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Abstract

The application of spatiotemporal functional analysis techniques in environmental pollution research remains limited. As a
result, this paper suggests spatiotemporal functional data clustering and visualization tools for identifying temporal dynamic
patterns and spatial dependence of multiple air pollutants. The study uses concentrations of four major pollutants, named
particulate matter (PM2.5), ground-level ozone (O;), carbon monoxide (CO), and sulfur oxides (SO,), measured over 37
cities in Yemen from 1980 to 2022. The proposed tools include Fourier transformation, B-spline functions, and generalized-
cross validation for data smoothing, as well as static and dynamic visualization methods. Innovatively, a functional mixture
model was used to capture/identify the underlying/hidden dynamic patterns of spatiotemporal air pollutants concentration.
According to the results, CO levels increased 25% from 1990 to 1996, peaking in the cities of Taiz, Sana’a, and Ibb before
decreasing. Also, PM2.5 pollution reached a peak in 2018, increasing 30% with severe concentrations in Hodeidah, Marib,
and Mocha. Moreover, O; pollution fluctuated with peaks in 2014-2015, 2% increase and pollution rate of 265 Dobson.
Besides, SO, pollution rose from 1997 to 2010, reaching a peak before stabilizing. Thus, these findings provide insights
into the structure of the spatiotemporal air pollutants cycle and can assist policymakers in identifying sources and suggest-
ing measures to reduce them. As a result, the study’s findings are promising and may guide future research on predicting
multivariate air pollution statistics over the analyzed area.
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Introduction

Air pollution can have serious negative impacts on human
health, including cardiovascular and respiratory diseases.
Monitoring and controlling air pollutants is crucial for
protecting public health and the environment. Commonly
used strategies for air pollution monitoring include statis-
tical analysis, data visualization, and identifying correla-
tions and trends in pollution levels. These tools can help
identify sources of pollution and inform the development
of policies and regulations to reduce and control pollution
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levels. Additionally, monitoring and control efforts may also
include the use of specialized equipment and technology,
such as air quality sensors and monitoring stations, to meas-
ure and track specific pollutants in the air (Manisalidis et al.
2020; Cook et al. 2021; Li et al. 2022¢). Modern statistical
approaches, such as spatiotemporal modeling and machine
learning techniques, can effectively handle high-dimensional
data with temporal and spatial characteristics in environmen-
tal air pollution monitoring. These methods can capture the
underlying variations and dynamics trends of air pollutants
over the entire temporal-spatial scale, making them more
suitable for this type of data compared to classical statistical
methods (Acal et al. 2022; Wang et al. 2022).

Functional data analysis (FDA) is a powerful technique
for working with multi-dimensional air pollutants data.
It utilizes additional information, such as the smoothness
of the data structure, rate of change, acceleration, and
dynamic changes over a large-scale domain, to extract
more information from the data compared to traditional
vectorial approaches (King et al. 2018; Al-Janabi et al.
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2021; Reinholdt Jensen et al. 2022). FDA has been well-
established in the literature over the past two decades,
with a strong methodological and operational framework.
There are several advantages of using FDA compared
to traditional vectorial approaches: (i) flexibility: FDA
can handle data that is not easily represented by vectors,
such as data that is curve- or surface-based, or data that
varies over a continuous domain, (ii) smoothness: FDA
can incorporate information about the smoothness of the
data structure, which is not captured by traditional vector-
based methods, (iii) dynamics: FDA can capture dynamic
changes in the data, such as rates of change or accelera-
tion, which are not possible with traditional vector-based
methods, (iv) high-dimensional data: FDA can handle
high-dimensional data, which is a challenge for traditional
vector-based methods, (v) modeling: FDA can be used
to model complex relationships between variables that
are not easily represented by simple linear or polynomial
models, (vi) visualization: FDA also allows for better
visualization of the data, which can aid in understand-
ing and interpreting the results (Al-Janabi et al. 2020b;
Betancourt-Odio et al. 2021). The principles and founda-
tions of the FDA methods are found in Ramsay and Sil-
verman (2002, 2005) besides the nonparametric methods
of functional data are presented in a monograph study by
Ferraty and Vieu (2006).

The use of FDA techniques in analyzing environmen-
tal data has received remarkable attention in the past
two decades. Escabias et al. (2005) combined functional
logistic regression and principal component analysis
of environmental data modeling besides the proposed
method were used to estimate drought risk in terms
of temporal evolution in temperatures. Ground ozone
represents one of the most dangerous environmental
pollutants; complex chemical and physical processes
generate it in the atmosphere and combustion processes
in the troposphere. Several FDA approaches have been
proposed to analyze the ozone concentration level, for
instance, functional principal components analysis
(FPCA) to extract manifest features for ground ozone
concentration levels (Caligiuri et al. 2005), smooth-
spline-based models to study time trends and oscillations
in stratospheric ozone (Meiring 2007), mixed functional
methods to model trends in the profiles of stratospheric
ozone (Park et al. 2013), and the Kendall’s Tau func-
tional statistic (KFT) to discover significant correlations
between tropospheric ozone levels in urban and rural
sites (Betancourt-Odio et al. 2021). In the same context,
Gao (2007) and Gao and Niemeier (2008) used FDA
techniques to model the dynamic pattern of nitrogen
oxide and diurnal ozone cycles; they showed important
results about the structure of spatiotemporal variations
in diurnal cycles. In the atmosphere, the concentration
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of particulate matter (PM) is a highly time—space vari-
able, which follows a periodic cycle dominated by mete-
orological situations as well as anthropogenic activi-
ties. The study by (Broomandi et al. 2021) examined the
impact of fine PM2.5 on respiratory and heart diseases.
They used a data-driven directed graph representation to
infer the causal directionality and spatial embeddedness
of PM2.5 concentrations in 14 UK cities over the course
of one year. They found notable spatial embedding in the
summer and spring and stability to disturbances through
the network trophic coherence parameter, with winter
being the most significant vulnerability. Many studies
have employed FDA to analyze PM and its relationship
to air quality. FDA can be used to model the temporal
and spatial variation of PM levels, and to identify pat-
terns and trends in the data. It can also be used to esti-
mate the relationship between PM levels and other fac-
tors such as weather, traffic, and land use. Additionally,
FDA can be used to make predictions about future PM
levels and to assess the effectiveness of interventions
aimed at reducing PM exposure. For instance, Shaadan
et al. (2012) used a functional approach to assess the
PM10 pollutant behaviour and compare data from two
different years. In another related work, Hormann et al.
(2015) proposed a dynamic version of functional princi-
pal component analysis (dynamic FPCs), and the advan-
tage of this approach has been illustrated by applying it
to PM10 changes. In another related paper, Kosiorowski
et al. (2017) adapted a hierarchical functional time
series on a micro-model to forecast day and night PM10
air pollution. In another related study, King et al. (2018)
applied modern FDA methods to study the spatial and
temporal trends and variability of fine PM components
across the USA. In recent years, research on the concen-
trations of multivariate air pollutants has been investi-
gated by FDA techniques. In another related work, Rug-
gieri et al. (2013) focused on the principal component
analysis of functional data (FPCA) to investigate the
variability of multivariate air pollutants data, including
(CO, NO,, PM10, and SO,). More recently, an analysis
of variance based on functional data analysis (FANOVA)
has been proposed by Acal et al. (2022). This method
has been applied to four air pollutant concentrations,
namely PM2.5, benzene, NO,, and PM10, to assess air
pollution changes during the COVID-19 lockdown.

In the environmental pollution framework, an unusu-
ally high concentration of air pollutants, known formally
as anomalies, may bring problems in the air quality index.
Martinez et al. (2014), Sancho et al. (2014), and Torres
et al. (2020) implemented a model relying on functional
analysis to identify outliers samples, with the overall goal
of achieving a better air quality monitoring solution. In
another related paper, Shaadan et al. (2015) conducted a
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study to detect anomalies in daily PM10 functional data,
investigate behaviour patterns, and identify potential factors
determining PM 10 abnormalities at three selected air quality
monitoring stations. More applications that demonstrate the
usefulness and advantages of FDA methods in environmen-
tal data analysis are found in Ocana-Peinado et al. (2008),
Valderrama et al. (2010), Embling et al. (2012), Escabias
et al. (2013), Ignaccolo et al. (2014), Xiao and Hu (2018),
Ochoa et al. (2020), Reinholdt Jensen et al. (2022).

