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Abstract
Continuous and rapid economic development has brought about excessive resource consumption and environmental pollu-
tion. Therefore, it is particularly essential to coordinate economic, resource, and environmental factors to achieve sustainable 
development. This paper develops a new data envelopment analysis (DEA) method that can be used for multi-level complex 
system evaluation (MCSE-DEA) to reveal the inter-provincial green development efficiency (GDE) in China from 2010 to 
2018. Moreover, the Tobit model is applied to explore the influencing factors of GDE. We found that (i) the MCSE-DEA 
model tends to have lower efficiency scores than the traditional P-DEA (panel data envelopment analysis) model, and the 
top three provinces are Shanghai, Tianjin, and Fujian; (ii) the efficiency shows an increasing trend during the whole study 
period. The southeast region and the Middle Yangtze River region have the highest efficiency values, reaching 1.09, while 
the northwest region ranks last with an average efficiency value of 0.66. Shanghai performs the best, while Ningxia performs 
the worst, with efficiency values of 1.43 and 0.58, respectively; (iii) the provinces with lower efficiency values mainly come 
from economically underdeveloped remote regions, which can be attributed to issues of water consumption (WC) and energy 
consumption (EC). Moreover, there are much room for improvement in solid waste emissions (SW) and soot and industrial 
dust emissions (SD); (iv) the environmental investment, R&D investment, and economic development level can significantly 
improve GDE, while industrial structure, urbanization level, and energy consumption have inhibiting effects.

Keywords Sustainable development · Green development efficiency · Efficiency assessment · Data envelopment analysis · 
Multi-level complex system evaluation

Introduction

The economic development mode characterized by high 
consumption, high pollution, and high emissions leads to 
a large number of countries entering resource bottlenecks 
and ecological deterioration, causing increasingly fierce 
competition for energy and resources, and severe pressure 
on environmental protection (Deng et al. 2017; Wang et al. 

2017). As an essential representative of emerging econo-
mies, China also faces a dilemma in unbalanced resource 
allocation, large energy consumption, and environmental 
severe pollution (Dong et al. 2021). Currently, China is the 
world’s largest energy consumer (BP 2020). According to 
the data of the National Bureau of Statistics of China in 
2021, the energy consumption of China reached the value of 
4.98 billion tons of standard coal in 2020 (NBSC 2021). In 
addition, in terms of the environmental performance index 
released by Yale University, the environmental pollution of 
China ranks second in the world (Dong et al. 2020), and 
the ecological problems caused by the pursuit of economic 
development are exposed.

The United Nations (UN) Sustainable Development 
Goals (SDGs) aim to address economic, social, and envi-
ronmental issues that hinder progress in global sustainable 
development (Gue et al. 2020). Nowadays, the SDGs are a 
recognized blueprint for global development by 2030 and 
are used by businesses, industry, governments, and regional 
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organizations (Belmonte-UreñA et al. 2021). Nevertheless, 
resource-energy and economic-environmental constraints 
have become the obvious obstacles to sustainable industrial 
development in the future (Bai et al. 2017). The current 
resource and environmental problems faced by China have 
attracted significant attention, and therefore the government 
has set out to establish a green, low-carbon cycle economic 
development system, and launched a series of strategic deci-
sions on “green development”. Moreover, the Fifth Plenary 
Session of the 19th CPC Central Committee also proposed 
to focus on improving the ecosystem quality and stability, 
so as to achieve sustainable and high-quality development. 
Overall, it is urgent to coordinate economic, resource, and 
environmental factors to promote green development.

Actually, the concept of green development has become 
an alternative to sustainable development (Liu et al. 2022), 
and its key lies in the construction of green development effi-
ciency (GDE) for enhancing economic development quality 
(Rashidi and Farzipoor Saen 2015). Wang and Huang (2014) 
found that most studies considered the efficiency of environ-
mental factors as environmental efficiency, while the concept 
of environmental efficiency was inconsistent. In this context, 
they proposed the concept of green development efficiency 
to reflect the efficiency level of increased economic output 
while reducing environmental pollution emissions with a 
given input. GDE takes into account both resource, envi-
ronmental, and economic factors, and thus has been exten-
sively studied. Zhao et al. (2016) applied the SBM model to 
calculate the GDE in China from 1997 to 2013, indicating 
that the GDE was generally low and the human capital and 
industrial structure interaction items had a positive effect. 
Zhu et al. (2020) adopted the ultra-efficiency SBM model to 
measure the GDE in China from 1999 to 2017, and analyzed 
the impact of the carbon trading mechanism on the GDE. 
They found that the GDE showed a u-shaped trend, and the 
carbon trading mechanism had a positive effect. Ding et al. 
(2022) employed a spatial econometric model to investigate 
the influencing factors of GDE and found that industrial col-
laborative agglomeration played a positive role in promoting 
regional green development. Overall, a scientific evaluation 
of China’s GDE is of practical importance to reveal the cur-
rent situation and development direction of green develop-
ment in China.

