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Abstract
Accumulating evidence suggested that the risk of preterm births (PTBs) following prenatal exposure to air pollution was 
inconclusive. The aim of this study is to investigate the relationship between air pollution exposure in the days before delivery 
and PTB and assess the threshold effect of short-term prenatal exposure to air pollution on PTB. This study collected data 
including meteorological factors, air pollutants, and information in Birth Certificate System from 9 districts during 2015–
2020 in Chongqing, China. Generalized additive models (GAMs) with the distributed lag non-linear models were conducted 
to assess the acute impact of air pollutants on the daily counts of PTB, after controlling for potential confounding factors. 
We observed that  PM2.5 was related to increased occurrence of PTB on lag 0–3 and lag 10–21 days, with the strongest on 
the first day (RR = 1.017, 95%CI: 1.000–1.034) and then decreasing. The thresholds of  PM2.5 for lag 1–7 and 1–30 days 
were 100 μg/m3 and 50 μg/m3, respectively. The lag effect of  PM10 on PTB was very similar to that of  PM2.5. In addition, the 
lagged and cumulative exposure of  SO2 and  NO2 was also associated with the increased risk of PTB. The lag relative risk 
and cumulative relative risk of CO exposure were the strongest, with a maximum RR at lag 0 (RR = 1.044, 95%CI: 1.018, 
1.069). Importantly, the exposure–response curve of CO showed that RR increased rapidly when the concentration exceeded 
1000 μg/m3. This study indicated significant associations between air pollution and PTB. The relative risk decreases with 
day lag, while the cumulative effect increases. Thus, pregnant women should understand the risk of air pollution and try to 
avoid high concentration exposure.
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Abbreviations
PTB  Preterm birth
PM2.5  Particulate matter 2.5
PM10  Particulate 10
SO2  Sulfur dioxide
NO2  Nitrogen dioxide

CO  Carbon monoxide
O3  Ozone
DLNM  Distributed lag non-linear models
SD  Standard deviation
IQR  Inter-quartile range
RR  Relative risk
CRR   Cumulative relative risk
CI  Confidence interval

Introduction

Preterm birth (PTB) is a serious complication of pregnancy 
and is used as a predictor of neonatal mortality (Rocha 
et al. 2022). Due to the imperfect development of various 
body systems, premature infants are prone to severe 
multiple systems diseases, and high mortality and disability 
(Hamilton et al. 2015; McCormick et al. 2011). In the past 
20 years, the incidence of PTB is increasing worldwide, 
making PTB a global problem in public health. According to 
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the reports, more than one in ten babies are born prematurely 
each year worldwide. In China, the PTB rate ranges from 5% 
to 15%, the second highest in the world, with more than 1.17 
million premature babies born each year (Lim et al. 2012; 
Zhao et al. 2015).

Previous epidemiologic researches have suggested that 
PTB is the outcome of the combined action of multiple 
factors, such as life behavior, psychological behavior, 
and genetic factors (Falah et al. 2013). Although there is 
such a growing body of studies assessing the influence of 
air pollutant exposure on PTB, some of these studies only 
focus on a certain single pollutant or use a sample size 
of PTB that is relatively limited. Further still, the results 
of the correlation between air pollution and PTB are 
inconsistent and not suitable to directly extrapolate them 
to areas with higher levels of air pollution. Moreover, the 
environmental air pollution components and concentrations 
in these studies have also varied (Li et al. 2021a, 2021b; 
Siddika et al. 2020; Smith et al. 2020; Warren et al. 2020). 
In summary, therefore, in rapidly developing countries with 
high concentrations of air pollutants, extremely high levels 
of air pollutants may increase the risk of PTB (Li et al. 2018; 
Qian et al. 2016).

However, the research on acute effects and analysis of 
air pollutants exposure on PTB has been less reported. It 
has also been hypothesized that the short-term relationship 
between PTB and air pollutants might relatively difficult 
to detect because of the seasonal character of PTB rates 
(Darrow et al. 2009; Stieb et al. 2019).

The goal of this paper, therefore, was to assess the 
influence of acute maternal exposure to air pollution on PTB 
in Chongqing, China, for the years 2015–2020. It is also 
meaningful to explore the thresholds for the risk of PTB due 
to short-term prenatal air pollution exposure, and thereby 
improve the understanding of PTB prevention overall.

