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Abstract
The unfavorable effects of environmental pollutants are becoming increasingly evident. In recent years, Caenorhabditis 
elegans (C. elegans) has been used as a powerful terrestrial model organism for environmental toxicity studies owing to its 
various advantages, including ease of culture, short lifespan, small size, transparent body, and well-characterized genome. 
In vivo bioassays and field studies can analyze and evaluate various toxic effects of the toxicants on the model organism, 
while emerging technologies allow profound insights into molecular disturbances underlying the observed phenotypes. In 
this review, we discuss the applications of C. elegans as a model organism in environmental toxicity studies and delineate 
apical assays such as lifespan, growth rate, reproduction, and locomotion, which are widely used in toxicity evaluation. In 
addition to phenotype assays, a comprehensive understanding of the toxic mode of action and mechanism can be achieved 
through a highly sensitive multi-omics approach, including the expression levels of genes and endogenous metabolites. Recent 
studies on environmental toxicity using these approaches have been summarized. This review highlights the practicality and 
advantages of C. elegans in evaluating the toxicity of environmental pollutants and presents the findings of recent toxicity 
studies performed using this model organism. Finally, we propose crucial technical considerations to escalate the appropriate 
use of C. elegans in examining the toxic effects of environmental pollutants.
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Introduction

With technological advances, products that improve the 
quality of life, such as plastics, have significantly increased 
worldwide. In addition, the use of pharmaceuticals and per-
sonal care products (PPCPs) is escalating with an increase 
in the world population, and the public’s interest in improv-
ing modern lifestyles (Kasprzyk-Hordern 2010; Tkaczyk 
et al. 2021). Increased product usage promotes deposition 
in aquatic and terrestrial environments (Nizzetto et al. 2016). 
Moreover, these pollutants can interact with each other to 

induce a more severe impact on the environment. For exam-
ple, microplastics in aquatic environments can transport 
organic pollutants, leading to accumulation in marine organ-
isms (Chua et al. 2014; Zarfl and Matthies 2010). Due to this 
severe phenomenon, many research groups have investigated 
the toxic effects of environmental pollutants on humans and 
wildlife (Chae and An 2018; Savoca et al. 2021).

Environmental pollutants can be characterized by their 
intended usage. Pharmaceuticals are structurally-diverse 
chemicals designed to positively affect specific biological 
pathways (Ankley et al. 2007). Nonetheless, they can trigger 
side effects in humans and may render toxic effects in non-
target organisms. When organisms are exposed to pharma-
ceuticals, their harmful effects should be investigated based 
on the characteristics of such drugs. Certain plastic materials 
and their constituents may become significant environmen-
tal pollutants that can cause serious problems. Low recy-
cling rates and high dependence on plastics have resulted in 
the generation of large quantities of plastic waste (Di et al. 
2021; Lee 2019). Plastics discharged into the environment 
are decomposed into micro- or nano-sizes by physical and 
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biochemical forces. These micro- and nanoplastics nega-
tively impact the environment (Auta et al. 2017). In previous 
studies, frequent detection of plastic debris was confirmed in 
the ocean and soil (Scheurer and Bigalke 2018; Shen et al. 
2019). Humans can be exposed to these small-scale plastic 
particles via the food chain by consuming fish or seafood 
contaminated with the plastics. Additionally, small size, 
large surface area, and hydrophobic properties can facili-
tate the absorbance of other toxic substances; this increases 
the probability of exposure to other toxic contaminants that 
are absorbed onto plastics (Bhagat et al. 2021a). Other than 
pharmaceutics and plastics, there are still various types of 
contaminants, most of which are included in products and 
processes used to improve daily life. These pollutants are 
called emerging contaminants, mostly anthropogenic chemi-
cals widely detected in environments with trace concentra-
tions (Ahmed et al. 2021; Chen et al. 2022). Therefore, those 
emerging contaminants need to be carefully monitored and 
evaluated.

Although excess waste is detected in landfills, most stud-
ies have focused on toxicity effects targeting aquatic organ-
isms. Environmental pollution in the soil is as severe as that 
in aquatic environments, and the detection of pharmaceu-
ticals, plastics, and various pesticides has been reported in 
the soil environment (Qi et al. 2020; Rillig 2012). Such soil 
contamination can significantly affect the biogeochemical 
cycle, microbial, water circulation, and food production and 
requires considerable attention (Bhagat et al. 2021b; Sizmur 
and Richardson 2020; Tang et al. 2019; Tripathi et al. 2017).

Caenorhabditis elegans (C. elegans) is a good model 
organism for evaluating the toxic effects of soil organisms. 
The first investigation of C. elegans was reported by Sydney 
Brenner in 1974 (Brenner 1974) for genetic characteriza-
tions. Since then, it has been widely used as a model organ-
ism owing to several advantages, including ease of main-
tenance, short life cycle, convenient use in the laboratory 
environment, and well-characterized genome (Lucanic et al. 
2018; Salzer and Witting 2021). These nematodes play cru-
cial roles in essential soil processes, such as energy flow 
and nutrient mineralization (Höss et al. 2009). C. elegans is 
a preferred experimental model in soil organisms than Eise-
nia fetida because of its advantages of well-characterized 
genome and plentitude of in vivo and in vitro laboratory 
methods. (Bhagat et al. 2021b; Queirós et al. 2019). Various 
parameters affected by toxicity, such as survival, growth rate, 
reproduction, neurotoxicity, DNA damage, and metabolic 
perturbations, have been studied in C. elegans. Pioneering 
studies utilized C. elegans as a model organism to investigate 
its responses to food sources, environmental factors, heavy 
metals, and pharmaceuticals (Höss and Weltje 2007; Klass 
1977; Popham and Webster 1979). These studies have pro-
vided proof-of-concept evidence and relevance regarding the 
suitability of C. elegans as a toxicological model organism 

(Hägerbäumer et al. 2015; Leung et al. 2008; Williams et al. 
2022; Wilson and Khakouli-Duarte 2009). Various review 
papers have emphasized the importance of C. elegans as an 
important soil organism. However, there has been a lack of 
comprehensive discussion focusing on the adverse effects of 
various environmental pollutants on C. elegans.

