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Abstract

Water hyacinth (WH) has become a considerable concern for people across the globe due to its environmental and socio-
economic hazards. Researchers are still trying to control this aquatic weed effectively without other environmental or economic
losses. Research on WH focuses on converting this omnipresent excessive biomass into value-added products. The potential
use of WH for phytoremediation and utilizing waste biomass in various industries, including agriculture, pharmaceuticals,
and bioenergy, has piqued interest. The use of waste WH biomass as a feedstock for producing bioenergy and value-added
chemicals has emerged as an eco-friendly step towards the circular economy concept. Here, we have discussed the extraction
of bio-actives and cellulose as primary bioproducts, followed by a detailed discussion on different biomass conversion routes
to obtain secondary bioproducts. The suggested multi-objective approach will lead to cost-effective and efficient utilization
of waste WH biomass. Additionally, the present review includes a discussion of the SWOT analysis for WH biomass and the
scope for future studies. An integrated biorefinery scheme is proposed for the holistic utilization of this feedstock in a cascading
manner to promote the sustainable and zero-waste circular bio-economy concept.

Keywords Eichhornia crassipes - Sustainable bioprocess - Biomass - Bioproducts - Value addition - Sequential extraction

Introduction

Eichhornia crassipes, commonly known as water
hyacinth (WH), is an aquatic macrophyte belonging to the
Pontederiaceae family. It originated in South America and
spread worldwide in the late eighteenth century due to its
highly invasive nature. WH was considered an ornamental
plant due to its attractive flowers and foliage and was
distributed widely. Once it escaped from cultivation, it
became a severe pest, obstructing navigation and interfering
with fisheries and other water activities. Because of the
various social-environmental issues provoked, it became the
world’s most notorious aquatic weed. Since then, research
has been ongoing to develop strategies for its eventual
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application to humanity (Malik 2007; Ren and Zhang 2007,
Zhang et al. 2010; Shu et al. 2014).

The climatic conditions in tropical and subtropical
regions favor the growth of WH. Once infested, it
proliferates, forming a dense mat over the water surface
within a few weeks. It shows high productivity in summer
and maintains its population from year to year despite its
decrease in winter. It floats freely and propagates fast by
asexual and sexual means; however, it commonly proliferates
vegetatively through root stalks (Coetzee et al. 2017;
Kitunda 2017). The rapidly growing WH blocks sunlight.
Excessive growth increases the transpiration pull resulting
in heavy and rapid water loss. The obstructed movement in
heavily choked waterbody hampers the oxygen exchange,
and decaying vegetation creates a foul smell. The decaying
vegetation provides a breeding ground for mosquitoes
and creates other health and hygiene-related issues. As a
result, there is an overall imbalance between flora and
fauna. Fishing, boating, swimming, irrigation, hydropower
projects, and other activities are all impeded (Thamaga and
Dube 2018; Dersseh et al. 2019).

Physical, chemical, and biological treatment methods
attempted to control and eradicate this weed (Williams et al.


http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-023-25830-y&domain=pdf

Environmental Science and Pollution Research (2023) 30:39494-39536

39495

2005; Wilson et al. 2007; Greenfield et al. 2007; Tipping
et al. 2014) are shown in Fig. 1. These methods require high
costs and labor, but effective eradication is still impossible.
WH repeatedly regrows, making all the efforts in vain (Wil-
liams et al. 2005; Kleinschroth et al. 2021). Moreover, exces-
sive chemicals and biological agents adversely affect the
associated biodiversity. Annual eradication of WH imposes
an enormous and unnecessary burden on developing coun-
tries’ economies. As WH does not produce food or revenue,
it is unappealing to face the costs of eradicating this pest.
Reversing the perspective, WH is blessed with the potential
for rapid growth, outranging other species. This exclusive
property makes it a potential candidate to be utilized as a
sustainable feedstock for various industries. This review
aims to analyze the green potential of WH for its practical
and sustainable utilization. The suggested multi-objective
approach will be beneficial in developing cost-effective
procedures compared to the single-objective methods
proposed earlier. Most reports discuss WH for fuel and energy
(Gunnarsson and Petersen 2007; Ganguly et al. 2012; Rezania
et al. 2015; Bote et al. 2020a; Gaurav et al. 2020; Li et al.
2021), WH management and valorization (Yan et al. 2017,
Sindhu et al. 2017; Guna et al. 2017), or contaminant removal
from water bodies (Dhote and Dixit 2009; Mishra and Maiti
2017; Priya and Selvan 2017; Ting et al. 2018; Li et al. 2021;
Madikizela 2021). Here, we have discussed the valuable
bio-actives extracted from the WH biomass as primary
bio-products, followed by the generation of secondary bio-
products by biochemical, green synthesis, and thermochemical
routes. To the best of our knowledge, a detailed discussion
on WH extractives, including bio-actives, cellulose, and
WH-based nano-particles, has been done for the first time. An
extensive review of fuel, supercapacitor, catalyst, and other
product generation from WH via thermochemical route has
been done, which is lacking in the existing literature. Apart
from this, here we have included the recent advancements in

Fig. 1 Morphology and control
measures for water hyacinth

WH Biomass |

WH morphology:
Bulbous, spongy stalk,
rounded and glossy leaves,
free floating roots with
interconnected stolons

WH biomass applications in environmental and other sectors.
Integrative and sustainable biomass utilization is the focus
of the review, with the long-term goal of developing WH
biorefinery. This review suggests a novel, systemic approach
for utilizing WH biomass based on its compositional traits and
gives an updated insight into its valorization. The sustainable
utilization of WH biomass for phytoremediation, followed
by its extraction and conversion to generate high-valued
compounds, will enable the monetization of this weed. A
systematic and integrative approach will benefit businesses,
society, and the environment by promoting a circular economy
for WH management (Fig. 2). We also discuss the benefits,
shortcomings, and outlook of WH biorefinery via a SWOT
analysis.

Primary bioproducts: phytochemicals
extracted from WH

The aquatic macrophyte, WH, has existed in local
environmental conditions since its introduction as an
esthetic plant. The plant is highly stress-tolerant and has a
high survival rate in harsh situations like water contaminated
with heavy metals, dyes, and algae blooms. Its unwelcome,
enormous, and recurring growth in water bodies prompted
researchers to explore this weed for beneficial compounds.
Several researchers have reported the composition of WH; a
few of the reports are summarized in Table 1. Most reports
discuss WH composition on a dry weight basis. WH is a
simple biomass with a major portion of the mass composed
of cellulose and hemicellulose, with a low amount of
lignin. Therefore, WH can be a good source for harvesting
cellulosic material. It is a good source of antioxidants,
sterols, proteins, fatty acids, cellulose, vitamins, minerals,
pigments, and other plant-based metabolites, as discussed in
Table 2. However, the levels may vary depending on plant
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Fig. 2 Integrative approach for Methods Products
potential WH biorefinery
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Table 1 Compositional anz.ﬂysis Cellulose Hemicellulose Lignin Ash N content  References
of WH biomass (% dry weight)
31 22 7 15 (Bolenz et al. 1990)
21.5 33.9 7.01 12.1 1.8-3.2 (Deshpande et al. 2008)
21.5 339 7.01 12.1 (Abo-Elmagd and Housseiny 2012)
18.1+0.2 28.2+0.11 7.03+£0.09 (Zhang et al. 2016)
24.8+2.0 30+1.75 5.6+2.5 10.9+0.76 2.80+0.08 (Varanasi et al. 2018)
57+0.7 25.6+0.6 4.1+0.1 (Tanpichai et al. 2019)
52.06+0.38 17.6+0.45 8.66+0.33 16.2+0.98 (Pakutsah and Aht-Ong 2020)
45.5 21.76 8.31 (Oyeoka et al. 2021)

maturity and local environmental circumstances. Antioxidant
additives, therapeutic factors, and structural biopolymers
could be obtained from WH for applications in food,
pharma, and other industries. Furthermore, after extracting
inhibitory plant phenolics, residual structural biopolymers
could be an ideal substrate for bioconversions to produce
other valuable commodities. As discussed in Table 2, WH
extractions provide more insights into its composition. The
compositional review serves as an essential step to identify

@ Springer

the range of possible applications for each by-product for
consideration of WH as a potential biorefinery raw material.

Plant sterols

Ganguly et al. (1977) isolated sterols and confirmed the
presence of B-sitosterol and stigmasterol from the dried
pollen and pistils of WH. The existence of glycosides and
phenolic compounds were also reported. Authors suggested



39497

Environmental Science and Pollution Research (2023) 30:39494-39536

PAYTUSPI AIOM SPIJE J10Z

-uaqAxo1pAy-d pue ‘o1sn)

(€102 T8 1@ [ereapuoing) -udl ‘omyodeosoloid Oren

(6002
‘800T 'T& 12 BOSIDE[[2()

(e ‘av00T 'T® 10 opog)

(2207 T8 19 eresd)

($0OT 'Te 10 1M0qqrEyD)

(6861 eyeS pue 1e3eN)

(9102 T2 1 0PN
9P 910 ‘Te 9 SUDIBIN)

(ST0T "Te 12 2219d-019[ 1Y)

(LL61 T8 1 A[n3ueD)

SI9YI0

)im Suole ‘payrIudpI pue

PSIR[OST SI9M SIATIBALIOP
quoreuaydjAuayd mau omJ,

JOBIIX QABI] PILIP-9ZATJ

I10J paAI1asqo sem dp3
/39 [owt Of ‘OF 1SYSH
O1dH

Keads rerjoy yim sowm)
$8°'1 Aq pasearour syued
0JeWo) JO P[aIA Jou Y],

juerd
oy 01 Ayoeded Surpuiq
[BI9W SIJUOd M Ul VH

sjaed juerd [[e ur pajoolep

a1om syead uturyol£)

[oueyld
JUIAJOSOD B UM 9%"IM

88'1 Aq pasearout pforx
%I TT'0-0T°0 sem

("L proif Joreisewsng
%I ELOT90

(") proté reror,
POYTIUIPI A1oM
(prouadiay) uorenbs

puE ‘s[019)s ‘SpIok drueSIO
paysi|
-qe)se $393 uoneuruLIagd
udfjod ur sproe ourwe

pue S[01A)S JO 9[01 Y],

D1dH 1891 KIiqess [10 yst
159) uoneprxorad
prdr[ Jo uonIqIYuT )50
J1omod Furonpar ‘Kyianoe
Suneyo (o) uoir
‘Kesse Hddd ‘Aesse Dd.L

AN
“D7TdH oseyd-pasioady

D1dH ‘Aesse qd ‘Aesse
quoryen|3 urod o11od[e
-0ST ‘Sur[opow [eONEWAYIEIA

01eWO) JO PIAIA Ssewolq

‘Kyrenb [euoninnu ‘yuow
-110d X9 J00[q pazIwopuey
YAN HI ¥ILLA ‘SIN/DD

SpIoe oTwIny urejqo

01 HO®EN AL 10 Sursn
SPIOE OIUOIN JO [BAOWIY
Aydei3ojeworyd uwnjo)
Kesseorq snyreo ueaqAos

SIN-D0D
‘urpopowr [BoNBWAYIRIA

SIN-0D
‘UOTIRZIIBALIOp [OUBING-C] ]

159} preyoIng-uueuLIaqor]

[oueyld IoJRA\

Jre1a08 AU

png
vIag—oeydsoyd-eN

REIIVY

AJA
[:7 ‘[OUBY}OW-3UIZUIG

JouryIe %08

¢0D ‘eueyowoIoYII(]

[OUBYIQ ‘QUBXIY-U

pmbr-prog

pmbr-prjog

pmbr-prjog

pmbr—prog

pmbr—prog

pmbr—prjos

A4S “9[yx0s

BIYX0S

pmbr-prjos

spunodwod

SIOMOY ‘SoABI ‘9[ondgd drjouayd ‘syueprxonuy

VN

SOAB]

spunodwod paje[ar
-ouareuaydiAuayq

Juoryjeinn

s10)oe} onnaderoy) pue syueprxonuy

100Ug

S)00I ‘SUWI)S ‘SIABI

SIoMop)
‘SOABI] ‘S1I00US ‘S1I00Y

SY[BIS PUE SOABY]