Material and methods

Study area

This study was conducted in Chongqing, China, using 6-year 
daily data from a retrospective cohort study with multicenter. 
Chongqing has an area of 82,400  km2 and is located between 
105°11′ N and 28°11′ E. It is an iron, petrochemical and 
aluminum industrial center in the southwest of China. 
Chongqing is known as the “Fog City” because of its special 
basin topography and meteorological conditions that impede 
the diffusion of ambient air pollutants. According to data 
gathered from the Chongqing Municipal Bureau of Statistics 
in 2020, Chongqing has a total population of 32.05 million. 
Its urban population accounts for 65.9% of that total, which 
ensures the stability of the population characteristics in this 

research effort. The main urban area had closely connected 
districts: Yuzhong, Jiangbei, Dadukou, Shapingba, 
Jiulongpo, Nanan, Beibei, Yubei, and Banan.

Data collection

In this study, we obtained the birth outcome data from the 
Chongqing Birth Certificate System, collected between 
2015 and 2020. The birth certificate data includes the child’s 
date of birth, permanent address, gestational age, etc. After 
childbirth, birth information of the baby is filled by health 
care attendants or midwives in the Neonatal Care Record 
System, which is then would be verified logically and 
specifically and uploaded to the information system. Before 
the birth certificate is issued, the parents and the Healthcare 
Commission confirm the information. We excluded those 
data that lacked gestational age and non-urban residents. 
Our analyses were based on 59,8018 births after exclusions, 
and a total of 35,044 premature babies were included. PTB 
was defined as a birth with less than 37 weeks of gestational 
(Blencowe et  al. 2012; Warren et  al. 2020). The birth 
certificate data was used to evaluate the number of PTB 
babies in Chongqing during the designated research period.

Exposure assessment

During the study period, ambient air pollutant concentrations 
were obtained from the Chinese National Urban Air Quality 
Monitoring Platform (http:// zhb. gov. cn) for 17 ground-based 
monitoring stations in Chongqing. We calculated the 24-h 
average particles with a diameter < 2.5 and < 10 μm  (PM2.5, 
 PM10), nitrogen dioxide  (NO2), sulfur dioxide  (SO2), and 
carbon monoxide (CO); ozone  (O3) was an 8 h maximum 
value concentration. For each day, we averaged the data from 
the available monitors to compute mean values for the whole 
city. Daily average relative humidity and temperature were 
available from the China Greenhouse Data Sharing Platform 
(http:// data. shesh iyuan yi. com). Imputation of missing data 
was done using multiple linear interpolation based on other 
monitors’ values.

Statistical analysis

We used a quasi-Poisson GAM with the distributed lag 
non-linear models (DLNMs) to estimate associations of 
daily new case of PTB with air pollution exposure. The 
model was the following:
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where t  as the observation day, the outcome E
(

Yt
)

 
refers to the observed daily PTB counts. ∝ is the inter-
cept, Pollutiont represents the pollutant concentration on 
day t  , Tempt represents the temperature, RHt represents 
the relative humidity; Timet is time trend. cb

(

Tempt, lag
)

 , 
cb
(

RHt, lag
)

 and cb
(

Pollutiont, lag
)

 indicates the matrix of 
temperature, relative humidity and air pollutants, respec-
tively. Then, we use the DLNMs by the definition of a 
“cross-basis” function, a two dimensional function space 
expresing the influence of the predictor range and in 
its lag dimention. ns() denotes a natural cubic smooth 
spline function that removes unmeasured long-term and 
seasonal trend from the time series data set. DOWt repre-
sent the day of week; holidayt represent dummy variable 
(0 indicates non-holiday, and 1 indicates a holiday).

The maximum lag day was determined according to the 
Akaike information criterion for quasi-likelihood models 
(QAIC). The formula of QAIC was shown as follows:

where c is the variance expansion factor, L is the like-
lihood function, and k is the formula parameters. In fact, 
the longer the lag time, the smaller QAIC would be, and 
too long a lag time might create a large bias. Therefore, 
we selected the maximum lag day up to 30 days accord-
ing to the local minimum QAIC. Sensitivity analyses were 
made by changing the degree of freedom (df) for time (6–8 
df/year). Finally, we selected the df of the natural cubic 
smooth splines of time were 7 per year in all the models. 
We assessmented relative risk (RR) and cumulative rela-
tive risk (CRR) for each ambient air pollutant in relation to 
preterm birth after an adjustment for two meteorological fac-
tors: daily mean value of temperature and relative humidity.

