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Abstract
Ozonation is a powerful technique to remove micropollutants from wastewater. As chemical oxidation of wastewater comes 
with the formation of varying, possibly persistent and toxic by-products, post-treatment of the ozonated effluent is routinely 
suggested. This study explored an enzymatic treatment of ozonation products using the laccase from Trametes versicolor. A 
high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) analysis revealed 
that the major by-products were effectively degraded by the enzymatic post-treatment. The enzymatic removal of the by-
products reduced the ecotoxicity of the ozonation effluent, as monitored by the inhibition of Aliivibrio fischeri. The ecotoxicity 
was more effectively reduced by enzymatic post-oxidation at pH 7 than at the activity maximum of the laccase at pH 5. A 
mechanistic HPLC-HRMS and UV/Vis spectroscopic analysis revealed that acidic conditions favored rapid conversion of 
the phenolic by-products to dead-end products in the absence of nucleophiles. In contrast, the polymerization to harmless 
insoluble polymers was favored at neutral conditions. Hence, coupling ozonation with laccase-catalyzed post-oxidation at 
neutral conditions, which are present in wastewater effluents, is suggested as a new resource-efficient method to remove 
persistent micropollutants while excluding the emission of potentially harmful by-products.

Keywords  Wastewater post-treatment · Micropollutants · Organic trace contaminants · Acetaminophen · Ozonation · 
Laccase · Toxicity · Mass spectrometry · Quinone · Polymerization

Introduction

The presence and persistence of organic trace contaminants 
in the aquatic environment have raised increasing concerns 
in the past two decades. Among these micropollutants, 
pharmaceuticals were detected worldwide in the effluents 
of wastewater treatment plants in a concentration range from 
nanograms to micrograms per liter (Fatta et al. 2007; Lacey 
et al. 2008; Heberer 2002). Conventional wastewater treat-
ment systems do not efficiently remove micropollutants, so 
these persistent substances accumulate in the aquatic envi-
ronment (Monteiro and Boxall 2010; Zenker et al. 2014). 
Prompted by the increasing amount of evidence on adverse 
effects on the health of aquatic organisms (e.g., feminiza-
tion of fish) and on the quality of drinking water, tertiary 
treatment for the abatement of the micropollutant load from 
sewage plant effluents is currently discussed in many indus-
trialized countries (Alder et al. 2006; Huerta et al. 2012).

Various techniques have been studied from the labora-
tory to the full scale (Voigt et al. 2020) including extended 
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biological treatment processes (Abejón et al. 2015, Ahmed 
et al. 2017, Cecconet et al. 2017), adsorption (Tijani et al. 
2013; Sharif et al. 2013; Gao et al. 2012; Yu et al. 2016), 
chemical oxidation, and advanced oxidation processes 
(AOPs) (Gogoi et al. 2018; Oppenländer 2003; Andreozzi 
1999; Voigt et al. 2018). Pilot studies have proven that ozo-
nation is one of the most effective techniques for micropo-
llutant elimination on a technical scale (Lee et al. 2013). 
However, the mineralization of organic compounds does 
generally not occur. This can lead to potentially toxic trans-
formation products (Fatta-Kassinos et al. 2011; Andreozzi 
et al. 2003; Völker et al. 2019). Therefore, post-treatment is 
recommended, usually by (biological) filtration. However, 
biological filtration suffers from the low nutritive value of 
the treated wastewater.

Enzymatic transformation of recalcitrant organic con-
taminants is a promising eco-friendly concept (Durán and 
Esposito 2000; Barber et al. 2020; Alshabib and Onaizi 
2019; Haugland et al. 2019; Stadlmair et al. 2018). Among 
these enzymes, laccases are of particular interest as these 
enzymes only require molecular oxygen as a co-substrate 
and can oxidize a wide range of pollutants (Ikehata et al. 
2004; Arregui et al. 2019; Gasser et al. 2014) which can 
be extended by the use of mediators (Baiocco et al. 2003; 
Morozova et al. 2007). The organic compounds are oxidized 
at the T1 Cu center to radicals (Piontek et al. 2002), which 
further react via polymerization by oxidative coupling, 
chemical rearrangement, or, depending on the relative redox 
potentials of the reaction mixture, redox shuttle (Jeon et al. 
2012; Sun et al. 2013; Cañas and Camarero 2010).