This review discusses the advantages of C. elegans as an 
environmental toxicity research model. An in-depth descrip-
tion of the behavior examination and various physiological 
and biological parameters used in evaluating toxicity are 
described. We also present and discuss the main findings 
of recent studies. Finally, perspectives for future studies are 
provided to facilitate the appropriate use of C. elegans for 
the toxicity assessment of environmental pollutants.

C. elegans is a robust model organism 
for toxicity assessment

This promising model organism has received considerable 
attention in environmental toxicology by evaluating the 
toxic effects caused by exposure to environmental pollut-
ants, such as plastics, persistent organic pollutants (POPs), 
and pesticides (Chowdhury et al. 2022; Li et al. 2020a; Wei 
et al. 2021; Yu et al. 2022). Their behavior and physiologi-
cal assays have been utilized to evaluate the severity of toxic 
effects (Neher 2001). Under normal conditions, C. elegans 
is mainly characterized by small size, simplicity, and rapid 
culture speed (Bhagat et al. 2021b). When maintained in 
usual laboratory conditions, it has a rapid life cycle, and 
it takes 3 days to grow from eggs to adult worms ready for 
fertilization, and the lifespan of an individual is 2–3 weeks 
depending on the culture conditions (Salzer and Witting 
2021). They are cultured in a small plate on a solid medium 
called nematode growth media (NGM), and Escherichia coli 
OP50 is used as a food source (Brenner 1974). Owing to 
this growth condition, it consumes less space and can be 
cultured inexpensively compared to other model organisms. 
C. elegans has two sexes, a self-reproducing hermaphrodite 
and a male; the male populace has a low frequency. Her-
maphroditic reproduction has the advantage that the gene 
mutation occurs in a small percentage of the culture pro-
cess, and each hermaphrodite has a constant number of 959 
somatic cells. After hatching, C. elegans develops into an 
adult worm after proceeding through the four larval stages 
(L1-L4). C. elegans contains a system that can survive harsh 
conditions. During the growth process, if food is insuffi-
cient or the density is extremely high, it stops the normal 
growth stage and transforms into dauer larvae. By turning 
into the dauer stage, it exhibits resistance to external stimuli, 
survives several months without nutrient supply, and grows 
again to become a reproductive adult when the energy source 
is re-supplied (Hu 2007). Approximately 60–80% of human 
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gene homologs exist in C. elegans. Accordingly, research 
corresponding to human health and diseases in C. elegans is 
of great significance. Research on the genome of C. elegans 
is underway using genetic tools, such as RNA interference 
(RNAi) and CRISPR-Cas9 (Arribere et al. 2014; Dickinson 
and Goldstein 2016; Paix et al. 2015). Furthermore, stud-
ies using metabolomics, which can perform an in-depth 
evaluation of the metabolic process of C. elegans, are being 
actively conducted (Kim et al. 2019b; Molenaars et al. 2021; 
Yin et al. 2020). By combining genetic studies and metabo-
lomics of C. elegans and various biochemical phenotype 
assays, we can advance our knowledge of the metabolic 
regulation and physiological behavior of nematodes. Fur-
thermore, combining the behavioral examination, physi-
ological assay, and multi-omics approaches on C. elegans is 
readily applicable. Altogether, C. elegans has shown to be 
a powerful model organism that advances our insights into 
the molecular processes underlying a phenotype of interest.

Assays used in C. elegans for toxicity 
assessment

Toxic effects from exposure to external substances appear 
in various forms in C. elegans. The events can be confirmed 
by evaluating the biological and physiological factors and 
detecting molecular markers. Through in-depth biological 
and behavioral assays, the toxic effects of pollutants can 
be evaluated, and the corresponding metabolic changes 
can be confirmed by detecting the biochemical markers. 
Typical phenotypic assays are helpful in understanding the 
observable effects of the toxic compounds on C. elegans. 
Furthermore, molecular and biochemical assays capable of 
measuring apoptosis, mitochondrial dysfunction, cell cycle 
disruption, and DNA damage give more profound insights 
into the mechanisms of the toxicity (Allard et al. 2013; Behl 
et al. 2016; Leung et al. 2010). As such, the biomarkers or 
endpoints discussed in this section will play an important 
role in the evaluation of toxic effects. Besides, comparing 
sensitivities for these assays is an essential factor to consider. 
For example, Li et al. identified endpoints such as lethality, 
body volume, lifespan, food intake, and excretion behavior, 
and confirmed that the degree of toxicity is different accord-
ing to the type of assays (Li et al. 2023).

In this section, we discuss methods for evaluating the 
toxicity of C. elegans, which are summarized in Fig. 1 and 
Table 1.

