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Abstract
The application of spatiotemporal functional analysis techniques in environmental pollution research remains limited. As a 
result, this paper suggests spatiotemporal functional data clustering and visualization tools for identifying temporal dynamic 
patterns and spatial dependence of multiple air pollutants. The study uses concentrations of four major pollutants, named 
particulate matter (PM2.5), ground-level ozone  (O3), carbon monoxide (CO), and sulfur oxides  (SO2), measured over 37 
cities in Yemen from 1980 to 2022. The proposed tools include Fourier transformation, B-spline functions, and generalized-
cross validation for data smoothing, as well as static and dynamic visualization methods. Innovatively, a functional mixture 
model was used to capture/identify the underlying/hidden dynamic patterns of spatiotemporal air pollutants concentration. 
According to the results, CO levels increased 25% from 1990 to 1996, peaking in the cities of Taiz, Sana’a, and Ibb before 
decreasing. Also, PM2.5 pollution reached a peak in 2018, increasing 30% with severe concentrations in Hodeidah, Marib, 
and Mocha. Moreover,  O3 pollution fluctuated with peaks in 2014–2015, 2% increase and pollution rate of 265 Dobson. 
Besides,  SO2 pollution rose from 1997 to 2010, reaching a peak before stabilizing. Thus, these findings provide insights 
into the structure of the spatiotemporal air pollutants cycle and can assist policymakers in identifying sources and suggest-
ing measures to reduce them. As a result, the study’s findings are promising and may guide future research on predicting 
multivariate air pollution statistics over the analyzed area.
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Introduction

Air pollution can have serious negative impacts on human 
health, including cardiovascular and respiratory diseases. 
Monitoring and controlling air pollutants is crucial for 
protecting public health and the environment. Commonly 
used strategies for air pollution monitoring include statis-
tical analysis, data visualization, and identifying correla-
tions and trends in pollution levels. These tools can help 
identify sources of pollution and inform the development 
of policies and regulations to reduce and control pollution 

levels. Additionally, monitoring and control efforts may also 
include the use of specialized equipment and technology, 
such as air quality sensors and monitoring stations, to meas-
ure and track specific pollutants in the air (Manisalidis et al. 
2020; Cook et al. 2021; Li et al. 2022c). Modern statistical 
approaches, such as spatiotemporal modeling and machine 
learning techniques, can effectively handle high-dimensional 
data with temporal and spatial characteristics in environmen-
tal air pollution monitoring. These methods can capture the 
underlying variations and dynamics trends of air pollutants 
over the entire temporal-spatial scale, making them more 
suitable for this type of data compared to classical statistical 
methods (Acal et al. 2022; Wang et al. 2022).

Functional data analysis (FDA) is a powerful technique 
for working with multi-dimensional air pollutants data. 
It utilizes additional information, such as the smoothness 
of the data structure, rate of change, acceleration, and 
dynamic changes over a large-scale domain, to extract 
more information from the data compared to traditional 
vectorial approaches (King et al. 2018; Al-Janabi et al. 
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2021; Reinholdt Jensen et al. 2022). FDA has been well-
established in the literature over the past two decades, 
with a strong methodological and operational framework. 
There are several advantages of using FDA compared 
to traditional vectorial approaches: (i) flexibility: FDA 
can handle data that is not easily represented by vectors, 
such as data that is curve- or surface-based, or data that 
varies over a continuous domain, (ii) smoothness: FDA 
can incorporate information about the smoothness of the 
data structure, which is not captured by traditional vector-
based methods, (iii) dynamics: FDA can capture dynamic 
changes in the data, such as rates of change or accelera-
tion, which are not possible with traditional vector-based 
methods, (iv) high-dimensional data: FDA can handle 
high-dimensional data, which is a challenge for traditional 
vector-based methods, (v) modeling: FDA can be used 
to model complex relationships between variables that 
are not easily represented by simple linear or polynomial 
models, (vi) visualization: FDA also allows for better 
visualization of the data, which can aid in understand-
ing and interpreting the results (Al-Janabi et al. 2020b; 
Betancourt-Odio et al. 2021). The principles and founda-
tions of the FDA methods are found in Ramsay and Sil-
verman (2002, 2005) besides the nonparametric methods 
of functional data are presented in a monograph study by 
Ferraty and Vieu (2006).

The use of FDA techniques in analyzing environmen-
tal data has received remarkable attention in the past 
two decades. Escabias et al. (2005) combined functional 
logistic regression and principal component analysis 
of environmental data modeling besides the proposed 
method were used to estimate drought risk in terms 
of temporal evolution in temperatures. Ground ozone 
represents one of the most dangerous environmental 
pollutants; complex chemical and physical processes 
generate it in the atmosphere and combustion processes 
in the troposphere. Several FDA approaches have been 
proposed to analyze the ozone concentration level, for 
instance, functional principal components analysis 
(FPCA) to extract manifest features for ground ozone 
concentration levels (Caligiuri et  al. 2005), smooth-
spline-based models to study time trends and oscillations 
in stratospheric ozone (Meiring 2007), mixed functional 
methods to model trends in the profiles of stratospheric 
ozone (Park et al. 2013), and the Kendall’s Tau func-
tional statistic (KFT) to discover significant correlations 
between tropospheric ozone levels in urban and rural 
sites (Betancourt-Odio et al. 2021). In the same context, 
Gao (2007) and Gao and Niemeier (2008) used FDA 
techniques to model the dynamic pattern of nitrogen 
oxide and diurnal ozone cycles; they showed important 
results about the structure of spatiotemporal variations 
in diurnal cycles. In the atmosphere, the concentration 

of particulate matter (PM) is a highly time–space vari-
able, which follows a periodic cycle dominated by mete-
orological situations as well as anthropogenic activi-
ties. The study by (Broomandi et al. 2021) examined the 
impact of fine PM2.5 on respiratory and heart diseases. 
They used a data-driven directed graph representation to 
infer the causal directionality and spatial embeddedness 
of PM2.5 concentrations in 14 UK cities over the course 
of one year. They found notable spatial embedding in the 
summer and spring and stability to disturbances through 
the network trophic coherence parameter, with winter 
being the most significant vulnerability. Many studies 
have employed FDA to analyze PM and its relationship 
to air quality. FDA can be used to model the temporal 
and spatial variation of PM levels, and to identify pat-
terns and trends in the data. It can also be used to esti-
mate the relationship between PM levels and other fac-
tors such as weather, traffic, and land use. Additionally, 
FDA can be used to make predictions about future PM 
levels and to assess the effectiveness of interventions 
aimed at reducing PM exposure. For instance, Shaadan 
et al. (2012) used a functional approach to assess the 
PM10 pollutant behaviour and compare data from two 
different years. In another related work, Hörmann et al. 
(2015) proposed a dynamic version of functional princi-
pal component analysis (dynamic FPCs), and the advan-
tage of this approach has been illustrated by applying it 
to PM10 changes. In another related paper, Kosiorowski 
et  al. (2017) adapted a hierarchical functional time 
series on a micro-model to forecast day and night PM10 
air pollution. In another related study, King et al. (2018) 
applied modern FDA methods to study the spatial and 
temporal trends and variability of fine PM components 
across the USA. In recent years, research on the concen-
trations of multivariate air pollutants has been investi-
gated by FDA techniques. In another related work, Rug-
gieri et al. (2013) focused on the principal component 
analysis of functional data (FPCA) to investigate the 
variability of multivariate air pollutants data, including 
(CO,  NO2, PM10, and  SO2). More recently, an analysis 
of variance based on functional data analysis (FANOVA) 
has been proposed by Acal et al. (2022). This method 
has been applied to four air pollutant concentrations, 
namely PM2.5, benzene,  NO2, and PM10, to assess air 
pollution changes during the COVID-19 lockdown.

In the environmental pollution framework, an unusu-
ally high concentration of air pollutants, known formally 
as anomalies, may bring problems in the air quality index. 
Martínez et al. (2014), Sancho et al. (2014), and Torres 
et al. (2020) implemented a model relying on functional 
analysis to identify outliers samples, with the overall goal 
of achieving a better air quality monitoring solution. In 
another related paper, Shaadan et al. (2015) conducted a 
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study to detect anomalies in daily PM10 functional data, 
investigate behaviour patterns, and identify potential factors 
determining PM10 abnormalities at three selected air quality 
monitoring stations. More applications that demonstrate the 
usefulness and advantages of FDA methods in environmen-
tal data analysis are found in Ocana-Peinado et al. (2008), 
Valderrama et al. (2010), Embling et al. (2012), Escabias 
et al. (2013), Ignaccolo et al. (2014), Xiao and Hu (2018), 
Ochoa et al. (2020), Reinholdt Jensen et al. (2022).

