (NH4H2PO4 
and  KH2PO4), 300 K  (KH2PO4), 0.8 B  (H3BO3), 1.3 Cu 
 (CuCl2·2H2O), 3.6 Mn  (MnCl2·4H2O), 0.15 Mo  (H2MoO4), 
and 4.0 Zn [(ZnNO3)2] (Table S1). Then, the samples were 
incubated for 10 days. The soil moisture was maintained at 
60% field capacity during the incubation period with deion-
ized water.
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Plant cultivation and harvest

Lettuce seeds (Lactuca sativa L. cv. Solaris) were germi-
nated in trays with vermiculite under Hoagland solution 
irrigation (10% ionic strength) under greenhouse conditions 
(spring season, 25±3°C, 14 h light/10 h dark). Ten days 
after germination, three seedlings were selected according 
to uniformity (two 3-cm-length true leaves) and transplanted 
to the pots containing the treatments. After 7 days, one seed-
ling was removed, and two seedlings remained per pot until 
the harvest. The soil moisture was maintained at 60% field 
capacity at plant cultivation with deionized water. Fifteen 
days after the transplant, a top-dress soil fertilization with 
100 mg  kg−1 N  (NH4NO3) was applied in solution form. The 
plants were harvested 30 days after transplant. The shoots 
were harvested, and the roots were washed using sieves and 
tap water. Then, shoots and roots were rinsed with calcium 
chloride solution (2 mM) and deionized water. The plant 
material was dried for 72 h in an oven with air circulation 
(65°C) and weighed using a digital scale.

Barium and sulfur in plants

Dried plant material was ground, and samples (0.5 g) were 
digested in 8 mL of concentrated perchloric and nitric acid 
solution  (HClO4/HNO3 ratio 3:1) under heating in a diges-
tion block system (50, 100, and 150°C for 60 min each, and 
200°C until translucent extracts, around 30 min). The analy-
sis followed a rigid QA/QC protocol with the use of a certi-
fied reference material (NIST SRM 1573a, Tomato Leaves). 
After cooling, the plant extract volume was adjusted using 
volumetric flasks and deionized water (25 mL). The extracts 
were analyzed by ICP-OES, and element concentrations 
were calculated using standard curves.

Barium indices in plants

Barium bioconcentration (Ba-BCF) and translocation (Ba-
TF) factors were calculated according to Antoniadis et al. 
(2017) using the following equations: 1. Ba − BCF = [Ba in 
plants]/[Ba in soil], 2. Ba − TF = [Ba in shoots]/[Ba in roots], 
where [Ba in plants] is the weighted average of Ba concen-
trations in plant tissues, [Ba in soil] is the Ba dose applied, 
and [Ba in shoots] and [Ba in roots] are the Ba concentra-
tions in shoots and roots, respectively.

Sequential extraction of Ba fractions

The sequential extraction was carried out according to 
Nogueirol and Alleoni (2013) with some modifications. 
Before seedlings transplant, soil samples (50 g) were col-
lected, dried (room temperature), and ground, and sub-sam-
ples (0.5 g) were added to centrifuge tubes (50 mL). The 

fractions were extracted in the following sequence: Ba in 
extractable fraction (extractable-Ba, 1); Ba bound to organic 
matter (organic matter-Ba, 2); Ba bound to Al, Fe, and Mn 
oxides (oxides associated-Ba, 3); and Ba in residual frac-
tion (residual-Ba, 4). Extractable-Ba was obtained with 15 
mL calcium chloride solution (0.1 M  CaCl2). Samples were 
shaken in a horizontal shaker at 120 rpm for 2 h (room tem-
perature), centrifuged (1400 g for 20 min), and supernatants 
were collected, filtered, and transferred to volumetric flasks 
(25 mL). Then, samples were resuspended with 5 mL of 
sodium chloride solution (0.1 M NaCl) in a vortex shaker 
and centrifuged as described. Supernatants were collected, 
filtered, and transferred to the previous flasks. The volume 
was adjusted with deionized water. Then, samples were dried 
overnight in an oven (60°C) and weighed to check soil loss.