Data envelopment analysis (DEA) is a non-parametric 
method proposed by Charnes et al. (1979) to assess the rel-
ative effectiveness among decision-making units (DMUs). 
It can integrate inputs and outputs in different dimensions 
with objective weights emerging from the data to reflect 
the input–output efficiency. On this basis, scholars have 
proposed multiple DEA models for specific problems and 
have various applications in different performance evalua-
tion problems (Färe et al. 1992; Tone 2001). GDE is a com-
plex system including resource factors, economic factors, 

and environmental factors. Therefore, the DEA method, 
as an efficiency evaluation method, is especially suitable 
for the evaluation problem of complex systems (Ma et al. 
2018). Actually, the DEA method has been widely applied 
in analyzing GDE problems (Yang et al. 2020). However, the 
complexity of the indicator system makes the DEA method 
have the following shortcomings in evaluating the complex 
system. On the one hand, the traditional DEA model is 
mainly based on sectional data and measures the efficiency 
of DMUs by constructing different technology frontier sur-
faces. On the other hand, the traditional DEA model has the 
defects in the same status of indicators and the inability to 
distinguish effective DMU. Therefore, applying the tradi-
tional DEA model to evaluate GDE will suffer from bias.

In addition, there is significant heterogeneity across Chi-
nese provinces in terms of technology level, resource endow-
ment, and industrial structure, leading to regional variability 
in their GDE. Wang et al. (2021) applied the DEA-Theil 
model to measure the regional energy efficiency in China 
and found that the overall energy efficiency was low, accom-
panied by significant province differences. Yang et al. (2017) 
used the directional distance function to calculate the provin-
cial green development efficiency from 2003 to 2012, noting 
that the southern and eastern areas performed the best, while 
the central and southwest Yangtze River regions performed 
relatively poorly. Therefore, it is necessary to accurately and 
reasonably examine GDE and its influencing factors to iden-
tify possible shortcomings.

In summary, the traditional DEA model has some defects 
in evaluating the complex system evaluation problems, and 
there are large inter-provincial differences in green devel-
opment efficiency in China. Therefore, this paper has the 
following innovations: First, the P-SBM model based on 
the same technology frontier surface that can be used for 
dynamic efficiency analysis of panel data is developed to 
measure the efficiency of all DMUs. Second, the MCSE-
DEA (multi-level complex system evaluation) model is 
proposed to address the problems of the same status of 
indicators and the inability to distinguish effective DMU of 
the P-DEA model in evaluating the efficiency of complex 
systems. Overall, in this paper, we firstly measure the GDE 
of 30 Chinese provinces from 2010 to 2018 based on the 
MCSE-DEA model. And then the Tobit model is adopted to 
investigate the influencing factors of GDE. Overall, an accu-
rate and reasonable evaluation of the current situation and 
influencing factors of GDE in China can promote economic 
growth with low resource input and environmental impact, 
which is meant to promote green development in China.

This article consists of 6 sections. The “Introduction” 
section presents the introduction. The “Literature review” 
section presents the literature review of existing research. 
The “Methodology” section presents the MCSE-DEA model 
that can solve the shortcomings of the P-DEA model in 
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evaluating the efficiency of complex systems. The “Indica-
tor system and descriptive statistics” section presents the 
indicator system and descriptive statistics. The “Results and 
discussion” section presents the current situation of inter-
provincial green development in China and the influencing 
factors. The “Conclusion and policy recommendations” sec-
tion presents the conclusion and policy recommendations.

Literature review

Green development efficiency, as a critical proxy for green 
development quality, has been extensively studied from 
different perspectives, such as the national-level analysis 
(Rashidi and Farzipoor Saen 2015; Shao et al. 2019; Yang 
and Ni 2022), regional-level analysis (Chen and Lin 2020; 
Matsumoto and Chen 2021; Yang and Zhang 2018), city-
level analysis (Liu et al. 2020, 2021; Xiao et al. 2021), and 
industry-level analysis (Shao et al. 2019; Wang et al. 2019; 
Xing et al 2018). Particularly, research on the efficiency 
evaluation of green development in China has become an 
essential topic and has progressed (Liu et al. 2022). For 
example, Shao et al. (2019) used the dynamic network DEA 
approach (DNDEA) to assess the two-stage eco-efficiency 
of the Chinese industry from 2007 to 2015. The study found 
that eastern China performed best, followed by central and 
western regions. Shuai and Fan (2020) explored the role of 
environmental regulations in the efficiency improvement of 
the regional green economy in China from 2007 to 2018, 
based on the DEA-Tobit model. The results show that the 
green economy efficiency level of China was on the rise 
during the study period, and environmental regulation influ-
ence on the efficiency of the green economy presented a “U” 
shaped curve. Zhao et al. (2022) examined the economic 
growth and intrinsic drivers of 286 prefecture-level cities in 
China from 2003 to 2018 based on the Metafrontier-global-
SBM super-efficiency method. The empirical results show 
that green economy growth performed well, and the innova-
tion effect was the main factor driving the growth. It can be 
seen that the DEA method has been widely used for energy 
economic and environmental efficiency evaluation.

In terms of GDE measurement methods, there are mainly 
the stochastic frontier approach (SFA) and DEA method, 
with the former being a parametric method and the lat-
ter being a non-parametric method. For the parametric 
approach, the SFA method can distinguish the random error 
term from the inefficiency term, making the measurement 
results more accurate and reasonable, and thus has been 
widely used. Song and Chen (2019) estimated China’s food 
production and eco-efficiency based on the water footprint 
SFA, finding that GDP per capita and water supply per 
capita had a positive effect on food production eco-effi-
ciency. Koengkan et al. (2022) measured the performance 

of economic efficiency in Latin America based on the SFA 
and DEA approaches, showing that Panama was the most 
economically efficient country in Latin America, followed 
by Chile. Haider and Mishra (2021) adopted the Bayesian 
SFA method to measure the corporate energy efficiency of 
82 Indian steel companies from 2003 to 2017, indicating that 
most companies could reduce their energy consumption by 
half. It can be seen that the SFA method has a certain appli-
cation in energy and environmental efficiency evaluation. 
However, the SFA method needs to assume a production 
function, which is susceptible to the effects of specifying 
the form of the production function and in turn causes com-
putational errors.