Machine learning is widely used to perform in-depth
analysis in various fields such as biomedicine, energy,
and economics (Saleh et al. 2023). To make our proposed
method more comprehensive, we will compare it to recent
algorithms in the context of machine learning and deep
learning. For example, in biomedicine, Al-Janabi and
Alkaim (2022) proposed a novel optimization method
called Lion-AYAD to find optimal DNA protein generated
through DNA synthesis. Their results showed the method
to be robust with dynamic DNA sequence lengths, with
increased accuracy and reduced execution times. In a simi-
lar context, Kadhuim and Al-Janabi (2023) presented a
model that uses Deep Optimal Neurocomputing Technique
(DLSTM-DSN-WOA) and Multivariate Analysis to pre-
dict Codon-mRNA. Their proposed model is a pragmatic
intelligent data analysis model that reduces computation
and handling time for large real data. In the field of renew-
able energy, Al-Janabi et al. (2020a) proposed deep learn-
ing techniques (DCapsNet and DCOM), and Mohammed
and Al-Janabi (2022) proposed optimization techniques
(FDIRE-GSK) for the generation of electrical energy from
natural resources such as wind energy. Another approach,
called DRFLLS, has been developed to estimate missing
values in various datasets (Al-Janabi and Alkaim 2020).
Additionally, the use of machine learning algorithms
for high-dimensional functional data classification has
become increasingly important in environmental air pol-
lution research. The current study specifically focuses on
using the FDA approach for the classification and visu-
alization of high-frequency spatiotemporal air pollution
data. Researchers have previously attempted to use FDA
methods to cluster air pollution levels, which can help
identify patterns and trends in the data and better under-
stand the factors that contribute to air pollution. The use
of the FDA, in combination with machine learning algo-
rithms, can help to improve the accuracy and robustness
of air pollution classification and visualization.

There have been several studies that have used func-
tional data clustering approaches to analyze the network
paths of air quality. To show an example, Ignaccolo et al.
(2008) proposed an early study on analyzing the network
paths of air quality using functional data clustering; they
considered the air pollutant variable as a functional data
object and classified them using the Partitioning Around

Medoids (PAM) algorithm. Similarly, Ranalli et al. (2016)
used FDA and PAM clustering approach to analyze high-
frequency spatiotemporal data on the size distribution of
particulate matter (PM). In another paper, Kosiorowski
and Szlachtowska (2017) proposed a novel k—local func-
tional median algorithm applied to the analysis of a
real data set concerning air pollution monitoring. More
recently, Bouveyron et al. (2022) developed a functional
co-clustering approach based on the functional latent
block model (funLBM) and illustrated by the analysis of
multivariate air pollution data in the South of France.
All these studies have made significant progress in the
field of clustering functional air pollution data in terms
of methodology and practical applications.

Research on clustering spatiotemporal air pollution
using FDA is still an active area of interest, and new stud-
ies are needed to further advance the field. Therefore, this
study has two main contributions: 1) from a methodologi-
cal perspective, it presents a method based on the FDA
approach for clustering and visualizing spatiotemporal
functional data, and 2) from a practical aspect, it applies
the proposed method to identify, classify and visualize
multiple air pollutants, such as sulphur dioxide (SO,),
carbon monoxide (CO), ozone (O3), and particulate mat-
ter (PM2.5) measured over multiple sites in Yemen during
the period of January 1980 to April 2022. As far as the
authors know, the air pollution problem in Yemen has
not been investigated before, and this is the first study
to analyze the multivariate air pollution concentrations
using the FDA method. The study highlights several steps
to achieve its goal: (1) transforming the discretization
air pollution data into functional data to work with func-
tional realm; (2) smoothing the functional air pollution
data to improve the structured data from step 1; (3) visu-
alizing the spatiotemporal features of functional air pol-
lution data to discover the mechanism of variability; (4)
clustering spatiotemporal functional air pollution data to
group similar patterns found in step 3 for both spatial and
temporal profiles.

Data and methods
Study area

Yemen, officially the “Republic of Yemen,” is a west
Asian country located in the Middle East in the south-
ern part of the Arabian Peninsula. It is bordered by the
Kingdom of Saudi Arabia to the north, the Sultanate
of Oman to the east, the Arabian Sea to the south, and
the Red Sea to the west, and it shares maritime borders
with Djibouti, Eritrea, and Somalia. It is the second-
largest Arab sovereign state on the peninsula, occupying
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555,000 km? (214 thousand square miles). Yemen’s total
coastline extends over a length of approximately 2000
square kilometers (1200 miles). Sana’a is the consti-
tutionally stipulated capital and largest city of Yemen.
As of 2021, Yemen has an estimated population of
30,491,000. Yemen lies within latitude and longitude
15° 0’ North and 48° 0’ East which includes an area
mostly desert. It also consists of a narrow coastal plain
surrounded by rugged mountains.

Yemen'’s climate is a mixture of temperate, humid, and
hot. The western part is exposed to the influence of the
monsoon monsoons. Towards the inland eastern region of
Yemen, the climate becomes unbearably hot. During the
summer, the temperature can reach 54 °C, and the winters
are much colder, with frost in some parts. The average
annual temperature of the capital, Sanaa, is 18° C. Yemen
is also exposed to natural hazards in the form of dust and
sand storms. Yemen’s climate can be described as a dry
subtropical, hot desert climate with low annual rainfall,
very high summer temperatures, and a large difference
between the maximum and minimum temperatures, espe-
cially in the interior regions.

Figure 1 depicts a geopolitical map of Yemen with
detailed legends for its major cities, road networks, airports,
railways/railroads, and waterways.

Data and variables

In this study, the selection of the 37 major cities for analysis
was based on the criteria of high population density and wide
geographical coverage across the entire country. The popula-
tion density of a city is an important factor in determining the
level of air pollution, as a higher population density typically
leads to higher levels of industrial and vehicular emissions.
The geographical location of the cities was also considered to
ensure that a diverse range of regions was represented in the
analysis. Additionally, the availability of historical air pollu-
tion data was taken into account to ensure that an accurate and
comprehensive analysis could be performed. The geographi-
cal location of the selected cities is illustrated in Fig. 2, which
provides a visual representation of the distribution of the cities
across the country. This information can be useful in under-
standing the regional variations in air pollution levels and
trends. The name of selected stations and their geographical
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Fig.1 The map of Yemen with major geographical features (Worldmaps 2023)

@ Springer




Environmental Science and Pollution Research (2023) 30:50067-50095

50071

Najran

Najran

Sa‘dah Governorate

o

Sadah

Jizan

J iz.An

Amran
Governorate

Gwv“e‘r‘r‘\;:'ale Q . e

Al Jawf Governorate

Q@

M Mo Gonenare YEMEN
anaa

Al Tgoanaa g
Governorate

Hodeidah
Dhamar

Sh,
(s gl o abwah Governorate

® o

Al Hudaydah o

Gov
ernorate 1bbam o
o Governiiiite

@b
Tao‘izz Gn‘vivﬂ" ;
@ Governorate @

Al Bayda'
Governorate

Al tha

Abyan Governorate

- anij La @
(@3 connd G Aden City

~S b
Fig.2 The spatial distribution of the selected sites in Yemen

characteristics (latitude, longitude, and average elevation) are
given in Supplementary Table 1.

The concentrations of a pollutant are typically gauged
by using the metric of micrograms per meter cube(ug/m?).
There are two different metrics to measure the particu-
late matter concentrations: (PM2.5) and (PM10) refer to
the particles that are less than 2.5ug/m> and 10ug/m? in
diameter, respectively. This study focuses on four main
air pollutants: PM2.5, O3, SO,, and CO. The area-aver-
aged monthly records for four primary air pollutant vari-
ables for several locations in Yemen During the period
1980-2022 were extracted as satellite data from (NASA
2023). The total sample size for CO, SO2, and PM2.5 pol-
lutants measurements is equal to (n=>500) discrete records
discrete recordin(tj),tj € [1,500],i=1,...,37, the ith
discrete observation X;(7).j = 1,...,500 indicates pol-
lutants values for the ith month. The total sample size for
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03 pollutant measurements is equal to (n=508) discrete
recordsX; (1), 4, € [1,508],i = 1,...,37, the ith discrete
observation Xi(tj),j =1,...,508 indicates pollutants val-
ues for the ith month.The discrete monthly pollutants data-
set X; (t_,-) will be transformed into continuous functions by
adapting a suitable basis functions system. More details
about the variables and their features are summarized in

Table 1.
Model hypothesis and limitations

The aim of this paper is to analyze and categorize the
dynamic changes in air pollution concentrations using
functional analysis techniques and a functional mixtures
clustering model. The method was applied to multivari-
ate high-dimensional air pollution data collected from cit-
ies in Yemen from 1980 to 2022. Fourier transformation,

Table 1 Details of variables

Variables Spatial resolution  Units Temporal resolution Time Period Source
and data

SO, 0.5x0.625° kg/m®  Average monthly Oct,1980—Apr, 2022 MERRA-2
Model *

PM2.5 0.5%0.625° kg/m>  Average monthly Oct,1980—Apr, 2022 MERRA-2
Model *

0O, 0.5%0.625° Dobson  Average monthly Jan,1980—Apr, 2022 MERRA-2
Model *

CO 0.5x0.625° kg/m*  Average monthly Oct,1980—Apr, 2022 MERRA-2
Model *

* Datasets extracted by considering the unified source
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B-spline functions, and generalized cross-validation were
utilized to smooth and reconstruct the data. Two enhanced
3D visualization tools were used to examine the spatiotem-
poral variations in air pollutants and a functional mixture
model was employed to classify the functional air pollut-
ants data based on their spatiotemporal characteristics. The
paper sets forth three hypotheses: (i) that the air pollution
data is measured at a set of ordered times and the discrete
observations Xi(tj) are dense and regular over a specified
time interval, (ii) that the air pollutants data follows a
Gaussian mixture model-based FDM(X,, ;) model, and
(iii) that the number of clusters (K) and the intrinsic dimen-
sion (d) must be predetermined. The first hypothesis is sup-
ported by the regular observation of air pollution data from
1980 to 2022. The second hypothesis is supported by the
use of Gaussian mixture models in functional data analysis,
and the option to use a robust mixture model in the future.
The third hypothesis, which assumes a fixed number of
clusters, is based on the belief that using selection methods
to determine K would lead to unclear results. In this study,
the number of clusters was set at 4, as it was determined
to provide the best segmentation of the air pollution data.