Organic matter-Ba was extracted with 5 mL sodium 
hypochlorite solution (NaOCl 5% v/v, pH 8.5). The sam-
ples were kept in a water bath (90–95°C) for 30 min and, 
after cooling, were centrifuged, resuspended, and dried, 
and supernatants were collected as described. The oxides 
associated-Ba was extracted with 20 mL solution (pH 3.0) 
with ammonium oxalate [0.2 M  (NH4)2C2O4], oxalic acid 
(0.2 M  C2H2O4), and ascorbic acid (0.1 M  C6H8O6). The 
samples were kept in a water bath (90–95°C) for 30 min 
and, after cooling, were centrifuged, resuspended, and dried, 
and supernatants were collected as described. At last, the 
samples were transferred to glass digestion tubes for resid-
ual-Ba extraction (pseudo-total concentration). The samples 
were digested in 10 mL of hydrochloric (HCl, 37% v/v) and 
nitric acid  (HNO3, 65% v/v) solution, HCl/HNO3 ratio 4:1, 
under heating in a digestion block system (60°C for 180 
min, 105°C for 60 min, and 140°C for 30 min). After cool-
ing, the extracts were filtered, and the volume was adjusted 
as described. The extracts were analyzed by ICP-OES, and 
Ba concentrations were calculated using a standard curve.

Statistical analysis

Data normality and variance analyses were performed using 
SAS® Studio (SAS® OnDemand for Academics), and treat-
ments were grouped by the Scott-Knott test (p < 0.05) using 
the SISVAR® software (Ferreira 2019). Pearson correlation 
and regression analyses were performed using SAS® Studio.

Results

Plant growth and toxicity symptoms

The treatments severely affected plant growth (Fig. 1). Bar-
ium exposure inhibited lettuce growth, mainly in plants cul-
tivated without S supply (Fig. 1(b, c)). Conversely, S doses 
attenuated Ba toxicity, mainly in plants cultivated under 
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the 80 mg  kg−1 S supply. The addition of 600 mg  kg−1 Ba 
decreased the shoot and root dry matter production by 85% 
in plants grown without S supply, compared with the control 
treatment (40 mg  kg−1 S without Ba addition). However, 
the same Ba dose decreased shoot and root dry matter pro-
ductions by 21 and 47%, respectively, in plants grown with 
80 mg  kg−1 S supply compared with the control treatment. 
Similarly, Ba doses induced leaf chlorosis, mainly in plants 
grown without S supply, which was less severe in plants cul-
tivated with S supply (Fig. 1(a)). Interestingly, 40 mg  kg−1 S 
dose presented equivalent results to 80 mg  kg−1 S until 450 
mg  kg−1 Ba addition, while 80 mg  kg−1 S dose promoted 
better plant tolerance at 600 mg  kg−1 Ba dose.

Barium and sulfur concentrations

The treatments influenced both Ba and S concentra-
tions in lettuce tissues (Fig. 2). Barium doses increased 

Ba concentrations in lettuce shoots and roots, mainly in 
plants grown without S addition. At the same time, this 
effect was less pronounced under S supply (Fig. 2(a, b)). 
Plants cultivated under the addition of 600 mg  kg−1 with-
out S supply exhibited Ba concentrations of 1.3 g  kg−1 Ba 
in shoots and 3 g  kg−1 Ba in roots. In contrast, in plants 
grown under the same Ba dose with 80 mg  kg−1 S supply, 
the Ba concentrations were 0.5 g  kg−1 Ba in shoots and 
1.5 g  kg−1 Ba in roots. Likewise, in plant growth results, 
40 mg  kg−1 S dose promoted Ba concentrations in lettuce 
tissues equivalent to 80 mg  kg−1 S until 450 mg  kg−1 Ba 
addition, while 80 mg  kg−1 S dose promoted lower Ba 
concentrations at 600 mg  kg−1 Ba. Regarding S in plants, 
Ba doses decreased S concentrations in shoots and roots. 
The addition of 600 mg  kg−1 Ba decreased S concentra-
tions by 30% in shoots and roots of plants grown with 
80 mg  kg−1 compared with the same S dose without Ba 
addition (Fig. 2(c, d)).

