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Abstract
Remote sensingmonitoring of regional ecological quality has advanced significantly with the rapid developments of remote 
sensing technology. At present, remote sensing ecological index (RSEI) has been widely used in ecological status monitoring. 
However, RSEI was proposed for urban environments, and the rationality and accuracy of its applicability to desert-dominated 
arid region ecosystems need to be demonstrated. Therefore, in this study, we incorporated desertification monitoring index 
(DMI) and salinity monitoring index (SMI) to RSEI and developed the modified remote sensing ecological index (MRSEI) 
for arid regions. Moreover, we analyzed the stability of MRSEI in ecological status monitoring for arid regions. The MRSEI 
was then used to evaluate the ecological quality of Inner Mongolia from 2000 to 2020 and exploring its causes. The results 
show that (1) Although the evaluation results of RSEI and MRSEI are more consistent in areas with high ecological status 
grades, the MRSEI results are more cautious and reliable in extreme conditions (e.g., desertification, salinization) than the 
RSEI. (2) Approximately 87.66% of ecological quality have improved or remain stable from 2000 to 2020, but the remaining 
areas (accounting for 12.34% of the whole area) are still under degraded conditions. This demonstrates that although local 
governments have made some progress in ecological conservation, the areas that are fluctuating or degraded still require 
protection or management. (3) In Inner Mongolia, the ecological quality which drove by precipitation (P) & temperature 
(T) accounting for 26.67% of the study area, population density (D) and GDP per capita (G) affected 13.23% of regional 
ecological quality. Overall, this research is crucial for evaluating spatial and temporal changes in arid region ecology and 
establishing conservation strategies.
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Introduction

Environmental problems such as desertification, drought, 
and climate change have negatively affected the sustaina-
ble development of socio-economic ecosystems (Wei et al. 
2020). At the same time, human activities have generated 
great pressure on the regional environment, especially in 
the arid and semi-arid regions, where the environment has 

grown vulnerable (Cheng et al. 2022). Therefore, in order 
to comprehend the characteristics and changes, ecological 
quality must be monitored and assessed. Inner Mongolia, 
China, is a typical arid and semi-arid region, which is a 
case of environmental research in the arid region. In recent 
years, Inner Mongolia has been affected by both natural and 
human disturbances (Zhang et al. 2020; Xu et al. 2020); 
environmental issues such as desertification (Yu et al 2020), 
salinization (Zhang et al. 2015), and grassland degradation 
(Xin et al. 2020) have developed increasingly. In view of 
this, efficient and accurate monitoring of ecological status, 
dynamic changes, and its drivers in Inner Mongolia is criti-
cal to advancing sustainable development goals.

Remote sensing technology has the advantages of large-
scale and macroscopic monitoring, which provides an effec-
tive method for monitoring the ecological environment qual-
ity in Inner Mongolia (Huang et al. 2021; Wei et al. 2019). 
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Generally, numerous assessment models use a single-remote 
sensing spectral inversion index, such as vegetation coverage 
(Liu et al. 2021), normalized difference vegetation index 
(NDVI) (Chen et al. 2022), normalized difference building 
index (NDBSI) (Kim et al. 2020), or land surface tempera-
ture (LST) (Li et al. 2022a). Although the indices mentioned 
above can describe changes in a single-ecosystem compo-
nent, in fact, the interactions between each environmental 
component in an ecosystem have the potential to affect the 
whole ecosystem and they are interdependent (Suter et al. 
2010). Consequently, integrating multiple indicators can 
more comprehensively describe the ecological status (Pariha 
et al. 2021), and the inversion models that combine multiple 
environment elements are applied to numerous studies. For 
example, the ecological index (EI) integrates multiple fac-
tors such as biological abundance, vegetation cover, water 
network density, land degradation, and environmental qual-
ity (Jing et al. 2020). However, there are significant limita-
tions to EI, such as the weight of each indicator being set by 
the researcher’s personal experience. In addition, the indi-
cators used for EI calculation are difficult to obtain, mak-
ing EI evaluation more complex. Based on this, Xu (2013) 
developed the remote sensing ecological index (RSEI) by 
integrating four indicators: NDVI, Wet, LST, and NDBSI. 
In recent years, RSEI has been widely used in monitoring 
ecological quality because it is easy to obtain from remote 
sensing data and is unaffected by subjective intervention. At 
the local scale, Hang et al. (2020) used Nan Jing, Jiang Su 
Province, as the study area to monitor the ecological quality 
based on the RSEI. Liu et al. (2020) calculated the RSEI of 
Pingtan County, Fujian Province, which was used to evaluate 
the trend of the ecological environment in the study area. At 
the regional scale, Xu et al. (2019) calculated the RSEI from 
2002 to 2017 using Moderate Resolution Imaging Spectro-
radiometer (MODIS) data to analyze ecological changes 
in Fujian Province, China. Yang et al. (2021) calculated 
the RSEI of the Yangtze River basin based on the MODIS 
product image set and analyzed the ecological quality of 
the study area as well as the driving forces. Overall, RSEI 
expands ecological quality evaluation through remote sens-
ing technology, which benefits regional ecological quality 
monitoring and protection.