Laccase treatment has been coupled with membrane 
technology (Lloret et al. 2013; Hahn et al. 2018), persulfate 
oxidation (Asif et al. 2020), and adsorption (Nguyen et al. 
2016).

This study explores the combination of ozonation with 
enzymatic post-treatment for complete remediation of 
wastewater containing trace contaminants. Acetaminophen 
(APAP) is used as a model compound. It is the most widely 
used pain medicine in the world and hence detected in sur-
face water, groundwater (Kaufman et al. 2002), and sewage 
plant effluent (Alygizakis et al. 2016; Phong et al. 2016) 
samples all over the world. APAP ozonation has been stud-
ied before (Skoumal et al. 2006; Villota et al. 2019; Hamdi 
El Najjar et al. 2014; Torun et al. 2015) and the parent drug 
itself is susceptible to laccase treatment (Skoumal et al. 
2006; Villota et al. 2019; Ba et al. 2014; Lu et al. 2009).

APAP is ozonated in the first step and laccase from 
Trametes versicolor is used in the second, post-treatment 
step, to remove potentially harmful by-products of ozona-
tion and residual APAP. The removal efficiency as well as 
the mechanism of enzymatic conversion of ozonation prod-
ucts are investigated by high-performance liquid-chroma-
tography coupled with high-resolution mass spectrometry 

(HPLC-HRMS) analysis. Specifically, the effect of acidic 
and neutral pH on the mechanism and the process efficiency 
is investigated. Supporting kinetic and ecotoxicological anal-
ysis are used to develop recommendations for a safe chemo-
enzymatic trace contaminant treatment.

Materials and methods

Materials

4-Acetaminophenol (APAP; 98%) and 1,4-benzoquinone 
(99%) were purchased from Acros organics (Geel, Bel-
gium). 3-Hydroxy-acetaminophen (TP 168; 98%) was 
acquired from Hölzel (Cologne, Germany). 4-Hydroxy-
3,5-dimethoxybenzaldehyde azine (syringaldazine 
(SGZ) ≥ 98%) was purchased from Sigma-Aldrich (Stein-
heim, Germany). Ammonium acetate (≥ 97%, p.a., ACS), 
acetic acid (100%; p.a.), methanol (HPLC Ultra Gradient 
Grade), acetonitrile (≥ 99.9%, LC–MS Grade), D( +)glu-
cose monohydrate (≥ 99.5%, Ph. Eur.), sodium chloride 
(NaCl ≥ 99.5%, p.a., ACS), magnesium chloride hexahy-
drate (≥ 99%, p.a., ACS), potassium chloride (≥ 99.5%, p.a., 
ACS), and N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic 
acid (HEPES ≥ 99.5%, p.a.) were obtained from Carl Roth 
(Karlsruhe, Germany). 3,5-Dichlorophenol (98%) was pur-
chased from Alfa Aesar (Kandel, Germany). Ammonia 
solution (32%) was from Bernd Kraft (Duisburg, Germany). 
Formic acid (≥ 97.5%, LC–MS grade) was purchased from 
Fluka-Honeywell (Seelze, Germany). Milli-Q water was 
used to prepare all solutions (Simplicity 185, Merck Mil-
lipore, Billerica, MA, USA). The laccase from Trametes 
versicolor (T. versicolor) was produced by ASA Spezialen-
zyme GmbH (Wolfenbüttel, Germany) as described previ-
ously (Hahn et al. 2018). The company markets the enzyme 
under the name “laccase C.” Aliivibrio fischeri (A. fischeri) 
was obtained freeze-dried from LCK 488 (Hach Lange, Düs-
seldorf, Germany).

Ozonation

Ozonation experiments were carried out in a 0.5-L batch 
reactor (DWK Life Sciences, Wertheim, Germany). Ozone 
was produced using a COM-AD-01/02 ozone generator 
(Anseros, Tübingen, Germany) with an oxygen flow of 25 
L/h and a generator capacity of 2.8%. The ozone flow was 
continuously introduced through a glass frit into a batch 
reactor equipped with a magnetic stirrer. Ozonation of 
50 mg/L APAP in 20 mM ammonium acetate buffer was per-
formed for 30 min at pH 7 and room temperature (23 ± 2 °C). 
Ozonation kinetics were determined by multiple independ-
ent experiments. Each data point was determined at least in 
triplicate.
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Laccase assay

Laccase activity before and during the degradation experi-
ment was measured by oxidation of syringaldazine. The 
assay was performed at pH 5 in ammonium acetate buffer 
with a concentration of 33 µM syringaldazine in the test 
mixture. The measurement was carried out with a UV-
1650PC spectrophotometer (Shimadzu, Duisburg, Germany) 
at 530 nm and 20 °C.