Model estimation

The structure of the spatiotemporal functional data (STFD)
model in a multivariate pollutant’s context is a statistical
framework for analyzing functional data that varies over
both space and time. The model typically consists of sev-
eral components: (i) spatial component: this captures the
spatial variation in the functional data, often represented
as a spatial random effect, (ii) temporal component: this
captures the temporal variation in the functional data, often
represented as a temporal random effect, (iii) functional
component: this captures the functional variation in the
data, often represented as a functional principal compo-
nent analysis (FPCA) model, (iv) covariate component: this
captures the relationship between the functional data and
any additional covariate information, often represented as
a linear or nonlinear regression model, and (v) error com-
ponent: this captures the residual variation in the data not
explained by the other components (King et al. 2018; Wang
et al. 2020; Hael et al. 2020). Overall, the STFD model
is a flexible framework that can be used to analyze mul-
tivariate pollutant’s objects over space and time and can
be extended to include other sources of variation or addi-
tional information as needed. Additional information has
been included in the supplementary section regarding the
theoretical framework, including elements like the struc-
ture of spatiotemporal functional data, the basis functions
and smoothing techniques used, and the functional mix-
ture model for analyzing STFD. This section will cover the
concepts of model estimation, including the Expectation,
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Discrimination, and Maximization phases. Expectation (E)
phase: In the E-step, the model uses the current estimate
of the parameters to calculate the probability of each data
point belonging to each cluster. Whereas Discrimination
(D) phase: In the D-step, the model uses the probabilities
calculated in the E-step to re-estimate the parameters of the
clusters. While Maximization (M) step: In the M-step, the
model uses the re-estimated parameters from the D-step to
update the overall estimate of the parameters of the model
(Preda 2007; Bouveyron et al. 2015). The Expectation-
Discrimination-Maximization (EDM) procedure is a three-
step process used to estimate the parameters of the mix-
ture model. It involves alternating between the E-step, the
D-step, and the M-step until a specified criterion is met. In
this study, the criterion was set as 100 iterations (q = 100).
The EDM procedure continues to iterate until this iteration
number is reached.

The expectation phase

The expectation is the first step which computes the posterior
probabilities tfz) under the condition the current value of the
parameter 69, at iteration q. The probability P(z; = 1) points
out that the curve brings from the kth component and P(z; = 0)
otherwise. In the functional discriminative model, the posterior

probabilities i = 1,2, ...,n;k = 1,2, ..., K that each curve

ik
suits the kth component can be given as (Bouveyron et al. 2015):

7" ¢ 6.")
K 2%, | 6

where 6’,((‘1) = (n,((q) ;42‘1),22”),[3(‘1)) are the combination of
parameters for the kth mixture component and ¢(.) is the
Gaussian density. The model parameters will be updated in
the Maximization(M) step (mentioned below) and estimated

at an optimal point in the last iteration (g).

1 = E|za|y. 09| = ()

The discrimination phase

The Discrimination (D) step is aimed to determine the ori-
entation matrix U9 of the discriminative latent space F con-
ditionally on the posterior probabilities IEZ) through maxi-
mizing the standard Fisher’s (F) criterion (Preda 2007):

0 = Max trace((U'sV) ' U'SY'U ) @)

The S refers to the whole sample covariance matrix and Sgl)
refers to the soft between-cluster covariance matri)t(, which
is defined as: Sl(gq) = i Zszl nﬁ(q)(m;q) - })(ml((q) —73) . In the
functional unsupervised classification framework with an
unobserved variable (z), the Fisher criterion optimizes the dis-
criminative functionU € L,[0, T]by (Bouveyron et al. 2015):
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Var([E{/gX(t)U(t)dt | z})

Max
Var( IExa) U(t)dt)

U

3

The optimization procedure of (4) is the eigenfunction
U associated with the highest eigenvalue A of the following
generalized eigenproblem:

T T
/ B(t,s)U(s)ds = 7»/ C(t,)U(s)ds (@)
0 0

The estimation of the covariance operator C(¢, s) based
on the basis function (y/j)j =1,...,p,is given as:

P
C(t.s) = Z (Z y,,t//](t)> (Z yijw,(r)) ©)
i= Jj=1

The B(t,s) here indicates the integral between cluster
covariance operators and conditionally on the posterior
probabilities t(q) obtained from the Expectation (E)-step,
the estimator of B(t, s) at iteration (g) is defined as:

Z (q)<Zt<q)v(f>>(2ff?v(3>> ©)
i=1

E(Q)(l‘, ) =
k=1 n

The maximization phase

The Maximization step (M) is aimed to estimate the param-
eters of the functional latent mixture model. In this step,
maximizing the conditional expectation of the complete data
log-likelihood conditionally to the orientation matrix U? is
computed in the following form (Bouveyron et al. 2015):

K
_71 Z n?|~2log(z,) + A +log(|Z|) +B + D + h]

k=1
(N

Q0) =

S

Transformation :
| Smoothing

Visualization

The explanation of these notations is as follows: 6 indicates
the parameters of the mixture model 6 = (nk, i Zis Br)s

d (47’(:{1{) (ti)
A= trace(E" U(‘i)’C(")U@), B=(p-dlog(s) D= el )~ i )
k
C]((q) Kq\ Z, 1 (q) <y1 - M](:l>)(yl

u® )’ presents the empirical covari-
ance matrix of the kth cluster,u](.q) is the jith column vector of U9,
and i = plog(2x)is a constant term. At iteration q, the maximi-
zation of Q(0) is conditional on U2 conduces to the estimation
of mixture parameters of the FDM(Z,, f,) model according to
the following update formulas (Bouveyron et al. 2015):

n(q)

= The proportion parameter, 7. = —— ®)
n
@ _ (9) (q)t
= The mean parameter, y, (q) Zt )
= The covariance parameter, Z(") v@rc,u@ (10)
d (gt
trace(Cy) — 2ini jq Cu? ]

= The noise parameter, ﬂ(”)

p—d

an
The flowchart illustrating the methods proposed in the
current study can be found in Fig. 3. Additionally, this flow-
chart serves as a framework for understanding the terminol-
ogy used in the study’s methodology and statistics. Besides,
the proposed method for the visualization and clustering of
the STFD uses a multivariate framework implemented in
R programming language with the help of several package
environments. Spatial-Temporal Functional Air Pollution
Data Analyzer (STFAPDA), which is a useful tool for ana-
lysing and understanding the dynamics of air pollution, is
the name of the proposed algorithm. The algorithm consists

of several steps, which are described in detail as follows:

Clustering Presentation

* Fourier basis * Roughness penalty

* Dynamic web-based

* Functional mixture * Temporal clusters

functions. approach. - 'S':;ct::c::: cctive model. proﬁ.le.
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Fig.3 The flowchart of the proposed methods in the current study
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Main STFAPDA algorithm

Inputs

X l] (t) (multi-dimensional array for air pollutants data), A (smoothing parameters ), 1 (Transformer, such
Fourier or B-spline ), R (Number of basis functions ) , g (number of iterations), k (number of clusters )

Transformation step
#In this step, convert the discrete pollutant dataset into functional form based the corresponding basis transformer
For each input pollutants in original dataset do
if transformer =Fourier
then Fit Fourier expansion to the pollutants with pre-defined basis functions R
else if transformer=B-spline
then Fit B-spline expansion to the pollutants with pre-defined basis functions R
End for

Smoothing step
#In this step, refine the transformed functions into smooth functional form by GCV with pre-defined smoothing
parameters

For each transformed pollutants in functional form do

Refine pollutants curves with the smooth values 4

Environmental Science and Pollution Research (2023) 30:50067-50095

End For

Variability Visualization step

For cach smoothed pollutant do

End For

#In this step, compute the spatial-temporal variability of the given-above smoothed pollutants via dynamic web-
based interactive surface mapping and static 3-D perspectives charting