However, RSEI is not without flaws, and it is still being 
discovered to have disadvantages in its application. The 
RSEI is proposed for urban environments, with application 
scenarios focusing on human gathering locations or river and 
lake basin areas with generally “excellent” ecological con-
ditions. Therefore, the RSEI’s rationality and accuracy for 
arid region ecosystems need to be further proved (Firozjaei 
et al. 2021). Based on this, Wang et al. (2020a) took the Ulan 
Buh Desert as the study area and proposed the arid remote 
sensing ecological index (ARSEI) by replacing the dryness 
index with the salinization index and land degradation index. 

In this study, the land degradation index was obtained by 
assigning values on various land types and then calculated 
the ARSEI; however, when the study area is large, assigning 
values to land types is insufficient to meet the pixel-level 
monitoring accuracy. In order to make the indicators suit-
able for the arid region, and meet pixel-level monitoring 
requirements, it is required to adapt the indicators to the real 
condition of the study area when utilizing RSEI to evaluate 
the ecological quality of the arid region. The current study, 
however, lacks a comparative analysis of the applicability of 
different indicators and methodologies.

In Inner Mongolia, China, there are 1.057 million hec-
tares of salinized cultivated (Zhang et al. 2018) and 40.79 
million hectares of desertification (Zhao et al. 2020), which 
have a significant impact on the region’s ecological stability. 
Therefore, when assessing the ecological quality in Inner 
Mongolia, the ecological effects of salinization and deserti-
fication should be fully considered as well. Bai et al. (2022) 
suggested a desertification monitoring index (DMI) that can 
identify potentially the status of desertification in the study 
area. Guo et al. (2019b) proposed a salinity monitoring index 
(SMI) that can accurately monitor land salinity. In addition, 
SMI and DMI can meet pixel-level monitoring requirements. 
In view of this, our study took Inner Mongolia as an example 
and developed the modified remote sensing ecological index 
(MRSEI) for arid regions by adding two indicators of SMI 
and DMI on the basis of the original RSEI in order to expand 
the applicability of RSEI in arid regions. Then, the appli-
cability of MRSEI and RSEI was compared and analyzed. 
Finally, the trends in ecological quality in Inner Mongolia 
from 2000 to 2020 were determined, and the degree of eco-
logical quality response to the drivers in the study area was 
analyzed.

Study area and data sources

Study area

Inner Mongolia is located in the northern part of China 
(37°24′N ~ 53°23′N, 97°12′E ~ 126°04′E) (Fig. 1), and com-
prises 1.18 million  km2 of land, which accounts for more 
than 12.3% of China. Inner Mongolia has a typical temper-
ate continental climate; the average annual temperature is 
around 0–8℃, and between 50 and 450 mm of precipitation 
on average from west to east (Tian et al. 2018). The ter-
rain of Inner Mongolia is dominated by plateaus, and the 
average altitude of the whole region is greater than 1000 m. 
The vegetation types vary and include both coniferous and 
broad-leaved forests, forested prairies, temperate prairies, 
desert steppes, and deserts intergrading (Wang et al. 2020b). 
Inner Mongolia has the largest grasslands in China and is 
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one of the most important bases for agriculture and livestock 
production, both of which are extremely sensitive to drought.

Data sources

We used the Moderate Resolution Imaging Spectroradi-
ometer (MODIS) provided by the US Geological Survey 
(USGS, https:// earth explo rer. usgs. gov) as the primary data 
source for our study. There are numerous standardized 
products in the MODIS dataset, including surface reflec-
tance, vegetation index, land surface temperature (LST), 
and land use classification products. Therefore, the stand-
ard products for each ecological component needed to con-
struct MRSEI and RSEI were selected from the MODIS 
product library. MODIS products from 2000, 2005, 2010, 
2015, and 2020 were selected as the primary data source 
for our study. The description of these products is shown 
in Table 1, and to maintain a consistent spatial resolution, 
all standard products were resampled to 1 km in this paper. 
Additionally, we obtained precipitation data of stations from 

the China Meteorological Data Network (http:// data. cma. 
cn), and we interpolated the station data using the inverse 
distance weight method to obtain 1 km × 1 km precipitation 
raster data. The population density and GDP per capita in 
Inner Mongolia come from the Inner Mongolia Statistical 
Yearbook.

Methods

Methods of previous RSEI

Standardization of indexes

According to the scheme proposed by Xu (2013), RSEI inte-
grates four ecological elements including greenness (NDVI), 
wetness (WET), heat (LST), and dryness (NDBSI), which 
are correlated to ecological status. Four elements are calcu-
lated based on MODIS data (Lobser and Cohen 2007; Xu 
2008). These indices can be divided into two categories: 

Fig. 1  Research region over-
view

Table 1  Data source

Data set Resolution Time resolution Platform Coordinate system Products Product level

MOD13A1 500 m 16 days Terra Sinusoidal NDVI L3
MOD11A2 1000 m 8 days Terra Sinusoidal LST L3
MOD09A1 500 m 8 days Terra Sinusoidal Surface reflectance L2
MCD12Q1 500 m 1 year Terra Sinusoidal Land use L3
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positive and negative. Positive index means that the better 
the ecological quality, the higher the index value; negative 
index means that the better the ecological quality, the lower 
the index value. In reference to existing research (Wei et al. 
2019), NDVI and Wet were positive indices, and NDBSI 
and LST were negative indices. In order to unify the magni-
tudes of these indicators, the normalization of each indicator 
was required, where Eq. (1) and Eq. (2) are the standard 
calculation formulas. Positive index dimensionless evalua-
tion dataset was obtained by Eq. (1), while negative index 
dimensionless evaluation dataset was obtained by Eq. (2).

where Yi is the standardized value, Xi is the primitive value, 
and Xmax and Xmin are the maximum and minimum values of 
the Xi, respectively.