Michaelis–Menten kinetics were monitored in a Spark 
plate reader (Tecan, Switzerland) with 96-well plates at 
530 nm and 30 °C. In addition to the ammonium acetate 
buffer at pH 5 and pH 7, reference measurements were car-
ried out with ozonated APAP solution and 3-hydroxyaceta-
minophen (TP 168) using a concentration of 55 µM and 
27.75 µM, respectively.

Treatment of ozonated APAP solution with laccase 

Laccase treatment was performed on an ozonated APAP 
solution at 50% degradation of the initial APAP concentra-
tion. Prior to laccase addition, residual ozone was removed 
by purging with oxygen. Nineteen-milliliter ozonated APAP 
solution was treated with 10 mg/L laccase solution (314 ± 9 
U/L) in 100-mL Erlenmeyer flasks with rubber stoppers in 
a shaker at 100 rpm at 20 °C. Samples for chromatographic 
analysis were conserved by laccase inhibition via the addi-
tion of methanol (1:1 v/v). The degradation of TP 168 was 
performed accordingly. The kinetics were determined by 
multiple independent experiments. Each data point was 
determined at least in duplicate.

For the spectral absorption analysis, 10 mg/L pure refer-
ence compound, i.e., TP 168 and 1,4-benzoquinone, was 
treated with laccase as described above. Extracted samples 
were analyzed with a UV-1650PC spectrophotometer (Shi-
madzu, Duisburg, Germany) at the indicated reaction time.

HPLC‑HRMS analysis

Reversed-phase chromatographic analysis was performed 
using an Agilent 1200 Series HPLC system (Agilent Tech-
nologies, Inc., Waldbronn, Germany) equipped with an 
Eclipse Plus C18 (ZORBAX, 3.5 µm, 2.1 × 150 mm, Agilent 
Technologies, Inc., Waldbronn, Germany) as described pre-
viously (Voigt et al. 2021). Briefly, a gradient of the eluent 
system acetonitrile/water, both acidified with formic acid, 
was applied.

An Agilent 6530 Q-ToF mass spectrometer (Agilent 
Technologies, Santa Clara, USA) equipped with a Jet-Stream 
Electrospray Ion Source (ESI) was coupled to the HPLC 
system and used in the positive ion mode. The fragmentation 
voltage was set to 125 V. For MS/MS spectra, the collision 
energy was set to 30 eV. The HPLC–MS was controlled 

using Mass-Hunter Workstation B.06.00 (Agilent Technolo-
gies, Santa Clara, USA).

Toxicity assessment

The acute toxicity test was based on DIN EN ISO 
11348–1:2008 for the determination of the inhibitory 
effect of water samples on the light emission of A. fischeri 
(Deutsches Institut für Normung e.V. 2009). Initially, the 
samples were adjusted to pH 7 ± 0.3 with NaOH or HCl 
and a salinity of 20 g/L with NaCl solution. Prior to meas-
urements, the samples and the A. fischeri were incubated 
at 16 °C and 100 rpm for 15 min. Subsequently, 0.5 mL 
of the bacterial suspension was pipetted into each of the 
24-well plates, and the initial and the remaining lumines-
cence after incubation with 0.5 mL sample at 16 °C were 
measured with a Spark plate reader (Tecan, Switzerland). 
NaCl and 3,5-dichlorophenol (9 mg/L) were used as refer-
ences. Luminescence inhibition was analyzed according to 
DIN EN ISO 11348–1:2008 at 5, 15, and 30 min of incuba-
tion. Samples were diluted such that the measured inhibi-
tions were in the quantitative inhibition range, i.e., 10–90%, 
but preferentially inhibitions from 20 to 80% were used for 
analysis (Deutsches Institut für Normung e.V. 2009). A six-
fold dilution was used for the analysis of the ozonation and 
a 40-fold dilution for the analysis of the laccase treatment. 
Each sample was assayed at least in two wells.