Construct dynamic and static variability visualization

Clustering (model parameters estimation) step

For cach smoothed functional pollutant do
initialization with k clusters
iterations to optimize clustering model parameters
Phase I: Expectation
Phase II: Discrimination
Phase II1: Maximization
Stop iteration If number of iterations reached q
Hold the last optimized model

#In this step, estimate the model parameters for clustering based on EDM-based approach

Outputs
Graphical/functional plots

Visualization

Clusters presentation

Smoothed spatial-temporal functional air pollutants curves
Spatial-temporal variability of smoothed pollutants

Temporal clusters dynamic and Spatial clusters mapping

Results and discussion
Transforming and smoothing data

The discretization datasets of four primary air pollutants
over 37 major cities in Yemen during the period from 1980
to 2022 are given in Fig. 4. Discretization is the process of
dividing continuous data into discrete intervals or bins. In
the context of air pollution data, discretization is often used
to convert continuous measurements of pollutants (e.g., in
micrograms per cubic meter) into categorical levels (e.g.,

@ Springer

low, medium, high). The discretization points chosen are
determined by the nature of the data and the research ques-
tion. As a result, it is critical to remember that the discre-
tization points used can have a significant impact on the
analysis’s outcome, and it may be necessary to experiment
with different options in order to find the best representa-
tion of the data. In Fig. 5, discrete air pollution data (CO,
SO,, PM2.5, and O;) with the spatial elements are presented.
The initial step is converting the discretely observed air pol-
lutants curves (CO, SO,, PM2.5, and O;) into continuous
functional objects for reconstructing the data framework. In
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Fig.4 Discretization points for
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particular, Fourier basis functions are applied to the O; and
PM2.5 air pollutants curves, which exhibit seasonal vari-
ability throughout the entire data domain. It is observed that
some functional O, and PM2.5 data objects have a high level
of fluctuations, which is unusual.

Spatial-temporal functional data analysis is a technique
that can be used to transform and smooth air pollution
data. It involves analyzing data over both space and time
and modeling the data as a collection of functions rather
than a set of discrete points. This allows for a more accu-
rate representation of the data, as well as the ability to

T T
200 300 400 500

Time Period (Month)

smooth and interpolate missing values. This technique uti-
lizes various methods such as functional principal compo-
nent analysis and functional regression to analyze the data
and gain insights from it. Additionally, it allows modeling
the temporal and spatial correlations in the data, which
can help to understand the underlying patterns and trends
in the air pollution data. Transforming and smoothing air
pollution data involves several steps: data preprocessing,
data transformation, data smoothing, data visualization,
and data modeling. Data preprocessing involves cleaning
and preparing the data for analysis. Data transformation
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Fig.5 Transformed and (a) Smooth Functional SO, Data
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involves converting the data into a more suitable format
for analysis. Data smoothing involves removing noise or
random variations from the data to make patterns and
trends more visible. Data visualization involves creat-
ing visual representations of the data to gain insights
and identify patterns and trends. Data modeling involves
developing statistical or machine learning models to better
understand the data and make predictions about future air
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pollution patterns. These steps are not always applied in
a linear fashion and the analyst may have to iterate over
the process to reach a final solution. Figure 5 depicts the
charts of transforming and smoothing multivariate func-
tional air pollutants data for multiple locations. The data
of transforming and smoothing from air pollutants (CO,
SO,, PM2.5, and O;) will be discussed in the following
subsections.
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Table 2 Details on type and
number of basis functions,

Functional variable Type of basis

No. of basis func- Smoothing technique Smoothing

tions parameter
smooth method, and parameters
for all functional variables SO, Cubic B-spline basis 30 GCV 0.06
PM2.5 Fourier transformation 30 GCV 0.04
0O, Fourier transformation 35 GCV 0.03
CO Cubic B-spline basis 25 GCV 0.05

Analysis of SO, concentrations

The process of converting discrete data to a continuous func-
tional form is known as functional data analysis. B-spline
functions are commonly used in this process because they
are flexible and can be used to approximate a wide range of
shapes. B-splines are piecewise polynomial functions that
are defined over a set of control points, called knots. When
applying B-spline functions to discrete SO, pollution data,
the goal is to find a smooth curve that accurately represents
the underlying trend in the data. However, in some cases, the
resulting curve may have a rough level that can be improved
using a smoothing method. The GCV standard is a com-
monly used method for smoothing functional data. It is a
computational method that allows for the estimation of the
optimal smoothing parameter, which controls the degree of
roughness in the final curve. The present smoothing aims to
improve the structure of the functional SO, data and facili-
tate its subsequent interpretation and analysis. This can be
useful for identifying patterns and trends in the data that
may be difficult to discern when working with discrete data.
Additionally, the continuous functional form of the data can
be used in further statistical analysis, such as regression or
model fitting. Figure 5a describes the use of B-spline bases
function with cubic degree and a smoothing parameter of
0.06 to transform and smooth SO, air pollutant data. This
process makes the data more informative and allows for an
easy visual representation of the shape of the SO, pollutants
over the entire domain. From Fig. 5a, it is clear that the SO,
shape has two significant periods of long-term changes, with
higher variations in the middle and end of the domain. The
highest peak of SO, is located around the year 2021 with an
average pollutant level of 0.0000007 kg/m?>. Table 2 gives
more details on the type and number of basis functions,
smooth method, and parameters for all functional variables.
Previous research has shown that the functional form has not
been used to study SO, in the past, but there have been stud-
ies using the classical form. The study by Al-Janabi et al.
(2020b) used a different analysis method and included other
pollutants, whereas the current study focuses specifically on
SO, and processes the data in a discontinuous/discretization
form without any data transformation or smoothing, which
sets it apart from the aforementioned study.

Analysis of PM2.5 concentrations

Fourier basis functions are used to adapt to the seasonal
variability of PM2.5 pollution in the entire data domain.
The structure of functional PM2.5 air pollutant data is also
improved using a penalized roughness method based on gen-
eralized cross-validation criteria for easier interpretation.
Thirty Fourier bases functions and a smoothing parameter
of 0.04 are used for converting and smoothing PM2.5 air
pollutant data. The smoothing parameters determine the
strength of the smoothing applied to the data. A smaller
smoothing parameter will result in a smoother function
with less noise but may also smooth out important features
or outliers in the data. A larger smoothing parameter will
result in a less smooth function with more noise but will
also be more responsive to changes in the data, including
outliers. The use of Fourier basis functions in this context is
to transform the data into a different domain where it can be
more easily smoothed. Smoothing functions can be config-
ured to handle outliers in various ways such as excluding or
down-weighting them or treating them as valid data points.
Additionally, outliers can be handled before the smoothing
step through preprocessing techniques such as removing or
transforming the data. Table 2 and Fig. 5b provide additional
information and a graphical representation of PM2.5 pol-
lutant data. The proposed procedures make the data more
informative and easier to understand. Figure 4b shows that
the PM2.5 shape exhibits significant variations at the end
of the time domain, which indicates a change in the levels
of the pollutant compared to the rest of the time domain.
This could potentially be due to changes in industrial activ-
ity, transportation patterns, or other factors that contribute
to PM2.5 emissions. It is important to further investigate
the cause of these variations to understand the impact on
air quality and take appropriate measures to reduce emis-
sions. Additionally, Fig. 5b also highlights that some func-
tional PM2.5 data objects have a high level of fluctuations.
These fluctuations could be caused by various factors such
as weather conditions, changes in population density, and
industrial activity. These fluctuations can have a significant
impact on air quality and public health, so it is important to
analyze them more deeply in later sections of the research.
This could include identifying specific sources of emissions,
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evaluating the effectiveness of current air quality regula-
tions, and developing strategies to reduce emissions and
improve air quality. The highest peak of PM2.5 is located at
the time domain labeled around 450 to 470, corresponding
to the years 2017-2018 with an approximate pollutant aver-
age of 0.000006 kg/m>. Previous studies have examined the
PM2.5 pollutant variable using a functional form, including
King et al. (2018) and more recently Acal et al. (2022). King
et al. (2018) used both B-spline and restricted maximum
likelihood (REML) techniques to transform and smooth the
PM2.5 data, while Acal et al. (2022) only used B-spline
smoothing. In contrast, recent studies have also analyzed
PM2.5 pollutant data without any transformation or smooth-
ing, such as Al-Janabi et al. (2021) and Wang et al. (2022).

Analysis of O, concentrations

There are several methods for transforming and smoothing
O; concentrations. One common method for transforming
O; concentrations is to convert them from a raw measure-
ment to a pollutant index, such as the Air Quality Index
(AQI), which provides a more easily understandable and
comparable value. Another method is to apply a smoothing
technique, such as moving average or lowest smoothing, to
reduce the impact of random measurement errors and to bet-
ter identify trends and patterns in the data. It’s important to
note that before applying any transformation or smoothing
technique, it is necessary to ensure that the data is of good
quality and that any outliers or missing values have been
properly handled.