Calculation of the RSEI

Based on the normalized elements, the first principal com-
ponent after principal component analysis (PCA) was used 
to develop the RSEI, as shown in Eq. (3) (Yuan et al. 2021). 
In addition, our study normalized the RSEI derived by PCA 
to facilitate the spatial and temporal analysis of the ecologi-
cal quality of the study region, which can be calculated as 
Eq. (4).

where the MOD13A1 product characterizes the Greenness, 
the MOD11A2 product characterizes the Heat, and the 
MOD19A1 image band calculates the Wetness and Dryness; 
PC1 is the first principal component in principal component 
analysis; RSEI0 is the un-normalized raw of RSEI;  RSEI0min 
is the minimum value of the  RSEI0;  RSEI0max is the maxi-
mum value of the  RSEI0.

Methods of MRSEI

The RSEI integrates information on greenness, wetness, 
heat, and dryness, which can reflect the spatial variability of 
the ecological status. Whereas, as mentioned in the introduc-
tion, the non-applicability of RSEI in an arid region is still 
not effectively resolved. Since Inner Mongolia is a typical 
arid region; there are large areas of desertified and salin-
ized land (Zhang et al. 2018; Zhao et al. 2020). Therefore, 
in order to improve the application of the remote sensing 
ecological index in this study area, we used the salinization 

(1)Yi = (Xi − Xmin)∕(Xmax − Xmin)

(2)Yi = (Xmax − Xi)∕(Xmax − Xmin)

(3)RSEI0 = PC1(Greeness,Wetness,Heat,Dryness)

(4)RSEI = (RSEI0 − RSEI0min
)∕(RSEI0max

− RSEI0min
)

monitoring index (SMI) and desertification monitoring index 
(DMI) as one of the indicators for constructing MRSEI. In 
addition, SMI and DMI are negative indexes.

Soil salinization

Soil salinization is land degradation caused by fragile arid 
environments, as well as unreasonable human activity (Guo 
et al. 2019a). In accordance with previous research, there 
was a strong correlation between vegetation cover and soil 
salinity. This relationship could be seen in remote sens-
ing imagery as the modified soil-adjusted vegetation index 
(MSAVI) decreased as soil salinity increased (SI) (Guo 
et al. 2019b). Based on this, Lu et al. (2020) established the 
salinization monitoring index (SMI) by using MSAVI and 
SI to monitor soil salinization. The calculation formulas are 
shown as Eq. (5)–Eq. (7).

where b1, b2, and b3 denote band 1, band 2, and band 3 in 
the MOD09A1.

Land desertification

The ecological quality in the arid region has been signifi-
cantly impacted by the development of desertification (Sand-
eep et al. 2021). Desertification has been shown to have an 
impact on surface albedo, vegetation cover, and land sanding 
degree (Chen et al. 2020; Wang et al. 2021b). As a result, 
Bai et al. (2022). developed a desertification monitoring 
index (DMI) which incorporates three indicators: MSAVI, 
Albedo, and sanding feature index (SFI). The calculation 
formulas of MSAVI are shown as Eq. (5), and the calcula-
tion formulas of Albedo and SFI are shown as Eq. (8) and 
Eq. (9). Where SFI is the index proposed by Meng (2005), 
because the reflectance value is between 0 and 100%, the 
sum of the sixth and seventh band values of the reflectance 
image after stretching will not be larger than 200; thus, the 
constant in the denominator of Eq. (9) is chosen to be 200 to 
ensure that the denominator is nonnegative. At present, the 
SFI was used to extract the sandy land, and obtain satisfac-
tory results (Yang et al 2017). Therefore, SFI is appropriate 
for Inner Mongolia because Inner Mongolia includes large 
areas of sandy land.

(5)MSAVI =
2b2 + 1 −

√

(2b2 + 1)2 − 8(b2 − b1)

2

(6)SI =
√

b3 × b1

(7)SMI =

√

(MSAVI − 1)2 + SI2
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According to research by Guo et al. (2020) and Wei et al. 
(2020), spatial distance models can more accurately and real-
istically evaluate the effects of different indicators in ecological 
evaluation. This study fitted three indicators, MSAVI, Albedo, 
and SFI, based on spatial distance models with reference to the 
research by Bai et al. (2022).

where b1–b7 denote band 1 ~ band 7 of in the MOD09A1; 
DMI is the desertification monitoring index; and M, A, and 
S are the normalized MSAVI, Albedo, and SFI, respectively. 
Mmax is the maximum value of M, and Amin and Smin are the 
minimum values of A and S, respectively.