$JOOI PUB ‘WR)S ‘SIABI |

sinsid
pue 1opmod uarjod A1q

19ZI[1)19
Se 10r1Xd snoanby

proe oruny
op1soqL
uneoz pue uneayz,

s1oye[n3a1 Yymois jue[d

(Tox91sRWINS) S[0IANS

SJUAMTISUOI0IAYJ

[019)seW3 NS
pue [0191S0}IS-B1og

S[0191S Jue[d

SOOURIRYY

synsar Aoy

Kesse/poylo|N

Pasn JUSA[OS

pouyjouwt uonoeNXy

jred Juerq

aoqeIo

SSBWOIq A\ WOIJ PRJORIIXa SaY[oqeiow Jue[d g d|qel

pringer

as



Environmental Science and Pollution Research (2023) 30:39494-39536

PaAIdsqo sem § punod
-woo 10§ NN 41 F9'99
pue ¢ punodwod 10

Wi 99F L€ DA

spunod
-Wwod Mau g Jurpnjout

(1707 T 19 ©1S0D)  ‘PaynuApI a1om sJUd 61

CEIAD

1201.4q vuLosoundq.i] 103
TW/3 €2TF01T*'DT
‘TUDAOUOD DIUDUIYSIDT
1surese TW/3 70'¢ F €01
“0°0d “190d wnandiopf
wnpouIsv] g ysurese

Surouanbas
proe-ourure £q paynuapt

(98107 ‘Te 12 Sueyyz) pue paje[ost a1om sopndog

paurelqo
a1om A[oAnoadsax

(%) %0%'0—ST°0 pue
‘%ITT=LT0 ‘%I EI-TV L
‘9,9'77—08’6 SeSuer suon
-BIJUQOUOD IIM—spunod
-wod d1eWOIE pue
‘sjoyoore oneydife ureyo

(STOT ‘Te10vATIS)  -SUO[ ‘SPIdE ANEJ ‘S[011g

AN 159)

K)191%030340 “(UTems x)

12140 puiosouvdq.1J ysurede
Ananoe reozojoxdnuy

Palsa) a1oMm
K1IAOR [ePISTURIYSIS]
pue ‘Kjanyoe TeproouedAn

‘KIIATIOR [eLIR[RWUNUY
(0207 qr3era) TW/3 €0 TF6'6v DI 198NX3 Jo SIsA[eur [eorway)

J'1dH-dd
‘Kesse Hddq ‘Kioedeo

Suneayo-reow ‘romod
Suronpar ‘S1gV ‘Aimanoe
Sur3uaAeos [eo1pel UoTUE

oprxoradns jo uonewnsg

SIN-0D

‘Kesse DL ‘Aesse HddA

XAF-INAS ‘Aianoe

Juexay
‘IoTem—[OUBYIOUW ‘[ouey)g

RENITY

Iey[e PV

(AIAA
‘0°6:S° LG L) damxIw
PIOB O11Q0® :IdJeM ([OU

-eloW ‘QURYIUWOIO[YIIJ

pnbi—prjos 9[yxos ‘SOABI] ‘SIS ‘S100Y

spunodwod (squd)
sououaeuaydjAuayq

Ananoe oniserednuy

sopndad
JUBPIXOTIUE OM],

Nblivel
Iejod-uou pue rejod

K)101%0) g 03 QWAZUD ‘XopuUl QOUBII[O],
meOQmUH GM U®>H®mn—0 Sem Jua1uod
Ananoe XOd pue ‘XdVv peay 10 s {(FON)
(10T 'Te 12 Ie[eIN) ‘LVD ‘dOS pasearouy qd yim umois s3urpass  I1opnq VIgg—areydsoyq SQWIAZUS JUBPIXO-TIUY
SQOUAIYY synsar Aoy Kesse/poyloIN Ppasn JudA[OS poylowr uonoen Xy QOQRIdA

39498

(ponunuoo) zsjqey

pringer

Qs



39499

Environmental Science and Pollution Research (2023) 30:39494-39536

%¢"$9 JUSTOYJO0D
uonoafor y- w7 194 :xny

1SOATS

s 0] own uoneiodead

PUE %G| UOIIBIUIOUOD

9)BI00RIp 9SO[N[[9I

(S10T 'Te 10 unjey{oInsy) Jje oueiquiow paredalg

(NFL) wu ¢z

pue (WHS) Wu 001-0T
:I0)oWRIP AFBIAY

(T10T ysowey
pue repung einduiyJ)

(sooz
“Te 30 IeyIpeURyOUR])

punoy
SeM QU0IRI-f %/ E10°0

(vsourdn.1op
s115£20401p7) YO Isurese
spunodwod 9A1OROIq
urew ay) se paynuapr
QAIoM SIATIBATIOp Jouayd
Inoj pue suoudreuayd
(120 'Te 10 SuayD)  paymnsqns-[Auayd-/ sary],

Apms sorwoajord
e Aq parojdxa sem HM Aq
191eMm O1ydonna Jo wistu

(sT0z' I  -eyoow uonesyund YL

)
UOTORIJ QATIOR UI PIJOJJOp
sem (quIyoA-e1aq G

(010T 'Te 10 qeueys)  -093S-6[ ‘81) PIo[EN[E UY

uoneoIuos Jo
Ut O utgym %/°L8 Jo
K)IATIOR JUBPIXONUR WINW
-IXBW JU) MOYS SW)S
S[IYM SOALI[ IOJ PAAIISQO
(ssewolq /4D

SuW ['[1) DL WnWIXep
wo)s oy} J0J () oY) Ul
PIAIISQO Sem UIU ()¢ I

(TTOT Te 10 wp0URD)  %]°€ JO PIaIK 159YyS1Yy YL,

R INKE
59) uonoafar pue xnpy

41D VO 'VOL
‘@¥X LI ‘WHS-Hd

J'1dH

NN
‘@YX Knanoe esenuy
Knowonoads
sseur ‘sisoroydonose 103
-z ‘Aianoe asejonpal
enIu ‘KJATIOR QWAZUD
juepIXOnUE ‘YIMoiI3 [e3[y

JINN-H
1L ‘SIN-D9D O1L
Kesseorq
uorsnyjip osip Joded [e3[e
-nue ‘Kesse [eIqOIOTWNUY

KI9A0021 'S
‘AN1AToR JuepIXONUE ‘DL,

uonn[os

HO®N ‘TDO®N ‘(A/A suelq

1:7) [OUBY}O-UIN[O], pmbi—prjos 1Rqy A1q -wow JoJ 3so[n[[2D
uonezi[ydoA] ‘uoned
uonnjos HOeN -TUOS ‘SUTYSNIO 0AID (SAND)
‘IDOEN ‘[oueyle-ouanjo],  ‘SuI[[IW [[eq ‘IO[YX0S wR)S sIaqyoueu dSO[N[[D
aso[nye)
JoRNX
Bl G ER Y pmbi—prjos j00yS POYOLIUL QUJOIRD-(
syuowS1g
190eM

9Je1a08 [AYI0 ‘JouByIoIN pmbr—p1jo§  HM 1001-9[dind jo sjooy  spunodwod [e3[enuy

VN VN juerd sjoypy  [onuod uonesrydonnyg

JOURYION pmbr-prjog 5109459 orredop[Iy

renuajod oryyedoro[y

I0JeM—[OUBYIOIN punosenyn S100I ‘SOABQ[ ‘WIS (VS) proe orunyrys

SOOURIRYY synsax Aoy

Kesse/poyloN

Pasn JUQA[OS poyouwr uonoenXy jred juejq AN[OQRIIN

(ponunuoo) zsjqey

pringer

as



Environmental Science and Pollution Research (2023) 30:39494-39536

39500

swy o[qe

edIN 8°€1 -peIdapolq unejs-vAd
1p3uons J[ISu) WL -9s0[N[[99 Yy} IO} UOP uon swy Suideoed
wu 0§-07 1M JAM PU ‘VINA -njos "OS°H “0I0EN 10§ (SDND)  S¥
(120T "Te 10 eY02KQ) JRjeWeIp SHND HM ‘VOL “dILd ‘WAL ‘QdX ‘HOBN ‘dudzudg-[oueyig pmbr—prjog was -sKxooueu aso[ny)
134
S9[0A0 (0 03 dn 10§ ‘DSA-OL ‘K1anonpuod
9[qess surewar uondiospy  TewIdy [, ‘INAS ‘QAX ULLA
[10 [3S3IP 10} PIAIISGO [93019e YAd
sem 3/3 ¢'¢ Jo Aioeded -aso[n[[oo o1qoydorpAy JUOW]BAI) JABM
(120T ‘Te 12 uakn3N) uondiospe [10 WNWIXEW Y 10§ sarpmys uondiospe [10 uonn[os ‘O°y ‘HOBN -o1omut ‘pbr—prjog HMm aso[nye)d
juow
-2Insedw v ‘INAS UL
asodwod
3/3 ¢'Z1-16'€ Jo a3uer queyjanAjod pue asony
(0z0z ‘e @ unumis)  oy) ur uondios [0 ouiSug  -[99 Jo sarpmys uondios [10 uonn[os [DH ‘HOEN pmbi—prjos SOABY] s19qy 2so[n[[e)
suoneordde
WSromysI| Jo AIqeimns
S)1 9yeorpul soyisodwod Jo
sonzedoid orwreukp pue WAV ‘INES saysodwod
(0T0T T8 19 PUWNG)  [RULIAY) ‘[BOIUBYOSW Y], ‘DLA VOL ¥ILd ‘d¥X uonnjos Sue[s ‘HOBN pmbr-prios SIaqlq -01q 10} s1aq HM
ordures pajestuos ayy
10J 9ZIS WU-¢G B SMOYS uon uon Jso[n|
(1207 "Te 10 wenyoed) (VSd) sisk[eue ozIs o[onIed INAS ‘VOL “dILd  -0[os [DH “O°H ‘HOEN  -®otuos ‘pinbi—prjog SWR)S  -[00 QUI[EISKIOUBN]
uonez
VDL Pue ‘qix uonnjos -uagowoy amssaid
(0T0T ‘TeJ0o UNS) WU §'Q :IOJOWIEIP 03LIOAY ‘AdM WHS-Ad L1 HOBN ‘OID®N “11ep -ys1y ‘pmbr-prjog swas SAND
S9[0Ad
uone[[Lqyep Q[ unpim @IX ‘VOL AIM uonez
(0z0T paredaxd sND wu (g ‘sontedoid Teo1So[oayy -ruagowoy arnssaid
SuQ-IYY pue yesinyed) 0] G :1ojRWRIP dFLIAY ‘149 ‘WAL ‘WS ¥WI1d  uonnjos CO[DeN ‘HOBN -ys1y ‘pmbr—prjog swals SIND
JUSWIDINSBIW
LD pue ‘yD ‘sontadoid
wirl [e1oA9s Jo [eotueyoW ‘AIIfIqeIom
(1202 SYISuQ pue wWu ()¢ — O ‘Kouaredsuen ‘YO, uonnjos
‘610¢ 'Te 19 regorduey) “1910WEIp oI ‘@YX A1 ‘WAS-9d HOX COID®N ‘1o7em pmbr—prjog s1aqr] s1oded oueu pue SIND
JYS se
renuajod sit aaoxd 4 pue AL ‘WAL
N JO 9SBo[a1 PazZIuoIyd TIS (eprurejfioe)Ajod
-uks oY) pue ‘[10s 9y} ur -pa1JeI3-9s0[N[[99 JO ST
IoJeM UIRJQI PUB QIOSQe O}  -JOULY 9SB9[I S[eJour Jy) uonnjos (1dS)
renuajod o ‘ausodwiod  pue ‘[I0s Ul uorIEpRISIPOIq HO®N ‘IDO®BN ‘(a/A I9ZI[1)I9) SB[l
(61027 ‘8107 'Te 1@ doy) ay1 Jo Afiqepei3apolq Ay, ‘Kioededs Surpjoy Iayep 1:7) [ouByl™/QUAN[O], paxngoy jue[d -MO[S 10J AS0[N[[9D
SOOURIRYY synsax Aoy Kesse/poyloN Pasn JUQA[OS poylouwr uonoeNXy jred juejq AN[OQRIN

(ponunuoo) zsjqey

pringer

Qs



39501

Environmental Science and Pollution Research (2023) 30:39494-39536

(10T T8 10 weysy)

(810 d1owoNe N
pue eypemyO)

(120T T8 10 BA[IS)

(610
‘[e 39 uemnswinyyelq)

(L10T T8 10 yeurieg)

(Q120C ‘T8 10 uIppnye[es)

(0T0T 'Te 10 nuonmy)