Machine learning is widely used to perform in-depth 
analysis in various fields such as biomedicine, energy, 
and economics (Saleh et al. 2023). To make our proposed 
method more comprehensive, we will compare it to recent 
algorithms in the context of machine learning and deep 
learning. For example, in biomedicine, Al-Janabi and 
Alkaim (2022) proposed a novel optimization method 
called Lion-AYAD to find optimal DNA protein generated 
through DNA synthesis. Their results showed the method 
to be robust with dynamic DNA sequence lengths, with 
increased accuracy and reduced execution times. In a simi-
lar context, Kadhuim and Al-Janabi (2023) presented a 
model that uses Deep Optimal Neurocomputing Technique 
(DLSTM-DSN-WOA) and Multivariate Analysis to pre-
dict Codon-mRNA. Their proposed model is a pragmatic 
intelligent data analysis model that reduces computation 
and handling time for large real data. In the field of renew-
able energy, Al-Janabi et al. (2020a) proposed deep learn-
ing techniques (DCapsNet and DCOM), and Mohammed 
and Al-Janabi (2022) proposed optimization techniques 
(FDIRE-GSK) for the generation of electrical energy from 
natural resources such as wind energy. Another approach, 
called DRFLLS, has been developed to estimate missing 
values in various datasets (Al-Janabi and Alkaim 2020). 
Additionally, the use of machine learning algorithms 
for high-dimensional functional data classification has 
become increasingly important in environmental air pol-
lution research. The current study specifically focuses on 
using the FDA approach for the classification and visu-
alization of high-frequency spatiotemporal air pollution 
data. Researchers have previously attempted to use FDA 
methods to cluster air pollution levels, which can help 
identify patterns and trends in the data and better under-
stand the factors that contribute to air pollution. The use 
of the FDA, in combination with machine learning algo-
rithms, can help to improve the accuracy and robustness 
of air pollution classification and visualization.

There have been several studies that have used func-
tional data clustering approaches to analyze the network 
paths of air quality. To show an example, Ignaccolo et al. 
(2008) proposed an early study on analyzing the network 
paths of air quality using functional data clustering; they 
considered the air pollutant variable as a functional data 
object and classified them using the Partitioning Around 

Medoids (PAM) algorithm. Similarly, Ranalli et al. (2016) 
used FDA and PAM clustering approach to analyze high-
frequency spatiotemporal data on the size distribution of 
particulate matter (PM). In another paper, Kosiorowski 
and Szlachtowska (2017) proposed a novel k–local func-
tional median algorithm applied to the analysis of a 
real data set concerning air pollution monitoring. More 
recently, Bouveyron et al. (2022) developed a functional 
co-clustering approach based on the functional latent 
block model (funLBM) and illustrated by the analysis of 
multivariate air pollution data in the South of France. 
All these studies have made significant progress in the 
field of clustering functional air pollution data in terms 
of methodology and practical applications.

Research on clustering spatiotemporal air pollution 
using FDA is still an active area of interest, and new stud-
ies are needed to further advance the field. Therefore, this 
study has two main contributions: 1) from a methodologi-
cal perspective, it presents a method based on the FDA 
approach for clustering and visualizing spatiotemporal 
functional data, and 2) from a practical aspect, it applies 
the proposed method to identify, classify and visualize 
multiple air pollutants, such as sulphur dioxide  (SO2), 
carbon monoxide (CO), ozone  (O3), and particulate mat-
ter (PM2.5) measured over multiple sites in Yemen during 
the period of January 1980 to April 2022. As far as the 
authors know, the air pollution problem in Yemen has 
not been investigated before, and this is the first study 
to analyze the multivariate air pollution concentrations 
using the FDA method. The study highlights several steps 
to achieve its goal: (1) transforming the discretization 
air pollution data into functional data to work with func-
tional realm; (2) smoothing the functional air pollution 
data to improve the structured data from step 1; (3) visu-
alizing the spatiotemporal features of functional air pol-
lution data to discover the mechanism of variability; (4) 
clustering spatiotemporal functional air pollution data to 
group similar patterns found in step 3 for both spatial and 
temporal profiles.

Data and methods

Study area

Yemen, officially the “Republic of Yemen,” is a west 
Asian country located in the Middle East in the south-
ern part of the Arabian Peninsula. It is bordered by the 
Kingdom of Saudi Arabia to the north, the Sultanate 
of Oman to the east, the Arabian Sea to the south, and 
the Red Sea to the west, and it shares maritime borders 
with Djibouti, Eritrea, and Somalia. It is the second-
largest Arab sovereign state on the peninsula, occupying 
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555,000  km2 (214 thousand square miles). Yemen’s total 
coastline extends over a length of approximately 2000 
square kilometers (1200 miles). Sana’a is the consti-
tutionally stipulated capital and largest city of Yemen. 
As of 2021, Yemen has an estimated population of 
30,491,000. Yemen lies within latitude and longitude 
15° 0ʹ North and 48° 0ʹ East which includes an area 
mostly desert. It also consists of a narrow coastal plain 
surrounded by rugged mountains.

Yemen’s climate is a mixture of temperate, humid, and 
hot. The western part is exposed to the influence of the 
monsoon monsoons. Towards the inland eastern region of 
Yemen, the climate becomes unbearably hot. During the 
summer, the temperature can reach 54 °C, and the winters 
are much colder, with frost in some parts. The average 
annual temperature of the capital, Sanaa, is 18° C. Yemen 
is also exposed to natural hazards in the form of dust and 
sand storms. Yemen’s climate can be described as a dry 
subtropical, hot desert climate with low annual rainfall, 
very high summer temperatures, and a large difference 
between the maximum and minimum temperatures, espe-
cially in the interior regions.

Figure  1 depicts a geopolitical map of Yemen with 
detailed legends for its major cities, road networks, airports, 
railways/railroads, and waterways.

Data and variables

In this study, the selection of the 37 major cities for analysis 
was based on the criteria of high population density and wide 
geographical coverage across the entire country. The popula-
tion density of a city is an important factor in determining the 
level of air pollution, as a higher population density typically 
leads to higher levels of industrial and vehicular emissions. 
The geographical location of the cities was also considered to 
ensure that a diverse range of regions was represented in the 
analysis. Additionally, the availability of historical air pollu-
tion data was taken into account to ensure that an accurate and 
comprehensive analysis could be performed. The geographi-
cal location of the selected cities is illustrated in Fig. 2, which 
provides a visual representation of the distribution of the cities 
across the country. This information can be useful in under-
standing the regional variations in air pollution levels and 
trends. The name of selected stations and their geographical 

Fig. 1  The map of Yemen with major geographical features (Worldmaps 2023)
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characteristics (latitude, longitude, and average elevation) are 
given in Supplementary Table 1.

The concentrations of a pollutant are typically gauged 
by using the metric of micrograms per meter cube(�g∕m3) . 
There are two different metrics to measure the particu-
late matter concentrations: (PM2.5) and (PM10) refer to 
the particles that are less than 2.5�g∕m3 and 10�g∕m3 in 
diameter, respectively. This study focuses on four main 
air pollutants: PM2.5,  O3,  SO2, and CO. The area-aver-
aged monthly records for four primary air pollutant vari-
ables for several locations in Yemen During the period 
1980–2022 were extracted as satellite data from (NASA 
2023). The total sample size for CO, SO2, and PM2.5 pol-
lutants measurements is equal to (n = 500) discrete records 
discrete recordsXi

(
tj
)
, tj ∈ [1, 500], i = 1,… , 37 , the ith 

discrete observation Xi

(
tj
)
, j = 1,… , 500 indicates pol-

lutants values for the ith month. The total sample size for 

O3 pollutant measurements is equal to (n = 508) discrete 
recordsXi

(
tj
)
, tj ∈ [1, 508], i = 1,… , 37 , the ith discrete 

observation Xi

(
tj
)
, j = 1,… , 508 indicates pollutants val-

ues for the ith month.The discrete monthly pollutants data-
set Xi

(
tj
)
 will be transformed into continuous functions by 

adapting a suitable basis functions system. More details 
about the variables and their features are summarized in 
Table 1.

Model hypothesis and limitations

The aim of this paper is to analyze and categorize the 
dynamic changes in air pollution concentrations using 
functional analysis techniques and a functional mixtures 
clustering model. The method was applied to multivari-
ate high-dimensional air pollution data collected from cit-
ies in Yemen from 1980 to 2022. Fourier transformation, 

Fig. 2  The spatial distribution of the selected sites in Yemen

Table 1  Details of variables 
and data

* Datasets extracted by considering the unified source

Variables Spatial resolution Units Temporal resolution Time Period Source

SO2 0.5 × 0.625o
kg∕m3 Average monthly Oct,1980—Apr, 2022 MERRA-2 

Model *
PM2.5 0.5 × 0.625o

kg∕m3 Average monthly Oct,1980—Apr, 2022 MERRA-2 
Model *

O3 0.5 × 0.625o Dobson Average monthly Jan,1980—Apr, 2022 MERRA-2 
Model *

CO 0.5 × 0.625o
kg∕m2 Average monthly Oct,1980—Apr, 2022 MERRA-2 

Model *
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B-spline functions, and generalized cross-validation were 
utilized to smooth and reconstruct the data. Two enhanced 
3D visualization tools were used to examine the spatiotem-
poral variations in air pollutants and a functional mixture 
model was employed to classify the functional air pollut-
ants data based on their spatiotemporal characteristics. The 
paper sets forth three hypotheses: (i) that the air pollution 
data is measured at a set of ordered times and the discrete 
observations Xi

(
tj
)
 are dense and regular over a specified 

time interval, (ii) that the air pollutants data follows a 
Gaussian mixture model-based FDM(Σk, �k)  model, and 
(iii) that the number of clusters (K) and the intrinsic dimen-
sion (d) must be predetermined. The first hypothesis is sup-
ported by the regular observation of air pollution data from 
1980 to 2022. The second hypothesis is supported by the 
use of Gaussian mixture models in functional data analysis, 
and the option to use a robust mixture model in the future. 
The third hypothesis, which assumes a fixed number of 
clusters, is based on the belief that using selection methods 
to determine K would lead to unclear results. In this study, 
the number of clusters was set at 4, as it was determined 
to provide the best segmentation of the air pollution data.