Calculation of the MRSEI

The previous method constructed the RSEI using the first 
principal component of the principal component analysis 
(Jia et al. 2021; Hang et al. 2020; Yang et al. 2021). How-
ever, a high contribution rate is not guaranteed by the RSEI 
obtained with the first principal component (PC1), which has 
a contribution rate of 60 to 90% (Shan et al. 2019; Hang et al. 
2020). Additionally, the contribution rate of the first principal 
component would steadily decrease as the number of indica-
tors increases (Li 2017). While the entropy method not only 
makes full use of each indicator’s information, it also solves 
the problem of overlapping information across multiple indi-
cations (Wang et al. 2013). As a result, the entropy method 
was used to determine the weights of NDVI, LST, NDBSI, 
and Wet, then calculated the remote sensing ecological index 
(Cheng et al. 2021; Xu et al. 2022). Furthermore, Wang et al. 
(2022) proposed the Remote Sensing Ecological Index consid-
ering Full Elements (RSEIFI) by replacing the original PCA 
with the entropy method to integrate four ecological indicators 
(NDVI, LST, NDBSI, and Wet), and the study results showed 
that the calculation process of RSEIFE is more stable than that 
of RSEI, and the RSEIFE results are consistent with the real 
eco-environment on the surface. Therefore, our study used the 
entropy method to calculate the weights of the NDVI, Wet, 
LST, NDBSI, SMI, and DMI to construct the MRSEI. The 
calculation formulas are as follows:

(8)

Albedo = 0.160 × b1 + 0.291 × b2 + 0.243 × b3 + 0.116 × b4
+0.112 × b5 + 0.081 × b7 − 0.0015

(9)SFI = (b6 − b3)∕(200 − b6 − b7)

(10)DMI =

√

(M −Mmax)
2 + (A − Amin)

2 + (S − Smin)
2

(11)wi =
1 − Hi

n −
∑n

i=1
Hi

where MRSEI0 is the un-normalized raw of MRSEI; n is the 
number of indicators; wi is the weight of the ith indicator; 
Hi is the entropy of the ith indicator; and ai is the value of 
the ith indicator.

In addition, numerous studies normalize the indexes to 
unify the magnitudes, but the normalization process of 
anomalous samples can have a large impact on the distri-
bution of the data (Wang et al. 2021a; Yang et al. 2021), 
while standardization can effectively solve this problem 
and has good interference resistance (Zheng et al. 2022). 
Therefore, we used Eq. (13) to standardize  MRSEI0 to 
facilitate subsequent discretization.

where MRSEI is the modified remote sensing environment 
index; µ and σ are the mean and standard deviation of vari-
ables set MRSEI.

Dynamic detection

Mapping analysis can not only efficiently monitor but 
also visualize changes in ecological status over long time 
series. Therefore, our study used Jenks’ natural breaks to 
classify the ecological index into five grades, excellent, 
good, moderate, fair, and poor, and assign values of 5, 4, 
3, 2, and 1, respectively. Referring to the study of Li et al. 
(2022b), the calculation formulas of ecological changing 
conditions are as follows:

where code is the ecological change code; code1, code2, 
code3, code4, and code5 are the ecological code of 2000, 
2005, 2010, 2015, and 2020, respectively; if codei+1-
codei = 0, then assign it to 0 which indicates that the eco-
logical status has remained unchanged; if codei+1-codei > 0, 
then assign it to 1, which indicates that the ecological status 
of area has been improved; if codei+1-codei < 0, then assign 
it to 2, which means that the ecological status of area has 
been destroyed. C refers to the difference in ecological status 
between 2020 and 2000.

In order to more effectively analyze the changing sta-
tus of ecological quality in the study area, we divided the 
ecological changes into six categories (Table 2) based on 
Eqs. (14) and (15).

(12)MRSEI0 =
∑n

i=1
wiai

(13)MRSEI =
MRSEI0 − �

�

(14)code =
∑4

i=1
10

4−i(codei+1 − codei)

(15)C = code5 − code1
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Driver analysis

Although interaction detectors in geographic detectors can 
quantitatively describe the relative importance of influencing 
factors in studying the driving mechanisms of ecological qual-
ity evolution, geographic detectors can suffer from data upper 
limit problems. For the reasons mentioned above, our study 
refers to the mechanism of NDVI response to climate change 
studied by Lin et al. (2020) to calculate multiple correlation 
coefficients to analyze the driving mechanisms of ecological 
quality. The calculation formulas of multiple correlation coef-
ficients are shown in Eqs. (16)–(19).

where y is the dependent variable, a and b are the inde-
pendent variables; m is the number of independent variables 
(m = 2 in the study); n is the number of samples (n = 5 in 
the study); ρya, ρyb, and ρab are the correlation coefficients 

(16)�ya =

∑n

i=1
(yi − y)(ai − a)

�

∑n

i=1
(yi − y)

2∑n

i=1
(ai − a)

2

(17)
�ya,b =

�ya − �yb�ab
√

(1 − �
2

yb
)(1 − �

2

ab
)

(18)�y,ab =
√

1 − (1 − �2
ya
)(1 − �

2

ab
)

(19)

ty,ab =
�y,ab

√

1−�2
y,ab

√

n − m − 1 or tya,b =
�ya,b

√

1−�2
ya,b

√

n − m − 1

between y and a, y and b, and a and b; ͞ ͞y and ͞a are the aver-
age of y and a; ρya,b is the partial correlation coefficients 
between y and a, excluding the influence of b on y and a; 
ρy,ab is the multiple correlation coefficients between y, a, 
and b. ty,ab and tya,b are the t-test result for determining the 
significance of linear regression.