We used Microsoft Excel software and ArcGIS software 
10.0 to organize and establish the dataset; the DLNM was 

QAIC = −
2 ln (L)

c
+ 2k

employed by using the package dlnm Version 2.3.6 within 
R 4.0.1 software (Vienna, Australia).

Results

Baseline characteristics

Table 1 shows the daily descriptive results. During this 
time, the total number of births was 598,018, and there 
were 35,044 premature births. The daily new case of pre-
mature births was 16, ranging from 1 to a maximum of 
48. Average concentration of  PM2.5,  PM10,  SO2,  NO2,  O3, 
and CO in the six years was 42.44 μg/m3, 66.37 μg/m3, 
10.21 μg/m3, 39.99 μg/m3, 39.75 μg/m3, and 916.08 μg/
m3, respectively. The mean concentration of daily rela-
tive humidity and temperature was 75.12% and 19.92 °C, 
respectively.

The number of PTB and mean concentration of air pol-
lutants fluctuated with months and weeks. Except for  O3, 
the average monthly concentration of air pollutants varied 
obviously with season, with low concentrations in sum-
mer and high concentrations in winter. What is more, the 
preterm birth also occurred more often in winter and less 
so in summer. To be specific,  O3 peaked in the summer 
(Fig. 1, Supplementary Fig. 1).

Spearman correlation

Table 2 depicts the correlation coefficient (r) between 
meteorological factors and air pollutants. The majority of 
the air pollutants  (PM2.5,  PM10,  SO2,  NO2, and CO) were 
positively and strongly correlated to others. The correla-
tion between  PM2.5 and  PM10 was very close (r = 0.96).  O3 
was weekly and negatively correlated to other pollutants 

Table 1  Summary of daily 
average concentrations of 
environmental variables 
and weather conditions in 
Chongqing

Variables Mean ± SD Min Percentile Max

25th 50th 75th

Preterm birth 16.00 ± 7.40 1.00 10.00 15.00 21.00 48.00
Air pollution
PM2.5 (μg/m3) 42.44 ± 23.96 7.47 26.52 36.38 51.57 165.94
PM10 (μg/m3) 66.37 ± 32.03 13.06 44.80 59.85 79.91 228.76
SO2 (μg/m3) 10.21 ± 4.51 3.76 7.01 8.94 12.29 38.53
NO2 (μg/m3) 39.99 ± 11.35 12.24 31.76 38.26 47.18 81.82
O3 (μg/m3) 39.75 ± 25.25 4.41 20.41 33.53 53.52 142.65
CO (μg/m3) 916.08 ± 217.43 466.47 766.50 879.71 1025.88 2975.882
Meteorological factors
Temperature (°C) 19.92 ± 7.81 1.20 12.70 20.30 26.30 36.50
Relative humidity (%) 75.12 ± 11.6 37.00 68.00 76.00 84.00 97.00
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with r range from − 0.15 to − 0.51. Moreover, correlations 
were observed negative, moderate and significant between 
meteorological factors and air pollutants.

Associations between air pollutant exposure 
and PTB

Figure  2 shows exposure-lag-response surfaces as RR 
describing the non-linear relationship between premature 
births and air pollutants along 30 lag days. The lag days 
is represented by one bottom edge of the cube, and the 
air pollution is represented by the other bottom edge. The 
height of the cube represents the RR of PTB.

Figure 3 demonstrates the RR and 95% CI of PTB with 
every 10 μg/m3 increase of each air pollutant in single-
day (lag 0–30). The curve confirms a positive correlation 
between  PM2.5 and PTB on lag 0–3 and lag 10–21 days, 
and the strongest influence in PTB associated with 
a 10 μg/m3 increase was at lag 0 (RR = 1.017, 95%CI: 
1.000–1.034). The lag response curve of  PM10 was simi-
lar to that of  PM2.5, and the significant effect for  PM10 on 
PTB was observed on lag 0–4 and lag 10–22 days. An 
obviously positive correlation between premature birth 
and maternal exposure with per 10 μg/m3 increase of  SO2 
was observed on lag 1–11 and lag 16–17 days. For  NO2, 
an increased risk of PTB was observed on lag 0–3 and lag 
16–27 days and peaking at the lag day 23 (RR = 1.017, 
95%CI: 1.007–1.027).

O3 had a negative correlation with the risk of PTB 
between 0 and 4  days. Short-term exposure to CO did 
increase the risk of PTB, and the maximum RR values of CO 
with a 100 μg/m3 increment was found at lag 0 (RR = 1.044, 
95%CI: 1.018–1.069) and then fell gradually. By lag day 
23, the effect of CO was no longer present (see Table 1 of 
Supplementary Information).