Model estimation

The structure of the spatiotemporal functional data (STFD) 
model in a multivariate pollutant’s context is a statistical 
framework for analyzing functional data that varies over 
both space and time. The model typically consists of sev-
eral components: (i) spatial component: this captures the 
spatial variation in the functional data, often represented 
as a spatial random effect, (ii) temporal component: this 
captures the temporal variation in the functional data, often 
represented as a temporal random effect, (iii) functional 
component: this captures the functional variation in the 
data, often represented as a functional principal compo-
nent analysis (FPCA) model, (iv) covariate component: this 
captures the relationship between the functional data and 
any additional covariate information, often represented as 
a linear or nonlinear regression model, and (v) error com-
ponent: this captures the residual variation in the data not 
explained by the other components (King et al. 2018; Wang 
et al. 2020; Hael et al. 2020). Overall, the STFD model 
is a flexible framework that can be used to analyze mul-
tivariate pollutant’s objects over space and time and can 
be extended to include other sources of variation or addi-
tional information as needed. Additional information has 
been included in the supplementary section regarding the 
theoretical framework, including elements like the struc-
ture of spatiotemporal functional data, the basis functions 
and smoothing techniques used, and the functional mix-
ture model for analyzing STFD. This section will cover the 
concepts of model estimation, including the Expectation, 

Discrimination, and Maximization phases. Expectation (E) 
phase: In the E-step, the model uses the current estimate 
of the parameters to calculate the probability of each data 
point belonging to each cluster. Whereas Discrimination 
(D) phase: In the D-step, the model uses the probabilities 
calculated in the E-step to re-estimate the parameters of the 
clusters. While Maximization (M) step: In the M-step, the 
model uses the re-estimated parameters from the D-step to 
update the overall estimate of the parameters of the model 
(Preda 2007; Bouveyron et al. 2015). The Expectation-
Discrimination-Maximization (EDM) procedure is a three-
step process used to estimate the parameters of the mix-
ture model. It involves alternating between the E-step, the 
D-step, and the M-step until a specified criterion is met. In 
this study, the criterion was set as 100 iterations (q = 100). 
The EDM procedure continues to iterate until this iteration 
number is reached.

The expectation phase

The expectation is the first step which computes the posterior 
probabilities t(q)

ik
 under the condition the current value of the 

parameter �(q) , at iteration q. The probability  P(zik = 1) points 
out that the curve brings from the kth component and  P(zik = 0) 
otherwise. In the functional discriminative model, the posterior 
probabilities t(q)

ik
, i = 1, 2,… , n;k = 1, 2,… ,K that each curve 

suits the kth component can be given as (Bouveyron et al. 2015):

where �(q)
k

= (�
(q)

k
,�

(q)

k
,Σ

(q)

k
, �(q)) are the combination of 

parameters for the kth mixture component and �(.) is the 
Gaussian density. The model parameters will be updated in 
the Maximization(M) step (mentioned below) and estimated 
at an optimal point in the last iteration (q).

The discrimination phase

The Discrimination (D) step is aimed to determine the ori-
entation matrix Uq of the discriminative latent space F con-
ditionally on the posterior probabilities t(q)

ik
 through maxi-

mizing the standard Fisher’s (F) criterion (Preda 2007):

The S refers to the whole sample covariance matrix and S(q)
B

 
refers to the soft between-cluster covariance matrix, which 
is defined as: S(q)

B
=

1

n

∑K

k=1
n
(q)

k
(m

(q)

k
− y)(m

(q)

k
− y)

t
 . In the 

functional unsupervised classification framework with an 
unobserved variable (z) , the Fisher criterion optimizes the dis-
criminative function U ∈ L2[0, T] by (Bouveyron et al. 2015):

(1)t
(q)

ik
= E

�
zik
��
�
yi, �

(q)
�
=

�
(q)

k
�(yi, �

(q)

k
)

∑K

l=1
�
(q)

l
�(yi ∣ �

(q)

l
)

(2)Û(q) = Max
U

trace

((
UtSU

)−1
UtS

(q)

B
U
)
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The optimization procedure of (4) is the eigenfunction 
U associated with the highest eigenvalue λ of the following 
generalized eigenproblem:

The estimation of the covariance operator C(t, s) based 
on the basis function (�j)j = 1,… , p , is given as:

The B(t, s)  here indicates the integral between cluster 
covariance operators and conditionally on the posterior 
probabilities t(q)

ik
 obtained from the Expectation (E)-step, 

the estimator of B(t, s) at iteration (q) is defined as:

The maximization phase

The Maximization step (M) is aimed to estimate the param-
eters of the functional latent mixture model. In this step, 
maximizing the conditional expectation of the complete data 
log-likelihood conditionally to the orientation matrix Uq is 
computed in the following form (Bouveyron et al. 2015):

(3)Max
U

Var
(
�

{∫ T

0
X(t)U(t)dt ∣ z

})

Var
(∫ T

0
X(t)U(t)dt

)

(4)∫
T

0

B(t, s)U(s)ds = λ∫
T

0

C(t, s)U(s)ds

(5)Ĉ(t, s) =
1

n

n∑

i=1

(
p∑

j=1

yij�j(t)

)(
p∑

j=1

yij�j(t)

)

(6)B̂(q)(t, s) =
1

n

k∑

k=1

1

n
(q)

k

(
n∑

i=1

t
(q)

ik
v(t)

)(
n∑

i=1

t
(q)

ik
v(s)

)

(7)

Q(�) =
−1

2

K∑

k=1

n
(q)

k

[
−2log

(
�k
)
+ A + log

(||Σk
||
)
+B + D + h]

The explanation of these notations is as follows:  � indicates 
the parameters of the mixture model � = (�k,�k,Σk, �k) , 
A = trace

(
Σ−1
k
U(q)tC

(q)

k
U(q)

) , B = (p − d)log
(
�k
) , D = trace

�
C
(q)

k

�
−
∑d

j=1
u
(q)t

j
C
(q)

k
u
(q)

j

�k

 , 

C
(q)

k
=

1

n
(q)

k

∑n

i=1
t
(q)

ik

�

yi − �
(q)

k

��
yi − �

(q)

k

�t presents the empirical covari-

ance matrix of the kth cluster,u(q)
j

 is the jth column vector of U(q) , 
and h = p���(2�) is a constant term. At iteration q, the maximi-
zation of Q(�) is conditional on U(q) conduces to the estimation 
of mixture parameters of the FDM(Σk, �k) model according to 
the following update formulas (Bouveyron et al. 2015):

The flowchart illustrating the methods proposed in the 
current study can be found in Fig. 3. Additionally, this flow-
chart serves as a framework for understanding the terminol-
ogy used in the study’s methodology and statistics. Besides, 
the proposed method for the visualization and clustering of 
the STFD uses a multivariate framework implemented in 
R programming language with the help of several package 
environments. Spatial–Temporal Functional Air Pollution 
Data Analyzer (STFAPDA), which is a useful tool for ana-
lysing and understanding the dynamics of air pollution, is 
the name of the proposed algorithm. The algorithm consists 
of several steps, which are described in detail as follows:
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Fig. 3  The flowchart of the proposed methods in the current study
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Results and discussion

Transforming and smoothing data

The discretization datasets of four primary air pollutants 
over 37 major cities in Yemen during the period from 1980 
to 2022 are given in Fig. 4. Discretization is the process of 
dividing continuous data into discrete intervals or bins. In 
the context of air pollution data, discretization is often used 
to convert continuous measurements of pollutants (e.g., in 
micrograms per cubic meter) into categorical levels (e.g., 

low, medium, high). The discretization points chosen are 
determined by the nature of the data and the research ques-
tion. As a result, it is critical to remember that the discre-
tization points used can have a significant impact on the 
analysis’s outcome, and it may be necessary to experiment 
with different options in order to find the best representa-
tion of the data. In Fig. 5, discrete air pollution data (CO, 
 SO2, PM2.5, and  O3) with the spatial elements are presented. 
The initial step is converting the discretely observed air pol-
lutants curves (CO,  SO2, PM2.5, and  O3) into continuous 
functional objects for reconstructing the data framework. In 

Main STFAPDA algorithm

Inputs  
(multi-dimensional array for air pollutants data), (smoothing parameters ), (Transformer, such 

Fourier or  B-spline ), (Number of basis functions ) , (number of iterations), (number of clusters )

Transformation step 
#In this step, convert the discrete pollutant dataset into functional form based the corresponding basis transformer

For each input pollutants in original dataset   do
if transformer =Fourier  

then Fit Fourier expansion to the pollutants with pre-defined basis functions 

else if transformer=B-spline 
then  Fit B-spline expansion  to the pollutants with pre-defined basis functions 

End for 
Smoothing step 
#In this step, refine the transformed functions into smooth functional form by GCV with pre-defined smoothing 

parameters 

For each transformed pollutants in functional form   do
Refine  pollutants curves with the smooth values

End For 
Variability Visualization step  
#In this step, compute the spatial-temporal variability of the given-above smoothed  pollutants via dynamic web-

based interactive surface mapping and static 3-D perspectives charting

For each smoothed pollutant do

Construct dynamic and static variability visualization 

End For 
Clustering (model parameters estimation) step 
#In this step, estimate the model parameters for clustering based on EDM-based approach 

For each smoothed functional pollutant do

initialization with clusters   

iterations to optimize clustering model parameters  

Phase I: Expectation 

Phase II: Discrimination  

Phase III: Maximization

Stop iteration If number of iterations reached  

Hold the last optimized model  

Outputs 
Graphical/functional plots 

Smoothed spatial-temporal functional air pollutants curves 

Visualization 
Spatial-temporal variability of smoothed pollutants  

Clusters presentation 
Temporal clusters dynamic and Spatial clusters mapping
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particular, Fourier basis functions are applied to the  O3 and 
PM2.5 air pollutants curves, which exhibit seasonal vari-
ability throughout the entire data domain. It is observed that 
some functional  O3 and PM2.5 data objects have a high level 
of fluctuations, which is unusual.