With reference to existing studies, we analyzed the driv-
ers of ecological change in terms of both social and natural 
factors, respectively (Guo et al. 2020; Yang et al. 2021; Lu 
et al. 2022). Natural factors include precipitation (P) and tem-
perature (T), a combination of precipitation and temperature 
(P&T), and other factors (N). Social factors include population 
density (D) and GDP per capita (G), a combination of popu-
lation density and GDP per capita (D&G), and other factors 
(N). The single driver is determined by the partial correlation 
coefficients described by Eqs. (16) and (17). The combination 
of drivers is determined by the multiple correlation coefficients 
described by Eqs. (16) and (18). The statistical significance of 
all correlation coefficients in the study was based on Student’s 
t-test described by Eq. (19) (Song and Ma 2011) and the sig-
nificance level was set to 0.05.

Results

Comparison and selection of the ecological index

Table 3 shows the correlation coefficients (r) between MRSEI 
(RSEI) and each ecological component for 2020, which can 
be found that there were differences in the correlations of 
RSEI and MRSEI with each ecological indicator. The aver-
age r between MRSEI (RSEI) and NDVI, LST, Wet, NDBSI, 
DMI, and SMI are 0.942 (0.926), − 0.849 (− 0.802), 0.748 

Table 2  Classification explanation

Code Class Classification basis

Stable 0000 Sustained stability Since 2000, the code had not changed
1111, 1110, 1100, 1000, and so on Stability improvement Since 2000, the code had only shown a trend of growth
2222, 2220, 2200, 2000, and so on Stability deterioration Since 2000, the code had only shown a downward trend

Undulated Other codes C = 0 Undulated stability The code cannot be changed in 2000 and 2020, but were 
allowed to change in other years

C > 0 Undulated improvement From 2000 to 2020, the code shows fluctuating changes, but 
the limiting condition is that ecological status in 2020 was 
better than 2000

C < 0 Undulated deterioration From 2000 to 2020, the code shows fluctuating changes, but 
the limiting condition was that ecological status in 2020 is 
worse than 2000

Table 3  Correlation of 
ecological index and factors

NDVI LST NDBSI Wet DMI SMI

MRSEI 0.942  − 0.849  − 0.852 0.748  − 0.947  − 0.906
RSEI 0.926  − 0.802  − 0.838 0.744 – –
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(0.744), − 0.852 (− 0.838), − 0.947 (–), and − 0.906 (–), respec-
tively. According to this result, MRSEI is more indicative of 
the comprehensive information of each indicator than RSEI 
since its correlation coefficients with each element are higher 
than those of RSEI. The correlation coefficients of DMI, SMI, 
and MRSEI are all higher than 0.9, demonstrating the critical 
role that DMI and SMI play in the development of MRSEI for 
arid regions.

In order to compare the differences between RSEI and 
MRSEI in characterizing ecological status, we selected four 
experiment areas (case A, case B, case C, case D) in Inner 
Mongolia which covered different land types and ecologi-
cal quality. As shown in Fig. 2, in case A, the ecological 
status is harsh, and the land cover is predominantly unused, 
including a large area of desert and salinized land. Case B is 
located in the southwest of Inner Mongolia, where the land 
use is mainly cultivated land and grassland, but there are 
minor areas of unused land and forest land. The predominant 
land use in case C and case D is grassland and forestland, 
respectively.

Considering the information for 2020 as an example, we 
created two transect lines that crossed as many different 
land-type pixels as possible in order to ensure a change in 
ecological status between pixels (Fig. 2). Then, the pixel 
cross-section fluctuation curves of the RSEI and MRSEI 

in the research area were compared. In addition, we per-
formed a linear regression analysis based on the pixels of 
RSEI and MRSEI on the transect lines; R2 is the correla-
tion coefficient between RSEI and MRSEI (Fig. 3). Fig-
ure 3 shows the pixel fluctuations in the diagonal direction 
of the transects in the four cases and the correlation coef-
ficients of RSEI and MRSEI. Because the four cases have 
varied ecological conditions, the value domains of MRSEI 
on transect lines are also different. Case B contains both 
unused and forest land; therefore, the ecological status var-
ies widely, resulting in a maximum MRSEI of 1.63 and a 
minimum value of − 1.24 on the transect line in case B, 
indicating that the difference between the maximum and 
minimum values is greater. Furthermore, in other cases, 
the greater the ecological quality, the higher the value of 
MESEI, i.e., the overall low value of MESRI in case A and 
the overall high value of MRSEI in case D. The results in 
Fig. 3 show that although there are differences in certain 
regions, the RSEI and MRSEI fluctuation curves in the 
four cases show good agreement in the overall trend. In 
addition, the RSEI and MRSEI of cases B, C, and D show 
an extremely high linear correlation with R2 > 0.85, which 
is consistent with the pixel fluctuations. RSEI and MRSEI 
showed correlation coefficients of 0.7889 and 0.7552 on 
the transect of case A, respectively, which are slightly 

Fig. 2  The location map of four case areas
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lower than the other cases. Therefore, we can consider 
that in bare ground with poor biological circumstances, 
there will be differences between RSEI and MRSEI.