As for the non-parametric method, the DEA method does 
not need to set the specific form of the production function 
in advance, which can effectively avoid the above problems 
of the SFA method, and thus has great advantages in terms 
of the efficiency measurement. Zhang and Chen (2022) 
evaluated energy efficiency in Regional Comprehensive 
Economic Partnership Agreement (RCEP) countries based 
on the SBM-DEA model, noting that the overall energy 
efficiency of RCEP was poor, and optimizing the industrial 
structure and energy consumption structure can improve 
energy efficiency. Peiro-Palomino and Picazo-Tadeo (2019) 
applied the DEA method to analyze GDE in EU countries 
and found that the main driver of environmental efficiency 
was economic development. In addition, the 2016 Research 
Frontiers report released by the Chinese Academy of Sci-
ences also indicates that the DEA method has been the most 
popular method in energy and environmental efficiency eval-
uation in recent years. Hence, this paper applies the DEA 
method to measure the GDE in China.

However, the complexity of the indicator system makes 
the DEA method have the following shortcomings. First, 
there are different levels of indicators for the complex multi-
level system. To be specific, the indicators used in the tradi-
tional DEA model have the same levels, leading to the evalu-
ation results overemphasizing the role of secondary factors 
and biasing the measurement results. And if the weighted 
sum method is used to synthesize secondary indicators, it is 
difficult to detect the improved information on the original 
indicators. Second, multi-level complex systems can have an 
efficiency value of 1 for most of the DMUs, which is mainly 
caused by the high number of evaluation indicators and thus 
the inability to distinguish effective units (Ma et al. 2018). 
And the traditional DEA model based on sectional data does 
not allow for analysis of panel data. Therefore, the efficiency 
values measured by this model are not comparable.

In terms of the research on the influencing factors 
of green development efficiency, scholars at home and 
abroad have achieved fruitful results. Regarding the 
selection of influencing factors, researchers generally 
analyze the urbanization (Li et  al. 2020), industrial 
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structure (Yang et al. 2022), environmental regulation 
(Passetti and Tenucci 2016), R&D investment (Zhang 
et al. 2021), and FDI (Zhang 2020). For example, some 
studies have shown that environmental regulation and 
technological progress have a driving effect on indus-
trial green total factor productivity (Wang and Zhao 
2021). Lin and Zhou (2022) indicated that urbanization 
might promote green economic growth, while popula-
tion size and foreign direct investment might inhibit 
green economic growth. Zhu et al. (2019) found that 
industrial structure rationalization and advancement 
can positively affect green development efficiency.

Therefore, this paper will further carry out the follow-
ing work given the shortcomings of existing research. First, 
the MCSE-DEA model proposed to address the problems of 
the same status of indicators and the inability to distinguish 
effective DMU of the P-DEA model. Second, this paper 
measures China’s inter-provincial GDE from 2010 to 2018 
based on the MCSE-DEA model and compares the results 
with the P-DEA model. Finally, we apply the MCSE-DEA-
Tobit model to analyze the status of inter-provincial GDE 
and its influencing factors. In summary, the research frame-
work of this study is illustrated in Fig. 1.

Methodology

DEA model with undesirable outputs

A s s u m i n g  t h a t  t h e r e  a r e  n  D M U s ,  w h e r e 
xj = (x1j, x2j, ..., xmj)

T  is the input indicator value for the 
jth DMU, yj = (y1j, y2j, ..., ysj)

T is the desirable output indi-
cator value for the jth DMU, and yj = (y1j, y2j, ..., ylj)

T  is 
the undesirable output indicator value for the jth DMU, 

and that the indicator values for each DMU are positive, 
Korhonen and Luptacik (2004) give the following DEA 
model considering the undesirable output can be formu-
lated as follows:

P‑DEA model used for energy and environmental 
efficiency evaluation

It is assumed that in the evaluation of GDE, there are n 
DMU with a total of T periods of data. The selected input 
indicators are capital stock (CS), total employment (TE), 
construction land area (CL), water consumption (WC), and 
energy consumption (EC). Gross domestic product (GDP) 
as a desirable output indicator, solid waste emissions (SW), 
domestic garbage removal volume (DG),  CO2 emissions 
(CO),  SO2 emissions (SO), NOx emissions (NO), soot and 
industrial dust emissions (SD), and total waste water emis-
sions (WW) are undesirable output indicators. The 
input–output indicators for the jth DMU in period t are 
xt
j
= (CSt

j
, TEt

j
,CLt

j
,WCt

j
,ECt

j
), yt

j
= GDPt

j
, ŷt

j
= (SWt

j
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,NOt

j
, SDt

j
,WWt

j
), 

and the values of each input and output indicator are 
positive.

The P-DEA model with undesirable outputs is based on 
panel data, where the efficiency model of the j0th DMU in 
period t with respect to period t0 is as follows:

(1)

⎧
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+
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�
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� ≥ 0, s− ≥ 0, s+ ≥ 0, s
+
≥ 0.