Spatial–temporal functional data analysis is a technique 
that can be used to transform and smooth air pollution 
data. It involves analyzing data over both space and time 
and modeling the data as a collection of functions rather 
than a set of discrete points. This allows for a more accu-
rate representation of the data, as well as the ability to 

smooth and interpolate missing values. This technique uti-
lizes various methods such as functional principal compo-
nent analysis and functional regression to analyze the data 
and gain insights from it. Additionally, it allows modeling 
the temporal and spatial correlations in the data, which 
can help to understand the underlying patterns and trends 
in the air pollution data. Transforming and smoothing air 
pollution data involves several steps: data preprocessing, 
data transformation, data smoothing, data visualization, 
and data modeling. Data preprocessing involves cleaning 
and preparing the data for analysis. Data transformation 

Fig. 4  Discretization points for 
a  SO2, b PM2.5, c  O3, and d 
CO datasets over 37 cities in 
Yemen
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involves converting the data into a more suitable format 
for analysis. Data smoothing involves removing noise or 
random variations from the data to make patterns and 
trends more visible. Data visualization involves creat-
ing visual representations of the data to gain insights 
and identify patterns and trends. Data modeling involves 
developing statistical or machine learning models to better 
understand the data and make predictions about future air 

pollution patterns. These steps are not always applied in 
a linear fashion and the analyst may have to iterate over 
the process to reach a final solution. Figure 5 depicts the 
charts of transforming and smoothing multivariate func-
tional air pollutants data for multiple locations. The data 
of transforming and smoothing from air pollutants (CO, 
 SO2, PM2.5, and  O3) will be discussed in the following 
subsections.

Fig. 5  Transformed and 
smoothed functional data of 
multivariate air pollutants over 
multiple cities a  SO2, b PM2.5, 
c  O3, and d CO (legend below)
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Analysis of  SO2 concentrations

The process of converting discrete data to a continuous func-
tional form is known as functional data analysis. B-spline 
functions are commonly used in this process because they 
are flexible and can be used to approximate a wide range of 
shapes. B-splines are piecewise polynomial functions that 
are defined over a set of control points, called knots. When 
applying B-spline functions to discrete  SO2 pollution data, 
the goal is to find a smooth curve that accurately represents 
the underlying trend in the data. However, in some cases, the 
resulting curve may have a rough level that can be improved 
using a smoothing method. The GCV standard is a com-
monly used method for smoothing functional data. It is a 
computational method that allows for the estimation of the 
optimal smoothing parameter, which controls the degree of 
roughness in the final curve. The present smoothing aims to 
improve the structure of the functional  SO2 data and facili-
tate its subsequent interpretation and analysis. This can be 
useful for identifying patterns and trends in the data that 
may be difficult to discern when working with discrete data. 
Additionally, the continuous functional form of the data can 
be used in further statistical analysis, such as regression or 
model fitting. Figure 5a describes the use of B-spline bases 
function with cubic degree and a smoothing parameter of 
0.06 to transform and smooth  SO2 air pollutant data. This 
process makes the data more informative and allows for an 
easy visual representation of the shape of the  SO2 pollutants 
over the entire domain. From Fig. 5a, it is clear that the  SO2 
shape has two significant periods of long-term changes, with 
higher variations in the middle and end of the domain. The 
highest peak of  SO2 is located around the year 2021 with an 
average pollutant level of 0.0000007 kg/m3. Table 2 gives 
more details on the type and number of basis functions, 
smooth method, and parameters for all functional variables. 
Previous research has shown that the functional form has not 
been used to study  SO2 in the past, but there have been stud-
ies using the classical form. The study by Al-Janabi et al. 
(2020b) used a different analysis method and included other 
pollutants, whereas the current study focuses specifically on 
 SO2 and processes the data in a discontinuous/discretization 
form without any data transformation or smoothing, which 
sets it apart from the aforementioned study.

Analysis of PM2.5 concentrations

Fourier basis functions are used to adapt to the seasonal 
variability of PM2.5 pollution in the entire data domain. 
The structure of functional PM2.5 air pollutant data is also 
improved using a penalized roughness method based on gen-
eralized cross-validation criteria for easier interpretation. 
Thirty Fourier bases functions and a smoothing parameter 
of 0.04 are used for converting and smoothing PM2.5 air 
pollutant data. The smoothing parameters determine the 
strength of the smoothing applied to the data. A smaller 
smoothing parameter will result in a smoother function 
with less noise but may also smooth out important features 
or outliers in the data. A larger smoothing parameter will 
result in a less smooth function with more noise but will 
also be more responsive to changes in the data, including 
outliers. The use of Fourier basis functions in this context is 
to transform the data into a different domain where it can be 
more easily smoothed. Smoothing functions can be config-
ured to handle outliers in various ways such as excluding or 
down-weighting them or treating them as valid data points. 
Additionally, outliers can be handled before the smoothing 
step through preprocessing techniques such as removing or 
transforming the data. Table 2 and Fig. 5b provide additional 
information and a graphical representation of PM2.5 pol-
lutant data. The proposed procedures make the data more 
informative and easier to understand. Figure 4b shows that 
the PM2.5 shape exhibits significant variations at the end 
of the time domain, which indicates a change in the levels 
of the pollutant compared to the rest of the time domain. 
This could potentially be due to changes in industrial activ-
ity, transportation patterns, or other factors that contribute 
to PM2.5 emissions. It is important to further investigate 
the cause of these variations to understand the impact on 
air quality and take appropriate measures to reduce emis-
sions. Additionally, Fig. 5b also highlights that some func-
tional PM2.5 data objects have a high level of fluctuations. 
These fluctuations could be caused by various factors such 
as weather conditions, changes in population density, and 
industrial activity. These fluctuations can have a significant 
impact on air quality and public health, so it is important to 
analyze them more deeply in later sections of the research. 
This could include identifying specific sources of emissions, 

Table 2  Details on type and 
number of basis functions, 
smooth method, and parameters 
for all functional variables

Functional variable Type of basis No. of basis func-
tions

Smoothing technique Smoothing 
parameter

SO2 Cubic B-spline basis 30 GCV 0.06
PM2.5 Fourier transformation 30 GCV 0.04
O3 Fourier transformation 35 GCV 0.03
CO Cubic B-spline basis 25 GCV 0.05
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evaluating the effectiveness of current air quality regula-
tions, and developing strategies to reduce emissions and 
improve air quality. The highest peak of PM2.5 is located at 
the time domain labeled around 450 to 470, corresponding 
to the years 2017–2018 with an approximate pollutant aver-
age of 0.000006 kg/m3. Previous studies have examined the 
PM2.5 pollutant variable using a functional form, including 
King et al. (2018) and more recently Acal et al. (2022). King 
et al. (2018) used both B-spline and restricted maximum 
likelihood (REML) techniques to transform and smooth the 
PM2.5 data, while Acal et al. (2022) only used B-spline 
smoothing. In contrast, recent studies have also analyzed 
PM2.5 pollutant data without any transformation or smooth-
ing, such as Al-Janabi et al. (2021) and Wang et al. (2022).

Analysis of  O3 concentrations

There are several methods for transforming and smoothing 
 O3 concentrations. One common method for transforming 
 O3 concentrations is to convert them from a raw measure-
ment to a pollutant index, such as the Air Quality Index 
(AQI), which provides a more easily understandable and 
comparable value. Another method is to apply a smoothing 
technique, such as moving average or lowest smoothing, to 
reduce the impact of random measurement errors and to bet-
ter identify trends and patterns in the data. It’s important to 
note that before applying any transformation or smoothing 
technique, it is necessary to ensure that the data is of good 
quality and that any outliers or missing values have been 
properly handled.