In order to further verify the reliability of the RSEI and 
MRSEI, we selected three regions as sample areas (sample 1, 
sample 2, sample 3), each of which had various areas of bare 
ground. The differences between RSEI and MRSEI in the 
three sample areas were then compared using the land-type 
data from MCD12Q1 (Fig. 4). The areas with relatively high 
ecological status grades were mainly croplands and savannas 
with dense vegetation. While urban built-up areas with very 
little vegetation cover and barren land, including desert and 
saline land, are the majority of the areas with relatively low 
ecological status grades. The findings in Fig. 4 demonstrate 
that in sample 1, there is an obvious difference between the 
two inversion results, that is, the RSEI categorizes a portion 
of the desert land as having fair ecological conditions while 
the MRSEI characterizes this area as having poor ecological 
level. Additionally, MRSEI outperforms RSEI in recogniz-
ing the strip oasis in the middle of sample 1. The ecological 
conditions reflected by the RSEI and MRSEI of the cropland 
in sample 2 were well consistent with the land type. How-
ever, in the barren portion of sample 2, MRSEI identified 
it as a poor ecological status, and RSEI identified it as a 
fair ecological status. The MRSEI is more accurate than the 
RSEI in reflecting the ecological conditions of sample 3 and 
agrees well with the land types. In summary, for extreme 
environmental areas, the differences between MRSEI and 
RSEI will be more pronounced, and the results of MRSEI 
will be significantly cautious and realistic.

Dynamic monitoring and trend analysis of MRSEI

Spatiotemporal characteristics of MRSEI evolution in Inner 
Mongolia

Considering the above findings, we selected the MRSEI 
to analyze the spatial distribution of ecological status. It 
has been demonstrated that Jenks’ natural breaks can most 
correctly group similar data in order to optimize the dif-
ferences between categories (Li and Xu 2020), and Jenks’ 
natural breaks have been widely used in ecological condi-
tion assessment (Bai et al. 2022; Liu et al. 2019). There-
fore, we used Jenks’ natural breaks to classify MRSEI into 
five categories, excellent, good, moderate, fair, and poor, 
and evaluate the ecological state of Inner Mongolia from 
2000 to 2020. In these 5 years of monitoring (Fig. 5), the 
ecological quality in the northeast of Inner Mongolia was 
generally better than that of the southwest, and the major-
ity of the middle part of the region has fair ecological con-
ditions, while the areas with good or excellent conditions 
are mostly concentrated in the oasis. In 2000, area of both 
poor and fair levels account for 48.58% of the whole area, 
and good and excellent levels account for 30.31%, but in 
2020, poor and fair levels account for 41.35%, and good 
and excellent levels account for 38.08%, which illustrates 
that the ecological quality of Inner Mongolia has gradually 
improved in the past 20 years.

Fig. 3  The pixel fluctuations in the diagonal direction of the cross-section within the four cases

52600 Environmental Science and Pollution Research (2023) 30:52593–52608



1 3

Trend analysis of MRSEI

Figure  6 a shows the dynamic ecological recovery or 
destruction in Inner Mongolia over the previous 20 years. 
The cropland or oasis with good environmental govern-
ance and improved vegetation conservation was primarily 
showing undulated improvement and stability improvement. 
The undulated deterioration and the stability deterioration 
regions were primarily concentrated in oasis urban regions 
(urbanization continues, indicating that settlements continue 
to develop into oasis), as well as certain oasis and desert 
areas where the ecosystem was still damaged. Figure 6 b 
shows the statistical percentage pie chart of the area for each 
change type. According to Fig. 6 b, the categories of sus-
tained stability and fluctuating stability account for 61.69% 
of the study area; the fluctuating improvement and stability 
improvement categories account for 26.07% of the study 
area; and the fluctuating deterioration and stability deterio-
ration categories account for 12.33%. To summarize, the 
ecological environment quality in Inner Mongolia generally 
improved between 2000 and 2020. However, there was no 
discernible improvement in wide barren areas to the south-
west of the study area. As a result, the region’s environmental 

governance should continue to focus on barren, and efforts 
to safeguard vegetation should be accelerated.

MRSEI response to driving factors

We selected LST (T) and precipitation (P) as natural fac-
tors to analyze the driving mechanism of the two on the 
MRSEI spatiotemporal evolution in Inner Mongolia (Fig. 6 
a). Natural factors (P, T, P&T) drive MRESI change among 
37.46% of the whole area. Among them, T, P, and the T&P 
explain approximately 1.33%, 9.46%, and 26.67% of the 
MRSEI changes, respectively. Thus, T&P appears to be the 
most important MRSEI driver factor. Figure 7 a shows that 
the region of the T&P driver is mainly distributed in the 
Hulunbuir, north of the Hinggan, southeast and north-central 
of the Alxa, east and north of the Chifeng, and the Xilingol.