S/ N 6t -xopur
QISUR, ‘3/,WIN W 6.°9
'XOpUI 189], $9 7" L€ :SSAU
-y3u1q dind payoeorg
Po1sad
-Sns sem 10e10%9 HM
%0¢ ynm Juswaoedar
Jazronse[dradng “Surpuiq
eIIoR] HAA Ul Jussaxd
SpIoe A)3e) pue ‘sjoyoore
‘sopAyap[e ‘Sou0)oy
JUSIOLY
Q10w $s9001d UOTIRZI[T}IO]
uagontu oy ayew SIS

Quop 9q pP[Nod
sordwres pooj [enjoe
Ul Xe1o0q Jo uonod_(d
QAID9JJ0 pue OIseq
wnIpaw Yy} ayew yse
HM Ul pue ‘S 0D
‘e) ‘s[ejow 1eye oY3SIHq

3/3w g¢ =pa1 o3uo)

3/3w ' ()7 =19[01A [€ISAID
:Kyoeded

uondiospe oAp wnwrxejy

wd/S €279 01 1°0
:KIIATIONPUOD [BILIO9[

porpms
arom 1oded oy jo yISuoms
pue ‘ssouy3Liq ‘proik oy,

SIN—DD PaIsa)

a1am (DDS) 91010U00 Fur

-joedwoo-jyes jo Ayoeded

uondiosqe 19jem pue
‘qSuans ‘Aoud)sISu0d oY,

(SYS) SIOZINIJY SB[
-MO[S 10} UOP SeMm [I0S
pue IoJeMm UI JS3) ISBI[AI

SdX
pue ‘Tenuajod 197 YL
10SUQs paseq
-Todeq uowrradxa Sur
-Suas xeloq ‘proIk wnuend)
X{H "PaISe) Sem Uuoroeal
Surdnoo-sso1o Joj wnipaw
U20I3 ®B SB J0RNXA Jojem

yse HAA JO Aoeorjjo oy,

@QIX ‘DLA ‘VOL dI1d
sorpmys uondiospe 9L

U1l ‘WHS-dd ‘A
s[egoror
aAnoNpuod JAd/Add
JAND 10} Quop sem juow
-2INseaU [BSIAYI0NIT

uonnios \0°H ‘HOM

[oueylo ‘IJeA\

uonn[os HOI ‘191

10JeM ‘pIoe JININ

IOJBM

uonnjos
“OH ‘HO®N “(a/a
1:7) [ouey3I2-ouan|o],

(A/A
‘1) proe oL ‘[ouryig

pmbr-prjog

pmbr-prjog

pmbr-prjog

poxnpoy

pmbr—prjos

1014x0S

UONBIIUOS
‘Surqiw [[eq ‘paxnyoy

3sodwos-o1q

SOOURIRYY

synsar Aoy

Kesse/poyloN

Pasn JUQA[OS

poyouwr uonoenXy

swa)g  pue 1aded opewpuey
(209)
91010u09 Junoedwoo
juerd sjoyp -J[9$ 10J I9ZIoNSe[d
ssewt
j00yS -o1q paropmod HM
JOSuas XeIoq
SoABYT a1} 10§ SI0p U0gIRD)
wnIpawr
© SB J0BIX9 IoJeM YSY
SNOUB[[AISTIA
s100yS aso[n[eD
S1oqly SAND
jred juerq Q[OQRISIA

(ponunuoo) zsjqey

pringer

as



39502

Environmental Science and Pollution Research (2023) 30:39494-39536

the presence of sterols to protect the plant from desiccation,
glycosides as a source of sugars, and phenolic compounds
to repel approaching insects (Ganguly et al. 1977). GC-MS
analysis of the lipophilic extract of WH was found to yield
sterols of up to 1.12 wt% in roots and 4.45 wt% in flowers.
Stigmasterol was present in WH with a yield of 4.44 g/kg of
biomass, making WH a rich source of this compound (Silva
et al. 2015).

Fileto-Perez et al. (2015) isolated fatty acids in WH
through sequential extraction using solvents of increas-
ing polarity in a soxhlet apparatus followed by derivatiza-
tion with BF;. A total of 24 compounds were identified,
which included 20 carboxylic acids, three steroids (includ-
ing pB-stigmasterol), and one terpenoid (squalene) (Fileto-
Pérez et al. 2015). Supercritical CO, was also used for sterol
extraction. A maximum yield of total sterols (/o1 stero) Was
0.35 wt%, the concentration of total sterols (Cro, sterol) 38-3
wt%, and the concentration of stigmasterol (Cgy;,p,,) 26.4 Wt%
was obtained at pressure 300 bar and 2.5 wt% ethanol as
a co-solvent (Martins et al. 2016). De Melo et al. (2016)
extended the work by utilizing yield response as a selectivity
element in yield optimization using mathematical modeling.
Total sterol yield increased from 0.64 to 1.88 wt%. Also,
selectivity for stigmasterol increased at 40 °C compared to
60 °C (de Melo et al. 2016). The structures of the main phy-
tosterols found in WH extracts are shown in Fig. 3(a)—(c).

Plant growth regulators

The plant hormone cytokinin was observed in WH extract
(Nagar and Saha 1985). Results indicated the presence of
zeatin (Z) and zeatin riboside (ZR) in both leaves and root
extracts. The qualitative difference among the hormone
found in different parts of the plant was attributed to the
metabolic conversion of the hormone. Humic acid (HA) was
isolated from the dried powder from different parts of the
WH plant after successive extractions for lipids and uronic
acids. The freeze-dried HA samples contained amino acids,
monosaccharides, macroelements, and microelements and
could be used for soil improvement (Ghabbour et al. 2004).
Elgala et al. (2022) performed a randomized block experi-
ment in which an aqueous extract of WH shoot was sprayed
over tomato plants as a source of nutrients. The net yield of
tomato plants increased by 1.84 and 1.63 times compared
with the control (without foliar spray) and commercial syn-
thetic chemical solution treatment, respectively (Elgala et al.
2022).

Antioxidants and therapeutic factors
WH aqueous extract has shown effective anti-parasitic activ-

ity against drug-resistant parasites. The extract was rich in
steroids, flavonoids, alkaloids, tannins, and proteins with

@ Springer

high antioxidant activity making it an effective and inexpen-
sive anti-parasitic agent (Elagib 2020). A polar extract with
a yield of 10 wt% for roots and 28.8 wt% for stalks from WH
was rich in antioxidants and phenolics (Silva et al. 2015).
Aboul-Enein et al. (2011) separated nine active fractions
from WH, including alkaloid, propanoid, phthalate, and
phenyl derivatives. Antibacterial, antifungal, antioxidant,
and anticancer properties were evaluated, which showed
promising medicinal potential (Aboul-Enein et al. 2011).
WH ethanolic extracts rich in natural antioxidants increased
the shelf life of unsaturated fish oils. HPLC analysis revealed
the presence of phenolic compounds such as gallic, protocat-
echuic acid, gentisic acid, p-hydroxybenzoic acid, and others
(Surendraraj et al. 2013). The structure of p-hydroxybenzoic
acid is shown in Fig. 3(d). Two antioxidant peptides with a
molecular weight of 442.3 and 278.2 Da were purified from
WH leaf hydrolysates using gel filtration chromatography
and RP-HPLC. They were identified as Phe-Phe-Glu and
Leu-Phe, using MALDI-TOF-MS. The separated peptides
could be used in food and pharma industries as natural anti-
oxidants, as evident from free-radical scavenging assays
(Zhang et al. 2018c).

Optimized process for fast and efficient extraction of glu-
tathione using factorial 3> design reported 40 nmol equiva-
lent glutathione (EG) per gram of dried plant (Bodo et al.
2004b). Freeze-dried samples exhibit the highest glutathione
activity, while the EG value deteriorates rapidly when sam-
ples are heated above 60 °C. Two new phenylpropanoid
derivatives with a potential role as phytoanticipins and phy-
toalexins were isolated from the ethyl acetate extract of WH.
Compounds were characterized using 'H and '*C NMR after
HPLC-based purification (DellaGreca et al. 2009). The study
was extended further by Coasta et al. (2021), who extracted
19 phenylphenalenones (PhPs) from WH. Structures of four
newly discovered PhPs were elucidated using 'H and '*C
NMR. Furthermore, the two main PhPs, 2-hydroxy-8-(4-
hydroxyphenyl)-phenalen-1-one (PPO1), and 2-hydroxy-
8-(3,4-dihydroxyphenyl)-phenalen-1-one (PPO2) were
tested for their antiprotozoal activity against Trypano-
soma cruzi and cytotoxic activity against mammalian cells
(NCTC-L929). Both PhPs showed moderate activity with
ECs, value 38—-67 pM (ECs, -50% effective concentration)
against 7. cruzi in comparison to standard drug benznidazole
(ECsq value 16 pM) and no cytotoxicity against NCTC-L929
at the highest tested concentration of 200 uM (Costa et al.
2021). A general structure of PhP derivatives is shown in
Fig. 3(g).

WH ethyl acetate extract was found to be effective against
lead-induced toxicity. The test was performed on the albino
rat, and the extract was effective in recovering the cellular
damage caused by lead acetate (Ahmed et al. 2016). The
heavy metal tolerance of WH was attributed to the pres-
ence of antioxidant enzymes: ascorbate peroxidase (APX),
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Fig.3 Structures of some key phytoconstituents isolated from WH
Biomass. Phytosterols: (a) p-sitosterol; (b) stigmasterol; (c) methyl
cholesterol; medicinal applications (Martins et al. 2016). Phenolic
compounds: (d) p-hydroxybenzoic acid, antioxidative and anti-
inflammatory (Surendraraj et al. 2013); (e) shikimic acid, a precursor
for antiviral oseltamivir phosphate (Ganorkar et al. 2022); Antioxi-

O
= o

peroxidase (POX), superoxide dismutase (SOD), and cata-
lase (CAT) (Malar et al. 2014). Ultrasound-assisted (UAE)
along with conventional extraction was performed for dif-
ferent parts of WH to extract shikimic acid (SA) [Fig. 3(e)],
a precursor for synthesizing the antiviral drug oseltamivir
phosphate (Tamiflu®) (Ganorkar et al. 2022).

Allelopathic potential

WH was found effective for the purification of eutrophic
water. Proteomic analysis revealed the synthesis of proteins
associated with oxidation—reduction processes, nitrogen-
phosphorus uptake, and metabolism in response to the stim-
ulus. Synthesized proteins enhanced the nutrient uptake rate,
hindering the growth of algae (Microcystis aeruginosa). The
secretion of allelochemicals further synergized the effect (Li
et al. 2015). Shanab et al. (2010) studied the allelopathic
potential of WH’s methanolic extract. The crude extract was

OH
OH
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dant: (f) glutathione (Bodo et al. 2004b); Antiprotozoal (DellaGreca
et al. 2008; Costa et al. 2021): (g) phenylphenalene derivatives;
Biopolymers: (h) cellulose; (i) hemicellulose; wide applications in
food, pharma, biofuels, and environmental sectors (Istirokhatun et al.
2015; Tanpichai et al. 2021; Oyeoka et al. 2021)

separated into five fractions. Each fraction demonstrated
antibacterial, antifungal, and antialgal activity. Furthermore,
the active components responsible for these activities were
identified to be alkaloid and phthalate derivatives (Shanab
et al. 2010). Similar phthalate-based therapeutic bio-actives
have been isolated from WH, as discussed in “Antioxidants
and therapeutic factors” section. (Aboul-Enein et al. 2011).
However, special care should be taken while analyzing the
data as xenobiotic compounds may be accumulated in the
plant from the polluted water sites (Saeidnia and Abdollahi
2013; De Laet et al. 2019). The allelopathic potential of
ethyl acetate fraction of purple-root WH (PRWH) was tested
against blue-green algae (BGA). Eleven new phenylphenal-
ene derivatives have been isolated and characterized. Seven
have shown potential bioactivity against BGA when tested
for Microcystis aeruginosa (Cheng et al. 2021). WH was
found quite effective in controlling algal blooms (Qin et al.
2016). Fenced cultivation of WH in Dianchi lake, China

@ Springer
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was done to study its potential to purify algal blooms. The
effect of water quality, algae distribution, and accumulation
of nutrients like total nitrogen and phosphorus on effective-
ness of WH was studied.