The use of Fourier basis functions for adapting to  O3 pol-
lutant data with seasonal variability is a common approach 
in functional data analysis. The Fourier basis functions are 
able to capture the periodic nature of the data and can be 
used to model and smooth the data (Hael 2021). The use of 
the penalized roughness method with the GCV criteria is a 
method for selecting the optimal smoothing parameter (Guo 
et al. 2022). The GCV criteria is a way of evaluating the per-
formance of the model by comparing the observed data to the 
predicted data. The penalized roughness method is a way of 
controlling the smoothness of the model by adding a penalty 
term to the objective function. By using the GCV criteria, 
the optimal smoothing parameter is chosen to minimize the 
difference between the observed and predicted data while 
also controlling the smoothness of the model. In this spe-
cific case, thirty-five Fourier basis functions and a smoothing 
parameter of 0.03 were used for converting and smoothing 
the  O3 pollutant data. This approach aims at reducing the high 
fluctuations level present in some functional  O3 data objects. 
The overall goal is to improve the structure of functional  O3 
air pollutant data and make it with enhanced sights. Table 2 
and Fig. 5c provide additional information and a graphical 
representation of the  O3 pollutant data. The transformation 

and smoothness procedures make the data more informative 
and easier to understand. Figure 5c shows that the functional 
shape of the  O3 pollutant has several peaks, indicating sig-
nificant dynamic changes over time. The highest peaks occur 
in the time domain labeled around 410 to 430, corresponding 
to the years 2014–2015, with an average pollutant level of 
265 Dobson. The functional analysis framework used in this 
study is similar to that of a study by (Bouveyron et al. 2022) 
in that it uses the Fourier basis to reconstruct the functions 
because the  O3 pollutant exhibits clear periodicity. Addition-
ally, several recent studies have examined  O3 pollutant data 
without any alteration or smoothing, such as those by Yang 
et al. (2020), Liu et al. (2022), and Shams et al. (2022). These 
studies differ from the current one in terms of the way they 
analyze and process  O3 pollutant data.

Analysis of CO concentrations

In this study, B-spline functions are being applied to discrete 
CO pollution data to convert it to a continuous functional 
form. The rough level of some curves can be improved using 
a smoothing method, and the GCV standard is used to han-
dle the transformed functional data. This smoothing aims to 
improve the structure and interpretability of the functional 
CO data. Twenty-five B-spline bases functions with a cubic 
(fourth-order) degree and a smoothing parameter of 0.05 are 
being used for this transformation and smoothing process. 
The use of the GCV criteria to penalize the functional CO 
data suggests that the data with high noise levels are being 
treated as outliers. Outliers in this context are likely to be data 
points that are significantly different from the rest of the data 
and do not fit the underlying structure of the functional data. 
By penalizing these data points, the noise is removed, and the 
structure of the functional CO data is improved. However, it 
is important to note that it’s not always correct to consider 
that these data are outliers, they might be real events, so it is 
necessary to examine the data carefully and consider other 
factors before removing any data. One possible way to avoid 
removing real events and to smooth the data is to use moving 
averages. Table 2 and Fig. 5d provide detailed information 
about the process of CO data and its graphical representation. 
The proposed procedures make the CO pollution data more 
informative and easier to understand. The table displays the 
numerical values of the CO pollution data, while Fig. 5d pro-
vides a visual representation of the data. From Fig. 5d, it is 
clear that the shape of the CO pollutants has high significant 
variations over a long period of time. The CO concentrations 
started in the time domain labeled around 100, correspond-
ing to the year 1990. The highest peak is located in the time 
domain labeled around 195, corresponding to the year 1996 
with an approximate pollutant average of 0.000004 kg/m2. 
Additionally, a more accurate analysis for CO curve cluster-
ing will be explained in “Clustering of functional CO data” 
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Section of the paper. This section will provide a deeper under-
standing of the data and possible patterns in pollution levels 
over time. This will assist in identifying areas that need to 
be addressed for pollution control and management. CO had 
not been studied before using the functional form, accord-
ing to earlier research. However, this pollutant has received 
some traditional research. Al-Janabi et al. (2021) and Li et al. 
(2022d) currently studied the CO pollutant using different 
analysis methods in a recent study. As a result, the current 
study differs from their study in that the data was processed in 
a discontinuous/discretization form without any transforma-
tion or smoothing.

Visualizing the spatiotemporal variability

Visualizing the spatiotemporal variability of data for major 
pollutants is important for several reasons: (i) understand-
ing patterns and trends: visualizing the data can help iden-
tify patterns and trends in pollutant levels over time and 
in different locations. this information can inform decision-
making and management strategies for reducing pollution, 
(ii) identifying high-risk areas: by visualizing the data, it is 
possible to identify areas or times where pollutant levels are 
particularly high or variable. this can help target interven-
tions and resources to areas that need them the most, (iii) 

Fig. 6  3D-visualization of Spa-
tiotemporal functional data for 
multivariate air pollutants using 
dynamic web-based interactive 
method (right penal), and static 
perspective surface (left panel) 
a  SO2, b PM2.5, c  O3, and d CO
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communication and education: visualizing the data can be an 
effective way to communicate and educate the public about 
air pollution and its impacts. by providing clear and easy-
to-understand information, it can help to raise awareness 
and engage the community in efforts to reduce pollution, 
(iv) monitoring progress: visualizing the data over time can 
help to track the progress of pollution reduction efforts and 
evaluate the effectiveness of different management strate-
gies, (v) decision-making and policy formulation: the spati-
otemporal variability data when visualized, it can be used to 
evaluate the distribution, intensity, and frequency of pollut-
ants, which can be used as an input for decision-making and 
policy formulation (Li et al. 2022a; Nikolaou et al. 2023). 
Overall, visualizing the spatiotemporal variability of data for 
major pollutants can provide valuable insights that can help 
to improve air quality and protect public health.

The use of static 3-D perspectives charting and dynamic 
web-based interactive surface mapping as visualization tools 
for high-dimensional, voluminous, and spatial–temporal pol-
lutants data is a promising approach. Static 3-D perspec-
tives charting allows for the visualization of the data in a 
three-dimensional space, providing a clear and intuitive rep-
resentation of the distribution of pollutants over time and in 
different locations. This can be particularly useful for iden-
tifying patterns and trends in the data, and for identifying 
areas or times where pollutant levels are particularly high 
or variable. Dynamic web-based interactive surface map-
ping, on the other hand, allows for the creation of interactive 
maps that can be viewed on the web. This can be useful for 
visualizing the data in a geographic context, and for explor-
ing the data in more detail. The interactivity allows users to 
navigate and zoom in and out of the data, and to view the 
data at different levels of detail. Both techniques can be used 
to analyze the spatial–temporal data for four major pollutants 
variables  (SO2, PM2,5,  O3, and CO) and provide a com-
prehensive understanding of the patterns and trends in the 
data, as shown in Fig. 6. The use of these visualization tools 
can be very effective for data analysis, decision-making, and 
policy formulation, and for communicating and educating 
the public about air pollution and its impacts. The next sub-
sections analyze the spatial–temporal data for four major 
pollution variables  (SO2, PM2,5,  O3, and CO).

Visualizing of  SO2 data

The visualization in Fig. 6a shows two different tools for 
displaying spatiotemporal variation in  SO2 pollutant data. 
The first tool is a static 3D chart with a gradient heatmap 
(left penal), while the second tool is a dynamic, web-based 
interactive surface map (right penal). The proposed two tools 
for visualizing  SO2 pollutants can aid users in understanding 
the spatiotemporal dynamics of low and high air pollution 
over a long-term period. The dynamic web-based interactive 

surface mapping tool, in particular, has interactive features 
that allow users to click buttons to view the concentration 
of  SO2 pollution. The heatmap metrics in this tool provide 
detailed information on the structure of heterogeneity and 
fluctuations in  SO2 levels. Specifically, a red color on the 
gradient heatmap indicates intense high variations across 
spatial and temporal  SO2 cycles, while a blue color on the 
gradient heatmap indicates low variations across these 
cycles. It is clear that the highest variability of  SO2 occurs 
from 2007 to 2021, with insignificant variations observed 
in the rest of the time interval, particularly at the beginning 
of the interval. Using the same technique, (Ranaarif and 
Yuwono 2021) recently observed variations in the concen-
tration and spatial distribution patterns of  SO2 pollutants in 
Bali Island from 2011 to 2020. The main difference between 
current  SO2 visualization tools and the study by (Ranaarif 
and Yuwono 2021) is that the latter used traditional visuali-
zation approaches to analyze changes in the concentration 
and spatial distribution patterns of  SO2 pollutants, while cur-
rent tools may use more advanced techniques such as 3D 
modeling or interactive maps.