Statistical analysis

Variance homogeneity was examined using the two-sample 
F-test. The two-tailed t-test (variance homogeneity) and the 
two-tailed t-test according to Welch (variance inhomogene-
ity) were performed using the critical value approach and 
significance level of 0.05 (Supporting Information, 1.10).

Results and discussion

Ozonation of APAP

Prior to treating the ozonation products of APAP with lac-
case from T. versicolor, the degradation as well as the forma-
tion of the transformation products (TPs) of APAP by ozona-
tion were analyzed using HPLC-HRMS. Figure 1 shows the 
degradation of 50 mg/L APAP and the simultaneous forma-
tion of TPs. The low ozone flux leads to zero-order kinetics 
of APAP degradation. As determined by HRMS analysis 
and confirmed with previous studies, the suggested chemi-
cal structures of TPs are shown in Table 1. TP 111 and TP 
168 were identified as phenolic compounds. TP 200 results 
from ring opening and leads to a potentially less harmful 
and readily degradable organic diacid. The ecotoxicity of the 
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ozonation products was assessed via the inhibitory effect on 
the light emission of the fluorescent bacteria A. fischeri. As 
depicted in Fig. 1B, the ecotoxicity of the model wastewa-
ter increased after ozonation until 50% removal efficiency. 
The inhibitory effect correlated with the concentration of 
the phenolic transformation product TP 168 (Fig. 1B and 
Table S1). Although an ecotoxic effect of the 1,4-isomer of 

TP 111, hydroquinone, is also expected according to previ-
ous toxicological analysis (Qutob et al. 2022), TP 168 is 
the primary transformation product and, as a catechol, is 
expected to show lower biodegradability and higher sludge 
toxicity than TP 111. Hence, the degradation of TP 168 is of 
primary importance in order to produce an environmentally 
benign effluent.

Fig. 1   Kinetics of APAP ozonation: APAP degradation (A) and for-
mation of transformation products and ecotoxicity as measured by 
the inhibitory effect on A. fischeri bioluminescence (B). The respec-
tive transformation products are indicated as squares (TP 168), trian-
gles (TP 111), and circles (TP 200). Data points represent the mean 
normalized peak area of the replicate experiments ( x

r
 ). Error bars 

depict the standard deviation of the replicates (sr). Each data point 
was measured at least in triplicate. The inhibitory effect of the APAP 
solution during the degradation by ozonation on A. fischeri after 
15-min contact time is shown as bars. Data points represent the mean 
value ( x ) and error bars the standard deviation (SD) of the inhibition 
assayed in duplicate

Table 1   HRMS analysis of 
APAP and its degradation 
products (ESI +)

The exact and accurate masses of the [M + H]+ ion and its MS2 fragments after fragmentation are pro-
vided
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Degradation of APAP by laccase 

According to the activity maxima of fungal laccases (Margot 
et al. 2013), acidic conditions are typically applied for lac-
case treatment which would require the unfavorable addition 
of inorganic acids in a technical sewage treatment process. 
Also, a positive effect of neutral pH on APAP conversion has 
been discussed (Dai et al. 2014).

Therefore, we studied the enzymatic degradation of the 
ozonation transformation products under acidic (pH 5) and 
neutral (pH 7) conditions. A laccase-catalyzed post-treat-
ment of ozonated APAP solution would include the elimi-
nation of residual APAP. Hence, the influence of pH on the 
kinetics of the degradation of APAP was analyzed in a pre-
ceding step. The degradation of APAP by laccase has been 
suggested to occur via the formation of radicals, which fur-
ther react to polymers by oxidative coupling (Lu et al. 2009; 
Wu et al. 2020). Multimer formation is typically observed in 
a limited time frame at the beginning of the reaction as these 
intermediate products subsequently oligomerize to insoluble 
oligomers (Wang et al. 2018).