Figure 4 shows the overall CRR of air pollutants exposure 
and PTB with a lag of 1–3 days, 1–7 days, and 1–30 days. 
Analysis of the relationship revealed that the overall cumu-
lative relative risk (CRR) of PTB had an approximately 
J-shape with  PM2.5 and  PM10. The cumulative relative risk of 
 PM2.5 over 100 μg/m3 (CRR = 1.058, 95% CI: 1.000–1.120) 
from lag 1–7 and over 50 μg/m3 (CRR = 1.021, 95%CI: 
1.006–1.036) from 1 to 30 was statistically significant. 
Similarly, the cumulative relative risk of  PM10 over 70 μg/
m3 (CRR = 1.010, 95%CI: 1.003–1.016) from lag 1–30 was 
significant. The highest risk of  SO2 from lag 1–3 days was 
at 20 μg/m3 (CRR = 1.069, 95% CI: 1.023–1.117) during 
15–25 μg/m3. The cumulative relative risk of  SO2 over 
15 μg/m3 from lag 1–7 (CRR = 1.074, 95% CI: 1.035–1.115) 
and lag 1–30 (CRR = 1.252, 95% CI: 1.174–1.335) were sta-
tistically significant. The 1–30 days cumulative relative risk 
effect of  NO2 was statistically significant at a concentration 
above 45 μg/m3. Notably, the overall cumulative relative risk 
of  O3 was a U-shape. When the concentration was lower 
than 30 μg/m3 or higher than 80 μg/m3, the CRR value was 
statistically significant, and the concentration between 40 

Fig. 1  Distribution character-
istics of monthly and weekly 
count of PTB in Chongqing, 
China, between 2015 and 
2020. The two figures show the 
variation in the mean (A is the 
monthly average, and B is the 
weekly average), and the shad-
ing shows the extent to the 95% 
confidence interval for the mean

Table 2  Spearman coefficients 
between meteorological factors 
and daily ambient air pollutants 
in Chongqing, 2015–2020

*P < 0.05.

PM2.5 PM10 SO2 NO2 CO O3 Temperature

PM10 0.96*
SO2 0.64* 0.71*
NO2 0.66* 0.73* 0.59*
CO 0.71* 0.68* 0.59* 0.61*
O3  − 0.30*  − 0.18*  − 0.15*  − 0.19*  − 0.47*
Temperature  − 0.25*  − 0.17*  − 0.13*  − 0.21*  − 0.28* 0.51*
Humidity  − 0.04  − 0.14*  − 0.21*  − 0.05* 0.12*  − 0.42*  − 0.46*
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Fig. 2  Three-dimensional (3D) lag-response curves specific to air pollutants for PTB
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and 70 μg/m3 negatively correlated with PTB. The cumula-
tive relative risk effect of CO exposure showed that CRR 
increased significantly after 1000 μg/m3, with significant 
statistical significance in lag for 1–3 days, 1–7 days, and 
1–30 days (Table 3).

Discussion

This study suggested that the daily exposures to  PM2.5, 
 PM10,  SO2, CO, and  NO2 and during pregnancy were 
positively correlated with the increased risk of PTB after 
adjusting for mean relative humidity and temperature at 
lag 0–30 days. At the time of this study, both the levels of 
 PM2.5 and  PM10 were exceeded the first-level of National Air 
Quality Standards (NAQS) values  (PM2.5: 35 μg/m3;  PM10: 
50 μg/m3). That means the particulate matter pollution was 
quite severe in Chongqing, China. Furthermore, compared 
with developed countries, China had a longer particulate 
matter exposure duration and a higher magnitude (Guan 
et al. 2016; Sun et al. 2021). The levels of CO,  O3,  NO2, and 
 SO2 were below the primary standard (CO: 4000 μg/m3;  O3: 
100 μg/m3;  NO2: 80 μg/m3;  SO2: 50 μg/m3) in the NAQS. 

As far as we know, this is the first study to assess the impact 
of short-term air pollutants exposure on PTB with such a 
pollution level in Chongqing.