Social developments such as population density (D) 
and GDP per capita (G) have also impacted the ecologi-
cal status to a certain extent. As shown in Fig. 7 b, social 
factors (D, G, D&G) drive MRSEI change among 25.85% 
of Inner Mongolia. G driving factors mainly explain the 

Fig. 4  Comparison of the land use classification of the case area in 2020 with RSEI, MRSEI
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Hinggan, the northeast of the Tongliao, and the Chifeng, 
which account for 8.32% of the whole area. D&G driver 

is mainly distributed in the Hulunbuir, the Ulanqab, east 
of the Baotou, and the Alxa, which account for 13.23% of 
the whole area.

24.74% 30.38% 26.34% 29.06% 22.99%

23.84%
20.90% 26.64% 20.78%

18.36%

21.10% 20.74% 21.10%
19.28%

20.57%

15.10% 14.11% 12.63%
13.65% 22.52%

15.21% 13.88% 13.29% 17.23% 15.56%

0%

20%

40%

60%

80%
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2000 2005 2010 2015 2020
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Fig. 5  The temporal and spatial changes of MRSEI in Inner Mongolia during 2000 to 2020, areas of different MRSEI quality levels
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Discussions

Advantages of MRSEI

The RESI is widely used in ecological monitoring. Yang 
et al. (2021) used the RSEI to study the spatial and tem-
poral changes in the ecological environment of Xinjiang 
in China. In addition, Huang et al. (2021) used RSEI to 
evaluate and monitor the eco-environmental quality of 
Lhasa. However, the RESI only considers the four factors 
of greenness, humidity, dryness, and heat, ignoring prob-
lems like desertification and salinization in arid regions. 

In our study, the DMI and SMI were added to the RSEI 
to construct the MRSEI for arid regions. The results show 
that compared to the RSEI, the evaluation result of the 
MRSEI for extreme environmental areas (e.g., desertifi-
cation, salinization) is more cautious and more realistic. 
In summary, MRSEI is especially suitable for monitoring 
ecological environments in arid regions.

Although it is difficult to verify the accuracy of the results 
for ecological environment quality evaluation with specific 
data, the statistical yearbooks and relevant conclusions of 
literature can effectively prove it. Since 2000, a number of 
ecological restoration projects have been carried out in Inner 
Mongolia in an effort to reduce the spread of sandy land and 

(a)                                          (b)

36.80%

13.99%7.78%

24.79%

12.08%
4.55%

Sustained stability Stability improvement

Stability deterioration Undulated stability

Undulated improvement Undulated deterioration

Fig. 6  Ecological status changing trends from 2000 to 2020 (a), and the area distribution of ecological status changing trends from 2000 to 2020 
(b)

Fig. 7  Distribution of the MRSEI natural drivers (a) and social drivers (b) in Inner Mongolia
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enhance the living conditions of the population. These pro-
jects include the management of Beijing-Tianjin wind and 
sand sources, and the 3-North Shelter Forest Program (Tian 
et al. 2018). This demonstrates the validity of the claim that 
from 2000 to 2020, Inner Mongolia’s ecological quality has 
improved. Additionally, our study used statistical yearbooks 
to determine Inner Mongolia’s population and cultivated 
status. The findings revealed that between 2000 and 2020, 
Inner Mongolia’s population increased from 237,274,000 
to 240,228,000, and its per-capita cultivated area increased 
from 0.25 to 0.37 hectares, indicating a decline in human 
demands and disturbances on the land, and an improve-
ment in ecological quality. In Inner Mongolia, the area of 
reforestation expanded from 590,000 to 650,000 hectares 
between 2000 and 2020, the area of green space increased 
from 15,392 to 68,540.88 hectares, and the number of nat-
ural areas protected climbed from 80 to 216. This shows 
that ecological management has advanced somewhat in the 
government. This supports the finding in “Spatiotemporal 
characteristics of MRSEI evolution in Inner Mongolia” and 
“Trend analysis of MRSEI” of this study that, overall, from 
2000 to 2020, Inner Mongolia’s ecological environment has 
improved. Additionally, it demonstrates the accuracy and 
reliability of the MRSEI application in arid regions.

Partition for ecological protection and management

Scholars are currently conducting studies on ecological man-
agement partition. Jiang et al. (2023) divided Inner Mongolia 
into four regions based on the spatial and temporal evolution 
characteristics of desertification: key protection region, envi-
ronmental improvement region, environmental management 
region, and key management region. Based on the results of 
a desertification sensitivity evaluation in 2015, Tian et al. 
(2018) categorized Inner Mongolia into ecological protec-
tion regions, desertification control regions, comprehensive 
development regions, and ecological migration regions. The 
aforementioned studies show that the majority of current 
research on the delineation of ecological reserves focuses on 
either a single “static” status or “dynamic” evolution, while 
there are few studies on the delineation of ecological that 