The kinetics of the enzymatic degradation of residual 
APAP in the ozonated matrix were analyzed and compared 
to the degradation kinetics of pure APAP solution. For the 
model wastewater, APAP was ozonated for 10 min to reach 
the maximum ecotoxicity. As depicted in Fig. 2A, APAP 
degradation at pH 5 by laccase was slightly slower in the 
ozonated solution than in the pure APAP solution. This was 
confirmed by the single exponential rate constants (Table S2) 
and by the analysis of multimer formation (Fig. S1). On the 
contrary, enzymatic APAP removal kinetics at pH 7 in the 
ozonated solution deviated more strongly from the reference 

(Fig. 2B). Within the first 4 h, no degradation of APAP 
(Fig. 2B) and no oligomer formation (Fig. S2B) took place, 
resembling a kinetic lag phase before the single exponential 
decay with a similar rate commenced (Table S2). The origin 
of the lag phase could only be explained after the enzymatic 
conversion of the ozonation by-products was resolved.

Post‑treatment of the ozonation transformation 
products by laccase

In the next step, the enzymatic degradation of the ozonation 
products TP 111 and TP 168 was analyzed. As phenolic 
compounds, the products fit into the substrate spectrum of 
laccases.

The most abundant transformation product, TP 168, was 
successfully removed by laccase treatment (Fig. 3). How-
ever, in contrast to the activity optimum of the laccase, com-
plete degradation was achieved earlier at pH 7 than at pH 5. 
At pH 5, 60% of TP 168 was removed rapidly within the first 
20 min, but degradation was very slow thereafter, so that 
removing 95% of TP 168 required 32 h (Fig. 3A).

Interestingly, the lag phase of the respective APAP 
degradation kinetics coincided with the time required for 
85% removal of TP 168 (4 h) at pH 7 (Fig. 2B). In order 
to investigate the interplay of TP 168 and APAP removal, 
degradation of the isolated reference compound 3-hydroxy-
acetaminophen, i.e., TP 168, by laccase was analyzed.

The kinetics of TP 168 degradation in buffer and in the 
ozonation mixture were almost identical (Fig. S3). On the 
contrary, TP 168 strongly affected the degradation kinet-
ics of other substrates, which was confirmed with a kinetic 
assay. Here, a lag phase of syringaldazine conversion was 

Fig. 2   Degradation of APAP without (unfilled diamonds) and with 
previous ozone treatment (filled diamonds) at pH 5 (A; orange) and 
pH 7 (B; blue) at 20 °C by laccase T. versicolor. Data points represent 

x
r
 ± sr. Each data point was determined at least in duplicate. APAP 

degradation after ozonation was analyzed in quadruplicate during the 
first 4 h
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observed in the presence of TP 168, which increased in 
length with increasing TP 168 concentration (Fig. S4). This 
was a strong indication that TP 168 is a preferred substrate 
of laccase T. versicolor which was exclusively converted by 
the enzyme before any other substrate under investigation 
was accepted. Hence, the conversion of TP 168 was the rea-
son for the lag phase in APAP depletion kinetics discussed 
above. This finding was rationalized by the calculated redox 
potentials, revealing a lower redox potential of TP 168 as 
compared to APAP at neutral conditions (Table S3). Besides 
the lag phase, no impact of TP 168 on the Michaelis–Menten 
parameters at pH 7 was found which confirmed the prior 
conversion of TP 168 (Table S4). The fact that the lag phase 
in APAP kinetics was not observed at pH 5 was justified by 
the fast depletion of TP 168.

The kinetics of the initial fast degradation of TP 168 at 
pH 5 were further analyzed by UV/Vis absorption spectros-
copy, which provides a better time resolution than LC–MS. 
The absorption spectra changed significantly in the first 
30 min (Fig. 4), thus confirming that fast conversion took 
place in the dead time of the LC–MS experiment. The UV/
Vis spectra featured a new prominent band at approximately 
450 nm upon enzymatic conversion of TP 168, which was 
attributed to the n → �

∗ transition of quinone species formed 
via oxidation of TP 168. Specifically, 4-acetamido-o-ben-
zoquinone has been identified previously as the oxidation 
product of APAP by tyrosinase giving rise to similar UV/
Vis spectra as obtained here (Fig. 4A) (Valero et al. 2003). 
The kinetic analysis yielded an approximately tenfold faster 
product formation at pH 5 than at pH 7 (Fig. 4B, Fig. S5, 
and Table S5).

A higher initial rate of enzymatic conversion of TP 168 
at pH 5 than at neutral conditions could easily be explained 
by the pH optimum of the enzyme. However, the collapse 
in conversion after the initial fast reaction was surprising. 
A product inhibition was excluded by kinetic analysis using 
the syringaldazine activity assay (Table S4).