Fig. 1  The research framework 
of GDE measurement based on 
MCSE-DEA-Tobit model
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This way (CS
t

j
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j
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j
) gives a complete picture of the 

inputs in terms of money, people, and resources.
At the same t ime,  the undesirable output 

(SWt
j
,DGt

j
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j
, SOt

j
,NOt

j
, SDt

j
,WWt

j
) is synthesized into an indicator of 

the amount of waste output (WO) by the following formula:

The model can be expressed as follows:

Assuming that �c0, �0, sc0, scq0, scw0 is the optimal solution 
of model (8), the projection formula for the j0th DMU given 
by model (8) is as follows:

According to Eq. (9), it can be seen that model (8) is diffi-
cult to find the improvement information against the original 
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a non-Archimedean infinitesimal quantity, and � is the effi-
ciency of the j0th DMU. � is a parameter taking values 0, 1, 
when � = 0 , the production activity satisfies constant returns 
to scale (CRS), and � is the comprehensive efficiency value 
and measures the resource utilization and resource allocation 
ability in the green development process; when � = 1 , the 
production activity satisfies variable returns to scale (VRS). 
� is the pure technical efficiency value and measures the 
technical level of converting inputs into outputs.
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t

j0
) as the projection of the j0th decision unit. 

Let

then 
(
Δxt

j
,Δyt

j
,Δy

t

j

)
 reflects the deficiencies and improve-
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period t relative to period t0.

MCSE‑DEA model

In model (2), it is not reasonable to put GDP and  CO2,  SO2, 
and NOx in equal position to measure the efficiency values. 
Therefore, the following combines construction land area 
(CL), water consumption (WC), and energy consumption 
(EC) into one indicator of resource utilization (RU), and the 
specific synthesis formula is as follows:

In addition, to eliminate the influence of the magnitude 
on each index, take
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indicators and etc. Therefore, this paper further gives the 
model that can reflect the improvement information against 
the original indicators as follows:

where Yjt is the dependent variable, xjt is the independent 
variable, β0 is the constant term, βt is the estimated coef-
ficient vector, εjt is the random error perturbation term, and 
εjt—(0, σ2).

Based on green development theory and drawing on exist-
ing research results (Ding et al. 2022; Xu et al. 2022), this 
paper selects the following six variables as the influencing 
factors of GDE (as shown in Table 1) and explores the influ-
ence of these factors on GDE.

Indicator system and descriptive statistics

Due to data availability, the DMUs in this paper are the 30 prov-
inces, autonomous regions, and municipalities directly under the 
central government (referred to as provinces) except Tibet, Hong 
Kong, Macau, and Taiwan. The relevant data are obtained from 
the China Statistical Yearbooks (NBSC, 2011–2019), China 
Environmental Statistical Yearbooks (NBSC, 2011–2019), and 
China Energy Statistical Yearbooks (NBSC, 2011–2019). The 
indicators used in this paper are as follows.

(1) The input indicators include capital, labor, and natural 
resources (as shown in Fig. 2). We use the estimation 
method proposed by Zhang et al. (2004) to calculate the 
capital  stock. The calculation formula is 
Kt
j
= It

j
+ (1 − �)Kt−1

j
 , where Kt j and Kt-1 j represent 

the capital stock of province j in period t and t − 1, 
respectively. It j is the total fixed asset investment in 

Table 1  Indicators of 
influencing factors of green 
development efficiency

Variable name Variable definition

Industrial structure (IS) Share of the secondary industry in GDP
Environmental policy (EP) Spending on environmental protection accounts for GDP
Urbanization level (UL) The proportion of the urban population in the total population
R&D input (RD) Share of R&D expenditure in GDP
Economic development (ED) Per capita GDP
Energy consumption (EC2) Per capita electricity consumption
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Assuming that �, �, s−, sq+, sw+ is the optimal solution to 
model (10), we define

is the projection of the j0th DMU.
It can be verified by the empirical analysis section that 

model (10) and model (8) give equal values of the efficiency 
of the DMU. And Eq. (11) can decompose the projection 
given by Eq. (9) into the original indicators. Let

Unlike the projection given in model (1), in Eq. (12), 
if (or Δxij ≥ 0Δxij ≤ 0 ) indicates that the jth DMU is defi-
ciencies (or more efficient) on the ith input indicator. If 
(or Δyw

j
≥ 0Δyw

j
≤ 0 ) means that the jth DMU is under-

input (or more efficient) on the rth undesirable output 
indicator.

Tobit model

The GDE measured in this paper is greater than 0, which 
is a “restricted dependent variable,” and the Tobit model 
can solve the regression problem of “restricted dependent 
variable” well. Thus, the Tobit model is established to 
analyze the GDE empirically. The equation of the Tobit 
model is as follows:
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period t, and δ is the depreciation rate. We convert the 
energy consumption in resource inputs into standard 
coal.

(2) Output indicators include desirable output and undesir-
able output (as shown in Fig. 3), where desirable out-
put is GDP, and undesirable output is waste pollutants. 
For desirable output, we treat GDP as constant 2000 
prices. For undesirable output, we use the IPCC refer-
ence method (Paustian et al. 2006) to calculate energy-
related  CO2 emissions.

Descriptive statistics are given in Table 2. It can be seen that 
the growth rates of construction land area, energy consumption, 
GDP, solid waste emissions, household refuse,  CO2 emissions, 
soot and industrial dust emissions, and total waste water emis-
sions are 27.43%, 20.05%, 92.47%, 60.21%, 44.07%, 24.50%, 
30.46%, and 2.53%, respectively, while  SO2 and NOx emissions 
can be observed a negative growth of − 70.11% and − 26.19%, 
respectively. This indicates that rapid economic development 

is accompanied by resource consumption. In terms of pollutant 
emissions, although some pollution emissions have increased, 
there are also reductions in emissions like  SO2 and NOx, indi-
cating an improvement in green development. In addition, 
there are significant differences in these indicators, showing 
that there are large differences among provinces in terms of 
various inputs, GDP, and pollutant emissions.