Uptake and accumulation

Contaminants are widespread and persistent in the envi-
ronment; hence, living organisms are increasingly exposed 
to these pollutants. The uptake and accumulation of these 

substances should be assessed to evaluate the degree of 
exposure to pollutants. One of the key features of C. ele-
gans is transparency (Liu et al. 2014). Owing to this fea-
ture, the internal structure of the worm can be observed 
under a microscope. Therefore, the uptake of pollutants 
could be monitored and visualized. These characteristics 
have been widely used in toxicity studies of micro- and 
nanoplastics. After exposing the nematode to fluores-
cently labeled nanoplastics, their uptake can be tracked 
by monitoring the organism under a fluorescence micro-
scope (Chu et al. 2021; Kim et al. 2019a). Previous studies 
have confirmed the uptake of nanoplastics in C. elegans 
by observing the accumulation in the buccal cavity, phar-
ynx, intestine, and rectum site (Mueller et al. 2020; Scharf 
et al. 2013). In addition to visualization, bioaccumulation 
of contaminants in nematodes can be evaluated by deter-
mining the internal concentrations. Chen et al. success-
fully analyzed the internal concentration of perfluorinated 
compounds using LC–MS/MS (Chen et al. 2018). Moni-
toring internal concentration could be significant, since 
this parameter would indicate the actual levels of contami-
nants in the nematode, which can help determine the actual 
behavior of toxicants in C. elegans.

Typical physiological parameters

Lifespan and survival

A representative parameter for evaluating the comprehensive 
toxicity of pollutants is lifespan. Exposure to contaminants 
can cause tissue disruption, intestinal damage, and metabolic 
dysregulation, which induce lethal damage with abnormali-
ties in the digestive and circulatory systems, and various 
cellular processes (Liu et al. 2019b; Shao and Wang 2020; 
Wang 2020). In addition to lifespan assays, survival studies 
are frequently used to evaluate survival rates upon exposure 
to toxicants. This survival study is performed by counting 
dead worms using a microscope, and has been used in sev-
eral studies as an indicator of toxicity evaluation (Table 2). 
In a previous study, Lei et al. used five different-sized micro-
plastics and attempted to determine the size of microplas-
tics responsible for short lifespans and low survival rates. 
Accordingly, C. elegans showed the shortest lifespan and 
survival rate when exposed to 1 μm polystyrene (Lei et al. 
2018a). Another study evaluated the lethality assay to assess 
the toxicity of triclosan, a pharmaceutical that is frequently 
detected in the environment. Lifespan was significantly 
reduced in the organism exposed to 1 mg/L of triclosan 
(11.3 days) compared to the control group (14.5 days) (Kim 
et al. 2019b). These parameters can be used as an index 
to compare overall toxicity after exposure to environmental 
pollutants.
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Growth rate

The growth rate is one of the parameters that can be affected 
by exposure to environmental pollutants. Contaminants evi-
dently reduce the growth rate of C. elegans. For example, 
when organisms are exposed to plastics, they delay their 
feeding and deplete their energy (Huerta Lwanga et al. 2016; 
Wright et al. 2013). This phenomenon inhibits the growth 
and development of organisms. In addition, flame retardants 
significantly decrease larval development. The severity dif-
fered according to the type of flame retardant; among them, 
polybrominated diphenyl ethers (PBDEs) severely affected 
the growth rate (Behl et al. 2016). Bisphenol S (BPS), used 
in a variety of products such as food packaging and per-
sonal care products, affects the growth rate at concentra-
tions higher than 0.01 μM. Xiao et al. evaluated the growth 
rate by measuring the body length of the nematode (Xiao 
et al. 2019). BPS is known to affect thyroid hormone homeo-
stasis, which affects the growth rate in C. elegans (Crump 
et al. 2016; Rochester and Bolden 2015). Since toxic sub-
stances could seriously impact the growth rate with various 
toxic mechanisms, this parameter can be used as an index 

to evaluate the toxicity by monitoring the rate and stage of 
development in C. elegans.

Locomotory ability

Another toxic mechanism of environmental pollutants 
is neurotoxicity. In. C. elegans, the nervous system is the 
most complex and consists of one-third of all somatic cells. 
Accordingly, various evaluations of the nervous system are 
being conducted. A phenotype assay to assess neurotoxicity 
includes pharyngeal pumping and locomotion assays (head 
thrashes, body bends, and crawling speeds). A reduced loco-
motor effect was confirmed in C. elegans exposed to micro-
plastics, which affected the GABAergic neurons (Kim et al. 
2019a; Qiu et al. 2020). Li et al. evaluated the multigenera-
tional toxic effect of di(2-ethylhexyl) phthalate (DEHP) on 
locomotive behaviors (Li et al. 2018). Prolonged exposure 
can adversely affect locomotory behavior across generations. 
This study implies the potential ecological risk of multigen-
erational effects, which could pose a severe environmental 
issue. Additionally, numerous pesticides affect locomotor 
behavior in C. elegans. Exposure to the organophosphorus 

Fig. 1  Parameters of C. elegans used in toxicity assessment
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Table 2  List of environmental pollutants tested toxicity for physiological parameters

a LEC, lowest effective concentration

Environmental pollutants Concentration Tested parameters Effects on tested parameter References

Polystyrene (PS)
(0.1, 0.5, 1.0, 2.0, 5.0 μm)