Previous researches suggested that the risk of preterm 
births (PTBs) following prenatal exposure to air pollution 
was inconclusive. Huang et al. found that an interquartile 
range increases in  NO2,  SO2 and  O3 were related with 0.46% 
(95%CI: − 0.25 ~ 1.23), 0.37% (95%CI: − 1.77 ~ 2.57) and 
2.09% (95%CI: − 8.00 ~ 13.29) increase risk for PTB at lag 2, 
respectively (Huang et al. 2020). One large study in Chang-
sha, China, covering 78 midwifery institutions and 344,880 
live births, reported that  NO2 was associated with PTBs on 
lag 0–2, lag 4, and lag 5 (Xiong et al. 2019). In another 
study, Lee et al. suggested that cumulative exposure to  O3 
and  PM10 from 0 to 6 days before birth was not associated 
with the risk of PTBs (Lee et al. 2008). The threshold for the 
impact of air pollution is generally expected to protect peo-
ple’s health by controlling pollutants below this concentra-
tion (Li et al. 2016). Fleischer et al. reported that the possible 
threshold effect of  PM2.5 on PTB is 36.5 mg/m3 (Fleischer 
et al. 2014). DeFranco et al. observed that maternal exposure 
to high concentrations of  PM2.5 in excess of 15 μg/m3 was 
associated with PTB significantly (DeFranco et al. 2016). A 

Fig. 3  The lag-response relationship between PTB incidence and air pollutants at different lag days from 2015 to 2020. Reference value:  PM2.5 
at 42.44 μg/m3;  PM10 at 66.37 μg/m3;  SO2 at 10.21 μg/m3;  NO2 at 39.99 μg/m3;  O3 at 39.75 μg/m3; CO at 916.08 μg/m.3
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Spanish study observed that perinatal exposure to a certain 
high concentration of traffic-related air pollution (such as 
 NO2 > 46.2 mg/m3) was associated with PTB (Llop et al. 
2010). While, the results of a Beijing research suggested 
that there was a correlation between pollutants and preterm 
birth, but with no evidence of a threshold (Guan et al. 2019).

In this paper, short-term air pollution exposure was 
significantly associated with a higher risk of PTB in few 
days before birth. For a 10 μg/m3 increment in  PM2.5 con-
centration, the strongest effect on PTB was on lag 0 day 
(RR = 1.017, 95%CI: 1.000–1.014), which was higher than 
in Xuzhou and Beijing (Guan et al. 2019; Li et al. 2021b). 
Similarly, exposure to  PM10 can also acutely affect PTB. 
Moreover, Leem et al. observed that exposure to  SO2 in 
the last trimester of maternal with percutaneous translu-
minal dilatation (PTD) was statistically significant (Leem 

et al. 2006). Moreover, our results showed that exposure 
to  SO2 positively correlated with premature birth, and  SO2 
has a long effect of 20 days. There was a positive corre-
lation between PTB and  NO2 on lag 0–3 and 16–27 days, 
and peaking on the 23th day. In contrast, Ji et al. suggested 
that the relationship between PTB and  NO2 exposure was 
not significant during the first and second trimesters, com-
pared to significant correlations in the last week and last 
month before labor (Ji et al. 2019). We found the highest 
risk for PTB occurred with CO in the short term, and the 
relative risk value was highest at lag 0 (RR = 1.119, 95%CI: 
1.049–1.194). The proposed mechanism of action related 
to tissue oxygenation, especially CO binding to fetal hemo-
globin to reduce the availability of oxygen. The unexpected 
negative relationship between  O3 and PTB was found 
between the 0–4 lag days. This may be interpreted by the 

Fig. 4  Exposure–response curves for the effect of air pollutants 
on daily counts of PTB at 1–3, 1–7, and 1–30 lag days. X-axis: the 
concentration of each air pollutant; y-axis: the relative risk of air 

pollution on PTB. Reference value:  PM2.5 at 42.44  μg/m3;  PM10 
at 66.37  μg/m3;  SO2 at 10.21  μg/m3;  NO2 at 39.99  μg/m3;  O3 at 
39.75 μg/m3; CO at 916.08 μg/m.3
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inverse association between  O3 and other assessed air pollut-
ants (Nobles et al. 2019; Reynolds et al. 2019). Conversely, 
some studies found that  O3 and CO were not associated with 
PTB (Guan et al. 2019; Liu et al. 2019). Interestingly, we 
observed that although the relative risk of  PM2.5,  PM10,  NO2, 
 SO2, and CO fluctuated with lag days, and the overall rela-
tive risk did show a downward trend.