Pigments and other chemicals

A convenient and straightforward method to extract
B-carotene from WH was patented by Panchanadikar et al.
in 2005. The powdered plant material was extracted in an
organic solvent, then enriched in acetone and filtered (Pan-
chanadikar et al. 2005). Levelunic acid was synthesized
through acid-catalyzed hydrolysis of WH at 150-175 °C.
The yield of levelunic acid was 53% w/w of C6 sugars
(Girisuta et al. 2008). The typical scheme for extracting
phytometabolites is summarized in Fig. 4.

Cellulose

Cellulose nanofibers (CNFs) were extracted from WH by
different methods [Fig. 3(h)-(i)]. The diameter of extracted
CNFs was in the range of 10 —30 nm. Alkaline treatment
was sufficient to remove most of the lignin, making WH
a sustainable source of cellulose (Thiripura Sundari and
Ramesh 2012; Tanpichai et al. 2019). The size of nanofi-
brillated cellulose (NFC) fibrils decreases from 23 to 17 nm
on high-speed homogenization; however, it increases the
time by fourfold. The tensile strength increased almost
threefold from 5.87 to 15.2 MPa, while the contact angle
increased from 21.2 to 36°. These changes were attributed
to a decrease in the porosity of the nanocellulose (NC) paper
(Tanpichai et al. 2021). CNFs (5-50 nm) were simply pre-
pared from WH biomass by subjecting extracted cellulose

Sample
Preparation

|

Extraction

l

Isolation and
purification

|

Identification

Washing, Air drying, freeze
drying, grinding, homogenization

Solid-Liquid, Liquid-Liquid,
maceration, soxhlet, supercritical
fluid extraction

Filtration, centrifugation, HPLC,
TLC, supercritical fluid
depressurization,

UV-Vis, FTIR, NMR, XRD, GC-MS,
LC-MS, Liebermann-Buchard
Test, potentiometric titration,
ABTS, TPC, DPPH assays

Fig.4 Schematic diagram of the general process for extracting plant
metabolites
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to ten defibrillation cycles. However, prolonged mechanical
treatment resulted in higher water retention capacity (WRC)
and specific surface area; a gradual decrease in crystallin-
ity index, thermal degradation temperatures, and degree
of polymerization were observed. A suspension of CNFs
showed a steady increase in viscosity with the formation of
a gel-like structure with shear-thinning behavior that was
fitted better with a Herschel-Bulkley fluid model rather than
a Bingham plastic model (Pakutsah and Aht-Ong 2020). WH
cellulosic fibers can be extracted under milder conditions
using a high-pressure homogenizer. CNFs with the highest
water retention percentage (WR%) was obtained after five
passes, while a decrease in crystallinity (Crl%) was observed
as the number of passes increased from 1 to 5. TGA and
DTG analysis revealed that CNFs could maintain thermal
stability when used as reinforcements in bioplastics (Sun
et al. 2020).

Nanocrystalline cellulose of mean particle size 93.0 nm
was obtained from WH with the help of sonication. A slight
decrease in the degradation temperature from 253 to 227 °C
was observed while processing the raw fibers indicating its
potential applicability (Packiam et al. 2021). WH fibers
(WHFs) were investigated as green reinforcement mate-
rial. Bio-epoxy composites augmented with NaOH and
silane-treated WHFs were synthesized. Composites were
found suitable for lightweight applications as indicated by
the tensile strength, flexural, impact, hardness, thermal,
dynamic, and surface morphology tests (Sumrith et al.
2020). In a recent study, epoxy composites were fabricated
by reinforcing WH fibers. Different ratios of fiber to resin
content were evaluated in which 35 wt% of fiber content
shows improved composite properties for various applica-
tions (Dass and Chellamuthu 2022). Cellulosic WH fibers
were reinforced with polyurethane at fiber loadings of 1-7
wt%, and the resulting composites were tested for oil adsorp-
tion. The maximum oil sorption capacity of 10-15 g/g was
obtained with higher fiber loadings due to increased porosity
at higher fiber concentrations (Sittinun et al. 2020). Micro-
wave-assisted cellulose aerogels derivatized with polyvinyl
alcohol (PVA) with a PVA/cellulose ratio of 4:3 showed
an optimum capacity of 38.5 g of diesel adsorbed per gram
of sorbent and 43.3 g/g with motor oil. Reusability studies
indicated adsorption remained stable for up to 10 cycles.
Moreover, the low thermal conductivity of aerogel (0.030
W/mK) also opens up potential applications as a thermal
insulator (Nguyen et al. 2021).

Biodegradable films for food packaging applications
were reported using WH CNFs. WH CNFs were reinforced
in polyvinyl alcohol (PVA) and gelatin to synthesize
composites. The effect of PVA, gelatin, and cellulose
nanocrystal (CNC) concentration on tensile strength and
elongation was optimized. The maximum tensile strength of
13.6 MPa and 80.7% elongation at break was obtained at
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the optimum value of 10 wt% for PVA, 5 wt% for gelatin,
and 7 wt% for CNC. For a film with higher strength, a
decrease in water absorption, water vapor permeability
(WVP), and moisture uptake was observed (Oyeoka et al.
2021). WH cellulose was acetylated and used for membrane
synthesis. The membranes were characterized for filtration
of humic acids giving 65% rejection and a permeate flux
of 460 Lm~2 h™! at a transmembrane pressure of 0.5 atm
(Istirokhatun et al. 2015).

Apart from the conventional applications, WH cellulose
was also utilized to synthesize conductive aerogel for
microelectronics, solar cells, and batteries. WH CNFs were
blended with conducting polymers polypyrrole (PPy) and
polyvinylpyrrolidone (PVP). The synthesis was optimized
using Box-Behnken response surface methodology (RSM)
by changing the ratios of CNF, PPy, and PVP. The electrical
conductivity of the composite aerogels ranged from 0.1 to 6.23
S/cm, with an optimal value of 5.21 S/cm. (Ewulonu et al. 2020).

Slow-release fertilizers (SRF) were synthesized from WH
cellulose to avoid fertilizer losses or the dose-dependent
toxic effects of high concentrations of fertilizers. Polyacryla-
mide was grafted on the extracted cellulose, and the com-
posite polymer was used as the carrier for the SRF. Different
blends of polymer, nano-hydroxyapatite, and fertilizer were
investigated along with nutrient release kinetics (Rop et al.
2018). Poly(ammonium) acrylate-co-acrylic acid-Sgrafted
WH cellulose was explored further as a soil conditioner. The
polymer hydrogel (PHG) was tested for its moisture-holding
capacity and biodegradability (Rop et al. 2019). However,
WH biomass could also act as a cross-linking agent for for-
mulating SRFs (Silva et al. 2021).

The ability of WH cellulose as a biomedical nanocarrier
for delivering the anticancer drug (methylene blue, MB)
was assessed. The release of MB was found to follow first-
order kinetics. A maximum release percentage value of 52%
was obtained for MB at pH 7.4. Cell viability for the breast
cancer cell line, MCF-7, decreased about seven times when
the concentration of MB increased from 12.5 to 100 mg/mL.
Simultaneously, only a moderate cytotoxic effect was observed
for the normal cell line (WI-38) (Salahuddin et al. 2021b).

Miscellaneous

WH ash extract was used as a green medium for the
palladium-catalyzed Suzuki reaction. EDX analysis reveals
the presence of metals in WH ash, giving rise to the
corresponding metal hydroxides imparting basicity to the
medium (Sarmabh et al. 2017). Acid-treated WH dried leaves
were pyrolyzed to obtain carbon dots (CDs) which were then
used to fabricate paper-based fluorescent sensors for on-site
borax detection with a detection limit of 11.9 pM. The
developed sensors were low-cost with high photostability
(Prathumsuwan et al. 2019).

In 2018, Okwadha and Makomele reported a different but
potentially significant application of utilizing WH extract
as a plasticizer for producing self-compacting concrete.
The presence of lignocellulose and saturated/unsaturated
fatty acids in the extract was theorized to be responsible
for the plasticizing effect (Okwadha and Makomele 2018).
A recent study produced handmade paper by pulping and
bleaching WH biomass using potassium hydroxide (KOH)
and H,0,, respectively. The black liquor waste was used
as a supplement for composting the kitchen waste. A
significant and beneficial increase in bio-compost nitrogen
and potassium content was observed (Islam et al. 2021).
WH mulch could increase soil moisture by about 33% and
control weed growth (Abdalla and Hafeez 1969). It exerts a
selective allelopathic effect on weeds, decreases soil salinity,
and improves soil texture (Anaya et al. 1987).

Apart from the above uses, WH biomass has been
extensively explored as fish feed, ruminant fodder, and soil
mulch. The possibility of incorporating WH in fish feed was
studied for Labeo rohita fingerlings, Ctenopharyngodon
idella fingerlings, and rainbow trout (Mahmood et al. 2018;
Debnath et al. 2018; Rufchaei et al. 2020). The inclusion of
some percentage of WH in the fish diet was found to improve
fish immunity against pathogens, Lactococcus garvieae
and Streptococcus iniae (Chang et al. 2013; Rufchaei et al.
2020). Various trials done on animals have suggested its
possible application as cattle fodder (Agarwala 1988;
Abdelhamid and Gabr 1991; de Vasconcelos et al. 2016).
WH should not be offered as a sole feed for ruminants. A
maximum of 50% replacement in the complete feed diet
could be done without adverse health effects (Abdelhamid
and Gabr 1991). Various pre-treatments for effective silage
production from WH have been suggested to make the feed
more palatable for animals (Bolenz et al. 1990).

Secondary bioproducts
Phytochemical-rich extract for green synthesis

WH is a rich source of various phytochemicals, which could
be utilized for the green synthesis of nanoparticles without
adding any extra reducing and capping agent. Synthesis of
multiple nanoparticles based on WH metabolites has been
reported, as summarized in Table 3.

Mochochoko et al. (2013) demonstrated the synthesis
of silver nanoparticles (Ag-NPs) using WH cellulose as
a reducing and capping agent. Effects of reaction time
and solution pH on NPs synthesis were studied. Highly
monodispersed, stable, and spherical particles with an
average diameter of 2.68 +0.69 nm were produced under
alkaline conditions (pH: 11) (Mochochoko et al. 2013).
AgNPs are found effective against Staphylococcus aureus

@ Springer
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and Escherichia coli. The anticorrosion activity of AgNPs
was tested by adding them to 1 M HCI solution in which
pre-weighed aluminum coupons were submerged. A low
corrosion current density was observed as the charge
transfer resistance values increased with increasing AgNP
concentration (Hublikar et al. 2021). Colorimetric studies
indicated the excellent sensitivity of Ag-NPs prepared using
WH extract for heavy metal ion detection, especially Hg>*
ions (Oluwafemi et al. 2019).

Rod-shaped iron oxide nanoparticles (FeNPs) were
generated using WH leaf extract, and their antibacterial
activity was analyzed against Staphylococcus aureus
and Pseudomonas fluorescens. One hundred micrograms
per milliliter FeNPs gives the highest zone of inhibition
against studied microbes, while the lowest was observed
at 25 pg/mL (Jagathesan and Rajiv 2018). Magnetic iron
nanoparticles (FeNPs) of spherical shape with an average
particle size of 13.5+3.7 nm were synthesized from WH
extract. The authors studied their role as a regulator in the
fermentative hydrogen production from the lignocellulosic
hydrolysate. Hydrogen production was increased by
23.5% with an optimum yield (Yy,,5) of 83.2+2.19 mL/g
substrate on the addition of WH-magnetite-NP (20 mg/L)
in the fermentation medium. This was due to increased
hydrogenase activity, the critical enzyme for biochemical
hydrogen production in the presence of WH-magnetite-NP
(Zhang et al. 2021).

Roy et al. (2019) synthesized spherical copper
nanoparticles (Cu-NPs) with 12—-15-nm diameter using
WH flower extract. These biogenic Cu-NPs instantly
detected the presence of hazardous hydrogen peroxide
(Roy et al. 2019). WH aqueous extract was used to produce
spherical platinum nanoparticles (Pt-NPs) with an average
diameter of 3.74 nm, while the hydrodynamic aggregate size
was 73.3 nm (John Leo and Oluwafemi 2017). Synthesis
of Cr,05/Zn0O photocatalysts was performed using WH
aqueous extract. The maximum degradation efficiency of
85% was achieved for MB dye within 90 min in the presence
of 0.08-CrZn catalyst, which was attributed to efficient
electron/hole separation and high porosity of the synthesized
heterocatalyst (Zelekew et al. 2021).