1.0 mg/L Survival
Body length
Lifespan
Motor behavior
Motor behavior
Cholinergic neuron
GABAergic neuron
Oxidative damage

Decreased (0.5, 1.0, and 5.0 μm PS)
Decreased (1.0 μm PS)
Decreased (1.0 and 5.0 μm PS)
Increased (0.1 and 0.5 μm PS)
Decreased (1.0, 2.0, and 5.0 μm PS)
Damaged (0.5 and 1.0 μm PS)
Damaged (1.0 μm PS)
Damaged (0.1, 0.5, 1.0, 2.0, and 

5.0 μm PS)

Lei et al. 2018a

BDE-47 0.1–100 μM Larval Development
Feeding assay
Reproduction assay

Decreased  (LECa: 0.4 μM)
Affected (LEC: 6.3 μM)
Affected (LEC: 13 μM)

Behl et al. 2016

Bisphenol S 0.25–2 mM Lethality
Locomotion
Growth rate
Reproduction
Lifespan
Oxidative stress

LC50: 2.18 mM
Decreased (LEC: 0.01 μM)
Decreased (LEC: 0.01 μM)
Affected (LEC: 0.01 μM)
Decreased (LEC: 0.01 μM)
Affected (LEC: 0.01 μM)

Xiao et al. 2019

Polystyrene (PS)
(50, 200 nm)

0.01–86.3 mg/L Locomotion
Oxidative stress
Reproduction

Decreased (17.3 mg/L PS-50, 
200 nm)

Affected (17.3 mg/L PS-50 nm)
Affected (17.3 mg/L PS-50 nm)

Kim et al. 2019a

Di(2-ethylhexyl) phthalate (DEHP) 0.2–100 mg/L Locomotion
Reproduction

Decreased (LEC: 0.2 mg/L)
Affected (LEC: 0.2 mg/L)

Li et al. 2018

Quinalphos 0.0034–0.034 mM Lethality
Locomotion
Feeding assay
Oxidative stress

LC50: 0.0323 mM
Decreased (0.00344 mM)
Inhibited (0.00344 mM)
Affected (0.00344 mM)

Govindarajan et al. 2019

Tetrabromobisphenol A 0.01–100 μg/L Growth rate
Locomotion
Oxidative Stress

Decreased (LEC: 10 μg/L)
Decreased (LEC: 0.1 μg/L)
Affected (LEC: 1 μg/L)

Liu et al. 2019a

Triclosan (TCS)
Triclocarban (TCC)

1–5 mg/L
0.05–5 mg/L

Lethality
Reproduction
Hatching time
Lifespan
Stress response
Germline toxicity

LC50: 3.65 mg/L (TCS)
LC50: 0.91 mg/L (TCC)
Decreased (LEC: 0.1 mg/L) (TCS)
Decreased (LEC: 0.01 mg/L) (TCC)
Delayed (LEC: 0.1 mg/L) (TCS)
Delayed (LEC: 0.01 mg/L) (TCC)
Decreased (LEC: 0.5 mg/L) (TCS)
Decreased (LEC: 0.05 mg/L) (TCC)
Affected (LEC: 0.1 mg/L) (TCS)
Affected (LEC: 0.01 mg/L) (TCC)
Affected (LEC: 0.1 mg/L) (TCS)
Affected (LEC: 0.01 mg/L) (TCC)

Lenz et al. 2017

Lindane 0.01–100 ng/L Growth rate
Reproduction
Locomotion
Oxidative stress

Decreased (LEC: 100 ng/L)
Affected (LEC: 100 ng/L)
Decreased (LEC: 10 ng/L)
Affected (LEC: 10 ng/L)

Yu et al. 2020b

Methomyl 500–6000 mg/L
83–1917 mg/L

Lethality
Motor behavior
AChE activity

24 h  LC50: 2482 mg/L
48 h  LC50: 2151 mg/L
Affected (LEC: 83 mg/L)
Increased (LEC: 83 mg/L)

Queirós et al. 2019

Triadimenol 3–300 μg/L Lifespan
Growth rate
Reproduction
Locomotion
Oxidative stress

Decreased (300 μg/L)
Decreased (LEC: 3 μg/L)
Decreased (LEC: 30 μg/L)
Decreased (LEC: 3 μg/L)
Affected (300 μg/L)

How et al. 2018
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pesticide, quinalphos, led to defects in the locomotion of C. 
elegans. The expression level of genes associated with loco-
motion (unc-47, unc-13), was also downregulated (Govin-
darajan et al. 2019). Flame retardants, tetrabromobisphe-
nol A (TBBPA), also influenced the locomotory effect and 
oxidative stress. The expression levels of sod-3 and ctl-2 
increased, which implies that these genes play a vital role in 
toxicity induction (Liu et al. 2019a). Collectively, locomotor 
dysfunction related to neurotoxicity is a phenotype that must 
be evaluated to confirm the toxicity of contaminants. Pertur-
bations in the expression levels of various genes were con-
firmed depending on the toxic substance, and although the 
mechanism could evidently vary, the locomotion is reduced 
as an endpoint.