Visualizing of PM2.5 data

The visualization of variance–covariance 3D surfaces for 
spatiotemporal functional PM2.5 pollutant data is an impor-
tant tool for understanding and identifying patterns in air 
quality. Two different methods have been implemented 
for the visualization of spatiotemporal PM2.5 variation. 
The first is a static 3-D perspective chart with a gradient 
heatmap, as shown in the left panel of Fig. 6b. The second 
is a dynamic web-based interactive surface mapping that 
provides enhanced animation, as shown in the right panel 
of Fig. 6b. The implementation of these visualization tools 
is crucial for assisting users in developing an awareness of 
the air quality in a specific area. It allows users to identify 
the spatiotemporal dynamics of low and high air pollution 
over a long-term period, as well as provide detailed infor-
mation about the structure of heterogeneity and fluctuations 
in PM2.5 concentrations. For example, the red color on the 
gradient heatmap indicates an intense high variation across 
spatial and temporal PM2.5 cycles, while the blue color on 
the gradient heatmap indicates a low variation across spa-
tial and temporal PM2.5 cycles. The PM2.5 visualization 
results have also revealed different fluctuations throughout 
the whole domain, with the highest fluctuation period of the 
PM2.5 pollutants observed between 2016 and 2020. Addi-
tionally, the dynamic web-based interactive surface map-
ping offers interactive features such as buttons that allow 
users to view the PM2.5 pollution concentration in an easy-
to-understand format, making it a powerful tool for under-
standing air quality patterns. In addition to the visualization 
methods described earlier, it is important to note that some 
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existing visualization approaches are limited in their abil-
ity to process large PM2.5 data sets and support dynamic 
visualizations. To compare the current PM2.5 visualization 
tools with recent previous studies, the current study can 
be compared to the approach used by Li et al. (2016) who 
employed a visualization approach to analyze the air quality 
index based on PM2.5 pollutant in Beijing, China. Similar 
studies include those by Tang et al. (2021) and Medhi and 
Gogoi (2021) used visualization tools to analyze the impact 
of COVID-19 on PM2.5 in China and India, respectively. 
All of these previous studies have used traditional visualiza-
tion and interpolation methods which differ from the current 
study which used spatial–temporal dynamic visualization 
for PM2.5 functions. This current study presents a novel 
approach that addresses the limitations of traditional visuali-
zation methods and provides a more comprehensive under-
standing of PM2.5 data.

Visualizing of  O3 data

The visualization of variance–covariance 3D surfaces for 
spatiotemporal functional  O3 pollutant data is shown in 
Fig. 6c. Two different tools have been implemented for the 
visualization of spatiotemporal  O3 variation. The first one 
is a static 3-D perspective charting with a gradient heatmap 
drawn in Fig. 6c (left panel). The second one is a dynamic 
web-based interactive surface mapping which provides 
enhanced animation drawn in Fig. 6c (right panel). The 
visualization of  O3 pollutants could help the users to iden-
tify the spatiotemporal dynamic of low and high air pol-
lution over a long-term period. Moreover, in the dynamic 
web-based interactive surface mapping, interactive features 
are designed where users are able to click buttons to view 
the  O3 pollution concentration. It is easy to understand the 
 O3 variability by heatmap metrics which provide detailed 
information regarding the structure of heterogeneity and 
fluctuations. Specifically, the red color on the gradient 
heatmap indicates an intensely high variation across spatial 
and temporal  O3 cycles, and the blue color on the gradient 
heatmap indicates a low variation across spatial and tempo-
ral  O3 cycles. The  O3 visualization results discovered dif-
ferent fluctuations throughout the whole domain, with the 
highest fluctuation period of the O3 pollutant being during 
the period from 2013 to 2017. Additionally, recent studies 
(Nurgazy et al. 2019; Gagliardi and Andenna 2020; Ahmad 
et al. 2022) have used machine learning approaches for the 
visualization of  O3 pollutants, such as the presentation of 
CAVisAP, a context-aware system for outdoor air pollution 
visualization by using internet of thing (IoT) platforms, and 
the exploration of surface ozone behavior by using machine 
learning approaches. However, different from these studies, 
the current analysis considers the dynamic visualization of 
 O3 pollutants over spatial–temporal.

Visualizing of CO data

The visualization of variance–covariance 3D surfaces for 
spatiotemporal functional CO pollutant data is shown in 
Fig. 6d. Two different tools have been implemented for the 
visualization of spatiotemporal CO variation. The first one 
is a static 3-D perspective charting with a gradient heatmap, 
as depicted in the left panel of Fig. 6d. The second tool is 
a dynamic web-based interactive surface mapping, which 
provides enhanced animation and is shown in the right panel 
of Fig. 6d. It is observed that the significant central part of 
the high CO variability occurs in the periods from January 
1990 to 2000 and it is insignificant elsewhere. In recent lit-
erature, the CO pollutant concentrations have been analyzed 
with other pollutants using traditional and machine learning 
methods. For example, Grace et al. (2020) used a traditional 
visualization approach to analyze CO pollutant concentra-
tions with other pollutants. Jain and Kaur (2021) proposed 
machine learning and visualization techniques for the anal-
ysis of air pollution concentrations during the COVID-19 
pandemic. The clustering method used in the study aims to 
identify and differentiate different layers within the temporal 
and spatial cycle of air pollution. The results of this analysis, 
including any functional clustering of temporal and spatial 
pollution variables, will be discussed in a subsequent sec-
tion of the study.

Clustering the spatiotemporal functional data

Clustering is a technique used in machine learning to group 
similar data points together. In the context of spatiotemporal 
functional data of air pollutants, clustering can be used to 
group locations with similar air pollution patterns over time. 
This can be useful for identifying hotspots of pollution and 
for understanding the factors that contribute to air pollu-
tion in different areas. There are several different clustering 
algorithms that can be used, such as k-means, hierarchical 
clustering, and density-based clustering (Schmutz et al. 
2020). The choice of algorithm will depend on the specific 
characteristics of the data and the research question being 
addressed. In order to cluster spatiotemporal functional data, 
it is necessary to first extract relevant features from the data 
that capture the patterns of interest (Hael et al. 2021). This 
could include measures of the overall level of pollution, the 
variability of pollution over time, or the similarity of pol-
lution patterns between different locations. These features 
can then be used as inputs to the clustering algorithm (Shi 
et al. 2022). Once the clusters have been identified, various 
visualization and analysis techniques can be used to explore 
the results. This can include mapping the clusters to examine 
their spatial distribution, plotting the time series data for 
each cluster to examine their temporal patterns, and compar-
ing the pollution levels and patterns across different clusters 
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Fig. 7  a Functional clustering results of the smooth  SO2 data, b its group means, and c the spatial distribution map of the obtained clusters
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to identify key differences. The study presented an advanced 
clustering approach based on functional mixture models to 
effectively deal with high-dimensional, large-scale, and spa-
tial–temporal air pollutants data. The results of this func-
tional clustering approach provided meaningful insights into 
the spatial–temporal dynamics of pollutants and informative 
visualizations for both temporal cluster profiles and spatial 
cluster mapping. In this section, clustering the spatiotem-
poral functional data of air pollutants  (SO2, PM2.5,  O3, and 
CO) will be discussed.

Clustering of functional  SO2 data

Sulfur dioxide  (SO2) is a gaseous air pollutant composed of 
sulfur and oxygen. It can have a significant impact on human 
health, animal health, and the environment. In this study, 
the functional clustering of smooth functional  SO2 pollutant 
levels was conducted over multiple cities in Yemen and the 
results were used to identify groups of cities with similar 
levels of pollution. The spatial distribution of these clusters 
is presented in Fig. 7. Cluster group 3, indicated by the color 
green, is identified as having the least polluted cities in terms 
of  SO2. These cities are primarily located in southern Yemen 
and represent approximately half of the total cities studied, 
including the Al-Mahrah Governorate, Hadramout Gover-
norate, Abyan Governorate, and Shabwah Governorate. The 
largest source of sulfur dioxide emissions is the burning of 
high-sulfur fossil fuels by heavy equipment power plants 
and other industrial facilities. Other sources of sulfur diox-
ide emissions include natural sources such as volcanoes and 
industrial processes such as extracting minerals from ore, 
as well as ships, locomotives, and other vehicles. Table 3 
provides more detailed information about the memberships, 
spatiotemporal features, and degree of pollution for each 
cluster group. It is worth noting that short-term exposure 
to sulfur dioxide can damage the respiratory system, espe-
cially lung function, and irritate the eyes. It causes coughing 

and mucus secretion and exacerbates chronic bronchitis and 
asthma conditions. Generally, sulfur dioxide emissions led to 
high sulfur dioxide concentrations in the air, which can form 
other sulfur oxides (SOx) that can be harmful as well. Based 
on a thorough review of recent literature, it appears that the 
clustering of spatial–temporal dynamics of  SO2 data using 
a functional data framework has not been studied or inves-
tigated before. However, a few studies have analyzed  SO2 
pollutant data using vectorized-based methods. For example, 
the study conducted by Al-Janabi et al. (2021) employed the 
intelligent prediction method called IFCsAP to handle  SO2 
pollutant data along with other pollutant variables. Another 
study by Kujawska et al. (2022) used an artificial neural net-
work model to forecast sulfur dioxide levels in the air. Both 
of these studies were focused on forecasting  SO2 pollutant 
levels using artificial data analytics, while the proposed 
functional model in this current study aims to cluster the 
hidden features of spatial–temporal  SO2 dynamics.

Clustering of functional PM2.5 data

In this study, we aim to investigate the dynamic behavior 
of PM2.5 air pollutants and identify potential spatiotem-
poral functional clusters over various locations in Yemen. 
Our proposed approach will provide a meaningful result and 
offer a graphical interpretation of the spatiotemporal varia-
tions of PM2.5. As shown in Fig. 8, our findings indicate that 
the highest PM2.5 variability is concentrated in the cities 
located on the western side of the Red Sea, as represented 
by cluster 2 (red color) which is characterized by two unique 
peaks: a low-volume peak and large-volume peak. Clusters 
4 and 1 also show considerable fluctuations throughout the 
entire domain. It is worth noting that the PM2.5 air pollu-
tion concentration levels significantly decreased during the 
COVID-19 outbreak period. Table 4 provides detailed infor-
mation on the cluster memberships, spatiotemporal features, 
and degree of PM2.5 pollution.