Fig. 1  Lettuce growth under Ba 
and S doses in soil (mg  kg−1). 
Plants at harvest time (a). Shoot 
dry matter (SDM, b) and root 
dry matter (RDM, c). Columns 
with the same letters were 
grouped by the Scott-Knott test 
(p < 0.05)

0.0

2.5

5.0

7.5

10.0

0 150 300 450 600

S
D
M

(g
/p
la
n
t)

Ba (mg kg-1)

0 40 80 S (mg kg-1)

a
b

b

d
d

a
a

b

a
a a

b b

c

b

0

1

2

3

4

0 150 300 450 600

R
D
M

(g
/p
la
n
t)

Ba (mg kg-1)

0 40 80 S (mg kg-1)

b b

c

d d

a
b a

a

b b

c
b

d

300

Ba

0

S

300

Ba

40

S

300

Ba

80

S

600

Ba

0

S

600

Ba

40

S

600

Ba

80

S

Shoot dry matter (b) Root dry matter (c)

Lettuce plants at harvest time (a)

c

53941Environmental Science and Pollution Research  (2023) 30:53938–53947

1 3



Barium indices and accumulation

The treatments influenced the Ba indices and accumulations 
in lettuce plants (Fig. 3). S supply decreased the Ba accu-
mulation in shoots until 300 mg  kg−1 Ba dose, and in roots 
at 150 mg  kg−1 Ba, mainly at 80 mg  kg−1 S supply (Fig. 3(a, 
b)). This S dose decreased the Ba accumulation in shoots by 

40% at 300 mg  kg−1 Ba and in roots by 54% at 150 mg  kg−1 
Ba, compared with the same Ba doses without S supply. 
However, the S supply increased Ba accumulation in plants 
at higher Ba doses. The 80 mg  kg−1 S supply increased the 
Ba accumulation by 74% in shoots and 6-fold in roots at 600 
mg  kg−1 Ba dose, compared with the same Ba dose with-
out S supply. Regarding Ba indices, the S supply decreased 

Fig. 2  Ba and S concentrations 
in shoot (SDM) and root dry 
matter (RDM) of lettuce grown 
under Ba and S doses in soil. 
Ba concentrations in SDM (a) 
and RDM (b). S concentrations 
in SDM (c) and RDM (d). Col-
umns with the same letters were 
grouped by the Scott-Knott test 
(p < 0.05)
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Fig. 3  Ba indices and accumu-
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and S doses in soil. Ba accumu-
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TF, d). Columns with the same 
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Ba-BCF, mainly at 80 mg  kg−1 S dose (Fig. 3(c)). This S 
dose decreased the Ba-BCF by 74% in plants grown under 
150 mg  kg−1 Ba compared with the same Ba dose without S 
supply. Conversely, the Ba addition increased the Ba-TF by 
2.2-fold compared with the control treatment, regardless of 
Ba and S doses (Fig. 3(d)).

Barium fractionation

The treatments affected all Ba chemical fractions evaluated 
(Fig. 4). The Ba doses increased all fractions regardless of S 
supply, with higher increments in extractable-Ba, residual-
Ba, and oxides associated-Ba (Fig. 4(a, c, d)). The addition 
of 600 mg  kg−1 Ba combined with 40 mg  kg−1 S yielded 352 
mg  kg−1 of extractable-Ba, 115 mg  kg−1 of residual-Ba, 66 
mg  kg−1 of oxides associated-Ba, and 14 mg  kg−1 of organic 
matter-Ba. In contrast, the S supply decreased extractable-
Ba at Ba doses higher than 150 mg  kg−1, mainly at 80 mg 
 kg−1 S, while it increased the other fractions. Both 40 and 
80 mg  kg−1 S doses decreased extractable-Ba by around 25% 
at 300 and 450 mg  kg−1 Ba, compared with the same Ba 
doses without S supply (Fig. 4(a)). However, just the higher 
S dose decreased extractable-Ba at 600 mg  kg−1 Ba, decreas-
ing it by 30% compared with the same Ba dose without S 
supply. Conversely, S doses increased by around 2-fold the 
residual-Ba, oxides associated-Ba, and organic matter-Ba at 
450 and 600 mg  kg−1 Ba, compared with the same Ba doses 
without S supply. Analyzing the relative distribution of Ba 
fractions, we observed that, at Ba doses higher than 150 mg 
 kg−1, the higher S dose decreased extractable-Ba from 77 

to 55%, while increased residual-Ba from 15 to 29%, and 
oxides associated-Ba from 6 to 14% (Fig. 5).