The hypothesis that 4-acetamido-o-benzoquinone was the 
product of laccase treatment of TP 168 was confirmed by 
HPLC-HRMS analysis, where a laccase product [M + H+] 
with an exact mass of 166.0518 was found (TP2 166; Fig. 5). 
Interestingly, TP2 166 accumulated to higher concentrations 
and during a more extended reaction period at pH 5 than at 
pH 7.

In order to reveal the different mechanisms of enzymatic 
conversion of TP 168 at the studied pH values, secondary 
transformation products generated by laccase treatment of 
TP 168 were determined by HPLC-HRMS. Suggestions for 
the molecular structure of the most abundant products TP2 
166, TP2 392, and TP2 449 are provided in Table S6. All 
detected products apart from TP2 166 are oligomers. Fig-
ure 6 shows that oligomer formation and subsequent precipi-
tation as insoluble polymers were primarily observed at pH 
7, whereas oligomeric products were scarce at pH 5. This 
finding was bolstered by the comparison of the UV/Vis spec-
tra at pH 5 (Fig. 4A) and pH 7 (Fig. S5), where additional 
scattering was superimposed on the band structure at pH 7, 
reflecting dispersed particles. We conclude that polymeriza-
tion is favored at pH 7 whereas the quinoid product TP2 166 
dominates at pH 5.

It is important to note that the final products of lac-
case-catalyzed reactions result from the nature of the 

Fig. 3   Degradation of the transformation product TP 168 at pH 5 (A; orange) and pH 7 (B; blue) at 20 °C by laccase of T. versicolor. Data points 
represent x

r
 ± sr. Each data point was determined at least in quadruplicate during the first 4 h and at least in duplicate thereafter
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enzymatically formed radical and its subsequent chemical 
reaction of the radical to stable products. Typical reac-
tion pathways are dimerization via C–C − or C–O–C bond, 
redox shuffle with non-substrates, and (de-)protonation 
(Kudanga et al. 2011).

Moreover, the formation of reactive oxygen species as 
side products of the substrate oxidation has been reported, 
including superoxide, hydrogen peroxide, hydroxyl radicals, 
and singlet oxygen, which can undergo further reactions 
with the organic substrates (Huang and Yang 2022; Ulas 
et al. 2016).

Fig. 4   UV–Vis spectroscopic analysis of the degradation of pure TP 
168 at 20  °C by laccase of T. versicolor: Time-dependent UV/Vis 
spectra during laccase treatment at pH 5 (A) and kinetic analysis of 

the formation of the product with an adsorption maximum of 450 nm 
at pH 5 (orange) and pH 7 (blue) (B)

Fig. 5   Formation of the secondary transformation product TP2 166 
([M + H]+ 166.0518, RT 5.7 min) via the degradation of pure TP 168 
by laccase T. versicolor at pH 5 (orange) and pH 7 (blue). Data points 
represent x

r
 ± sr. Each data point was determined at least in triplicate

Fig. 6   Formation of multimer products [M + H]+ 392.09 (half-filled 
circles) and [M + H]+ 449.10 (circles) during the laccase treatment of 
pure TP 168 at pH 5 (orange) and pH 7 (blue). Data points represent 
x
r
 ± sr. Each data point was determined at least in duplicate
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Therefore, chemical processes need to be considered 
to determine the root cause of the different products and 
kinetics observed in response to the different pH values in 
the enzymatic treatment. Few data on oxidation pathways 
of hydroxy-acetaminophen are available, but the chemical 
oxidation processes of catechol and dopamine have been 
intensely studied (Slikboer et al. 2015; Salomäki et al. 
2018). The oxidation of catechol derivatives involves the 
two redox states semiquinone and quinone. The semiqui-
none can (1) oligomerize via C–C (or C–O) coupling or 
(2) disproportionate to quinone and hydroquinone (Pez-
zella et al. 2013). If the disproportionation predominates, 
a defined part of the catechol is immediately oxidized to 
o-quinone to reach thermodynamic equilibrium (Salomäki 
et al. 2018). For further conversion of the hydroquinone, 
the quinone has to be removed from the thermodynamic 
equilibrium. In the metabolic degradation of acetami-
nophen, quinones are depleted via Michael addition with 
glutathione (Mazaleuskaya et al. 2015).