To better analyze the regional characteristics, we divide 
the 30 provinces into six regions: northeast, southeast, south-
west, northwest, Middle Yangtze River, and Middle Yellow 
River (Tang et al. 2016). The northeast region includes the 
provinces of Heilongjiang, Jilin, and Liaoning, which are rich 
in resources such as coal and oil (Wang and Huang 2014). 
The southeast region includes Guangdong, Hainan, Fujian, 
and Guangxi, of which Fujian and Hainan have more devel-
oped coastal tourism economies (Yang et al. 2020). The 
southwest region consists of four provinces (Chongqing, 
Guizhou, Sichuan, and Yunnan), which are an essential base 
for developing China’s non-ferrous metal industry and stra-
tegic reserves. The northwest region consists of five remote 
provinces (Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang), 
which are remote, harsh, and sparsely populated, but rich in 
resources (e.g., oil, coal, and natural gas) (Dong et al. 2021). 
The Middle Yangtze River (Shanghai, Jiangsu, Zhejiang, 
Anhui, Jiangxi, Hubei, and Hunan) is an essential base for 
grain, oil, and cotton production in China. They are also the 
most water-rich regions in China (Tang et al. 2016). Among 
them, Shanghai, Jiangsu, and Zhejiang have abundant physi-
cal and human capital and are three of the most powerful 
economic entities in China. The Middle Yellow River (Bei-
jing, Tianjin, Hebei, Henan, Shandong, Shanxi, and Inner 
Mongolia) is rich in hydro energy, coal, oil, natural gas, and 
minerals, and occupies an essential position in the country 
with excellent development potential (Wang and He 2022). 
Among them, Beijing and Tianjin have a large economic 
capacity and advanced technology.

Fig. 2  Input indicators

Fig. 3  Output indicators
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Table 3 presents the average values of various indicators 
for six regions in China from 2010 to 2018. It can be seen 
that the developed regions (i.e., the Middle Yangtze River 
and Middle Yellow River regions) have much higher inputs 
than the less developed regions (i.e., the northwest and south-
west regions), suggesting that the developed regions rely on 
using natural resources as inputs. However, from the per-
spective of pollution emissions, except for household waste 
and wastewater emissions, the developed regions do not have 
significantly higher pollution emissions than the less devel-
oped regions, meaning that some progress has been made 
in emission reduction techniques in the developed regions.

Results and discussion

Comparison of GDE based on the MCSE‑DEA model 
and the P‑DEA model

The P-SBM model is constructed based on the same technol-
ogy frontier surface to measure the efficiency of all DMUs, 
and thus has longitudinal comparability and can be used for 
dynamic efficiency analysis of panel data. The MCSE-DEA 
model is proposed to address the problems of the same status 
of indicators and the inability to distinguish effective DMU 
of the P-DEA model. In this paper, we select the data of 2010 

Table 2  Descriptive statistics of data used in this study (2010–2018, 30 provinces)

Indicators Unit Max Min Mean Range Growth rate

Input indicators
Capital stock Billion yuan 299,476.43 3721.00 70,817.62 295,755.42 258.84%
Total employment Million persons 6766.00 307.65 2694.98 6458.35 3.70%
Construction land area Square kilometers 5577.44 113.50 1651.98 5463.94 27.43%
Water consumption Billion  m3 592.00 22.49 201.74 569.51  − 0.05%
Energy consumption Million SCE 25,369.34 1073.83 8942.72 24,295.52 20.05%
Desirable output
GDP Billion yuan 57,793.94 806.08 15,090.70 56,987.86 92.47%
Undesirable outputs
Solid waste emissions Million tons 45,575.83 212.10 10,730.83 45,363.73 60.21%
Domestic garbage removal volume Million tons 3035.38 66.25 621.90 2969.13 44.07%
CO2 emissions Million tons 94,538.21 3025.57 31,369.39 91,512.64 24.50%
SO2 emissions Thousand tons 182.74 0.47 55.65 182.27  − 70.11%
NOx emissions Million tons 180.11 6.01 64.69 174.10  − 26.19%
Soot and industrial dust emissions Thousand tons 179.77 1.50 43.76 178.27 30.46%
Total waste water emissions Million tons 938,261.03 18,418.00 227,654.96 919,843.03 2.53%

Table 3  Descriptive statistics by region (2010–2018, 30 provinces)

Indicators Northeast Southeast Southwest Northwest Middle Yangtze River Middle Yellow River