Table 3  Summary of the cluster characteristics for spatial–temporal  SO2 patterns in cities of Yemen

Pollutant Classifier Color Cities/locations Ratio Features (shape/size) Pollution degree

SO2 Class A Black Zinjibar, Ad Dali, Khamir, Dhamar, 
Midi,Ibb,Yarim, Al-Jabin, Dhubab

24.32% Snaky-line shape after 1997 Moderate pollution

Class B Red Aden, Al-Hudaydah, Al-Mahwit, Sanaa, 
Amran, Hajjah, Lahij, Manakhah

21.62% Three-profiles shape, constant before 
1990, then high increase after 1991, 
stable after 2011

Extremally pollution

Class C Green Ahwar, Al-Bayda,Rada, Al-Hazm, 
Al-Ghayzah, Sayhut Hadibu, Adis-
Sharqiyah, Al-Mukalla, Sayun, Tarim, 
Marib, Sadah, Al-Rawdah, Ataq, 
Bayhan

43.24% No changes with straight-line shape 
through all domain

Clean

Class D Blue Zabid,Tiaz, Mukha, Al-Turbah 10.81% Three-profiles shape, constant before 
1990, then increase after 1991, stable 
after 2011

High pollution
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Fig. 8  a Functional clustering results of the smooth PM2.5 data, b its group means, and c the spatial distribution map of the obtained clusters
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It is concluded that the levels of PM2.5 in Yemen follow 
a periodic cycle that is controlled by meteorological factors 
such as temperature and solar radiation. This conclusion 
aligns with the findings of Abdul-Rahim et al. (2022) who 
found that statistical analysis revealed a positive correlation 
between PM2.5 concentrations and temperature for both fall 
and summer samples. However, the analysis also revealed 
a positive correlation between PM2.5 concentrations and 
relative humidity for fall samples and a negative correlation 
for summer samples. While their study only focused on a 
small area in Sanna city, the results may be applicable to 
many other cities in Yemen. Additionally, previous studies 
have shown that the levels of PM2.5 in Yemen are influenced 
by the rhythm of human activities that modulate anthropo-
genic emission rates. The change in PM2.5 air pollution is 
tied to population-weighted exposure levels (PWEL). As 
per the research (Li et al. 2022b), areas with high PWEL 
and rapid increases in PM2.5 concentrations were primarily 
found in developing countries such as India, Bangladesh, 
Nepal, and Pakistan, as well as in the developed country of 
Saudi Arabia, and the least developed countries of Yemen 
and Myanmar. Moreover, the study by Fang et al. (2020) 
found that the regions with the highest levels of pollution 
are primarily located in China, Southeast Asia, South Asia, 
West Asia, and North Africa, particularly in the Arabian 
Gulf region. The study also identified energy intensity and 
per capita electricity consumption as the primary drivers 
of PM2.5 concentrations, whereas an expanding forest area 
was found to significantly decrease PM2.5 concentrations. 
In recent years, there has been a growing body of research 
that has focused on studying the PM2.5 pollutant using func-
tional data analysis. For example, a study by Wang et al. 
(2019) adapted the framework of functional data analysis 
to compare the fluctuation patterns of PM2.5 concentration 
between provinces in China from 1998 to 2016, both spa-
tially and temporally. Another study by Liang et al. (2021) 
used a spatial-functional mixture method to model and clus-
ter PM2.5 concentrations across China. The current study 

is similar to these two studies in that it also uses the same 
functional framework. However, there are also several recent 
studies that have used a different approach to cluster PM2.5 
pollutant data, such as the studies by Jorquera and Villalobos 
(2020), Liu et al. (2020), Su et al. (2020), and Park et al. 
(2022). These studies differ from the current study in that 
they use classical analysis frameworks to process and cluster 
PM2.5 pollutant data.

Clustering of functional  O3 data

The ozone  (O3) is formed when sunlight and heat cause 
chemical reactions between volatile organic compounds 
(VOC) and nitrogen oxides (NOX), also known as hydrocar-
bons. These reactions can occur both near the ground, in the 
troposphere, and high in the stratosphere. In the stratosphere, 
 O3 forms a protective layer that shields the Earth from harm-
ful ultraviolet radiation from the sun, but at ground level,  O3 
is a harmful air pollutant (Wang et al. 2020). In Fig. 9, the 
functional clustering of smooth functional ground-level  O3 
levels in multiple cities in Yemen is presented, along with 
the cluster mean and the spatial distribution of the obtained 
clusters. The data indicates that the highest ozone concentra-
tions are found in coastal cities and islands located on the 
western side of the Red Sea, the southern side of the Arabian 
Sea, and the Gulf of Aden. This may be due to the higher 
levels of pollutants, such as volatile organic compounds and 
nitrogen oxides, present in these areas, which contribute to 
ozone formation. Additionally, the unique meteorological 
conditions in these regions may also make them more sus-
ceptible to ozone formation. Table 5 provides a summary of 
the obtained cluster profiles for ozone air population levels 
and the degree of air pollution in cities of Yemen.

High ozone concentrations near ground level can have 
serious consequences for human health, as well as for crops, 
animals, and other substances.  O3 is a powerful oxidant that 
can irritate the respiratory system, causing symptoms such 
as coughing, sore throat, and chest discomfort. People with 

Table 4  Summary of the cluster characteristics for spatial–temporal PM2.5 patterns in cities of Yemen

Pollutant Classifier Color Cities/locations Ratio Features (shape/size) Pollution degree

PM2.5 Class A Black Ad Dali, Al-Mahwit, Amran,Khamir, 
Hajjah, Al-Jabin, Sadah, Manakhah, 
Al-Rawdah, Ataq

27.03% Multiple peaks with medium volumes Moderate pollution

Class B Red Al-Hudaydah,Zabid,Al-Hazm, Al-
Ghayzah, Midi, Marib, Mukha, 
Dhubab

21.62% Large-size peak (2017–2018), low-size 
peak (1989–1990)

Strongly pollution

Class C Green Al-Bayda,Rada, Sanaa, Hadibu, Dhamar, 
Adis-Sharqiyah,Ibb, Yarim

21.62% Fluctuations with low-size peaks through 
domain

Slight pollution

Class D Blue Ahwar,Zinjibar,Aden, Sayhut, Al-
Mukalla, Sayun,Tarim, Lahij, Bayhan, 
Tiaz, Al-Turbah

29.73% Multiple peaks with medium volumes Moderate pollution
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Fig. 9  a Functional clustering results of the smooth  O3 data, b its group means, and c the spatial distribution map of the obtained clusters
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asthma and other lung conditions are particularly vulner-
able to the effects of ozone pollution, as it can worsen their 
symptoms and increase the risk of respiratory infections. 
Long-term exposure to  O3 can also lead to inflammation and 
damage to the cells lining the lungs, which can increase the 
risk of chronic lung diseases such as bronchitis and emphy-
sema. Additionally, high  O3 concentrations can weaken the 
immune system’s ability to fight off bacterial infections in 
the respiratory tract. There are many factors that influence 
the development of ground-level  O3, including wind direc-
tion and speed, temperature, timing cycles, and vehicle driv-
ing patterns.  O3 is formed when pollutants from cars, power 
plants, and other sources react with sunlight, so weather 
conditions play a key role in determining  O3 levels.  O3 is 
typically a pollutant in the summer, when temperatures are 
high and sunlight is abundant, and it is a major component of 
smog in many urban areas during the summer months. Due 
to its relation to climate conditions, ground-level ozone is 
also known as “summer smog.” It is important to note that 
Ozone, though it is harmful at ground level, is beneficial 
in the upper atmosphere where it protects the earth from 
harmful UV rays.

The analysis in this study builds upon the work of 
Schmutz et al. (2020) by utilizing a functional clustering 
framework to analyze  O3 pollutant curves. However, it also 
diverges from previous studies, such as those conducted by 
Pineda Rojas et al. (2019) and Saeipourdizaj et al. (2022). 
Pineda Rojas et al. (2019) employed traditional cluster-
ing techniques to examine the spatial patterns that lead 
to peak ozone hourly concentrations, using Monte Carlo 
outcomes as the basis for their analysis. On the other hand, 
Saeipourdizaj et al. (2022) utilized a classical spatiotem-
poral mixture model-based clustering framework to clus-
ter days of the year 2017, based on hourly  O3 amounts 
collected from four stations in Tabriz. This study takes 
a different approach, utilizing the functional clustering 
framework to analyze  O3 pollutant curves, which sets it 
apart from these previous studies.