This current study indicates that the cumulative relative 
risk of air pollutants increases with the increase of lag days, 
with evidence of a threshold. The cumulative relative risk 
of  PM2.5 and  PM10 exposure lags 1–7 days and 1–30 days, 
showing that the effect was strong after 50 μg/m3. In Huang’s 
analysis, when air pollution level was high in terms of  PM2.5 
(75 μg/m3), the risk of PTB was higher, and the curve pre-
sented as a rapid growth (Huang et al. 2020). The cumula-
tive relative risk of  SO2 over 15 μg/m3 from lag 1–7 and lag 

1–30 was statistically significant. Moreover, in Li’s study, 
the curve of  SO2 was similar to that in our analysis, but 
the relationships between  PM10 and  PM2.5 were not signifi-
cant (Li et al. 2016). Increased concentrations of  NO2 above 
45 μg/m3 were positively associated with an increased risk 
of PTB in this paper. However, Llop’s study suggested that 
exposure to  NO2 above 46.2 mg/m3 was associated with PTB 
(Llop et al. 2010). Our analysis found that the associations 
between  O3 and PTB were generally U-shaped. That is, a 
threshold effect of  O3 was indicated. Exposure to CO has 
the strongest effect on the occurrence of PTB, and the cumu-
lative relative effect increases greatly after CO level over 
1000 μg/m3, whether there is a lag of 1–3 days or 1–7 days 
or 1–30 days. In addition, we found the overall accumulative 
relative curves relatively flattened out at low levels and were 
steep at higher levels, which is inconsistent with the results 

Fig. 4  (continued)
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Table 3  The overall cumulative 
association between air 
pollutants and PTB

Level (μg/m3) Lag 1–3 days Lag 1–7 days Lag 1–30 days

RR 95%CI RR 95%CI RR 95%CI

PM2.5

20 1.001 (0.980, 1.022) 1.014 (0.978, 1.051) 0.960 (0.904, 1.020)
40 1.000 (0.998, 1.001) 1.001 (0.998, 1.003) 0.995 (0.991, 1.000)
60 1.004 (0.994, 1.015) 1.004 (0.986, 1.022) 1.053 (1.022, 1.086)
80 1.014 (0.994, 1.035) 1.024 (0.989, 1.059) 1.138 (1.066, 1.214)
100 1.029 (0.996, 1.063) 1.058 (1.000, 1.120) 1.250 (1.110, 1.408)
120 1.048 (0.996, 1.103) 1.105 (1.011, 1.209) 1.391 (1.144, 1.692)
140 1.069 (0.992, 1.152) 1.163 (1.020, 1.326) 1.562 (1.170, 2.084)
160 1.093 (0.988, 1.209) 1.229 (1.028, 1.468) 1.763 (1.192, 2.606)
PM10

20 0.993 (0.961, 1.026) 1.005 (0.950, 1.064) 0.919 (0.827, 1.021)
40 0.995 (0.979, 1.012) 1.000 (0.972, 1.029) 0.949 (0.901, 1.001)
60 0.999 (0.996, 1.002) 0.999 (0.994, 1.005) 0.987 (0.977, 0.997)
80 1.004 (0.997, 1.010) 1.004 (0.994, 1.015) 1.036 (1.016, 1.056)
100 1.010 (0.997, 1.023) 1.016 (0.993, 1.039) 1.099 (1.052, 1.147)
120 1.018 (0.997, 1.039) 1.033 (0.997, 1.071) 1.176 (1.093, 1.265)
140 1.028 (0.996, 1.060) 1.056 (1.001, 1.115) 1.268 (1.131, 1.422)
160 1.038 (0.992, 1.086) 1.084 (1.002, 1.172) 1.377 (1.163, 1.630)
180 1.049 (0.986, 1.117) 1.115 (1.000, 1.243) 1.502 (1.189, 1.896)
200 1.062 (0.979, 1.151) 1.150 (0.998, 1.326) 1.644 (1.211, 2.231)
220 1.074 (0.970, 1.189) 1.188 (0.993, 1.420) 1.803 (1.230, 2.642)
SO2

5 0.966 (0.933, 1.001) 0.944 (0.886, 1.005) 0.780 (0.699, 0.869)
10 1.000 (1.000, 1.000) 1.000 (1.000, 1.000) 1.000 (1.000, 1.000)
15 1.034 (1.013, 1.056) 1.074 (1.035, 1.115) 1.252 (1.174, 1.335)
20 1.069 (1.023, 1.117) 1.170 (1.082, 1.266) 1.531 (1.335, 1.756)
25 1.105 (1.017, 1.200) 1.289 (1.112, 1.494) 1.838 (1.418, 2.382)
30 1.141 (0.996, 1.308) 1.430 (1.120, 1.825) 2.000 (1.419, 3.336)
35 1.179 (0.966, 1.438) 1.595 (1.116, 2.281) 2.554 (1.367, 4.773)
NO2