Relationships between Ba in soil, Ba in plants, 
and lettuce growth

We observed strong negative correlations between Ba con-
centrations in lettuce tissues and shoot and root productions 
(Fig. 6). Regarding Ba concentrations in plant tissues and 
Ba fractions in soil, we observed strong positive correlations 
between the extractable-Ba fraction and Ba in shoots and 
roots (Fig. 7), while moderated positive correlations were 
observed between organic matter-Ba, oxides associated-Ba, 
and residual-Ba fractions and Ba concentrations in lettuce 
tissues.

Discussion

Sulfur supply protected lettuce plants from Ba toxicity 
(Fig. 1), mainly at the higher S dose (80 mg  kg−1 S), which 
represents twice the standard amount for plant cultivation in 
soils under greenhouse conditions (Huang et al. 2021; Car-
doso et al. 2022). Since we did not observe growth inhibition 
in plants cultivated without S addition, it seems the S natu-
rally available in soil supplied this nutrient for proper lettuce 
growth (Table S1). However, the growth inhibition in plants 
cultivated without S addition under Ba exposure suggests 
that plants supplied just with S naturally available in soil 
are more susceptible to Ba’s harmful effects, like inhibition 

Fig. 4  Ba chemical fractions in 
soil under Ba and S doses. Ba 
in extractable fraction (a), Ba 
bound to organic matter (b), Ba 
bound to Al, Fe, and Mn oxides 
(c), and Ba in residual fraction 
(d). Columns with the same 
letters were grouped by the 
Scott-Knott test (p < 0.05)
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in sulfur and magnesium uptake (Fig. 2(c, d), S1d). These 
results indicate that high S availability can enhance plant 
resistance to Ba toxicity, probably due to its role in plant 
growth and influence in Ba availability in soil.

Sulfur is a nutrient for all organisms and plays several 
functions in plants, mainly due to its structural role in 
cysteine and methionine amino acids and other compounds 
related to plant growth, development, and stress resistance 
(Capaldi et al. 2015; Kopriva et al. 2019). Thus, many stud-
ies have reported that S can enhance plant tolerance to con-
taminants toxicity (Rabêlo et al. 2018; Siddiqui et al. 2019). 
Regarding Ba, de Souza Cardoso and Monteiro (2021a) sug-
gested that S can reduce its phytotoxicity by immobiliza-
tion in roots as barium sulfate, which was a mechanism that 

probably contributed to lettuce resistance in this study, con-
sidering the higher Ba accumulation in roots under S supply 
(Fig. 3(b, c)). In addition, de Souza Cardoso and Monteiro 
(2021b) demonstrated that S could enhance the antioxidant 
system of plants to oxidative stress caused by Ba, which 
possibly contributed to toxicity alleviation in this study, con-
sidering the higher S tissues concentrations in plants grown 
under S supply (Fig. 2(c, d)).

The protective effect of S supply in lettuce under Ba 
exposure can also be related to its influence on metal avail-
ability in soil. Our results indicated that S decreases the Ba 
availability in soil, as suggested by Melo et al. (2014). The 
S addition decreased the Ba bioconcentration factor and Ba 
concentrations in shoots and roots (Figs. 2(a, b) and 3(c)). 

Fig. 5  Relative distribution 
of Ba chemical fractions in 
soil under Ba and S doses. 
Extractable-Ba: Ba in extract-
able fraction. Residual-Ba: Ba 
in residual fraction. Oxides 
associated-Ba: Ba bound to Al, 
Fe, and Mn oxides. Organic 
matter-Ba: Ba bound to organic 
matter
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Furthermore, S supply decreased the Ba accumulation in 
shoots until 300 mg  kg−1 Ba and in roots at 150 mg  kg−1 Ba 
(Fig. 3(a, b)). The lower Ba availability under S supply is 
also indicated by the reduction in the extractable-Ba fraction 
(Figs. 4(a) and 5), which was the Ba fraction better cor-
related with Ba uptake (Fig. 7(a, b)) and growth inhibition 
(Fig. S2a, b). Thus, the S supply decreased Ba availability 
and uptake by lettuce plants, protecting the plants from Ba 
toxicity since the increasing Ba tissue concentrations were 
related to growth inhibition (Fig. 6(a, b)). Furthermore, the 
lower Ba uptake by S supply can decrease the Ba toxicity 

risk for humans and animals by ingesting lettuce cultivated 
in soil with low Ba concentrations (Fig. S3c).