Clustering of functional CO data

In this sub-section, we will present and discuss the main 
results of spatiotemporal functional clustering that have 
been adapted to the transformed air pollination data struc-
ture. Specifically, we will examine the functional clustering 
findings of the smooth functional CO pollutant over multiple 
cities in Yemen, including the group average and the spatial 
distribution of the obtained clusters, as depicted in Fig. 10. 
Overall, the spatiotemporal functional dynamic pattern of 
the CO air pollutant can be divided into three distinct phases. 
The first phase, which spans from January 1991 to December 
2001, is characterized by a prominent polluting peak with a 
high volume of pollution. The second phase, which begins in 
January 2009 and ends in December 2019, is characterized 
by a stable and constant polluting pattern. The final phase, 
which is related to the COVID-19 pandemic, is representa-
tive of the COVID-19 lockdown period, during which pollu-
tion levels decreased dramatically. It has been observed that 
there has been a significant decrease in carbon monoxide 
(CO) air pollution in Yemen starting from January 2020 to 
April 2022. This has led to an overall improvement in air 
quality in the country. The objective of the study is to iden-
tify and classify the spatiotemporal patterns of functional 
CO data across multiple locations in Yemen. Our proposed 
method has been able to provide the best partition of poten-
tial clusters, which have been divided into four main groups. 
Specifically, cluster group 2 (colored red) comprises three 
major cities in Yemen—Sanaa, Taiz, and Ibb—which are 
considered to be more polluted compared to other cities in 
the country. Following group 2, group 4 comprises moder-
ate polluting cities located on the western sides of Yemen. 
Group 3 (colored green) includes cities with zero CO pol-
lution throughout the whole domain, owing to low popula-
tion density and fewer human activities. The detailed profile, 
characteristics, and degree of pollution for CO concentration 
for each cluster are listed in Table 6. The study by Grace 
et al. (2020) employed the commonly used method of Fuzzy 

Table 5  Summary of the cluster characteristics for spatial–temporal ozone patterns in cities of Yemen

Pollutant Classifier Color Cities/locations Ratio Features (shape/size) Pollution degree

O3 Class A Black Al-Bayda, Al-Mahwit, Amran, Khamir, 
Hajjah, Al-Jabin, Sadah, Manakhah,

21.62% Two peaks with moderate volume in 
1990 and 2015, multiple peaks with 
low volume in other years

Moderate pollution

Class B Red Ahwar,Zinjibar, Aden, Al-Hudaydah, 
Zabid, Al-Ghayzah, Sayhut, Hadibu, 
Adis-Sharqiyah, Al-Mukalla, Midi, 
Lahij, Mukha, Dhubab

37.84% Two peaks with large volume in 1990 
and 2015, multiple peaks with medium 
volume in other years

Severe pollution

Class C Green Rada, Sanaa, Dhamar, Ibb, Yarim, 13.51% Several peaks with low volume in 1990, 
2000, and 2015

Slight pollution

Class D Blue Ad Dali, Al-Hazm, Sayun, Tarim, Marib, 
Al-Rawdah, Ataq, Bayhan, Tiaz, Al-
Turbah

27.03% Two peaks with large volume in 1990 & 
2015, multiple peaks with medium/low 
volume in other years

High pollution
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Fig. 10  a Functional clustering results of the smooth CO data, b its group means, and c the spatial distribution map of the obtained clusters
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c-Means clustering to examine and present the data on CO 
pollutants alongside other pollutants, using real-time sensor 
data. On the other hand, the research conducted by Jain and 
Kaur (2021) introduced the use of machine learning and 
visualization techniques for forecasting and analyzing the 
air quality in major cities in India, taking into account six 
major pollutants, including CO.

Finally, the proposed method in this study can be com-
pared to recent approaches that utilize Big Data and intel-
ligent computation, such as those presented by Al-Janabi 
et al. (2021), Al-Janabi et al. (2020b), and Al-Janabi et al. 
(2019). These methods aimed to predict multiple air pollu-
tion concentrations using the Intelligent Forecaster of Con-
centrations caused air pollution (IFCsAP) (Al-Janabi et al. 
2021), a pragmatic method based on intelligent big data 
analytics (Al-Janabi et al. 2019), and intelligent computa-
tion (Al-Janabi et al. 2020b). However, the main difference 
between our method and these previous studies is that our 
focus is on clustering and visualizing spatial–temporal air 
pollutant curves through functional data approaches, while 
their focus was on predicting discrete air pollutant data 
through intelligent big data analytics. As previously stated, 
it is more efficient to use statistical methods that can analyze 
the temporal and spatial variations of pollutants over time. 
The functional data analysis approach enables the examina-
tion of the entire time spectrum of pollutant variables. The 
table below compares the current study to recent studies 
that employed similar methods within the functional frame-
work. However, the functional techniques used differ based 
on the purpose of the study. For example, Acal et al. (2022) 
focused on investigating the potential impact of the COVID-
19 lockdown on air quality in the Pescara-Chieti urban area 
in Italy, which is known for high air pollution levels. Betan-
court-Odio et al. (2021) used functional data and Kendall’s 
functional Tao (KFT) to study the relationship between 
 O3 pollution levels in rural and urban areas in the Spanish 

Community of Madrid. Their findings indicate a complex, 
non-linear relationship between urban and rural areas. Tor-
res et al. (2020) compared the effectiveness of three different 
analytical methods in identifying pollution episodes and out-
liers. More information about these studies is summarized 
in Table 7. A comparison of the current proposed method 
with other approaches applied to environmental pollution 
data is shown in Table 7. The comparison focuses on both 
functional and non-functional frameworks, univariate and 
multivariate settings, and lists the advantages and disadvan-
tages of each approach. The disadvantages are based on the 
author’s opinion, but other drawbacks may also exist. This 
information can be useful for understanding how the current 
work builds upon or differs from previous research in the 
field and can provide insights into the strengths and limita-
tions of different methods.

Conclusions and recommendations

The study aimed to visualize and cluster the dynamic behav-
ior of multiple air pollution concentrations using functional 
analysis techniques and functional mixtures clustering 
model. The method was applied to multivariate high dimen-
sional air pollution data from cities in Yemen from January 
1980 to April 2022. Fourie transformation, B-spline func-
tions, and generalized-cross validation were used to recon-
struct and smooth data. The study used two enhanced 3D 
visualization tools to explore the spatiotemporal variations 
in the functional air pollutants cycle and a functional mixture 
model was used to identify and classify the spatiotemporal 
functional air pollutants data. The study found four substan-
tial clusters for all functional air pollutants variables and 
demonstrated the ability to identify, visualize, and classify 
the continuous functional dynamic patterns of air pollutants 

Table 6  Summary of the cluster characteristics for spatial–temporal CO patterns in cities of Yemen

Pollutant Classifier Color Cities/locations Ratio Features (shape/size) Pollution degree

CO Class A Black Ad Dali,Aden,Al-Bayda,Rada,Zabid,Al-
Hazm,Lahij,Marib,Sadah,Mukha,Al-
Turbah

29.73% Snaky-line shape during 1992–2000, 
straight-line shape before 1990 and 
after 2005

Light pollution

Class B Red Sanaa, Ibb, Taiz 8.12% Large-volume normal/Gaussian peak 
during 1991–2001, constant change 
after 2002, decline from 2020 to 2022

Extremely pollution

Class C Green Ahwar,Zinjibar,Al-
Ghayzah,Sayhut,Hadibu,Adis-
Sharqiyah,Al-
Mukalla,Sayun,Tarim,Al-
Rawdah,Ataq,Bayhan,Dhubab

35.13% No changes with straight-line shape 
through all domain

Clean

Class D Blue Al-Hudaydah,Al-Mahwit,Amran,Kha
mir,Dhamar,Hajjah,Midi,Yarim,Al-
Jabin,Manakhah

27.03% Low-volume kurtosis peak during 
1991–2001, decline from 2020 to 2022

Middle pollution
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 (SO2, PM2.5,  O3, and CO) over multi-sites in Yemen. Some 
main results have been concluded as follows:

Yemen has experienced substantial dynamic patterns of 
air pollution concentrations over different spatial loca-
tions from the period 1980–2022.
The obtained results have also provided evidence that 
vehicular emission is the primary source of air pollution 
in Yemen besides industrial activity and mixing factors 
are also shown to be the secondary contributing factors 
towards air pollution variation.
The functional clustering findings showed a noteworthy 
decline in CO emissions during the COVID-19 pandemic; 
additionally, the cities of Sanaa, Ibb, and Tiaz were clas-
sified as the more polluted cities in Yemen.
Regarding the Ground-level  O3 pollutant, the results showed 
great fluctuations with increase and decrease during the 
entire domain; however, there was no effect on ozone level 
concentrations due to the COVID-19 pandemic period.
Although PM2.5 concentrations have witnessed an 
extremally significant increase before the COVID-19 
pandemic period, they have shown a noticeable decrease 
during the COVID-19 pandemic period.
In general, the results showed that there was stability and 
no significant changes in  SO2 levels, particularly during 
the last two decades.

Overall, ambient air pollution can be controlled and 
reduced with the implementation of strategic measures, led 
by sound leadership and development efforts to help emerg-
ing economies recover from past losses. Successful pollution 
control methods, that are technically, politically, and eco-
nomically feasible for a specific country, can be shared glob-
ally to minimize air pollution. Recommendations to con-
trol and reduce air pollutants include the development and 
implementation of new environmental standards, the use of 
intervention techniques to decrease concentration, the pro-
hibition of polluting materials and fuels in urban and rural 
areas, regulation of private vehicles, and an increase in pub-
lic transportation. Additionally, promoting the use of clean 
fuels and implementing effective policies to ensure standard 
operating protocols in workplaces, industries, and hospitals 
can help control the spread of pathogenic microbes.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11356- 023- 25790-3.
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