Biochemical conversion

Lignocellulosic materials, including plant dry matter or
agro-wastes, are rich sources of biopolymers like cellulose,
hemicellulose, and lignin, which could be converted into
bioethanol and other valuable products by biochemical
routes. In this context, a considerable amount of WH biomass
with high cellulosic contents makes a sustainable raw
substrate for fermentative productions. Table 4 summarizes
the fermentative production of different valuable compounds
using WH biomass as substrate.

Cellulolytic enzymes and bioethanol

Bioconversion of WH biomass into ethanol to be used as a
motor fuel was carried out using yeast Pichia stipitis NRRL
Y-7124. Dilute acid hydrolysis was performed with 1%
(v/v) sulfuric acid, followed by heat treatment. Optimum
fermentation conditions identified were an aeration rate
of 0.02 vvm, a temperature of 30 °C, and pH 6.0, giving
the highest ethanol yield (Y, of 0.35 g /g, with 76% of
total sugar utilized (Nigam 2002). The potential of WH as
promising biomass for ethanol production was compared
using simultaneous saccharification and fermentation
mode (SSF) and separated hydrolysis and fermentation
mode (SHF). The higher ethanol concentration of 16.9 g/L.
and 0.17 g/g-dried biomass yield was produced with WH
substrate using recombinant Escherichia coli (KO11) under
SSF compared to water lettuce (Mishima et al. 2008).

Cellulase and xylanase were produced in SSF using WH
substrate with a mixed culture of Trichoderma reesei and
Aspergillus niger. A yield of 46.3 FPU/gds (gram dried
substrate) for cellulase and 57.2 IU/gds for xylanase was
observed when the mixed culture was used (Deshpande
et al. 2008). Cellulase was produced using WH substrate by
Aspergillus terreus. Afterward, the crude enzyme was used
to hydrolyze alkali-treated WH biomass. The hydrolysate
was then fermented by Kluveromyces marxianus, giving
a maximum ethanol concentration of 8.4 g/L, which was
further increased by 10% with the addition of commercial
pectinase (Narra et al. 2017).

Carboxymethyl cellulase (CMCase) and protease were
produced in WH using solid-state fermentation (SSF) by
12 different fungal strains. Ulocladium botrytis gave the
best yield, with yeast extract as the best nitrogen source
for CMCase and malt extract for protease production.
Enzyme recovery of 40.3 and 56.3%; purification fold of
47.3 and 51.8; and specific activity of 852 and 1470 U/
mg (unit per milligram) was reported for CMCase and
protease, respectively (Abo-Elmagd and Housseiny 2012).
Endoglucanase enzyme was produced by the bacterial strain
Bacillus subtilis PF1 in SSF using WH. The enzymatic yield
of 17 IU/gds for endoglucanase activity and 12 IU/gds for
filter paper activity was observed within 30 h of fermentation.
The addition of TiO, nanoparticles (NPs) increased the
thermal stability of enzymes (Khan et al. 2022). The ability
of 100 fungal strains to produce hydrolytic enzymes using
WH biomass was assessed. About five strains generated
hydrolytic enzymes, among them, the strain Trichoderma
harzianum, made the maximum yield. The highest enzyme
yield of 149 + 14.3 IU/gds for xylanase, 16.4+0.6 IU/gds
for cellulase, and 128 + 14.8 1U/gds for f-d-xylopyranosidase
was observed (Arana-Cuenca et al. 2019).

Pre-treatment of WH biomass with the dilute acid treat-
ment (DAT) method and the novel method of using crude

@ Springer
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WH increases the poros-  (Angel-Cuapio et al. 2015)

With PR: WH (80:20),

Solid-state culture (SSC)

Infectivity against Gal-

Fungi

Texturizer for

ity fraction (g) of the
bed and promotes
oxygen transfer

conidial yields became
1.55 times compared
to parboiled rice (PR)

alone
Biological efficiency (BE) WH was better than

leria mellonella larvae

was tested

biopesticide, Isaria

fumosorosea

(Hermoso-Lopez Araiza

Pleurotus ostreatus Solid-state fermentation

Fungi

Solid bed for mush-

et al. 2016)

straw, the commercial

substrate

of 310% + 85.3. with

room cultivation

humid and sterilized

WH

Lead and cadmium were

not detected in fruiting

bodies indicating its
possible utilization

glycerol (CG) and ionic liquids (ILs) were compared.
Authors found IL (1-butyl-3-methylimidazolium acetate)
and CG treatments resulted in 3.3 and 1.9 times higher
recovery of total reducing sugars, respectively, compared
to DAT. However, CG pre-treatment gives a better ethanol
yield than IL. Similar results were also observed for wheat
straw (Guragain et al. 2011). Alkali-treated WH was used
to produce crude enzymes, by which biomass was sac-
charified to produce ethanol. The ethanol concentrations of
4.3 g/L, 6.2 g/L, and 9.8 g/L were recorded by Saccharomy-
ces cerevisiae, Scheffersomyces stipitis, and both cultures,
respectively (Singh and Bishnoi 2013). A 1.78-fold higher
bioethanol production was achieved when simultaneous
saccharification and fermentation were performed on pre-
treated WH biomass using thermotolerant Kluyveromyces
marxianu. After pre-treatment, the level of reducing sugars
was recorded as 224 mg/g dried biomass, giving an ethanol
concentration of 7.34 g/L (Yan et al. 2015). Steam explo-
sion pre-treatment and enzymatic saccharification of WH
biomass were reported to produce bioethanol. SSF was per-
formed on steam explosion pre-treated WH biomass to pro-
duce xylanase and cellulase with the activity of 42 U/g and
2 U/g of dry matter, respectively. The highest ethanol con-
centration of 7.13 g/L and yield of 0.23 g/gds was obtained
when hydrolysate was fermented with Saccharomyces cer-
evisiae (Figueroa-Torres et al. 2020).

Dilute acid pre-treatment was found best, followed by
enzymatic saccharification, which was then used to pro-
duce bioethanol. Using a co-culture of Saccharomyces cer-
evisiae and Zymomonas mobilis, a maximum concentration
of 13.6 mg/mL of ethanol was attained (Das et al. 2016).
Dilute acid followed by enzymatic hydrolysis was the most
effective process of saccharifying WH biomass, resulting
in 402.9 mg/g of reducing sugar at optimal conditions.
The solid-state fermentation produced 1.29 g/L ethanol
under optimum conditions of 38.9 °C for 82 h with 6 ml
of yeast inoculum (Zhang et al. 2016). A high amount of
reducing sugars, 431 mg/g, was obtained when combined
dilute acid hydrolysis and microbial treatment were given
to WH biomass. A maximum yield of 1.40 g/L bioethanol
was obtained, making it a promising way of utilizing WH
(Zhang et al. 2018b).

Biofuels

Several researchers have reported biogas generation by
anaerobic fermentation of WH biomass. Typically, 60-70%
methane was found in the generated biogas, with 15-25%
CO, and other gases. The considerable detail about the
biogas is the absence of sulfur, which is advantageous for
use as a motor fuel. A maximum value of 475 mL/g VS
(volatile solids) for biogas and 214 mL/g VS for methane
was recorded with a hydraulic retention time (HRT) of
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45 days at 37 °C. Biogas thus produced contained 63.2%
CH, and 36.7% CO,, and the residual digest serves as an
effective organic fertilizer for tomato cultivation (Keche
et al. 2022). WH biomass was used holistically by utilizing
WH shoot juice to produce biogas and the remaining
fibers to produce biomass pellets. Biogas produced in this
way consists of 68.7% CHy, 18.2% CO,, and 13.1% other
gases with a specific methane yield of 237 L CH,/kg VS
(Hudakorn and Sritrakul 2020).

A significant improvement in bio-methanation was
observed by subjecting the WH biomass to weak acid
hydrolysis and amending the process by adding 1% cattle
dung biochar (BC) (Suthar et al. 2022). WH, cow manure,
and sewage sludge were co-digested anaerobically at 37 °C
to produce biogas. In 1 L batch, 812 mL of biogas was
produced in 800 h with 65% methane, 14% carbon monoxide,
and 21% other gases (Tasnim et al. 2017). A relatively higher
yield of 505 L/kg of biomethane was obtained by anaerobic
co-digestion of WH and dairy wastewater proportionally
than the mono-digestion of WH or dairy wastewater alone.
Also, a superior quality of bio-oil and biochar was obtained
by utilizing the leftover residue (Arutselvy et al. 2021).

A holistic and efficient approach for energy production
using WH biomass was tested in single, two, and three-
stage operations of dark fermentation, bio-methanation,
and microbial fuel cells. Energy in the form of hydrogen,
methane, and electricity was produced. About 60% energy
recovery was obtained in an integrated three-stage process
with an overall COD removal of 94% (Varanasi et al. 2018).
Methane enrichment efficacy was assessed for biosurfactant
(Iturin A), and sonic waves combined pre-treatment of WH
biomass giving biomethane production of 69 L/kg COD
at alkaline pH due to the higher cell lysis (Sethupathy
et al. 2022). Biogas was produced by WH biomass and
assessed for running an internal-combustion engine to
generate electricity. Also, the residual waste was utilized
for briquette formation (Bote et al. 2020b). The effect of
wet air oxidation (WAOQO) and alkaline wet air oxidation
(AWAO) pre-treatments on the structure of WH and its bio-
methanation was studied. The highest bio-methanation of
310+4.1 mg COD/g feed was obtained in the case of AWAO
pre-treatment followed by WAO treatment and no-treatment.
Alkaline conditions promote better cell disintegration and
methanation (Castro and Agblevor 2020). The seasonal WH
biomass was collected and tested for biofuel production. A
variable lipid content of 6.79-10.5% was observed in WH,
which produces biodiesel in the range of 3.22-6.36% via
transesterification. The produced diesel had shown good
stability and usability. Pigments and glycerol were obtained
from the sediment of the transesterification process.
Additionally, the extracted residue was subjected to mild
acid hydrolysis followed by ethanol production (Shanab
et al. 2018).

Biopolymers and organic acids

Cupriavidus necator bacteria was used to produce
poly(3-hydroxybutyrate) (PHB) from WH hydrolysate. A
maximum of 7 g/L. of PHB and 12 g/L of dry cell weight
was obtained in an optimized medium supplemented with
(NH,),SO, (Radhika and Murugesan 2012). Production of
biopolymer PHB using WH and Parthenium hysterophorus
was compared. A relatively higher yield of 36.4 mg PHB/g
raw biomass was obtained using WH hydrolysate compared
to 17.6 mg PHB/g raw biomass for P. hysterophorus
hydrolysate (Pradhan et al. 2017). In another approach,
hydrolysis was initially performed by adding cellulase
(40 FPU/g of dry WH) after the alkaline and mild acidic
pre-treatment. The hydrolysate, with 523 mg/g reducing
sugars, was fermented with Ralstonia eutropha (ATCC
17,699) to produce PHB. A maximum PHB of 73% with
a titer of 7.3 g/L and yield of 0.429 g/g of reducing sugars
was obtained when the medium was supplemented with
corn steep liquor as a cheap nitrogen source (Saratale
et al. 2020). Thermophilic Bacillus coagulans was used
for lactate production at 55 °C and pH 5.5. The separate
saccharification and fermentation method was more effective
than the simultaneous saccharification and fermentation
method, as indicated by the relatively higher L-lactate yield
of 0.19 g/g of dried WH biomass with the former. This was
theorized to be due to the denaturation of cellulases at higher
temperature conditions (Akao et al. 2012).