Reproductive ability

Another behavioral assay in C. elegans is its reproduction 
ability. C. elegans is a hermaphrodite with a short reproduc-
tion cycle, which makes C. elegans a valuable model organ-
ism for evaluating reproductive toxicity. To evaluate repro-
ductive ability, brood size, number of eggs, and reduction 
of germline cells can be monitored. After exposure to envi-
ronmental pollutants, the reproduction ability will confirmed 
to be significantly affected by the reduction in energy pro-
duction, energy source absorption, and inhibition of feeding 
activity. A reduction in egg numbers has been reported in C. 
elegans exposed to different types of microplastics (Schöpfer 
et al. 2020). Furthermore, exposure to microplastics reduced 
the embryo number and brood size (Lei et al. 2018b). Lenz 
et al. assessed the germline toxicity induced by triclosan and 
triclocarban by evaluating the number of progeny, hatching 
time, and monitoring transgenic strain xol:GFP (TY2431). 
Therefore, the endocrine disruption effect of these antibiot-
ics was assessed using C. elegans (Lenz et al. 2017).

Intestinal damage

The intestine is the organ responsible for the absorption of 
xenobiotics and the intake of nutrients. Accordingly, it is a 
major organ involved in xenobiotics toxicity. In addition, 
since C. elegans is transparent, intestinal damage can be 
evaluated visually using a microscope. In particular, micro-
plastics absorbed in the intestine induce toxicity via abra-
sion of intestinal tissue and blockage of the alimentary canal 
(Lei et al. 2018b; Shao and Wang 2020; Yu et al. 2020a). 
In a previous study, the effects of the absorption of five dif-
ferent types of plastic polymers were studied. This resulted 
in the cracking of villi, damage to enterocytes and a sig-
nificant decrease in calcium concentration in the intestines 
from four species (polyamides, polypropylene, polyethylene, 
polyvinyl chloride) (Lei et al. 2018b). Exposure to organo-
chlorine pesticide, lindane, induces intestinal damage with 

high permeability. This was assessed using Nile red and blue 
food dye staining. In addition, the expression levels of genes 
related to intestinal development (mtm-6 and opt-2) was 
significantly downregulated (Yu et al. 2020b). Most studies 
have shown a combination of oxidative stress and intestinal 
damage. Oxidative stress causes inflammation and altered 
signaling pathways, damaging tissues (Qu et al. 2018).

Oxidative stress

Oxidative stress is the most preferred endpoint in toxicity 
studies and has been evaluated in many studies on C. ele-
gans. Oxidative stress is a widely known toxic mechanism 
in various types of environmental pollutants. An increase 
in reactive oxygen species (ROS) causes severe damage to 
biomolecules, such as proteins, lipids, and DNA. ROS in C. 
elegans can be measured by evaluating the accumulation of 
lipofuscin, a marker compound of ROS, or by using a rea-
gent named 2′,7′-Dichlorofluorescin diacetate  (H2DCFDA), 
which is widely used in quantifying intracellular ROS. The 
damage caused by ROS has been reported to have a mutual 
effect on locomotion, body length, and brood size (Yu et al. 
2020a). ROS levels are maintained through redox reactions 
by enzymes such as glutathione S-transferase (GST) and 
superoxide dismutase (SOD). When their balance is dis-
rupted by exposure to environmental pollutants, the ROS 
level increases, resulting in severe damage to the body. 
Upon exposure to nanoplastics, glycine was significantly 
decreased, possibly due to oxidative stress, which affected 
the role of glycine as a ROS scavenger (Kim et al. 2019a). 
Induction of oxidative stress was also observed upon expo-
sure to flame retardants, such as hexabromocyclododecane 
(HBCD). Increased ROS production and lipofuscin levels 
were also monitored. It was simultaneously confirmed that 
the toxicity caused by oxidative stress was alleviated by 
treatment with the antioxidant, N-acetyl cysteine (Lei et al. 
2018a; Wang et al. 2018b). An imbalance of scavengers or 
antioxidants causes an increase in ROS production. Since 
ROS can damage cellular composition, oxidative stress 
induced by environmental pollutants can cause serious dam-
age to organisms in the environment.

Stress marker with transgenic strains

One of the advantages of C.elegans is that it has diverse 
mutant strains; its genetic manipulation is relatively simple. 
This advantage enables in-depth research on genotoxicity. 
Since C. elegans shares several genes with humans, stud-
ies on the genotoxicity of environmental pollutants using 
C. elegans can help elucidate its effect on humans. Several 
studies have confirmed that ROS production induced by 
environmental pollutants can cause DNA damage (Imani-
kia et al. 2016; Yin et al. 2018). These damages have been 
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shown to be relieved upon treatment with antioxidants (Hor-
nos Carneiro et al. 2020). Among various mutant strains of 
C. elegans, certain types of mutants tagged with GFP can 
be used to visualize the toxic effects and stress response. 
For example, the TJ356 [daf-16p:daf-16a/b:GFP] transgenic 
strain is widely used in stress response evaluation. DAF-
16 is an essential element that regulates forkhead box O 
(FOXO) transcription factor and is typically inactivated, but 
can activate under external stimuli, such as oxidative stress 
or thermal stress. DAF-16 moves from the cytoplasm to the 
nucleus to regulate genes that increase resistance to stress 
(Henderson and Johnson 2001). Translocation of GFP was 
identified by fluorescence microscopy. Furthermore, GFP 
translocation into the nucleus has been monitored in sev-
eral different toxicity studies, which confirmed the stress 
responses of C. elegans upon exposure to environmental 
contaminants (How et al. 2018; Kronberg et al. 2018). This 
advantage makes C. elegans a powerful model organism for 
evaluating genotoxicity.