In the absence of nucleophiles, o-quinones are nearly 
dead-end products (Tentscher et al. 2018) as autooxidation 
is very slow. The removal via the reverse reaction, i.e., 
comproportionating to semiquinone and potential coupling 
reactions thereof, is blocked by the presence of the lac-
case, which continuously reoxidizes all species to the qui-
none. The latter hypothesis was supported by experiments 

with benzoquinone, which was more stable towards auto-
degradation in the presence of laccase (Fig. S9).

The respective mechanism transferred to the enzymatic 
degradation of TP 168 is illustrated in Fig. 7. The forma-
tion of oligomers predominantly occurs if the semiquinone 
radical is stable against disproportionation. Semiquinone 
stability increases with increasing pH (Song and Buettner 
2010). Consequently, the initial rapid kinetic phase of TP 
168 degradation at pH 5 is attributed to the formation of the 
quinone by disproportionation. Thus, the fast conversion of 
hydroquinone ceases at its equilibrium value. We suggest 
that, in contrast, at pH 7 the stability of the semiquinone is 
sufficient to allow its oligomerization. The slow intermedi-
ate kinetic phase in the degradation of TP 168 (Fig. 3A) is 
interpreted by the slow removal of the quinone via autooxi-
dation and Michael addition of the free amine generated by 
hydrolysis.

Once a number of oxygenated species have been formed, 
the removal of the quinone as well as TP 168 is accelerated 
due to potential coupling partners leading to the third kinetic 
phase of TP 168 removal.

The contribution of reactive hydrogen species, especially 
after the conversion of good substrates after 4 h, is likely, 
but cannot be proven.

These findings could be extended to the enzymatic deg-
radation of the ozonation product TP 111 which was also 
removed more efficiently at pH 7 than at pH 5. At pH 7, 

Fig. 7   Schematic representation of the suggested mechanism of laccase-catalyzed degradation of TP 168. First, the semiquinone radical of TP 
168 (SQ•) is formed which can either form oligomers or disproportionate to TP 168 and the quinone TP2 166
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a removal efficiency of (78 ± 4)% (Fig. S10) was achieved 
after 48 h. In accordance with the analysis of TP 168 deg-
radation, TP 111 removal of 25% at pH 5 is assigned to the 
quinone pathway of the 1,4- and 1,2-isomer of TP 111 (Sun 
et al. 2013), whereas the higher removal efficiency at pH 7 
is suggested to result from the oligomer pathway.

The ecotoxicity assay using A. fischeri (Fig. 8) revealed 
that laccase treatment reduced the ecotoxicity of ozonated 
APAP. However, the ecotoxicity increased at the beginning 
of the laccase treatment, which was more pronounced and 
persistent at pH 5 than at pH 7. A significant reduction of 
the initial toxicity of the ozonated solution by laccase treat-
ment was observed after 24 at pH 7 (Table S11), whereas 
this was only achieved after 168-h laccase treatment at pH 5 
(Table S12). Here, ecotoxicity is predominantly attributed 
to the presence of the quinone TP2 166 (Fig. 6; Table S13). 
This emphasizes that neutral conditions are recommended 
for the laccase treatment of the ozonation products to harm-
less products despite the enzyme activity maximum at acidic 
conditions.

Conclusion

A new method of post-treatment of ozonated wastewater 
for the removal of dangerous ozonation products by the 
application of enzyme catalysis is presented and success-
fully applied to the remediation of acetaminophen model 

wastewater. The approach takes advantage of the fact that 
phenolic ozonation products have the highest ecotoxicologi-
cal potential and are particularly susceptible to enzymatic 
elimination by laccase from T. versicolor. Thus, a significant 
reduction in the ecotoxicity of an ozonated APAP solution 
was achieved through enzymatic post-treatment. However, 
optimum remediation is not reached in the pH activity opti-
mum of the enzyme, because the (redox) chemistry follow-
ing laccase-induced radical formation is also influenced by 
the pH. In the case of acetaminophen, the fast reaction to 
dead-end quinone products needs to be suppressed for oli-
gomerization to occur. This can be realized by performing 
the laccase treatment under neutral conditions, where the 
enzymatic treatment safely converts the harmful ozonation 
products to insoluble and harmless oligomers.
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resent x ± SD. Each data point was determined in quadruplicate
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