Input indicators
Capital stock 64,498.06 66,128.44 58,976.92 30,304.94 93,603.88 89,123.03
Total employment 1942.13 3037.70 2831.01 1047.78 3426.31 3189.31
Construction land area 1847.55 1854.28 1210.61 659.02 2251.29 1814.72
Water consumption 206.57 246.73 145.34 173.77 291.36 136.55
Energy consumption 8701.44 7526.66 7250.12 4868.40 9938.65 12,736.81
Desirable output
GDP 14,070.75 18,790.09 10,369.02 4097.26 21,338.70 17,716.43
Undesirable outputs
Solid waste emissions 12,581.51 5007.60 9691.96 7623.41 7971.48 18,780.67
Domestic garbage removal volume 671.80 851.62 458.76 260.17 799.29 643.47
CO2 emissions 27,566.10 27,837.01 23,637.55 17,707.39 35,764.45 44,799.57
SO2 emissions 52.20 34.39 64.46 43.74 47.53 80.88
NOx emissions 67.20 50.08 46.11 43.55 65.16 97.19
Soot and industrial dust emissions 60.60 25.92 31.56 35.39 37.36 66.09
Total waste water emissions 169,643.44 344,127.31 176,559.33 71,376.55 322,170.26 232,271.06
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as the reference surface and use the MAXDEA software to 
measure the GDE in China from 2010 to 2018 based on the 
MCSE-DEA model and the P-DEA model. We rank them by 
their efficiency value. Figure 4 compares the efficiency distri-
bution of GDE based on the P-DEA model (Fig. 4a) and the 
MCSE-DEA model (Fig. 4b) during 2010–2018. There are 
significant differences in GDE between them. In general, the 
efficiency score of the MCSE-DEA model is lower than the 
P-DEA model (as shown in Fig. 5), and the efficiency ranking 
shows significant changes (as shown in Table 4). In terms of 
efficiency scores, the efficiency score based on the MCSE-
DEA model is 0.93, while the efficiency value measured by 
the P-DEA model is 1.32. From the efficiency ranking of each 
province, the highest efficiency score under the MCSE-DEA 
model is Shanghai, with an efficiency value of 1.43, while 
Shanghai ranks second under the P-DEA model with an effi-
ciency value of 3.69. We can see that the MCSE-DEA model 
has the same efficiency value calculated by model 10. The 
MCSE-DEA model can reflect only improved information on 
the integrated indicators, while model 10 can reveal improved 
information on the original indicators. From the efficiency 
distribution map (as shown in Fig. 4), most eastern provinces 
show higher efficiency scores, while the western provinces 
gain lower scores.

Spatial and temporal analysis of GDE

First, Fig. 6 presents the average trend of GDE from 2010 
to 2018 in China, from which it can be seen that GDE expe-
riences an increasing trend. The comprehensive efficiency 
ranges from 0.78 to 1.10, and the pure technical efficiency 
ranges from 0.81 to 1.28 in 9 years. The comprehensive effi-
ciency and pure technical efficiency are in the efficiency 

effective state from 2016 to 2018, reaching the technical 
frontier level of 2010.

Secondly, Fig. 7 illustrates the trend of regional effi-
ciency changes and the results show that the average GDE 
of six regions exhibits an upward trend. It indicates that the 
regional efficiency in China has improved significantly dur-
ing the study period. Figure 8 provides the regional GDE 
and growth rate status. Among them, the greatest improve-
ments in average efficiency value appear in the Middle Yang-
tze River and southeast region, with growth rates of 58.67% 
and 38.80%, respectively. The next region is the Middle Yel-
low River, with an average efficiency value of 0.96 and a 
growth rate of 49.60%. The northeast region ranks fourth in 
terms of efficiency value, with an average efficiency value of 
0.90 and a growth rate of 27.75%. In contrast, the northwest 
region gains the worst average efficiency value and growth 
rate, with the values of 0.66 and 15.31%, respectively. The 
southwest region, on the other hand, ranks medium with an 
efficiency value of 0.84 and a growth rate of 37.54%.

Figure 9 illustrates the inter-provincial green develop-
ment status from 2010 to 2018. In the Middle Yangtze River, 
Shanghai and Jiangsu have higher efficiency values of 1.43 
and 1.20, respectively, while Jiangxi performs worst, with 
the lowest efficiency value of 0.83. Fujian and Guangdong 
in the southeast have higher efficiency values of 1.24 and 
1.18, respectively, while Guangxi has an efficiency value 
of only 0.88. In the Middle Yellow River, Tianjin gains the 
highest efficiency of 1.41, while Shanxi and Inner Mongo-
lia have efficiency scores below 0.70. This may be due to 
serious energy consumption and environmental problems 
(Tang et al. 2016). The difference in efficiency values among 
the three provinces in the northeast is relatively small, with 
efficiency values ranging from 0.88 to 0.92. In contrast, the 
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Fig. 4  Average scores of GDE under the P-DEA model and the MCSE-DEA model, 2010–2018
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northwest region has low-efficiency values, with efficiency 
values ranging from 0.58 to 0.77. In the southwest region, 
Sichuan and Chongqing perform better, with average effi-
ciency values above 0.94; however, the efficiency value of 
Guizhou is only 0.66.

Overall, there are still considerable disparities in efficiency 
levels within and between regions, which may have a negative 
impact on the synergistic development of regional economies. 
It is noticeable that the provinces with higher efficiency val-
ues are mainly from three regions: the Middle Yangtze River 
(Shanghai, Jiangsu, and Zhejiang), the Middle Yellow River 
(Tianjin and Beijing), and the southeast region (Fujian and 
Guangdong), which are the economically developed coastal 
provinces. These provinces have actively adopted advanced 
technology, equipment, and management experience (Tang 
et al. 2016). Beijing receives a highly efficient ranking, pri-
marily because of the significant reforms it had previously 
undergone for the 2008 Summer Olympics. The other prov-
inces, Guizhou, Xinjiang, Shanxi, Qinghai, and Ningxia, gain 
lower efficiency values, with an average efficiency value of no 
more than 0.66. Among them, Xinjiang, Qinghai, and Ningxia 
belong to the northwest region. The lower efficiency values 
in the less developed western regions can be attributed to 
their relatively backward technology level, and limited capi-
tal investment. From the above analysis, it can be seen that 
although the GDE has improved significantly, there is still a 
large efficiency gap between different provinces, and therefore 
the further research of the inefficient provinces is essential.