Metabolic profiles

An essential parameter for evaluating toxic mechanisms 
in C. elegans is metabolic profiling using a metabolomics 
approach. Metabolomics is a comprehensive method for ana-
lyzing small molecule metabolites that study toxic mecha-
nisms by identifying statistically significant metabolites 
between the control and exposed groups (Holmes et al. 2008; 
Long et al. 2020). Detected metabolites are further analyzed 
using pathway analysis or other omics techniques to evaluate 
biochemical changes in the model organism when exposed 
to environmental pollutants. One of the additional omics 
tools is lipidomics (Wan et al. 2019). Lipidomics is a branch 
of metabolomics studies that characterizes and analyzes 
lipid compositions in organisms. Although metabolites and 
lipids have diverse chemical properties, recent development 
in analysis methods has enabled simultaneous analysis of 
metabolites and lipids with single sample preparation (Mole-
naars et al. 2021). Therefore, a comprehensive understand-
ing of the toxic mechanisms of environmental contaminants 
could be achieved. Metabolomics and lipidomics have been 
widely used in biological samples to evaluate the perturba-
tion of metabolites and lipids upon toxic effects induced by 
environmental pollutants. Measurements of these metabo-
lites enabled the investigation of metabolic disruption, which 
could serve as key marker compounds upon exposure. The 
application of omics approaches to C. elegans has now 
started to draw attention to the suitability of models to study 
metabolism. The results of the omics approach can be used 
to interpret the data by combining the phenotype assays, as 
mentioned earlier, which provides valuable data on toxic 
mechanisms. With the advantages of analyzing hundreds of 
metabolites simultaneously, researchers studying C. elegans 

have recently applied metabolomic approaches to toxicology 
studies (Table 3). It has been reported that when C. elegans 
is exposed to nanoplastics, it affects the energy-related 
metabolism, such as the TCA cycle and lipid metabolism 
(Hughes et al. 2009; Kim et al. 2019a; Liu et al. 2020; Rat-
nasekhar et al. 2015; Sudama et al. 2013; Yang et al. 2020). 
Ingestion of plastics affects the absorbance of the energy 
source, which eventually induces dysregulation of energy 
metabolism. Perturbation of metabolites was also observed 
when exposed to atrazine; in particular, metabolites involved 
in glycolysis, pyrimidine metabolism, and glycerophospho-
lipid metabolism, consisting of amino acids and lipids and 
energy metabolism, were affected (Yin et al. 2020). Addi-
tionally, C. elegans were exposed to the antibiotic triclosan, 
a popular antibacterial agent in household and personal care 
products. Triclosan mainly affects the TCA cycle interme-
diates, carbohydrates, amino acids, and polyamines. Other 
phenotypes such as locomotion, reproduction, and ROS were 
monitored, and stress response was also confirmed in the 
transgenic strain (Kim et al. 2019b). This study refers to the 
risk of pharmaceuticals being exposed to soil environments.

Currently, there are few publications regarding metabo-
lomics studies on C. elegans. Since metabolic profiling can 
provide a comprehensive evaluation of toxic effects on bio-
logical mechanisms, it is encouraged to apply metabolomics 
in C. elegans to assess the toxicity of diverse compounds.

Toxicity of environmental pollutants using C. 
elegans as a model organism

With the development of science and technology, environ-
mental pollutants, such as plastics and pharmaceuticals, have 
become easily accessible through mass production. These 
contaminants are continuously detected in various environ-
ments, such as aqueous, soil, and wastewater; accordingly, 
there is a growing interest in assessing the toxic effects of 
these pollutants on the environment and humans. C. elegans 
has been widely used in toxicity research for a long time. 
After treatment with various environmental toxic substances, 
various phenotypic analyses, and changes in metabolic pro-
cesses were elucidated using a metabolomics approach. This 
section discusses the types of environmental toxicants and 
their toxic mechanisms in C. elegans.

Plastics are among the most widely detected environ-
mental pollutants; their uptake and potential toxic effects 
on model organisms are attractive to researchers. There-
fore, several studies have elucidated the toxic mechanisms 
of plastics in many different ways. Lei et al. studied the toxic 
effects of polystyrene depending on the size of plastics, 
which ranged from 0.1 ~ 5.0 μm (Lei et al. 2018a). Accord-
ingly, 1.0-μm sized polystyrene had the most severe tox-
icity, displaying the lowest survival rate and significantly 
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decreased body length and lifespan. Gene expression studies 
confirmed toxic mechanisms. Downregulation of unc-17 and 
unc-47 implied the induction of damage in cholinergic and 
GABAergic neurons. Additionally, gst-4, which encodes a 
key enzyme in oxidative stress, was significantly increased, 
implying that oxidative damage was induced upon exposure 
to microplastics. Since plastics are eminent pollutants, sev-
eral studies were conducted using C. elegans, confirming 
the findings above (Hu et al. 2020; Jewett et al. 2022; Yang 
et al. 2021). Collectively, plastics show comprehensive toxic 
effects, including oxidative stress, locomotion, and lifespan 
reduction, in a size-dependent manner.