Nutrient medium for microbes and mushroom cultivation

WH juices and dehydrated powder were found to be an
efficient medium for culturing microbes such as Azotobacter
chroococcum, Rhizobium leguminosarum, Bacillus
megaterium, and Bacillus subtilis which are helpful in
agriculture (Ahmed et al. 2018). Gulati (1987) investigated
the replacement of mannitol with fungal (Trichoderma
reesei) hydrolysates of various cellulosic biomasses for
preparing the YEM medium. WH, pea husk, and molasses
at proportions of 2:2:1 could be used as a substitute for
mannitol. Interestingly, it gave higher rhizobacterial growth
than the traditional yeast extract mannitol medium (Gulati
1987). Effective utilization of WH biomass as a texturizer
for bio-mycopesticide (Isaria fumosorosea) production
was studied. WH biomass increases the porosity of the
medium during solid-state fermentation, thereby improving
gaseous exchange and yields. Using 20% WH in a medium
of parboiled rice gave 1.55 times higher biopesticidal
conidia production than using rice alone as substrate
without compromising its infectivity against Galleria
mellonella larvae (Angel-Cuapio et al. 2015). WH has also
been investigated for edible oyster mushrooms (Pleurotus
ostreatus) production as a low-cost biomass (Murugesan
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et al. 1995; Nageswaran et al. 2003; Ejigu et al. 2022). The
total yield was almost 20—45% higher than using paddy straw
substrate. Mixing WH biomass with sawdust gave a 71%
higher yield for the growth of P ostreatus than sawdust alone
(Martinez-Nieto et al. 2014). Chen et al. (2010) reported a
comparatively safer and more efficient approach of using
WH to remove phosphorus and ammoniacal nitrogen from
the pig farm biogas fluid sedimentation tank, followed by
using the spent WH biomass for Pleurotus geesteranus
cultivation substituting sawdust as substrate (Chen et al.
2010). This could be a unique way to treat wastewater
and enrich the substrate with essential nutrients such as
phosphorus and nitrogen. However, the results were also
favorable when WH was procured directly from the infested
canals which may be contaminated with heavy metals. The
negligible presence of lead and cadmium in the fruiting
bodies and spent WH substrate suggests the possible usage
of WH as a cheaper substrate for mushroom cultivation.
Authors suggested lower metal toxicity in mushrooms
was due to their phytotoxical effects. They also suggested
utilizing spent substrate as bovine fodder but after evaluating
the presence of anti-nutritional factors in it (Hermoso-Lépez
Araiza et al. 2016).

Thermochemical conversion of WH

Pyrolysis, gasification, hydrothermal treatment, and combus-
tion are some thermochemical conversion procedures used
to convert WH biomass into various value-added products,
as summarized in Table 5.

Hydrothermal carbonization

Hydrothermal carbonization (HTC) could be used as a
green method for converting WH into a lower moisture
material with enhanced carbon content. The kinetic studies
for HTC of WH revealed an activation energy of 90 klJ/
mol at a temperature range of 423—483 K, which was lower
than the activation energy in pyrolysis treatment (Luo et al.
2011). The highest heating value (HHV) for hydrochar
was 21 MJ/kg, relatively higher than WH (15 MJ/kg).
This was due to the higher lignin content in the hydrochar.
Lignin has higher thermal stability in comparison to
cellulose and hemicellulose. Consequently, hyrdochar has
a greater proportion of lignin compared to untreated WH.
Furthermore, lignin has greater HHV than cellulose and
hemicellulose, thus increasing the HHV value for hydrochar
(Gao et al. 2013; Zhang et al. 2020). Another concern is
that the WH hydrochar is more challenging to combust
than hydrochar obtained from other plants such as wheat.
This was because the extent of carbonization was greater
for WH than other biomasses based on their compositional
differences (Gao et al. 2016). HTC studies using RSM

@ Springer

revealed temperature to be the most influential factor, in
addition to the time and the biomass load for optimizing
solid yield, carbon, nitrogen capture, and heating value
(Roman et al. 2020). Pre-treatment of WH biomass before
carbonization by washing with water and acid decreased
heavy oil yield, but a significant reduction in sulfur, nitrogen,
and ash content was also observed (Yao et al. 2020).

Pyrolysis gas

The temperature was found to be the critical factor affect-
ing pyrolytic products, such as bio-oil, biochar, and syn-
gas, in fixed-bed reactor pyrolysis (Rahman 2018). A 42%
increase in syngas yield was observed during the pyrolysis
of WH biomass in the presence of FeCl, (Tran et al. 2020).
Optimization of the process revealed particle size of less
than 200 pm affords the highest yield, which can further
be increased by the addition of potassium chloride (KCI),
calcium oxide (CaO), or magnesium oxide (MgO), with the
highest yield obtained using KCI at 900 °C (Hu et al. 2015).
WH pyrolysis in a fixed bed reactor with Ni catalyst resulted
in higher hydrogen production (101.2 g/kg biomass) when
the process was carried out in two stages with a temperature
of 650-700 °C for stage 1 and about 800 °C for stage 2 (Liu
et al. 2014).

Pyrolysis oil

The pyrolysis process comprises three stages: moisture
removal, devolatilization, and residual breakdown; and for
WH, the pyrolysis occurs between 250 and 550 °C. GC-MS
analyses of pyrolytic WH bio-oil revealed the presence of
21 compounds, including phenols, alcohols, carboxylic
acids, ketones, quinines, alkenes, alkanes, aldehydes, and
aromatics. The pH was reported to be 2.93, lower than
regular fuels. Bio-oil was considered an environmentally
benign fuel because of its HHV of 28.4 MJ/kg and lack of
sulfur (Wauton and Ogbeide 2018, 2019a).

The bioenergy potential of WH leaves was higher than
that of roots or stems as per the pyrolysis studies performed
(Huang et al. 2020). Copper catalysts produced a higher
bio-oil yield (31%), while aluminum-based catalysts favored
the production of gases and light hydrocarbons over bio-oil
(Gulab et al. 2019). In optimizing WH pyrolysis for bio-oil
synthesis, the optimum temperature, particle size, and flow
rate were found to be 450 °C, 0.6 mm, and 100 cm?/min,
respectively (Wauton and Ogbeide 2019b). A comparison
study of two-stage pyrolysis of fresh, putrefied, and microbe-
treated biomass with 25% (w/w biomass) clinker (silicate)
catalyst indicated a higher yield of microbially or putrefied
biomass (Hussain et al. 2017). Microwave-assisted fast
pyrolysis was also reported with excellent results using a
Ce-doped y-Al,05/ZrO, mesoporous catalyst (Zhang et al.
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2018a). However, when supplemented with 5 wt%, CaO
accorded in higher sugars and phenols, while acid formation
was lower (Liang et al. 2019).

It is well-known that WH grows in water bodies that
may be contaminated with heavy metals; therefore, a
practical approach is to study the pyrolytic fate of such
contaminated biomass. Few schemes with heavy metal
biosorption followed by pyrolysis were proposed. Lead
(Pb) was first adsorbed on WH biomass, which was then
pyrolyzed. Pb-contaminated biomass produced higher
hydrogen concentration in pyrolysis gas with 56% higher
bio-oil yield. The result was attributed to the stabilization of
carbonyl and carboxyl groups by Pb>* ions (Jiu et al. 2015).
The leachability of Pb in Pb-contaminated WH biomass was
lowered by pyrolysis in the presence of phosphates (Shi et al.
2017). Similarly, pyrolysis of chromium (Cr)-polluted WH
resulted in an increased bio-oil production of up to 63.1%
with an HHV of 26.7 MJ/kg. Furthermore, Cr was converted
into a non-toxic amorphous state in the biochar, reducing its
environmental harm (Lin et al. 2018).

Calcined WH biomass was assessed for its application as
phosphate-rich fertilizer. At low calcination temperatures,
the principal crystalline phase was CaCO;, while Ca(OH),
and Ca-phosphates such as hydroxyapatite were formed
at higher temperatures (650-900 °C). Also, no hazardous
elements were detected in the ashes. Authors suggested
its potential application as fertilizer (Ramirez et al. 2021).
Carbonization of WH was done at 900 °C to obtain carbon
fibers. The fibers were non-graphitic with a tensile strength
of 600 MPa and axial modulus of 42 GPa, comparable to
commercial carbon fiber (Soenjaya et al. 2015).

Supercapacitors

The first instance of WH-derived activated carbon
supercapacitor electrodes was by Senthilkumar et al. (2012).
The carbon was activated by ZnCl,; the activated carbon
electrodes exhibited a high capacitance of 912 F/g in the
presence of a KI electrolyte in a three-electrode configuration
(Senthilkumar et al. 2012). Carbon microspheres created
by subcritical hydrothermal carbonization of WH in the
presence of dilute H,SO, showed a capacitance of 185 F/g
in a three-electrode configuration (Kurniawan et al. 2015).
Supercapacitor electrodes synthesized from hierarchical
porous activated carbon derived from WH showed a
capacitance of 345 F/g in a three-electrode assembly at a
current density of 0.5 A/g (Zheng et al. 2017). Hierarchical
porous carbon was synthesized from WH leaves and
employed as a supercapacitor electrode and lithium-ion
battery electrode giving a capacitance of 256 F/g and lithium
storage capacity of 590 mAh/g, which was much higher than
commercial activated carbon and graphite (Mo et al. 2020).

@ Springer

Lu et al. (2020) devised a novel technique for activating WH
carbon using a combination of KOH and HNO;. This carbon
was fabricated into a capacitor electrode which showed a
capacitance of 374 F/g in a three-electrode configuration
(Lu et al. 2020).

WH biomass enriched with nickel-nitrogen (Ni—N) was
subjected to fast pyrolysis with KOH activation at 773 K,
and Ni— N doped porous carbon material (WHPC @Ni) was
prepared with a specific supercapacitance value of 552 F/g.
WHPC@Ni showed a high stability of 97.5% even after
10,000 cycles. The enhanced capacitance was due to the
formation of NiO.nanoparticles during the pyrolysis (Sima
et al. 2019). Similarly, the capacitance of WH-carbonized
biomass that was previously utilized for phytoremediation
of Ni?* exhibited a capacitance of 541 F/g in a three-
electrode configuration (Shell et al. 2021). Polypyrrole
coated on WH-polyester composite prepared by in situ
polymerization showed high areal capacitance values of 104
mF/cm? (Alzate et al. 2022). Saning et al. (2019) fabricated
a magnetic carbon adsorbent and supercapacitor electrode
by activating the hydrochar obtained from WH using KOH
and Fe** ions. The electrodes showed a good capacitance of
100 F/g in a symmetric two-electrode configuration (Saning
et al. 2019).

Oxygen-reduction reaction

Activated carbon derived from WH was evaluated as an
oxygen reduction reaction (ORR) electrode and displayed
an excellent onset potential of 0.98 V against the reversible
hydrogen electrode (RHE) (Liu et al. 2015). Carbonization
of WH using molten salts using ZnCl, was carried out. The
nitrogen-doped carbon achieved a high H,O, production
potential of 1.7 mmol/L at a current efficiency of 81%,
which was used to degrade dimethyl phthalate through an
electro-Fenton reaction (Liang et al. 2018). ORR electrode
of nitrogen-doped graphite from WH containing iron (Fe)
through carbonization at 700 °C in the presence of Fe(NO;),
showed an E,,, voltage of 0.797 V, which is equivalent
to the performance of the Pt/C electrode (0.833 V) at Pt
loading of 8 pg cm™2 (Yan et al. 2019). The efficiency of WH
biochar as an oxygen reduction reaction (ORR) catalyst was
investigated. Pyrolyzed biochar obtained at 900 °C shows
a power density of 24.7 mW/m? in an air-microbial fuel
cell, which was higher than the conventional Pt/C catalyst
making it an inexpensive, alluring alternative for this
purpose (Allam et al. 2020). Activated carbon was prepared
using WH leaves, shoot, and root samples via pyrolysis.
Activated carbon derived from shoots showed the maximum
ORR onset potential of 0.9 V, followed by roots and leaves
(Morales et al. 2021).
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Catalysis

WH-activated carbon (WHc) was prepared by pyrolyzing
biomass at 700 °C for 2 h, followed by its utilization
for synthesizing nickel oxide (NiO) doped, WHc/NiO
nanocomposite for supercapacitor application. A high specific
capacitance of 240 F/g was observed with 78.4% retention
after 1000 cycles (Qiu et al. 2017). Apart from being a
catalyst for energy applications, WH hydrochar catalyst was
synthesized for catalyzing glucose to fructose isomerization
reaction. Simple carbonization of biomass at 400 °C for 1 h
formed the catalyst, which gives 31% fructose yield with
89% selectivity. The endogenous calcium salts eliminate the
need for doping with expensive metals (Yang et al. 2022).
A carbon-based catalyst was synthesized from WH leaves
by giving hydrothermal treatment. The catalyst obtained at
220 °C contains the highest acid sites offering 97% fatty acid
conversions and 60% furfural yield from xylose dehydration
(Laohapornchaiphan et al. 2017). The degradation of
4-nonylphenol (4-NP) by AOP using WH biochar (WHBC)
was studied. Seventy-seven percent degradation was achieved
with 1.5 g/L of calcium peroxide-activated WHBC (Hung
et al. 2022). More recently, degradation of reactive red 2
(RR2) dye has been reported using copper oxide-loaded
activated carbon catalyst synthesized from WH roots
prepared through the wet impregnation method. A 100% dye
decolorization and 88.6% COD conversion were achieved
at a catalyst dose of 6 g/L. However, in the presence of free
radical scavengers, sodium bicarbonate and methanol, 42.9
and 59% of dye decolorization were achieved, respectively
(Ayalkie Gizaw and Gabbiye Habtu 2022).