The use of Fourier basis functions for adapting to O; pol-
lutant data with seasonal variability is a common approach
in functional data analysis. The Fourier basis functions are
able to capture the periodic nature of the data and can be
used to model and smooth the data (Hael 2021). The use of
the penalized roughness method with the GCV criteria is a
method for selecting the optimal smoothing parameter (Guo
et al. 2022). The GCV criteria is a way of evaluating the per-
formance of the model by comparing the observed data to the
predicted data. The penalized roughness method is a way of
controlling the smoothness of the model by adding a penalty
term to the objective function. By using the GCV criteria,
the optimal smoothing parameter is chosen to minimize the
difference between the observed and predicted data while
also controlling the smoothness of the model. In this spe-
cific case, thirty-five Fourier basis functions and a smoothing
parameter of 0.03 were used for converting and smoothing
the O; pollutant data. This approach aims at reducing the high
fluctuations level present in some functional O; data objects.
The overall goal is to improve the structure of functional O,
air pollutant data and make it with enhanced sights. Table 2
and Fig. 5c provide additional information and a graphical
representation of the O; pollutant data. The transformation
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and smoothness procedures make the data more informative
and easier to understand. Figure 5c¢ shows that the functional
shape of the O; pollutant has several peaks, indicating sig-
nificant dynamic changes over time. The highest peaks occur
in the time domain labeled around 410 to 430, corresponding
to the years 2014-2015, with an average pollutant level of
265 Dobson. The functional analysis framework used in this
study is similar to that of a study by (Bouveyron et al. 2022)
in that it uses the Fourier basis to reconstruct the functions
because the O; pollutant exhibits clear periodicity. Addition-
ally, several recent studies have examined O; pollutant data
without any alteration or smoothing, such as those by Yang
et al. (2020), Liu et al. (2022), and Shams et al. (2022). These
studies differ from the current one in terms of the way they
analyze and process O; pollutant data.

Analysis of CO concentrations

In this study, B-spline functions are being applied to discrete
CO pollution data to convert it to a continuous functional
form. The rough level of some curves can be improved using
a smoothing method, and the GCV standard is used to han-
dle the transformed functional data. This smoothing aims to
improve the structure and interpretability of the functional
CO data. Twenty-five B-spline bases functions with a cubic
(fourth-order) degree and a smoothing parameter of 0.05 are
being used for this transformation and smoothing process.
The use of the GCV criteria to penalize the functional CO
data suggests that the data with high noise levels are being
treated as outliers. Outliers in this context are likely to be data
points that are significantly different from the rest of the data
and do not fit the underlying structure of the functional data.
By penalizing these data points, the noise is removed, and the
structure of the functional CO data is improved. However, it
is important to note that it’s not always correct to consider
that these data are outliers, they might be real events, so it is
necessary to examine the data carefully and consider other
factors before removing any data. One possible way to avoid
removing real events and to smooth the data is to use moving
averages. Table 2 and Fig. 5d provide detailed information
about the process of CO data and its graphical representation.
The proposed procedures make the CO pollution data more
informative and easier to understand. The table displays the
numerical values of the CO pollution data, while Fig. 5d pro-
vides a visual representation of the data. From Fig. 5d, it is
clear that the shape of the CO pollutants has high significant
variations over a long period of time. The CO concentrations
started in the time domain labeled around 100, correspond-
ing to the year 1990. The highest peak is located in the time
domain labeled around 195, corresponding to the year 1996
with an approximate pollutant average of 0.000004 kg/m?>.
Additionally, a more accurate analysis for CO curve cluster-
ing will be explained in “Clustering of functional CO data”
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Section of the paper. This section will provide a deeper under-
standing of the data and possible patterns in pollution levels
over time. This will assist in identifying areas that need to
be addressed for pollution control and management. CO had
not been studied before using the functional form, accord-
ing to earlier research. However, this pollutant has received
some traditional research. Al-Janabi et al. (2021) and Li et al.
(2022d) currently studied the CO pollutant using different
analysis methods in a recent study. As a result, the current
study differs from their study in that the data was processed in
a discontinuous/discretization form without any transforma-
tion or smoothing.

Fig. 6 3D-visualization of Spa-

tiotemporal functional data for (a)
multivariate air pollutants using

dynamic web-based interactive

method (right penal), and static

perspective surface (left panel)

aS0,, bPM2.5, ¢ O3, and d CO

(b) 3D-perspective image across Spatiotemporal PM2.5 cycle

(©

3D-perspective image across Spatiotemporal CO cycle

(d)
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S

3D-perspective image across Spatiotemporal SO2 cycle

3D-perspective image across Spatiotemporal O3 cycle

Visualizing the spatiotemporal variability

Visualizing the spatiotemporal variability of data for major
pollutants is important for several reasons: (i) understand-
ing patterns and trends: visualizing the data can help iden-
tify patterns and trends in pollutant levels over time and
in different locations. this information can inform decision-
making and management strategies for reducing pollution,
(ii) identifying high-risk areas: by visualizing the data, it is
possible to identify areas or times where pollutant levels are
particularly high or variable. this can help target interven-
tions and resources to areas that need them the most, (iii)
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communication and education: visualizing the data can be an
effective way to communicate and educate the public about
air pollution and its impacts. by providing clear and easy-
to-understand information, it can help to raise awareness
and engage the community in efforts to reduce pollution,
(iv) monitoring progress: visualizing the data over time can
help to track the progress of pollution reduction efforts and
evaluate the effectiveness of different management strate-
gies, (v) decision-making and policy formulation: the spati-
otemporal variability data when visualized, it can be used to
evaluate the distribution, intensity, and frequency of pollut-
ants, which can be used as an input for decision-making and
policy formulation (Li et al. 2022a; Nikolaou et al. 2023).
Overall, visualizing the spatiotemporal variability of data for
major pollutants can provide valuable insights that can help
to improve air quality and protect public health.

The use of static 3-D perspectives charting and dynamic
web-based interactive surface mapping as visualization tools
for high-dimensional, voluminous, and spatial-temporal pol-
lutants data is a promising approach. Static 3-D perspec-
tives charting allows for the visualization of the data in a
three-dimensional space, providing a clear and intuitive rep-
resentation of the distribution of pollutants over time and in
different locations. This can be particularly useful for iden-
tifying patterns and trends in the data, and for identifying
areas or times where pollutant levels are particularly high
or variable. Dynamic web-based interactive surface map-
ping, on the other hand, allows for the creation of interactive
maps that can be viewed on the web. This can be useful for
visualizing the data in a geographic context, and for explor-
ing the data in more detail. The interactivity allows users to
navigate and zoom in and out of the data, and to view the
data at different levels of detail. Both techniques can be used
to analyze the spatial-temporal data for four major pollutants
variables (SO,, PM2,5, O;, and CO) and provide a com-
prehensive understanding of the patterns and trends in the
data, as shown in Fig. 6. The use of these visualization tools
can be very effective for data analysis, decision-making, and
policy formulation, and for communicating and educating
the public about air pollution and its impacts. The next sub-
sections analyze the spatial-temporal data for four major
pollution variables (SO,, PM2,5, O5, and CO).

Visualizing of SO, data

The visualization in Fig. 6a shows two different tools for
displaying spatiotemporal variation in SO, pollutant data.
The first tool is a static 3D chart with a gradient heatmap
(left penal), while the second tool is a dynamic, web-based
interactive surface map (right penal). The proposed two tools
for visualizing SO, pollutants can aid users in understanding
the spatiotemporal dynamics of low and high air pollution
over a long-term period. The dynamic web-based interactive
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surface mapping tool, in particular, has interactive features
that allow users to click buttons to view the concentration
of SO, pollution. The heatmap metrics in this tool provide
detailed information on the structure of heterogeneity and
fluctuations in SO, levels. Specifically, a red color on the
gradient heatmap indicates intense high variations across
spatial and temporal SO, cycles, while a blue color on the
gradient heatmap indicates low variations across these
cycles. It is clear that the highest variability of SO, occurs
from 2007 to 2021, with insignificant variations observed
in the rest of the time interval, particularly at the beginning
of the interval. Using the same technique, (Ranaarif and
Yuwono 2021) recently observed variations in the concen-
tration and spatial distribution patterns of SO, pollutants in
Bali Island from 2011 to 2020. The main difference between
current SO, visualization tools and the study by (Ranaarif
and Yuwono 2021) is that the latter used traditional visuali-
zation approaches to analyze changes in the concentration
and spatial distribution patterns of SO, pollutants, while cur-
rent tools may use more advanced techniques such as 3D
modeling or interactive maps.