Bisphenol A (BPA) is widely used in the production of 
thermal paper, bottles, packaging, and many other products. 
It is frequently detected in the environment and needs to 

be carefully studied because it is an endocrine-disrupting 
chemical (EDC) (Björnsdotter et al. 2017; Lombó et al. 
2015). Zhou et al. evaluated the chronic toxicity of bis-
phenol A (BPA) in C. elegans to investigate the biological 
effects of long-term exposure (Zhou et al. 2016). Exposure 
to BPA higher than 0.1 μM significantly affected the growth, 
locomotion, and lifespan of C. elegans. An additional gene 
expression study revealed that cep-1, which regulates the 
stress response in the soma and mediates apoptosis in the 
germline, is related to the BPA-induced toxicity mechanism 
(Zhou et al. 2016). Due to the known toxicity of BPA, vari-
ous types of bisphenol analogs have been used as a substitute 
(Catenza et al. 2021; McDonough et al. 2021). However, 
their effects on model organisms remain exclusive, and an 
in-depth study of those compounds should be conducted.

Table 3  Representative environmental pollutants tested toxicity for metabolic profiles

Environmental pollutants Concentration Affected metabolic pathways References

Particles
  Nanopolystyrene (PS) (50, 200 nm) 17.3, 86.8 mg/L TCA cycle

Valine, leucine, and isoleucine biosyn-
thesis

Glycine, serine, and threonine metabolism
Alanine, aspartate, and glutamate metabo-

lism

Kim et al. 2019a

  Titanium dioxide nanoparticles 
(< 25 nm)

7.7 and 38.5 mg/L Glycine, serine and threonine metabolism
Cyanoamino acid metabolism
Oxalate glyoxalate metabolism
Alanine, aspartate, and glutamate metabo-

lism
Glutamine, Glutamate metabolism
Inositol phosphate metabolism
Ascorbate and aldarate metabolism

Yin et al. 2020

Chemicals
  Triclosan 0.1 and 1 mg/L Glycine, serine and threonine metabolism

Tyrosine metabolism
Starch and sucrose metabolism
Valine, leucine, and isoleucine biosyn-

thesis
Alanine, aspartate, and glutamate metabo-

lism

Kim et al 2019a, b

  Atrazine 4 mg/L Glycerophospholipid metabolism
Glycolysis/gluconeogenesis
Folate biosynthesis
Glycine, serine, and threonine metabolism
Pyrimidine and purine metabolism

Ratnasekhar et al. 2015

  Perfluorooctane sulfonate (PFOS)
  Perfluoroctanoate (PFOA)

0.5 mg/L
2.0 mg/L

Aminoacyl-tRNA biosynthesis
Phenylalanine, tyrosine, and tryptophan 

biosynthesis
Valine, leucine, and isoleucine biosyn-

thesis
Lipid metabolism

Kim et al. 2020

  Cadmium 12 μM Transsulfuration pathway
Phytochelatin synthesis

Hughes et al. 2009

  Lead 0.66, 1.32, 2.64, and 5.27 mM Pyrimidine and purine metabolism
Phenylalanine, tyrosine, and tryptophan 

biosynthesis

Sudama et al 2013
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Engineered nanoparticles are frequently used in daily 
consumer products, including sunscreens and cosmetics. 
Titanium dioxide  (TiO2) nanoparticles are the most fre-
quently used (Wang et al. 2018a). Upon exposure to  TiO2 
nanoparticles, fertility and survival were affected, and gene 
expression of cyp35a2 was upregulated. This gene is related 
to fat storage pathways, which may be a defensive response 
to the  TiO2 nanoparticle-induced toxicity (Roh et al. 2010). 
Since plastics are one of the highest contaminants in the 
environment, their combinational effect also needs to be 
studied. Dong et al. evaluated the combined effect of  TiO2 
nanoparticles and nanopolystyrene (Dong et al. 2018). Syn-
ergistic toxic effects were observed under oxidative stress, 
while there was no enhancement in locomotion or brood 
size. This study implies a possible enhancement of the 
toxicity of nanopolystyrene particles. To understand the 
actual environmental conditions, these types of combined 
toxic effects should be further studied with other types of 
contaminants.

Some studies have focused on the toxicity of POPs, ubiq-
uitous compounds in the environment (Chen et al. 2019). 
POPs are hardly degraded and prone to bioaccumulation, 
inducing higher toxicity. Since POPs can negatively impact 
the environment, assessing the toxic effect of these com-
pounds is gaining interest and is widely studied in various 
model organisms, including C. elegans. Perfluorooctane sul-
fonate (PFOS) is a type of POPs extensively used in indus-
trial applications due to its water- and oil-repellent proper-
ties and thermal and chemical stability (Kim et al. 2020). 
Exposure to PFOS-induced retardation of gonad develop-
ment, DNA damage in germ cells, and ROS production. 
These results suggested that ROS caused DNA damage, 
which might cause reproductive toxicity in C. elegans (Guo 
et al. 2016).