Analysis of inefficient provinces

From the above analysis, it can be seen that the GDE of 
five provinces, namely Guizhou, Xinjiang, Shanxi, Qing-
hai, and Ningxia, is relatively low, and the average effi-
ciency within 9 years does not exceed 0.66. Therefore, we 
carry out detailed analysis, including the efficiencies of 
inputs, desirable outputs, and undesirable outputs, respec-
tively, on these provinces based on model 10, and the rel-
evant results are shown in Fig. 10 ~ Fig. 12.

Figure 10 demonstrates the average proportion of each 
input factor that can be improved. A larger ratio indicates 
greater redundancy for these input indicators. Except 
for Guizhou, Shanxi, and Qinghai, which have negative 
improvement ratios in construction land area (CL), the 

Fig. 5  GDE trends under the P-DEA model and the MCSE-DEA 
model (2010–2018, 30 provinces)

Table 4  GDE scores of different models

Region Province P-DEA MCSE-DEA Model 10

Northeast Heilongjiang 1.1384 0.9188 0.9188
Jilin 1.0166 0.8810 0.8810
Liaoning 1.0598 0.9046 0.9046

Southeast Guangdong 1.5879 1.1773 1.1773
Hainan 1.4199 1.0467 1.0467
Fujian 1.6686 1.2417 1.2417
Guangxi 1.0696 0.8801 0.8801

Southwest Chongqing 1.0990 0.9443 0.9443
Sichuan 1.1421 0.9795 0.9795
Guizhou 0.7843 0.6592 0.6592
Yunnan 0.9181 0.7669 0.7669

Northwest Shanxi 0.9402 0.7680 0.7680
Gansu 0.8722 0.7030 0.7030
Qinghai 0.8472 0.6058 0.6058
Ningxia 0.6747 0.5782 0.5782
Xinjiang 0.8206 0.6552 0.6552

Middle Yangtze 
River

Shanghai 3.6928 1.4303 1.4303
Jiangsu 1.4250 1.1994 1.1994
Zhejiang 1.5594 1.1631 1.1631
Anhui 1.0862 0.8997 0.8997
Jiangxi 1.0324 0.8306 0.8306
Hubei 1.2578 1.0804 1.0804
Hunan 1.2065 1.0128 1.0128

Middle Yellow 
River

Beijing 4.1687 1.2194 1.2194
Tianjin 1.9456 1.4077 1.4077
Hebei 1.1246 0.7758 0.7758
Henan 1.2075 0.9411 0.9411
Shandong 1.2217 1.0544 1.0544
Shanxi 0.7807 0.6172 0.6172
Inner Mongolia 0.9971 0.6970 0.6970 Fig. 6  Inter-provincial green development efficiency trends in China, 

2010–2018
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five provinces have extensive redundancy in other input 
indicators and poorer ability to optimize resource alloca-
tion. The five provinces are most problematic in total water 
consumption (WC), with redundancy levels exceeding 44%. 
Among them, Xinjiang needs to optimize more than 94% in 
water consumption, which can be attributed to its large area 
and harsh natural conditions. Secondly, energy consump-
tion (EC) needs to be optimized by more than 26% in five 
provinces to be effective, among which, the energy con-
sumption of Ningxia should be optimized by 49%. Ningxia 
has abundant energy resources such as coal, oil, and natural 
gas, which provide a strong guarantee for its construction 
of an energy base. As can be seen, these five provinces 
have relatively high water and energy consumption due to 
their resource endowment and industrial structure. Xinjiang 

and Ningxia also have 10% and 42% redundancy in con-
struction land area (CL), respectively, and thus need to 
improve land use efficiency. In addition, the five provinces 
need some improvement in capital stock (CS) and total 
employment (TE). To be specific, they need to improve the 
efficiency of personnel work and capital use continuously. 
Overall, according to the above analysis, except for the 
construction land area, the five provinces have an enormous 
redundancy in input indicators for optimization, and further 
measures should be taken to optimize resource allocation, 
and improve the quality and efficiency of staff.

Second, regarding the desirable output, Fig. 11 presents 
the average ratio of desirable output indicator that can be 
improved. A larger ratio indicates a greater degree of defi-
ciency in that output indicator. It can be observed that five 

Fig. 7  GDE trends by region in 
China
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provinces have a large deficit in GDP, and need to improve 
their average GDP by more than 52% to reach validity. 
Among them, the GDP of Ningxia needs to be optimized by 
more than 72% before it can reach validity. All in all, the five 
provinces mentioned above are generally lagging behind and 
need to promote their economic development.

Finally, from the perspective of undesirable output, Fig. 12 
reports the proportion of each undesirable output indicator 
that can be improved, with a smaller ratio indicating that the 
province has better control over undesirable output. It can 
be found that except for Xinjiang performing better in total 
waste water emissions (WW), five provinces have certain 

deficiencies in the rest of the undesirable output indicators. 
In particular, the problems in solid waste emissions (SW) and 
soot and industrial dust emissions (SD) are particularly promi-
nent. In terms of the solid waste emissions, the improvement 
ratio of the five provinces is higher than 71%, with Ningxia 
and Shanxi needing to optimize more than 90%. In terms of 
soot and industrial dust emissions, five provinces need an 
improvement value greater than 74%, while four provinces, 
except Guizhou, need an improvement ratio of 84% or more. 
According to the above analysis, the shortcomings of these 
inefficient provinces can be identified, and constructive sug-
gestions can be made for the next regulation step.