Many studies have demonstrated the high affinity between 
 Ba2+ cation and  SO4

2− anion in aqueous solutions (Fig. S4), 
producing barium sulfate or barite  (BaSO4), a very-low 
solubility compost (around 2.5 mg  L−1 at 25°C and 1 bar) 
useful for industrial purposes (He et al. 2014; Corrêa et al. 
2022; Ketegenov et al. 2022). This affinity probably was 
responsible for the decrease in  Ba2+ availability, indicated 
by a reduction of extractable-Ba under S supply, while the 
 BaSO4 produced was probably detected in the less soluble 

Fig. 7  Correlations between 
Ba fractions in soil and Ba 
concentrations in shoot (SDM) 
and root (RDM) dry matter of 
lettuce grown under Ba and S 
doses. Extractable-Ba and Ba in 
SDM (a) and RDM (b); organic 
matter-Ba and Ba in SDM (c) 
and RDM (d); oxides associ-
ated-Ba and Ba in SDM (e) and 
RDM (f); and residual-Ba and 
Ba in SDM (g) and RDM (h). 
***p < 0.001

R = 0.86***
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Ba-fractions, mainly the residual-Ba and the oxides asso-
ciated-Ba (Figs. 4 and 5). Furthermore, the results indicate 
the potential of  CaCl2 0.1 M or similar solutions to evaluate 
 Ba2+ cation or Ba-exchangeable in soils, a fraction that plays 
a major role in the retention of Ba in soils of tropical cli-
mates (Gong et al. 2020). Thus, the extractable-Ba fraction 
can be used as a Ba toxicity risk indicator, considering that 
the  Ba2+ cation is the main absorbable and toxic Ba form to 
plants (Llugany et al. 2000; Kabata-Pendias 2010) and the 
strong positive correlation between extractable-Ba and Ba 
uptake and toxicity (Fig. 7(a, b), S2a, b).

Although S reduced Ba availability, plants grown at Ba 
doses higher than 300 mg  kg−1 under S supply presented 
higher Ba accumulations (Fig. 3). This effect is possibly 
related to the lower Ba tissue concentration due to the higher 
biomass production in these plants (Fig. 2(a, b)), which 
resulted in higher Ba accumulations, even presenting lower 
Ba tissue concentrations and less severe toxicity (Fig. 1). 
Thus, S supply increased the Ba critical levels in soil and 
shoots for lettuce growth (Fig. S3a, b). These results indicate 
the potential of S addition to enhance Ba phytoextraction 
and phytoremediation through higher plant biomass produc-
tion due to the S roles in plant growth and development. 
Thus, S supply can be a suitable low-cost and environmen-
tally friendly strategy to manage Ba-contaminated areas, like 
the one studied by Viana et al. (2021), due to Ba availability 
reduction or Ba phytoextraction enhancement.

Conclusions

The extractable-Ba fraction was the main one responsible for 
Ba bioavailability and phytotoxicity, probably corresponding 
to the  Ba2+ exchangeable cation in the soil. The S supply 
reduced extractable-Ba at higher Ba doses while it increased 
the other fractions. Thus, S supply protected the lettuce 
plants from Ba toxicity by reduction of Ba availability in 
soil, in addition to plant growth enhancement. Our findings 
suggest that S supply can be a suitable low-cost and envi-
ronmentally friendly strategy to manage Ba-contaminated 
areas due to Ba availability reduction or Ba phytoextraction 
enhancement. Furthermore, future studies can focus on S 
doses higher than 80 mg  kg−1 S since the results indicate 
the potential of higher S addition in plant tolerance and Ba 
availability reduction. However, studies about the S effect in 
Ba-contaminated soils at field conditions are still necessary.
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