Antibiotics are vital to treat infectious diseases in humans 
and animals. Overuse of these antibiotics can cause these 
chemicals to reach the environment, adversely affecting the 
organisms. Various monitoring studies have reported the 
detection of antibiotics in various environmental backgrounds. 
It has been frequently detected in aquatic and soil environ-
ments, and food sources (Li et al. 2020b; Majdinasab et al. 
2020; Zhi et al. 2019). Therefore, many studies have been con-
ducted to elucidate these unintended effects. Yu et al. evaluated 
the adverse effects of sulfonamide antibiotics on food availabil-
ity (Yu et al. 2018). Exposure to sulfonamide-induced growth 
inhibition and oxidative stress. These effects were enhanced 
by high food availability, indicating that sulfonamide uptake 
was facilitated by dietary exposure. Since the availability of 
food and other types of contaminants can affect the behavior 
of toxicants, these combination effects should be carefully con-
sidered. Triclosan is a bactericidal agent in numerous health 
care and consumer products. Overuse of this antibiotic lead to 
its detection in human biospecimens, including plasma, urine, 

and breast milk (Bilal et al. 2020). Therefore, many model 
organisms have been applied to evaluate the effect induced 
by exposure to triclosan, and C.elegans was one of the model 
organisms to evaluate the effect on soil organisms. Exposure 
to triclosan induced perturbation of key metabolic pathways, 
including carbohydrates and amino acids metabolism related 
to energy production, and affected phenotype of organisms 
such as reproduction, locomotion, and oxidative stress (Kim 
et al. 2019b). As discussed in this section, environmental pol-
lutants have chemical diversities that induce different toxicity 
mechanisms. Additionally, they can interact with each other 
to exert synergistic effects in actual environmental conditions. 
Therefore, in-depth toxicity studies of these various environ-
mental contaminants are encouraged for environmental risk 
assessment.

C. elegans holds considerable promise 
for the environmental toxicity study

An essential advantage of using C. elegans is the ease of 
culturing and handling and the low maintenance cost (Hunt 
2017). Additionally, the phenotype research method is well 
established, and it has the advantage of being able to conduct 
research in a short time using a minimal sample volume 
(Boyd et al. 2010a, b, 2012; Xiong et al. 2017). Furthermore, 
ethical approval is generally not required for this study, 
unlike other animal studies.

C. elegans has various mutants, and genes orthologous 
to humans render C. elegans a powerful model organism 
for environmental toxicity research, which also presents 
several advantages (Hochbaum et al. 2010; Kutscher and 
Shaham 2014). Transgenic strains using fluorescent proteins 
can interact with genes and respond to external stress (Hen-
derson and Johnson 2001; Wang et al. 2012). Additionally, 
RNA interference (RNAi) gene silencing using bacteria can 
be studied using this model (Kamath and Ahringer 2003; 
Tabara et al. 1998).

With these advantages, C. elegans has been applied 
in various research fields. Nonetheless, to strengthen the 
research process, it is necessary to validate the research 
method used in the toxicity evaluation with factors through 
repeatability and inter-laboratory precision. In addition, it 
is essential to standardize the culture conditions, such as 
the medium recipe or temperature used in the experimental 
method, for their extensive use by research groups dedicated 
to C. elegans studies.

Future perspective

The increasing occurrences of environmental pollutants have 
been reported, significantly increasing research on assessing 
their toxic effects on the environment. As emphasized many 
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times in this review, C. elegans is an experimental model that 
can rapidly and conveniently confirm the effects of toxicants 
on the environment. Toxic responses can be identified through 
various phenotypic assays and advanced omics technologies 
can shed light on comprehensive biochemical effects. To date, 
various research groups have widely conducted environmental 
science research using C. elegans, but there are significant 
research areas that necessitate in-depth investigation. Most 
studies on C. elegans have conducted toxicity investigation 
under laboratory conditions using NGM or liquid medium. 
The high ionic strength of NGM also promotes plastic aggre-
gation and can interact with other contaminants. Therefore, it 
is essential to study how the culture conditions used in labora-
tory environments affect the results of toxicity studies.

A typical workflow and considerations for a study using 
C. elegans are shown in Fig. 2. As mentioned, C. elegans 
culture condition should be first optimized for the environ-
mental contaminants. Then, treatment concentration needs 
to be optimized with a lethality assay along with prior 
knowledge of the environmentally practical concentrations. 
Treatment conditions could be categorized as single-dose 
or dose-dependent treatment and acute or chronic exposure. 
The developmental stage for the experiment should also be 
selected. Furthermore, the influences of the toxicants on 
the later generations of living species could also be readily 
investigated using C. elegans.

When toxicity is evaluated by functional omics 
approaches, such as metabolomics and lipidomics, extraction 
methods, analytical parameters, and other aspects of metab-
olomics should be considered carefully. Multi-omics data 
integration is arguably an all-inclusive framework for giving 
better insights into the dysregulations of C. elegans exposed 
to the toxicant at the molecular level. Furthermore, the role 
of genetic variants, including mitochondrial mutations, 
should also be examined for a comprehensive understanding 
of the effects of pollutants on living species. In natural envi-
ronments, organic compounds co-exist with contaminants. 
Accordingly, more effort should be put into the interactions 
between organic and toxic substances in the environment. In 
some instances, it is necessary to study these effects because 
they can influence the mechanism of exposure by interact-
ing with each other. This will help us understand the effects 
of the actual natural environment. Additionally, there could 
be a difference in experimental conditions between in situ 
environments and lab studies. These potential differences are 
important factors that need to be considered when conduct-
ing lab assays using model organisms.

In conclusion, C. elegans has been increasingly studied 
as an alternative in vivo model for toxicity studies. Nonethe-
less, it is still developmental compared with conventional 
experimental models such as rodents or zebrafish. Further 
technical standardization and method optimization are still 

Fig. 2  A typical workflow of enviromental toxicology study using C. elegans as model organism
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required to maximize the acquisition of biological variance 
and reduce technical noise. A comprehensive understand-
ing of the environmental toxicants and living species can 
be achieved by combining proper experimental conditions, 
advanced techniques for data acquisition, and appropriate 
functional interpretation.
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