Environmental applications

WH compositional structural polymers confer the biomass
surface with hydroxyl, carboxyl, and other functional groups.
Hence, it acts as an efficient and economical adsorbent
for multiple contaminants removal (Abdolali et al. 2014).
Biosorption of pollutants such as dyes, heavy metals, and
emerging pollutants using WH biomass is reported in the
literature and is presented in Table 6.

Biosorption
Dyes

Removal of methylene blue dye using WH dried shoot
treated with water, hydrochloric acid, nitric acid, sodium
hydroxide, and sodium sulfite was studied. Water-washed
WH showed an adsorption capacity of 427 mg/g due to
the high specific surface area (El-Khaiary et al. 2009).
Adsorption of Indosol dark-blue GL dye by WH dried roots

showed a maximum adsorption capacity of 86 mg/g at pH
3. It was noted that the adsorption rate was very rapid for
the initial 15 min, and equilibrium was attained after 4 h,
which was independent of the initial dye concentration. Dye
desorption was done by changing the pH of eluent from low
to high (Khan et al. 2014). The removal of crystal violet,
a mutagenic textile dye, was tested using WH dried root
powder. A biosorption capacity of 323 mg/g was noted as
per the Langmuir monolayer model (Kulkarni et al. 2017).
WH oven-dried cellulose was investigated for crystal violet
(CV) and congo red (CR) dye adsorption in an aqueous
system. A maximum adsorption capacity of 182 mg/g for CV
and 230 mg/g for CR was obtained. The process followed
pseudo-second-order kinetics as indicated by higher R?
values (0.99, 0.97 for CV and CR, respectively), and the
theoretical and experimental g, values were in agreement.
The systems were fitted to Langmuir isotherm for CV and
Freundlich isotherm for CR based on R? values. However,
deeper mechanistic insight into the reasons leading to a
difference in the isotherms followed is lacking (Salahuddin
et al. 2021a).

Heavy metal ions

Purification of heavy metals-contaminated water from
mining and industrial sites using WH dried powder was
suggested. WH showed a maximum adsorption capacity of
47 mg/g for the lead, followed by cadmium, copper, and
zinc, respectively (Schneider et al. 1995). Adsorption of lead
(Pb>"), cadmium (Cd?*), and zinc (Zn>") ions on acid pre-
treated WH dried powder was tested in binary and ternary
systems. Langmuir model fitted well with the maximum
adsorption capacity in the order of Pb** (26.3)> Cd>*
(12.6)>Zn** (12.6 mg/g). The multi-element effect on
adsorption was also tested (Mahamadi and Nharingo 2010).
The H;PO,-activated WH showed a maximum adsorption
capacity of 119 mg/g for lead (Huang et al. 2014).

The effect of washing WH dried root powder with
acid and alkali on the removal of chromium (VI) anions
was studied. An adsorbate concentration of 5 mg/L gave
an adsorption capacity of 1.28 mg/g. In comparison,
at 10 mg/L, it was 0.828 mg/g, which was fitted to the
Freundlich isotherm model, and the adsorption followed
pseudo-second-order kinetics (Kumar and Chauhan 2019).
Citric acid-treated WH was tested for heavy metal ion
adsorption. Sorption capacities of 96.9 mg/g for chromium
(Cr%h), 78.0 mg/g for copper (Cu®™), and 59.6 mg/g for nickel
(Ni**) ions were obtained (Qu et al. 2019). In one recent
study, the adsorption of fluoride ions was tested on hydrous
aluminum- and iron oxides-doped WH-alginate beads. The
effect of pH, flow rate, bed depth, and other factors was
studied. Hydrous aluminum oxide-doped WH shows the
highest adsorption capacity of 4.43 mg/g (Murambasvina

@ Springer
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and Mahamadi 2020). Dried and pulverized WH roots were
combined with sodium tripolyphosphate and were tested for
adsorption of chromium, Cr (IV) from tannery wastewater.
Langmuir adsorption capacity of 7.7 mg/g was obtained
(Carrefio-Sayago 2021).

WH biomass biochar has also been found effective for
contaminants removal by adsorption. Cadmium (Cd) adsorp-
tion capacity of 70.3 mg/g was obtained (Zhang et al. 2015).
WH biochar modified with ZnO nanoparticles showed a
biosorption capacity of 43.48 mg/g for Cr(Vi) (Yu et al.
2018). WH biochar was investigated for the adsorption of
trivalent chromium ions from the tannery wastewater. Chro-
mium concentration in the water reduced from 3190.1 to
27.3 mg/L. The adsorption behavior was fitted to Freun-
dlich isotherm and pseudo-first-order kinetics. The chloride,
biochemical oxygen demand (BOD), and chemical oxygen
demand (COD) were also reduced by 56%, 93.4%, and
92.6%, respectively (Hashem et al. 2020).

Emerging pollutants

Adsorption of antibiotic sulfachloropyridazine (SCP) was
studied using WH root powder, and a maximum adsorption
capacity of 227 mg/g was obtained. Adsorption followed
acid-base interactions and was favored by acidic pH con-
ditions (Liu et al. 2018). WH root powder was used as a
low-cost adsorbent to remove 2,4-dichlorophenoxy acetic
acid (2, 4-D), a common pesticide from an aqueous envi-
ronment. A maximum monolayer adsorption capacity (g,
of 40 mg/g was obtained using acid and ultrasound-treated
biosorbent (Aswani and Pavan Kumar 2019). Magnetic WH-
based biosorbent was investigated for its ability to adsorb
ibuprofen and remove copper, zinc, nickel, and cobalt. The
value of ¢,,,, (mg/g) was found to be 18.3 for Cu(II), 10.1 for
Zn(II), 7.33 for Ni(Il), and 1.02 mg/g for IBP. The selectivity
was in order, Cu>Zn> Ni (Lima et al. 2020).

Phytoremediation

WH possesses an enormous capacity for bioaccumulating
pollutants and could be utilized as a pollution bioindica-
tor (De Laet et al. 2019). WH has been found to accumu-
late pollutants such as heavy metals, dyes, antibiotics, and
several other contaminants. Pollutants, especially organic
contaminants, increase the levels of ammoniacal nitrogen
in domestic and industrial wastewater, giving rise to algal
blooms and further deteriorating the water quality. Details
on the application of WH for phytoremediation are shown
in Table 7. WH plants could be utilized for the phytoreme-
diation of lead. An increase in antioxidant enzymes such
as superoxide dismutase, catalase, ascorbate peroxidase,
and peroxidase in plant tissue was observed when exposed
to a high lead concentration of 800 mg/L. These enzymes

play a crucial role in increasing the tolerance against oxida-
tive stress (Malar et al. 2014). Europium metal (Eu (III)), a
non-radioactive surrogate for Americium (III), a radioac-
tive waste, was tested for phytoremediation using WH plants
grown in the greenhouse. The removal efficiency of 26%
was observed for Eu (III), indicating its possible utilization
for phytoremediation of radioactively polluted water (Kelley
et al. 1999). Phytoremediation of paper and pulp industry
wastewater using WH was studied. Regression modeling
was done to investigate the effect of pH and initial metal
ion concentration on the plant’s accumulation capacity. The
studied model fits well and indicates efficient phytoremedia-
tion for heavy metals (Cd, Cu, Cr, Fe, Pb, Zn, Mn) (Kumar
et al. 2020). The effectiveness of WH plants for removing
heavy metals from the glass industry was tested for 40 days.
Maximum removal of 91.3% for Cd, 93.6% for Cu, 92.8%
for Fe, and 93.5% for Mn was observed (Singh et al. 2021).
The accumulation and biodegradation of a phosphorus
insecticide, ethion, in WH plants were examined. The
effect of plant-associated microbes on ethion removal was
estimated by calculating the difference in the results obtained
by non-sterile and sterile plants. The contribution of
phytoaccumulation and phytodegradation was significantly
higher (69%) than that of microbial degradation, which
contributed only 12%. It suggested phytoaccumulation and
phytodegradation were the primary mechanisms for ethion
removal (Xia and Ma 2006). A 10-day-long randomized
block experiment was performed to study the role of WH
in removing chlorpyrifos, an organophosphate insecticide,
from water. Removal was further increased in the presence
of a root-associated bacterium identified as Acinetobacter
sp. (Anudechakul et al. 2015). A study on the removal of
antibiotic tetracyclines (TCs) and the effect of copper ions
on the accumulation and translocation of TCs in WH plants
concluded that combining a high concentration of copper
and TCs could be more effective (Lu et al. 2014). WH was
found to have excellent potential for the bioaccumulation
of organophosphorus pesticides. It also effectively removed
some of the organochlorine pesticides tested in an onsite
study performed for irrigation canals of Mexico wetlands
(Mercado-Borrayo et al. 2015). Removal of two herbicides
(mesotrione and fomesafen) using WH plants was tested in
the randomized block-designed experiments. About 70-92%
removal was observed for mesotrione, and 22-34% for
fomesafen was obtained after 14 days (Chen et al. 2019).
WH was found to remove 75.1% and 54.7% nitrates
from underlay and sewage water, respectively, while for
phosphates, a removal capacity of 78.9% in underlay water
and 86.1% in sewage water was observed. GC-MS analy-
sis of the hexane extract of WH revealed the presence of
oleic acid (35.5%), an important compound. In addition,
the mechanical properties of WH fibers were also studied.
WH fiber’s tensile strength increases to 315 MPa when

@ Springer
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Table 7 (continued)

Mode

References

Remark

Contaminant category

Contaminant

(Prasad et al. 2021)

A significant removal efficiency of

Greywater constituents

Ammonium-nitrogen, Phosphate—

Phytoremediation

52-63% was observed, making

greywater reusable

phosphorous, and chemical oxygen

demand
Cd, Cu, Fe, Cr, Pb, Zn, Mn

(Kumar et al. 2020)

Maximum accumulation of heavy

Heavy metals

Bioaccumulation

metal ions in its vegetative parts was

observed at 50% effluent concentra-

tion

From underlay and sewage wastewater (Adelodun et al. 2020)

Tons

Excess nutrients (NO*~ and PO,>")

Cd, Cu, Fe, Mn, Pb, and Zn

Bioaccumulation

(Singh et al. 2021)

The most efficient reduction was

Heavy metals

Bioaccumulation

observed at 25% effluent concentra-

tion

(Peng et al. 2020)

WH roots were found to be better

Heavy metals

Pb, Cu, Cd, and As

Bioaccumulation

accumulators than leaves

Phytoremediation was found effective (Panneerselvam and Priya 2021)

Heavy metals and others

Cr, Pb, BOD, COD, TDS, pH

Bioaccumulation

for 20% wastewater concentration

four strands are knitted together compared to the low ten-
sile value of 14 MPa for a single WH fiber (Adelodun et al.
2020). Domestic wastewater was treated with WH plants for
30 days in continuous mode. A moderate removal capacity
of 63.26+10.47%, 61.96+12.11%, and 51.91 +5.32% was
observed for ammonium-—nitrogen, phosphate—phosphorous,
and chemical oxygen demand, respectively. Harvesting WH
plants at a regular interval of 15-20 days was suggested
for efficient performance. However, the authors emphasize
the need to develop a more efficient harvesting method to
remove selectively matured plants and leave baby plants in
the system (Prasad et al. 2021).

Phytoremediation of dye-loaded wastewater was also
studied using WH plants. Absorption and degradation of
both cationic [rose bengal (RB), methylene blue (MB),
crystal violet (CV), auramine O (AO), rhodamine B (RhB)],
and anionic [xylenol orange (XO), phenol red (PR), cresol
red (CR), ans methyl orange (MO)] dyes were studied
by growing WH plants. WH plants can be a potential
decolorizer with a color removal efficiency of 79 to 90.8%
for cationic dyes and 33.3 to 62.8% for anionic dyes (Sharma
et al. 2021). The river water near a dye industry was treated
with WH, and the best results were observed within 7 days
with an optimized WH biomass (20%). A removal efficiency
of 46% for chromium and 43% for lead was observed. A
significant decrease in pH, BOD, COD, and TDS values was
also observed (Panneerselvam and Priya 2021).