Fig. 9  Inter-provincial GDE in 
China, 2010–2018

Fig. 10  Improvement strategies 
for input indicators in inef-
ficient provinces (symbol: CS 
represents capital stock, TE 
represents total employment, 
CL represents construction land 
area, WC represents water con-
sumption, EC represents energy 
consumption.)
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Analysis of the Tobit model regression results

The following is the analysis of the influencing factors (as 
shown in Table 5), where a positive correlation means that 
the two phenomena change in the same direction and the 
dependent variable increases with the independent variable, 
i.e., there is a facilitative effect. A negative correlation means 
that the two phenomena change in opposite directions, and the 
dependent variable decreases with the increase of the inde-
pendent variable, i.e., there is an inhibitory effect. ① Indus-
trial structure (IS). The influence of the share of secondary 
industry on GDE is significantly negative. The secondary 
industry consumes more resources and emits more waste, so 
the increase in the proportion of the secondary industry will 
inhibit the improvement of GDE. ② Environmental policy 

(EP). The percentage of environmental protection expenditure 
has significantly and positively correlated with GDE. Since 
the construction of ecological civilization has been proposed, 
it has effectively reduced the generation and emission of pol-
lutants, and therefore environmental policies have contributed 
to improving GDE. ③ Urbanization level (UL). There is a 
negative correlation between the proportion of the urban pop-
ulation and GDE. At the early stage of urbanization, industries 
with low technology levels and high labor densities develop 
rapidly, and environmental pollution is serious, resulting in a 
low GDE. ④ R&D investment (RD). The proportion of R&D 
investment has positively correlated with GDE, indicating that 
improving science and technology level is conducive to the 
improvement in resource utilization rate and pollutant man-
agement, thereby contributing to the improvement of GDE. 

Fig. 11  Improvement strategies 
for desirable output indicators 
in inefficient provinces

Fig. 12  Improvement strategies 
for undesirable output indicators 
in inefficient provinces (symbol: 
SW represents solid waste emis-
sions, DG represents domestic 
garbage removal volume, CO 
represents CO2 emissions, SO 
represents SO2 emissions, NO 
represents NOx emissions, SD 
represents soot and industrial 
dust emissions, WW represents 
total waste water emissions.)
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⑤ The level of economic development (ED). GDP per capita 
has positively correlated with GDE, noting that the improve-
ment of economic development level is conducive to improv-
ing residents’ environmental protection awareness, thereby 
enhancing the GDE. ⑥ Energy consumption (EC2). Electricity 
consumption per capita has negatively correlated with GDE, 
showing that the increase in electricity consumption gener-
ates more pollutants. Thus, there is a suppressive effect on the 
improvement of GDE.

Conclusion and policy recommendations

The continuous and rapid economic development has 
brought about excessive resource consumption and envi-
ronmental pollution. Therefore, it is essential to coordinate 
economic, resource, and environmental factors to achieve 
sustainable development. This paper develops the MCSE-
DEA model to address the problems of the same status of 
indicators and the inability to distinguish effective DMU of 
the traditional P-DEA model. We employ the MCSE-DEA 
model to measure the inter-provincial green development 
efficiency (GDE) in China from 2010 to 2018. On this basis, 
the Tobit model is further applied to investigate the influ-
encing factors of GDE. The results show that the average 
GDE shows an increasing trend during the study period, 
but there are significant disparities between and within 
regions. From a regional perspective, six regions show an 
upward trend in efficiency values, among which the Middle 
Yangtze River and the southeast region have the highest 
efficiency values, while the northwest region has the low-
est efficiency values. From an inter-provincial perspective, 
more economically developed provinces, such as Shanghai, 
Tianjin, and Fujian, have higher efficiency values, while 
provinces in less developed regions like Shanxi, Qinghai, 
and Ningxia are less efficient. The study of the inefficient 

provinces found significant redundancy in most indicators 
and a lack of optimal resource allocation. From the per-
spective of influencing factors, the environmental invest-
ment, R&D investment, and economic development level 
can significantly contribute to the improvement of GDE, 
while industrial structure, urbanization level, and energy 
consumption have inhibiting effects.

Based on the results obtained from our study, we propose 
some suggestions as follows. First, GDE has a large gap 
between and within regions. Studies on inefficient provinces 
found that water resource utilization in Xinjiang and energy 
consumption in Ningxia are large. Accordingly, Xinjiang 
should make great efforts in adjusting the industrial struc-
ture, strengthen the construction of water-saving facilities, 
and introduce advanced monitoring technology. Ningxia can 
reduce energy consumption by transforming the existing 
energy industry, utilizing new technologies, and improving 
the industrial structure. Second, Ningxia and Shanxi prov-
inces have a large amount of waste production and soot and 
industrial dust emissions, and a high degree of dependence 
on natural resources. Therefore, in order to improve the 
efficiency of green development, there is an urgent need to 
focus on the optimal allocation of resources and improve 
the overall allocation of resources. Third, it is essential to 
change the economic development mode actively, reason-
ably plan the urban layout, effectively reduce the energy 
consumption intensity, and gradually increase the environ-
mental protection efforts.
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