15 0.989 (0.932, 1.048) 0.975 (0.882, 1.078) 0.975 (0.807, 1.177)
20 0.990 (0.948, 1.034) 0.978 (0.909, 1.053) 0.962 (0.838, 1.105)
25 0.992 (0.963, 1.021) 0.982 (0.935, 1.032) 0.955 (0.871, 1.047)
30 0.994 (0.977, 1.010) 0.987 (0.959, 1.015) 0.956 (0.908, 1.008)
35 0.996 (0.989, 1.003) 0.993 (0.981, 1.004) 0.970 (0.949, 0.991)
40 1.000 (1.000, 1.000) 1.000 (1.000, 1.000) 1.000 (1.000, 1.000)
45 1.005 (0.999, 1.010) 1.009 (1.000, 1.018) 1.050 (1.033, 1.068)
50 1.010 (0.999, 1.021) 1.020 (1.001, 1.039) 1.122 (1.081, 1.165)
55 1.016 (0.998, 1.035) 1.032 (1.000, 1.066) 1.218 (1.139, 1.301)
60 1.023 (0.995, 1.053) 1.046 (0.995, 1.100) 1.338 (1.204, 1.486)
65 1.031 (0.990, 1.074) 1.061 (0.987, 1.141) 1.485 (1.276, 1.728)
70 1.039 (0.983, 1.097) 1.077 (0.976, 1.188) 1.661 (1.354, 2.039)
75 1.047 (0.976, 1.124) 1.094 (0.964, 1.241) 1.869 (1.437, 2.430)
80 1.056 (0.968, 1.152) 1.111 (0.951, 1.298) 2.110 (1.527, 2.914)
O3

10 1.072 (1.034, 1.112) 1.110 (1.044, 1.180) 1.242 (1.147, 1.346)
20 1.043 (1.019, 1.067) 1.063 (1.024, 1.104) 1.136 (1.083, 1.191)
30 1.018 (1.008, 1.028) 1.025 (1.008, 1.043) 1.053 (1.032, 1.075)
40 1.000 (1.000, 1.000) 1.000 (1.000, 1.000) 1.000 (1.000, 1.000)
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in previous researches (Giorgis-Allemand et al. 2017; Guan 
et al. 2019; Pope et al. 2009). However, it is worth mention-
ing that we should be cautious about this result because high 
levels of air pollution are rarely observed.

Associations between air pollutants short-term exposures 
and risk for PTBs may indicate that air pollutants could trig-
ger the biologic mechanism of parturition quickly, bringing 
out PTB in the following days. There are several potential 
biologic mechanisms that could support this association via 
a series of causes, such as inflammation, endocrine disrup-
tion, oxidative stress, blood coagulation, and hemodynamic 
responses (Kumar et al. 2019; Li et al. 2008; Pope et al. 
2004; Slama et al. 2008). Air pollutants can translocate to 
the placenta through villous tissue and thus lead to preterm 
premature rupture of membranes (PPROM) (Bove et al. 
2019; Li et al. 2021a). Simultaneously, when air pollut-
ants are inhaled, cytokines trigger oxidative stress, which 
can cause endothelial dysfunction and the development of 
pregnancy preeclampsia (Yorifuji et al. 2015). In addition, 
trace metals and polycyclic aromatic hydrocarbons (PAHs) 
bound to particulate matter may create potential health risk 
(Ambade et al. 2022a, 2022b; Kumar et al. 2020; Vithanage 
et al. 2022).

There are many underlying factors responsible for the dif-
ferent results found from study to study. Firstly, air pollu-
tion levels in Chongqing were higher than in most literature. 
From 2015 to 2020, the concentrations of  PM2.5 and  PM10 
were 42.44 μg/m3 and 66.37 μg/m3 in Chongqing, which 

exceeded the NAQS standard. Secondly, the social and 
demographic conditions of the inhabitants of each area may 
be diverse, such as lifestyles, disease patterns, or genetic 
backgrounds. Thirdly, the study period, air pollutant unit 
and statistical model were selected differently in the other 
literature.