Visualizing of PM2.5 data

The visualization of variance—covariance 3D surfaces for
spatiotemporal functional PM2.5 pollutant data is an impor-
tant tool for understanding and identifying patterns in air
quality. Two different methods have been implemented
for the visualization of spatiotemporal PM2.5 variation.
The first is a static 3-D perspective chart with a gradient
heatmap, as shown in the left panel of Fig. 6b. The second
is a dynamic web-based interactive surface mapping that
provides enhanced animation, as shown in the right panel
of Fig. 6b. The implementation of these visualization tools
is crucial for assisting users in developing an awareness of
the air quality in a specific area. It allows users to identify
the spatiotemporal dynamics of low and high air pollution
over a long-term period, as well as provide detailed infor-
mation about the structure of heterogeneity and fluctuations
in PM2.5 concentrations. For example, the red color on the
gradient heatmap indicates an intense high variation across
spatial and temporal PM2.5 cycles, while the blue color on
the gradient heatmap indicates a low variation across spa-
tial and temporal PM2.5 cycles. The PM2.5 visualization
results have also revealed different fluctuations throughout
the whole domain, with the highest fluctuation period of the
PM2.5 pollutants observed between 2016 and 2020. Addi-
tionally, the dynamic web-based interactive surface map-
ping offers interactive features such as buttons that allow
users to view the PM2.5 pollution concentration in an easy-
to-understand format, making it a powerful tool for under-
standing air quality patterns. In addition to the visualization
methods described earlier, it is important to note that some
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existing visualization approaches are limited in their abil-
ity to process large PM2.5 data sets and support dynamic
visualizations. To compare the current PM2.5 visualization
tools with recent previous studies, the current study can
be compared to the approach used by Li et al. (2016) who
employed a visualization approach to analyze the air quality
index based on PM2.5 pollutant in Beijing, China. Similar
studies include those by Tang et al. (2021) and Medhi and
Gogoi (2021) used visualization tools to analyze the impact
of COVID-19 on PM2.5 in China and India, respectively.
All of these previous studies have used traditional visualiza-
tion and interpolation methods which differ from the current
study which used spatial-temporal dynamic visualization
for PM2.5 functions. This current study presents a novel
approach that addresses the limitations of traditional visuali-
zation methods and provides a more comprehensive under-
standing of PM2.5 data.

Visualizing of O; data

The visualization of variance—covariance 3D surfaces for
spatiotemporal functional O; pollutant data is shown in
Fig. 6¢. Two different tools have been implemented for the
visualization of spatiotemporal O variation. The first one
is a static 3-D perspective charting with a gradient heatmap
drawn in Fig. 6¢ (left panel). The second one is a dynamic
web-based interactive surface mapping which provides
enhanced animation drawn in Fig. 6¢ (right panel). The
visualization of O; pollutants could help the users to iden-
tify the spatiotemporal dynamic of low and high air pol-
lution over a long-term period. Moreover, in the dynamic
web-based interactive surface mapping, interactive features
are designed where users are able to click buttons to view
the O; pollution concentration. It is easy to understand the
O; variability by heatmap metrics which provide detailed
information regarding the structure of heterogeneity and
fluctuations. Specifically, the red color on the gradient
heatmap indicates an intensely high variation across spatial
and temporal O; cycles, and the blue color on the gradient
heatmap indicates a low variation across spatial and tempo-
ral O; cycles. The O; visualization results discovered dif-
ferent fluctuations throughout the whole domain, with the
highest fluctuation period of the O3 pollutant being during
the period from 2013 to 2017. Additionally, recent studies
(Nurgazy et al. 2019; Gagliardi and Andenna 2020; Ahmad
et al. 2022) have used machine learning approaches for the
visualization of O; pollutants, such as the presentation of
CAVisAP, a context-aware system for outdoor air pollution
visualization by using internet of thing (IoT) platforms, and
the exploration of surface ozone behavior by using machine
learning approaches. However, different from these studies,
the current analysis considers the dynamic visualization of
O; pollutants over spatial-temporal.

Visualizing of CO data

The visualization of variance—covariance 3D surfaces for
spatiotemporal functional CO pollutant data is shown in
Fig. 6d. Two different tools have been implemented for the
visualization of spatiotemporal CO variation. The first one
is a static 3-D perspective charting with a gradient heatmap,
as depicted in the left panel of Fig. 6d. The second tool is
a dynamic web-based interactive surface mapping, which
provides enhanced animation and is shown in the right panel
of Fig. 6d. It is observed that the significant central part of
the high CO variability occurs in the periods from January
1990 to 2000 and it is insignificant elsewhere. In recent lit-
erature, the CO pollutant concentrations have been analyzed
with other pollutants using traditional and machine learning
methods. For example, Grace et al. (2020) used a traditional
visualization approach to analyze CO pollutant concentra-
tions with other pollutants. Jain and Kaur (2021) proposed
machine learning and visualization techniques for the anal-
ysis of air pollution concentrations during the COVID-19
pandemic. The clustering method used in the study aims to
identify and differentiate different layers within the temporal
and spatial cycle of air pollution. The results of this analysis,
including any functional clustering of temporal and spatial
pollution variables, will be discussed in a subsequent sec-
tion of the study.

Clustering the spatiotemporal functional data

Clustering is a technique used in machine learning to group
similar data points together. In the context of spatiotemporal
functional data of air pollutants, clustering can be used to
group locations with similar air pollution patterns over time.
This can be useful for identifying hotspots of pollution and
for understanding the factors that contribute to air pollu-
tion in different areas. There are several different clustering
algorithms that can be used, such as k-means, hierarchical
clustering, and density-based clustering (Schmutz et al.
2020). The choice of algorithm will depend on the specific
characteristics of the data and the research question being
addressed. In order to cluster spatiotemporal functional data,
it is necessary to first extract relevant features from the data
that capture the patterns of interest (Hael et al. 2021). This
could include measures of the overall level of pollution, the
variability of pollution over time, or the similarity of pol-
lution patterns between different locations. These features
can then be used as inputs to the clustering algorithm (Shi
et al. 2022). Once the clusters have been identified, various
visualization and analysis techniques can be used to explore
the results. This can include mapping the clusters to examine
their spatial distribution, plotting the time series data for
each cluster to examine their temporal patterns, and compar-
ing the pollution levels and patterns across different clusters
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Table 3 Summary of the cluster characteristics for spatial-temporal SO, patterns in cities of Yemen

Pollutant Classifier Color Cities/locations Ratio  Features (shape/size) Pollution degree
SO, Class A Black Zinjibar, Ad Dali, Khamir, Dhamar, 24.32% Snaky-line shape after 1997 Moderate pollution

Midji,Ibb, Yarim, Al-Jabin, Dhubab

Class B Red Aden, Al-Hudaydah, Al-Mahwit, Sanaa,
Amran, Hajjah, Lahij, Manakhah

Class C  Green Ahwar, Al-Bayda,Rada, Al-Hazm,
Al-Ghayzah, Sayhut Hadibu, Adis-
Sharqiyah, Al-Mukalla, Sayun, Tarim,
Marib, Sadah, Al-Rawdah, Ataq,
Bayhan

Class D Blue Zabid,Tiaz, Mukha, Al-Turbah

21.62% Three-profiles shape, constant before Extremally pollution
1990, then high increase after 1991,
stable after 2011

43.24% No changes with straight-line shape Clean
through all domain

10.81% Three-profiles shape, constant before High pollution
1990, then increase after 1991, stable
after 2011

to identify key differences. The study presented an advanced
clustering approach based on functional mixture models to
effectively deal with high-dimensional, large-scale, and spa-
tial-temporal air pollutants data. The results of this func-
tional clustering approach provided meaningful insights into
the spatial-temporal dynamics of pollutants and informative
visualizations for both temporal cluster profiles and spatial
cluster mapping. In this section, clustering the spatiotem-
poral functional data of air pollutants (SO,, PM2.5, O5, and
CO) will be discussed.

Clustering of functional SO, data

Sulfur dioxide (SO,) is a gaseous air pollutant composed of
sulfur and oxygen. It can have a significant impact on human
health, animal health, and the environment. In this study,
the functional clustering of smooth functional SO, pollutant
levels was conducted over multiple cities in Yemen and the
results were used to identify groups of cities with similar
levels of pollution. The spatial distribution of these clusters
is presented in Fig. 7. Cluster group 3, indicated by the color
green, is identified as having the least polluted cities in terms
of SO,. These cities are primarily located in southern Yemen
and represent approximately half of the total cities studied,
including the Al-Mahrah Governorate, Hadramout Gover-
norate, Abyan Governorate, and Shabwah Governorate. The
largest source of sulfur dioxide emissions is the burning of
high-sulfur fossil fuels by heavy equipment power plants
and other industrial facilities. Other sources of sulfur diox-
ide emissions include natural sources such as volcanoes and
industrial processes such as extracting minerals from ore,
as well as ships, locomotives, and other vehicles. Table 3
provides more detailed information about the memberships,
spatiotemporal features, and degree of pollution for each
cluster group. It is worth noting that short-term exposure
to sulfur dioxide can damage the respiratory system, espe-
cially lung function, and irritate the eyes. It causes coughing

and mucus secretion and exacerbates chronic bronchitis and
asthma conditions. Generally, sulfur dioxide emissions led to
high sulfur dioxide concentrations in the air, which can form
other sulfur oxides (SOx) that can be harmful as well. Based
on a thorough review of recent literature, it appears that the
clustering of spatial-temporal dynamics of SO, data using
a functional data framework has not been studied or inves-
tigated before. However, a few studies have analyzed SO,
pollutant data using vectorized-based methods. For example,
the study conducted by Al-Janabi et al. (2021) employed the
intelligent prediction method called IFCsAP to handle SO,
pollutant data along with other pollutant variables. Another
study by Kujawska et al. (2022) used an artificial neural net-
work model to forecast sulfur dioxide levels in the air. Both
of these studies were focused on forecasting SO, pollutant
levels using artificial data analytics, while the proposed
functional model in this current study aims to cluster the
hidden features of spatial-temporal SO, dynamics.