Phytoremediation of oil spills using WH was studied in
an experiment performed in Nigeria using 45 experimental
units. An increase in total petroleum carbon in WH
was detected, indicating its effectiveness for oil uptake.
However, no significant increase in oil absorption was
observed on stimulating plants with urea (Ndimele and
Ndimele 2013). Phytoremediation of formaldehyde using
WH was also tested. High removal efficiency for an initial
formaldehyde concentration of 100-300 ppm was observed,
which was further increased on stimulating plants with
0.5 ppm Eupatorium odoratum L. extract (Gong et al.
2018). The efficacy of WH for removing and degrading
anionic surfactant, SDS, was studied. A significant increase
in ascorbate peroxidase (APX) activity was observed in
response to the stress generated by pollutants. The growth of
WH was regulated by using Chromolaena odorata L. extract
as a biostimulator (Gong et al. 2019).

Biorefinery integration for circular economy
Research significance
The incredible potential of biomass as a resource-generating

sustainable material has recently come to light, and there
is a good chance that it will grow its market share soon
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(Martinez-Ruano et al. 2018; Solarte-Toro et al. 2022). WH
biomass is a fantastic feedstock for recovering nutrients
and energy, in contrast to being a possible hazard to the
ecosystem and environment. The current work investigates
three alternative conversion methodologies, including
biochemical conversion, thermochemical conversion, and
green synthesis methodology, after directly extracting
phytometabolites to manufacture valuable primary and
secondary products from WH. The WH biomass can either
be harvested directly from the infested waterbodies or after
it has been used as a phytofilter to purify nutrient-laden
wastewater (Fig. 2).

It is beneficial to remove all the solvent-soluble
extractives, mainly different phytometabolites, including
phenolic compounds, flavonoids, alkaloids, and others,
to minimize contaminants during cellulose extraction.
Eliminating these low molecular weight compounds is also
advantageous while converting the biomass to valuable
products by biochemical route, as these compounds
tend to inhibit microbial growth during fermentation
(Parawira and Tekere 2011; Jonsson et al. 2013). Indeed,
these phytometabolite-rich extracts could be utilized
for the green synthesis of nanoparticles, catalysts, or
other similar commodities owing to their antioxidant
potential and antimicrobial properties. Recently, the
thermochemical conversion of biomass has been a hot
topic among researchers as the increase in the demand for
green energy has been observed. So forth, various types of
thermochemical conversions have been studied for WH.
However, hydrothermal conversion is suggested as a feasible
process considering the high initial moisture content of
the plant. It is a comparatively convenient energy efficient
method and yields bio-oil, hydrochar, and other valuable
products. More studies in this regard are needed.

Low-volume high-value bioproducts like phenolic
compounds, flavonoids, alkaloids, and enzymes may
increase the economic revenues of biomass many folds in
comparison to the production of low-value bulk products
such as biofuel and bioenergy alone. This is primarily due to
the more significant financial and energy expenses associated
with biofuel production brought on by high cultivation
costs of biomass and poor value for biofuels (Escamilla-
Alvarado et al. 2017). However, if procured directly from
natural resources, the cultivation expense for WH might be
avoided, which is an additional benefit. Hence, an inclusive
approach of producing low-volume high-value and high-
volume low-value products simultaneously via a suggested
cascading framework could make biorefinery economically
viable (Joglekar et al. 2019). Here we have provided new
insights and an integrated strategy incorporating diverse
sectors, which will undoubtedly increase the biorefinery’s
economic feasibility.

@ Springer

Environmental implications

Based on WH’s potential for phytoremediation (Li et al.
2015; Qin et al. 2016; Ting et al. 2018; Singh et al. 2022),
it is recommended to utilize or cultivate it as a phytofilter
and use the harvested biomass as a biorefinery feedstock.
Even though WH is widely distributed in nature (Kriticos
and Brunel 2016; Thamaga and Dube 2018), this strategy
can resolve the bottleneck of the steady supply of biomass in
an economically sound approach. A comprehensive model
for treating eutrophicated water and continual harvest of WH
biomass for dry and rainy seasons has been proposed (Mahu-
jchariyawong and Ikeda 2001). It is crucial to remember that
a compositional variation is very likely based on the WH’s
growing environment. The targeted final products and their
uses should be the basis for deciding on the overall integra-
tion to harness the economic benefits.

Rapid industrialization in recent years has resulted in
global warming due to the significant release of greenhouse
gases (GHGs). One of the practical options for CO, capture
is the fixation of CO, in biomass. Nowadays, microalgae are
employed for this purpose by applying the carbon capture and
utilization (CCU) approach (Cuéllar-Franca and Azapagic
2015). Being a photosynthetic plant, it can be argued that
WH would capture carbon and be considered for the CCU
model, which could lower the overall carbon emissions. In
the end, the residual solid waste could be used as a biosorbent
to treat wastewater, whether it was produced through direct
extraction, conversion, or a mix of valorization techniques.
This route provides a logical and efficient way to utilize the
by-products generated during the processing steps. Many
research studies support the concept of using spent biomass/
biochar as a low-cost adsorbent to remove a wide variety
of contaminants from wastewater (Mahamadi and Nhar-
ingo 2010; Mishra and Maiti 2017; Hung et al. 2022). The
proposed holistic approach addresses all three dimensions,
including social, economic, and environmental, to achieve
sustainability goals (Moldavska and Welo 2019).

Circular bioeconomy

Developing nations harvest tonnes of WH annually (Sethu-
pathy et al. 2022). The damaging ecological and socio-
economic effects of WH biowaste could be minimized
by implementing eco-friendly circular approaches, which
effectively manage biomass waste through its beneficial pro-
cessing (Tanveer et al. 2022). The idea of the biorefinery
is concerned with the efficient and sustainable conversion
of biomass into many industrial goods, such as chemicals,
materials, and energy. It may be a promising solution for
turning waste into value that eventually fits into a circular
economy by promoting the concept of reducing, reusing,
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and recycling to ensure environmental viability. With an
emphasis on reducing waste at every production stage, the
integrated strategic framework suggested here would enable
the well-organized exploitation of waste biomass and the
generated by-products for creating value-added commodi-
ties. It offers innovative solutions to the current WH conun-
drum by aiming to engage with renewable resources while
decreasing the reliance on fossil fuels, monetizing the waste
biomass, and reducing GHG emissions (Kumar Sarangi et al.
2022; Moustakas and Loizidou 2022).

Table 8 discusses the proposed WH biorefinery’s SWOT
(strength, weakness, opportunity, and threat) analysis, out-
lining its benefits and drawbacks in the current market sce-
nario (Usmani et al. 2021). WH biomass is a good source of
phytometabolites. Harnessing WH favors green engineering
approaches of reduction, reuse, and recycling while promot-
ing bioeconomy. Significant social and environmental ben-
efits accrue due to the holistic utilization of WH biomass in
biorefinery. Concerns against these approaches include sea-
sonal variations in biomass growth and compositional vari-
ations, geographical limitations, high initial costs, absence
of infrastructure, and mature technologies. Another threat
to a potential WH biorefinery is the year-round availability
of biomass and the logistics for collection from distributed
sites. However, opportunities exist to bolster such efforts
through policies that can assist in achieving UN Sustainable
Development Goals.

Future perspectives
Utilizing lignocellulosic biomass as a sustainable feed-
stock to manufacture valuable products has gained attention

over time. Several policies, environmental regulations, and
protocols have been devised in many nations to reduce the

Table 8 SWOT analysis for potential WH biorefinery

ecological danger associated with waste biomass (Khosh-
nevisan et al. 2021). Although the public and private sec-
tors have implemented many waste biomass valorization
schemes, appropriate commercial success is yet to be gained.
This might result from the absence of integrated manage-
ment regulations, which must consider the advantages and
limitations of the proposed biorefinery scheme. To develop
a spatially explicit biorefinery model, it should incorporate
features of economic viability along with ecological, social,
and environmental impacts.

Future study is still needed based on the local require-
ments accounting for the detailed economic, social, and
environmental assessment through various simulation
models (Aristizabal-Marulanda et al. 2021; Solarte-Toro
et al. 2022). A regional financial analysis, considering the
entire costs determined by raw material, utilities, labor,
general maintenance, and administrative expenses, must
be carried out before implementation (Giwa et al. 2018;
Martinez-Ruano et al. 2018; Serna-Loaiza et al. 2018).
There is still room for a life cycle assessment (LCA) for
the WH biorefinery plan. LCA is a tool that helps in the
process of identifying the steps that have a substantial
environmental impact. These environmental hotspots
could be addressed by process intensification (Joglekar
et al. 2019). Process intensification methods may be used
to extract phytometabolites or for biomass conversion pro-
cedures. Ultrasound, microwaves, supercritical or subcriti-
cal fluids, steam explosion, and other innovative technolo-
gies might be applied at the industrial scale. These novel
technologies typically appear energy efficient achieving
maximum yields in a shorter time (Nagula and Pandit
2016; Perino and Chemat 2019). Unfortunately, most of
the current biomass conversion methods produce CO, and
methane, the greenhouse gases (GHG) that contribute to

Strengths

Weaknesses

e Sustainable use of natural resources for valued product generation e Efficacy changes with seasonal and compositional variations

e Good asset for plant-based phytometabolites

e Favors reduce, reuse, and recycle concepts

e Waste management and promoting bioeconomy

e Social and environmental benefits

e Feasible processing due to the less complex constitution of WH

o The low initial cost for locally available WH

Opportunities

e New policies encouraging investment in the bioeconomy sector
o CO, fixation and reduce net GHG emissions

o Integrating various sectors to reduce the overall cost

o UN sustainability goals can be achieved

e Geographic limitations

e Insufficient infrastructure to support smooth execution

o The high initial cost of technologies and processing setup
o Supply-demand synergy is currently lacking

e Absence of fully mature technologies with minimal existence at lab/pilot
scale

e Mass cultivation could be difficult

Threats

e Year-round biomass availability threat the continuous supply of feedstock
o Logistical issues regarding the collection

e Social acceptance

o The initial investment may be challenging

o Phytoremediation of eutrophic water

The high cost of bio-based products makes them less competitive in the
market
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global warming (Hariz and Takriff 2017). Commercializa-
tion of the green potential of WH would directly cut down
on GHG emissions through CO, fixation, which is another
crucial research topic. A sustainability index (SI) based
on real-time data will help to support a strong, flourishing
biomass processing sector (Joglekar et al. 2020). LCA, SI,
and other models are not included in this study due to the
lack of real-time data variables. The proposed integrated
biorefinery model must yet undergo a region-specific
techno-economic assessment for industrial scale-up to be
implemented successfully.

Conclusion

WH eradication is a difficult task today, especially in poorer
nations, due to the high expenses. The unique properties
of this highly invasive plant make it a better alternative for
developing sustainable bio-based products. WH acts as a
good phytofilter, so its controlled growth will benefit the
phytoremediation of water bodies, and the resulting biomass
could be utilized for producing various primary and second-
ary bio-products. WH could become a viable resource for
generating green plant-based products to fulfill the increas-
ing demand for safe and eco-friendly products. Comprehen-
sively, we have explored the potential for WH waste biomass
valorization through direct extraction, its conversion into
valued bioproducts, and its environmental implications to
promote sustainability and a circular economy. WH has a
high nutrient value. WH biomass is advantageous over other
lignocellulosic waste due to its less complex nature, result-
ing in milder pre-treatment requirements. WH compositional
analysis reveals the presence of fibrous polysaccharides and
the absence of sticky substances, which ensures its rapid
drying despite high initial moisture content. Phytoconstitu-
ents of WH could be investigated further in a specific- and
application-based manner. Most of the research done to date
involves using conventional solvents and methods. Process
intensification is needed to make the processing more eco-
nomical and efficient. The overall multi-objectives frame-
work should be followed by emphasizing the concept of
reduction, reuse, and recycling to attain the goals of sus-
tainability and circular economy. A careful techno-economic
analysis based on the local parameters is desirable to harness
the maximum benefits. We have explored the cutting-edge
future WH biorefinery opportunities extending the conven-
tional methods as a commercially sustainable response to
several issues confronting us today to manage WH growth
and promote a circular economy efficiently.
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