combine “static” and “dynamic.” In view of this, our study 
combined the ecological status trends with the current situa-
tion of ecology in 2020, and set protection weights referring 
to the research of Wei et al. (2020) and Li et al. (2022b), the 
ecology functional protection regions were divided. The spe-
cific steps are as follows: (1) first, determine the ecological 
current status protection weight: 1 for excellent regions, 3 for 
good regions, 5 for moderate regions, 7 for fair regions, and 
9 for poor regions. (2) Secondly, the ecological trend type 
protection weight was determined: the protection weight of 
sustained stability was 1, the protection weight of a stable 
improving region was 3, the protection weight of an unstable 
improving region was 5, the protection weight of an unsta-
ble stable region was 7, the protection weight of undulated 
deterioration region was 9, and the protection weight of a 
stability deterioration region was 11. (3) Finally, the final 
result was calculated by adding the ecological current status 
protection weight and the corresponding ecological trend 
protection weight, and the final result was divided to obtain 
the ecology protection function partition. Table 4 displays 
the specific classification statistics table.

According to Table 4, Inner Mongolia was classified into 
four ecological protection zones, including ecological opti-
mization region, key protected region, ecological control 
region, and ecological governance region (Fig. 8). Among 
them, the ecological optimization region has a lower score 
(2–6) and better ecological status, which only needs to main-
tain and optimize the status quo. The key protected areas 
have moderate scores (8–10), in order to effectively protect 
this region, that is necessary to build a variety of ecological 
functional zones under the key protection system, as well as 
to achieve regional environmental sustainability. Ecological 
control regions have scores ranging from 12 to 14, and in 
these regions, human intervention should be limited when 
necessary. Ecological management regions have high scores 
(16–20) and poor ecological conditions, which must be com-
prehensively managed to prevent their spread from affecting 
normal human production and living. From the spatial dis-
tribution of ecological management zones, ecological opti-
mization regions are scattered and distributed in Hohhot, 
the south of Ulanqab, the southeast of Xilinguole, and the 

Table 4  Ecological protection functional area classification statistics. Note: the 0, 1, 2, 3, 4, and 5 in the trend represent sustained stability, sta-
bility improvement, undulated improvement, undulated stability, undulated deterioration, and stability deterioration respectively

Trend 0 1 2 3 4 5

Ecological status in 2020 Protection weight 1 3 5 7 9 11

Excellent 1 2 4 6 8 10 12

Good 3 4 6 8 10 12 14

Moderate 5 6 8 10 12 14 16

Fair 7 8 10 12 14 16 18

Poor 9 10 12 14 16 18 20
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southwest of Chifeng. Key protection regions are primarily 
distributed in Alax and Hulunbuir, while ecological con-
trol and governance regions are primarily distributed in the 
north-central and eastern parts of Inner Mongolia. Accord-
ing to the results of their spatial distribution, the ecologi-
cal situation in Inner Mongolia is still severe, and the com-
prehensive improvement of ecology is still one of the main 
tasks of ecological civilization construction, which should 
strictly comply with ecological protection-related policies.

Limitations and future perspectives

In a word, our research provides a solid scientific foundation 
for evaluating the ecological status of Inner Mongolia in a 
timely manner. MRSEI is effective in detecting ecological 
pressure brought by salinization or desertification, but it is 
unable to distinguish the ecological difference caused by 
human sabotage. As a result, future study needs to fully con-
sider the anthropogenic factors when constructing remote 
sensing ecological indexes. In addition, our study lacks a 
forecast of future ecological quality. Machine learning mod-
els may be introduced in future studies to forecast ecological 
quality. In the application of MRSEI, the MRSEI proposed 
in this study can be theoretically applied to the same other 
arid regions because of the same characteristics of environ-
mental pressure (desertification and salinization). However, 
the regional environment is complex, comprehensive, and 
fuzzy; as a result, the specific reference values of the MRSEI 
in different arid regions, as well as the applicability of the 

assessment methodologies used in this work, need to be 
investigated further.

Conclusions

Monitoring and tracking ecological status in a timely, effec-
tive, and accurate manner is beneficial for understanding the 
condition of local ecosystems and developing environmen-
tal protection strategies. The widespread use of RSEI dem-
onstrates that ecological components derived from remote 
sensing images have tremendous potential for describing the 
ecological status. However, when using RSEI in arid regions, 
there are some uncertainties which should be improved. As a 
result, based on the existing RSEI, we proposed the MRSEI, 
which takes into account desertification and salinization in 
arid regions. The results of this study show that:

1. There is a high consistency between RSEI and MRSEI 
in regions with favorable ecological conditions, but in 
extreme environmental areas, MRSEI results are evalu-
ated more cautiously than RSEI.

2. The northeastern region of Inner Mongolia has supe-
rior environmental conditions than the southwest. From 
2000 to 2020, 61.59% of the ecological quality in Inner 
Mongolia remains stable, 26.07% of the regional eco-
logical quality is improving, and 12.33% of the regional 
ecological quality is declining.

Fig. 8  Ecological protection 
zone
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3. In the natural factors, the area that is driven by T, P, and 
P&T accounted for 1.33%, 9.46%, and 26.67% respec-
tively. In the social factors, the area that is driven by D, 
G, and D&G accounted for 4.30%, 8.32%, and 13.23% 
respectively.
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