Clustering of functional PM2.5 data

In this study, we aim to investigate the dynamic behavior
of PM2.5 air pollutants and identify potential spatiotem-
poral functional clusters over various locations in Yemen.
Our proposed approach will provide a meaningful result and
offer a graphical interpretation of the spatiotemporal varia-
tions of PM2.5. As shown in Fig. 8, our findings indicate that
the highest PM2.5 variability is concentrated in the cities
located on the western side of the Red Sea, as represented
by cluster 2 (red color) which is characterized by two unique
peaks: a low-volume peak and large-volume peak. Clusters
4 and 1 also show considerable fluctuations throughout the
entire domain. It is worth noting that the PM2.5 air pollu-
tion concentration levels significantly decreased during the
COVID-19 outbreak period. Table 4 provides detailed infor-
mation on the cluster memberships, spatiotemporal features,
and degree of PM2.5 pollution.
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Table 4 Summary of the cluster characteristics for spatial-temporal PM2.5 patterns in cities of Yemen

Pollutant Classifier Color Cities/locations

Ratio

Features (shape/size) Pollution degree

PM2.5 Class A Black Ad Dali, Al-Mahwit, Amran,Khamir,
Hajjah, Al-Jabin, Sadah, Manakhah,

Al-Rawdah, Ataq

ClassB  Red  Al-Hudaydah,Zabid,Al-Hazm, Al-
Ghayzah, Midi, Marib, Mukha,
Dhubab

Class C

Adis-Sharqiyah,Ibb, Yarim

Ahwar,Zinjibar,Aden, Sayhut, Al-
Mukalla, Sayun,Tarim, Lahij, Bayhan,
Tiaz, Al-Turbah

ClassD  Blue

27.03% Multiple peaks with medium volumes

21.62% Large-size peak (2017-2018), low-size

29.73% Multiple peaks with medium volumes

Moderate pollution

Strongly pollution
peak (1989-1990)

Green Al-Bayda,Rada, Sanaa, Hadibu, Dhamar, 21.62% Fluctuations with low-size peaks through Slight pollution

domain

Moderate pollution

It is concluded that the levels of PM2.5 in Yemen follow
a periodic cycle that is controlled by meteorological factors
such as temperature and solar radiation. This conclusion
aligns with the findings of Abdul-Rahim et al. (2022) who
found that statistical analysis revealed a positive correlation
between PM2.5 concentrations and temperature for both fall
and summer samples. However, the analysis also revealed
a positive correlation between PM2.5 concentrations and
relative humidity for fall samples and a negative correlation
for summer samples. While their study only focused on a
small area in Sanna city, the results may be applicable to
many other cities in Yemen. Additionally, previous studies
have shown that the levels of PM2.5 in Yemen are influenced
by the rhythm of human activities that modulate anthropo-
genic emission rates. The change in PM2.5 air pollution is
tied to population-weighted exposure levels (PWEL). As
per the research (Li et al. 2022b), areas with high PWEL
and rapid increases in PM2.5 concentrations were primarily
found in developing countries such as India, Bangladesh,
Nepal, and Pakistan, as well as in the developed country of
Saudi Arabia, and the least developed countries of Yemen
and Myanmar. Moreover, the study by Fang et al. (2020)
found that the regions with the highest levels of pollution
are primarily located in China, Southeast Asia, South Asia,
West Asia, and North Africa, particularly in the Arabian
Gulf region. The study also identified energy intensity and
per capita electricity consumption as the primary drivers
of PM2.5 concentrations, whereas an expanding forest area
was found to significantly decrease PM2.5 concentrations.
In recent years, there has been a growing body of research
that has focused on studying the PM2.5 pollutant using func-
tional data analysis. For example, a study by Wang et al.
(2019) adapted the framework of functional data analysis
to compare the fluctuation patterns of PM2.5 concentration
between provinces in China from 1998 to 2016, both spa-
tially and temporally. Another study by Liang et al. (2021)
used a spatial-functional mixture method to model and clus-
ter PM2.5 concentrations across China. The current study

is similar to these two studies in that it also uses the same
functional framework. However, there are also several recent
studies that have used a different approach to cluster PM2.5
pollutant data, such as the studies by Jorquera and Villalobos
(2020), Liu et al. (2020), Su et al. (2020), and Park et al.
(2022). These studies differ from the current study in that
they use classical analysis frameworks to process and cluster
PM2.5 pollutant data.

Clustering of functional O; data

The ozone (O;) is formed when sunlight and heat cause
chemical reactions between volatile organic compounds
(VOC) and nitrogen oxides (NOX), also known as hydrocar-
bons. These reactions can occur both near the ground, in the
troposphere, and high in the stratosphere. In the stratosphere,
O, forms a protective layer that shields the Earth from harm-
ful ultraviolet radiation from the sun, but at ground level, O,
is a harmful air pollutant (Wang et al. 2020). In Fig. 9, the
functional clustering of smooth functional ground-level O,
levels in multiple cities in Yemen is presented, along with
the cluster mean and the spatial distribution of the obtained
clusters. The data indicates that the highest ozone concentra-
tions are found in coastal cities and islands located on the
western side of the Red Sea, the southern side of the Arabian
Sea, and the Gulf of Aden. This may be due to the higher
levels of pollutants, such as volatile organic compounds and
nitrogen oxides, present in these areas, which contribute to
ozone formation. Additionally, the unique meteorological
conditions in these regions may also make them more sus-
ceptible to ozone formation. Table 5 provides a summary of
the obtained cluster profiles for ozone air population levels
and the degree of air pollution in cities of Yemen.

High ozone concentrations near ground level can have
serious consequences for human health, as well as for crops,
animals, and other substances. O, is a powerful oxidant that
can irritate the respiratory system, causing symptoms such
as coughing, sore throat, and chest discomfort. People with
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Table 5 Summary of the cluster characteristics for spatial-temporal ozone patterns in cities of Yemen

Pollutant Classifier Color Cities/locations

Ratio

Features (shape/size) Pollution degree

0O, Class A Black Al-Bayda, Al-Mahwit, Amran, Khamir,
Hajjah, Al-Jabin, Sadah, Manakhah,

ClassB  Red  Ahwar,Zinjibar, Aden, Al-Hudaydah,
Zabid, Al-Ghayzah, Sayhut, Hadibu,
Adis-Sharqiyah, Al-Mukalla, Midi,
Lahij, Mukha, Dhubab

Class C  Green Rada, Sanaa, Dhamar, Ibb, Yarim,

Class D  Blue
Al-Rawdah, Ataq, Bayhan, Tiaz, Al-
Turbah

21.62% Two peaks with moderate volume in

37.84% Two peaks with large volume in 1990

13.51% Several peaks with low volume in 1990,

Ad Dali, Al-Hazm, Sayun, Tarim, Marib, 27.03% Two peaks with large volume in 1990 &

Moderate pollution
1990 and 2015, multiple peaks with
low volume in other years

Severe pollution
and 2015, multiple peaks with medium
volume in other years

Slight pollution
2000, and 2015

High pollution
2015, multiple peaks with medium/low

volume in other years

asthma and other lung conditions are particularly vulner-
able to the effects of ozone pollution, as it can worsen their
symptoms and increase the risk of respiratory infections.
Long-term exposure to O5 can also lead to inflammation and
damage to the cells lining the lungs, which can increase the
risk of chronic lung diseases such as bronchitis and emphy-
sema. Additionally, high O; concentrations can weaken the
immune system’s ability to fight off bacterial infections in
the respiratory tract. There are many factors that influence
the development of ground-level Oj, including wind direc-
tion and speed, temperature, timing cycles, and vehicle driv-
ing patterns. O; is formed when pollutants from cars, power
plants, and other sources react with sunlight, so weather
conditions play a key role in determining O5 levels. Oj5 is
typically a pollutant in the summer, when temperatures are
high and sunlight is abundant, and it is a major component of
smog in many urban areas during the summer months. Due
to its relation to climate conditions, ground-level ozone is
also known as “summer smog.” It is important to note that
Ozone, though it is harmful at ground level, is beneficial
in the upper atmosphere where it protects the earth from
harmful UV rays.