Compared to the previous studies, when analyzing the 
relationship between premature birth and air pollution, our 
study has several advantages. We used a large sample size 
of nearly 600,000 total births and 35,044 premature delivery 
cases. This number is at least an order of magnitude more 
than offered in the previous research papers on this topic 
(Chen et al. 2021; Ji et al. 2019; Li et al. 2021b, 2019). 
The dataset included the total number of all eligible birth 
actual occurrences in study areas, covering air pollution data 
gathered from 17 air monitoring sites in Chongqing’s main 
urban area, which effectively reduced any selection bias. 
Moreover, the application of weekly or trimestral data had 
to face the fact that the effect of extreme pollution events 
would be underestimated, thereby averaging their effects 
over long time scales. Additionally, the spatial variability 
of exposure can be effectively reflected by the individual 
exposure estimation based on the detailed home address of 
the mother in this study.

There were some limitations to mention. First of all, we 
obtained the air pollution data from available monitors that 
may not fully represent the maternal exposure level. The 
measured value may overestimate the maternal exposure 

Table 3  (continued) Level (μg/m3) Lag 1–3 days Lag 1–7 days Lag 1–30 days

RR 95%CI RR 95%CI RR 95%CI

50 0.991 (0.983, 0.998) 0.990 (0.977, 1.002) 0.979 (0.966, 0.993)
60 0.990 (0.976, 1.003) 0.993 (0.970, 1.016) 0.988 (0.963, 1.013)
70 0.996 (0.977, 1.015) 1.009 (0.976, 1.043) 1.023 (0.983, 1.064)
80 1.008 (0.982, 1.035) 1.036 (0.991, 1.084) 1.084 (1.021, 1.152)
90 1.027 (0.992, 1.062) 1.075 (1.014, 1.140) 1.173 (1.074, 1.281)
100 1.050 (1.005, 1.097) 1.124 (1.042, 1.212) 1.290 (1.142, 1.458)
110 1.078 (1.020, 1.140) 1.182 (1.074, 1.301) 1.439 (1.224, 1.690)
120 1.110 (1.036, 1.189) 1.250 (1.110, 1.407) 1.621 (1.321, 1.988)
130 1.145 (1.054, 1.244) 1.326 (1.150, 1.529) 1.840 (1.433, 2.362)
140 1.183 (1.073, 1.304) 1.410 (1.192, 1.667) 2.096 (1.557, 2.822)
CO
500 0.974 (0.933, 1.018) 0.972 (0.900, 1.049) 0.833 (0.729, 0.952)
1000 1.008 (1.003, 1.014) 1.014 (1.005, 1.023) 1.046 (1.031, 1.062)
1500 1.085 (1.037, 1.134) 1.178 (1.092, 1.272) 1.464 (1.250, 1.715)
2000 1.206 (1.055, 1.379) 1.503 (1.190, 1.899) 2.249 (1.366, 3.704)
2500 1.372 (1.053, 1.786) 2.038 (1.284, 3.234) 3.676 (1.377, 9.812)
2900 1.533 (1.045, 2.248) 2.661 (1.360, 5.206) 5.573 (1.344, 23.104)

We estimated the effect of each air pollutant per 1 μg/m3 on PTB. The concentration of air pollutants varies 
widely, so we chose to show concentration to make the table more concise. More detail results are available 
in Supplementary Table 2. Boldface indicated statistical significance established at P < 0.05
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level because pregnant women spend most of their time 
indoors. Secondly, the individual risk factors, such as mater-
nal health status and maternal age, were not adjusted because 
of information shortage. Future studies should include per-
sonal risk factors because of their potential changes for 
the correlation between PTB and air pollution (Kingsley 
et al. 2017). Moreover, we did not analyze the relationship 
between air pollutants and very preterm birth (VPTB) in this 
study. Some researches demonstrated that air pollution can 
also increase the incidence of VPTB (Guo et al. 2018; Ju 
et al. 2021; Wang et al. 2018). Meanwhile, we only studied 
the short-term effects of a single pollutant and PTBs, and 
the interactive effect of air pollutants also deserves further 
attention. Therefore, we cannot conclude whether the inter-
active effect of air pollutants introduced potential bias or just 
simply confounded effects with each other.

Conclusion

In conclusion, we found that maternal air pollution exposure 
had short-term and delayed effects on PTB, thereby 
increasing the risk of PTB. This study provides evidence 
from a study of a large population that reducing air pollution 
level to a certain threshold might greatly benefit birth 
outcomes. Pregnant women should be aware of the risk of 
air pollution and avoid exposure to high levels, if possible, 
especially in the last few weeks of pregnancy. This study 
thus has particular important public health significance 
for policy makers who design and implement air pollution 
preventive measures.
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