The analysis in this study builds upon the work of
Schmutz et al. (2020) by utilizing a functional clustering
framework to analyze O; pollutant curves. However, it also
diverges from previous studies, such as those conducted by
Pineda Rojas et al. (2019) and Saeipourdizaj et al. (2022).
Pineda Rojas et al. (2019) employed traditional cluster-
ing techniques to examine the spatial patterns that lead
to peak ozone hourly concentrations, using Monte Carlo
outcomes as the basis for their analysis. On the other hand,
Saeipourdizaj et al. (2022) utilized a classical spatiotem-
poral mixture model-based clustering framework to clus-
ter days of the year 2017, based on hourly O; amounts
collected from four stations in Tabriz. This study takes
a different approach, utilizing the functional clustering
framework to analyze O; pollutant curves, which sets it
apart from these previous studies.

Clustering of functional CO data

In this sub-section, we will present and discuss the main
results of spatiotemporal functional clustering that have
been adapted to the transformed air pollination data struc-
ture. Specifically, we will examine the functional clustering
findings of the smooth functional CO pollutant over multiple
cities in Yemen, including the group average and the spatial
distribution of the obtained clusters, as depicted in Fig. 10.
Overall, the spatiotemporal functional dynamic pattern of
the CO air pollutant can be divided into three distinct phases.
The first phase, which spans from January 1991 to December
2001, is characterized by a prominent polluting peak with a
high volume of pollution. The second phase, which begins in
January 2009 and ends in December 2019, is characterized
by a stable and constant polluting pattern. The final phase,
which is related to the COVID-19 pandemic, is representa-
tive of the COVID-19 lockdown period, during which pollu-
tion levels decreased dramatically. It has been observed that
there has been a significant decrease in carbon monoxide
(CO) air pollution in Yemen starting from January 2020 to
April 2022. This has led to an overall improvement in air
quality in the country. The objective of the study is to iden-
tify and classify the spatiotemporal patterns of functional
CO data across multiple locations in Yemen. Our proposed
method has been able to provide the best partition of poten-
tial clusters, which have been divided into four main groups.
Specifically, cluster group 2 (colored red) comprises three
major cities in Yemen—Sanaa, Taiz, and Ibb—which are
considered to be more polluted compared to other cities in
the country. Following group 2, group 4 comprises moder-
ate polluting cities located on the western sides of Yemen.
Group 3 (colored green) includes cities with zero CO pol-
lution throughout the whole domain, owing to low popula-
tion density and fewer human activities. The detailed profile,
characteristics, and degree of pollution for CO concentration
for each cluster are listed in Table 6. The study by Grace
et al. (2020) employed the commonly used method of Fuzzy
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Table 6 Summary of the cluster characteristics for spatial-temporal CO patterns in cities of Yemen

Pollutant Classifier Color Cities/locations Ratio  Features (shape/size) Pollution degree
CO Class A Black Ad Dali,Aden,Al-Bayda,Rada,Zabid,Al- 29.73% Snaky-line shape during 1992-2000, Light pollution
Hazm,Lahij,Marib,Sadah,Mukha,Al- straight-line shape before 1990 and
Turbah after 2005
ClassB Red  Sanaa, Ibb, Taiz 8.12% Large-volume normal/Gaussian peak Extremely pollution
during 1991-2001, constant change
after 2002, decline from 2020 to 2022
Class C  Green Ahwar,Zinjibar,Al- 35.13% No changes with straight-line shape Clean

Ghayzah,Sayhut,Hadibu,Adis-
Sharqiyah,Al-
Mukalla,Sayun,Tarim,Al-
Rawdah,Ataq,Bayhan,Dhubab

Al-Hudaydah,Al-Mahwit,Amran,Kha
mir,Dhamar,Hajjah,Midi, Yarim,Al-
Jabin,Manakhah

ClassD  Blue

27.03% Low-volume kurtosis peak during

through all domain

Middle pollution
1991-2001, decline from 2020 to 2022

c-Means clustering to examine and present the data on CO
pollutants alongside other pollutants, using real-time sensor
data. On the other hand, the research conducted by Jain and
Kaur (2021) introduced the use of machine learning and
visualization techniques for forecasting and analyzing the
air quality in major cities in India, taking into account six
major pollutants, including CO.

Finally, the proposed method in this study can be com-
pared to recent approaches that utilize Big Data and intel-
ligent computation, such as those presented by Al-Janabi
et al. (2021), Al-Janabi et al. (2020b), and Al-Janabi et al.
(2019). These methods aimed to predict multiple air pollu-
tion concentrations using the Intelligent Forecaster of Con-
centrations caused air pollution (IFCsAP) (Al-Janabi et al.
2021), a pragmatic method based on intelligent big data
analytics (Al-Janabi et al. 2019), and intelligent computa-
tion (Al-Janabi et al. 2020b). However, the main difference
between our method and these previous studies is that our
focus is on clustering and visualizing spatial-temporal air
pollutant curves through functional data approaches, while
their focus was on predicting discrete air pollutant data
through intelligent big data analytics. As previously stated,
it is more efficient to use statistical methods that can analyze
the temporal and spatial variations of pollutants over time.
The functional data analysis approach enables the examina-
tion of the entire time spectrum of pollutant variables. The
table below compares the current study to recent studies
that employed similar methods within the functional frame-
work. However, the functional techniques used differ based
on the purpose of the study. For example, Acal et al. (2022)
focused on investigating the potential impact of the COVID-
19 lockdown on air quality in the Pescara-Chieti urban area
in Italy, which is known for high air pollution levels. Betan-
court-Odio et al. (2021) used functional data and Kendall’s
functional Tao (KFT) to study the relationship between
O; pollution levels in rural and urban areas in the Spanish

Community of Madrid. Their findings indicate a complex,
non-linear relationship between urban and rural areas. Tor-
res et al. (2020) compared the effectiveness of three different
analytical methods in identifying pollution episodes and out-
liers. More information about these studies is summarized
in Table 7. A comparison of the current proposed method
with other approaches applied to environmental pollution
data is shown in Table 7. The comparison focuses on both
functional and non-functional frameworks, univariate and
multivariate settings, and lists the advantages and disadvan-
tages of each approach. The disadvantages are based on the
author’s opinion, but other drawbacks may also exist. This
information can be useful for understanding how the current
work builds upon or differs from previous research in the
field and can provide insights into the strengths and limita-
tions of different methods.

Conclusions and recommendations

The study aimed to visualize and cluster the dynamic behav-
ior of multiple air pollution concentrations using functional
analysis techniques and functional mixtures clustering
model. The method was applied to multivariate high dimen-
sional air pollution data from cities in Yemen from January
1980 to April 2022. Fourie transformation, B-spline func-
tions, and generalized-cross validation were used to recon-
struct and smooth data. The study used two enhanced 3D
visualization tools to explore the spatiotemporal variations
in the functional air pollutants cycle and a functional mixture
model was used to identify and classify the spatiotemporal
functional air pollutants data. The study found four substan-
tial clusters for all functional air pollutants variables and
demonstrated the ability to identify, visualize, and classify
the continuous functional dynamic patterns of air pollutants
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(SO,, PM2.5, O;, and CO) over multi-sites in Yemen. Some
main results have been concluded as follows:

Yemen has experienced substantial dynamic patterns of
air pollution concentrations over different spatial loca-
tions from the period 1980-2022.

The obtained results have also provided evidence that
vehicular emission is the primary source of air pollution
in Yemen besides industrial activity and mixing factors
are also shown to be the secondary contributing factors
towards air pollution variation.

The functional clustering findings showed a noteworthy
decline in CO emissions during the COVID-19 pandemic;
additionally, the cities of Sanaa, Ibb, and Tiaz were clas-
sified as the more polluted cities in Yemen.

Regarding the Ground-level O; pollutant, the results showed
great fluctuations with increase and decrease during the
entire domain; however, there was no effect on ozone level
concentrations due to the COVID-19 pandemic period.
Although PM2.5 concentrations have witnessed an
extremally significant increase before the COVID-19
pandemic period, they have shown a noticeable decrease
during the COVID-19 pandemic period.

In general, the results showed that there was stability and
no significant changes in SO, levels, particularly during
the last two decades.

Overall, ambient air pollution can be controlled and
reduced with the implementation of strategic measures, led
by sound leadership and development efforts to help emerg-
ing economies recover from past losses. Successful pollution
control methods, that are technically, politically, and eco-
nomically feasible for a specific country, can be shared glob-
ally to minimize air pollution. Recommendations to con-
trol and reduce air pollutants include the development and
implementation of new environmental standards, the use of
intervention techniques to decrease concentration, the pro-
hibition of polluting materials and fuels in urban and rural
areas, regulation of private vehicles, and an increase in pub-
lic transportation. Additionally, promoting the use of clean
fuels and implementing effective policies to ensure standard
operating protocols in workplaces, industries, and hospitals
can help control the spread of pathogenic microbes.
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tary material available at https://doi.org/10.1007/s11356-023-25790-3.
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