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Abstract
With the effect of global warming, the frequency of floods, one of the most important natural disasters, increases, and this 
increases the damage it causes to people and the environment. Flood routing models play an important role in predicting 
floods so that all necessary precautions are taken before floods reach the region, loss of life and property in the region is 
prevented, and agricultural lands are protected. This research aims to compare the performance of hybrid machine learning 
models such as least-squares support vector machine technique hybridized with particle swarm optimization, empirical mode 
decomposition, variational mode decomposition, and discrete wavelet transform processes for flood routing estimation models 
in Ordu, Eastern Black Sea Basin, Türkiye. In addition, it is aimed to examine the effect of data division in flood forecasting. 
Accordingly, 70%, 80%, and 90% of the data were used for training, respectively. For this purpose, the flood data of 2009 and 
2013 in Ordu were used. The performance of the established models was evaluated with the help of statistical indicators such 
as mean bias error, mean absolute percentage error, determination coefficient, Nash–Sutcliffe efficiency, Taylor Diagrams, 
and boxplot. As a result of the study, the particle swarm optimization least-squares support vector machine technique was 
chosen as the most successful model in predicting flood routing results. In addition, the optimum data partition ratio was 
found to be Train:70:Test:30 in the flood routing calculation. The findings are essential regarding flood management and 
taking necessary precautions before the flood occurs.

Keywords  Flood routing · Flood management · Particle swarm optimization · Machine learning · Least-squares support 
vector machine

Introduction

Floods cause significant damage to people, and major eco-
nomic and social effects on the environment, including 
flooding homes, disrupting transportation systems, eroding 

fertile land, and damaging crops (Bagatur and Onen 2018; 
Zhou et al. 2018; Mazzoleni et al. 2018; Hadidi et al. 2020; 
Ball 2022). Therefore, flood forecasting, flood control, and 
rapid response management are crucial issues for minimiz-
ing flood damage and taking preventive measures. Also, 
accurately predicting future floods reduces flood losses 
(Yaseen et al. 2015; Yuan et al. 2020; Hassanvand et al. 
2018; Pant et al. 2018).

Flood routing is defined as the calculation of changes in 
the velocity and size of a flood wave over time in any section 
of a stream and is necessary for the design and implementa-
tion of structural and nonstructural flood control measures 
(Hamedi et al. 2016; Barati et al. 2018).

The first one of the flood routing methods used in the 
literature is the hydraulic method. In hydraulic methods, 
the flow is calculated as a function of time and space, and 
the continuity and momentum equations are used for this 
calculation. This method is based on the solution of Saint 
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Venant differential equations, which do not have analytical 
solutions representing the motion of the flood wave. Since 
these equations are difficult to solve, they are solved using 
numerical methods. The main hydraulic routing methods 
are kinematic wave, diffusion wave, Muskingum-Cunge, 
and dynamic wave. The second is hydrological methods, 
such as the Muskingum method and SCS method, which rely 
solely on the principles of conservation of mass. Although 
hydrological processes are simpler than hydraulic methods, 
they generally do not give good results due to the effect of 
counter currents and swells in flooding along a river. For 
the solution of both basic techniques, many parameters such 
as roughness, velocity, cross-sectional area, and flow depth 
are needed. Obtaining and applying these data is costly and 
leads to lengthy calculations (Chow et al. 1988). In addition, 
when the lateral flow is added to the main tributaries of 
the rivers, the flood routing analysis results give high errors 
(Barbetta et al. 2017).

Artificial neural networks (ANNs) are one of the most 
important sub-disciplines of machine learning. The ANN 
technique started with McCulloch and Pitts (1943) mod-
eling of neuronal activity in the brain, and Hebb (1949) pro-
posed a reinforcement-based learning mechanism to express 
the brain’s learning ability. In the following, in the 1990s 
and 2000s, new ML algorithms, such as gene expression 
programming and genetic programming algorithms, were 
developed (ASCE 2000). Due to the disadvantages of physi-
cally based and statistical methods, data-based models in 
ML algorithms have become widespread. Data-based fore-
casting models established with ML algorithms give faster 
results with minimum inputs and provide more straightfor-
ward implementation with low computational costs (Mosavi 
et al. 2018).

Differential equations are used to solve conceptual and 
physically based models, and many parameters are needed. 
However, ML algorithms are data-driven and do not need 
parameters as physically based hydrological models (Tay-
fur et al. 2007; Tayfur and Moramarco 2008; Tayfur 2017). 
Therefore, in ML algorithms, input and output data are suf-
ficient, and high computational efficiency is one of its most 
essential advantages (Zounemat-Kermani et al. 2020; Dazzi 
et al. 2021).

ML algorithms have been used frequently in the field of 
hydrology in recent years and especially least squares sup-
port vector machine (LSSVM), wavelet transform (WT), 
variational mode decomposition (VMD), empirical mode 
decomposition (EMD), and particle swarm optimization 
(PSO) have wide usage areas. Okkan and Serbes (2012) 
determined the applicability of LSSVM to predict runoff 
values and compared with ANN and other algorithms. It 
was found that the LSSVM algorithm is the most successful 
model. Shabri and Suhartono (2012) investigated the ability 
of the LSSVM algorithm to improve the accuracy of flow 

prediction and determined that the LSSVM algorithm is bet-
ter than autoregressive integrated moving average, ANN, 
and SVM models for monthly flow prediction. Sudheer et al. 
(2014) used the SVM-PSO model to predict streamflow 
values and found that the SVM-PSO model gave the most 
accuracy predicts peaks with 0.24 error, whereas ARMA 
predicts peaks with 0.355 error and ANN has 0.266 error. 
Noury et al. (2014) used wavelet function SVM and neu-
ral wavelet network (NWN) models to simulate lake water 
level fluctuation and determined that the SVM model gave 
SSE 0.43, RMSE 0.23, and R2 0.97 better statistics results 
than SSE 1.33, RMSE 0.41, and R2 0.95 statistics of NWN 
model. Huang et al. (2014) used the EMD-SVM, ANN, and 
SVM algorithms for flow estimation and determined that 
among all the models, the EMD-SVM algorithm has the 
best MAE, RMSE, and MAPE statistics of 0.51%, 1.07%, 
and 17.4%, respectively. Granata et al. (2016) researched a 
comparative study of the storm water management model 
(SWMM) and the SVM-based precipitation flow model. It 
was found that the SVM model results had higher coeffi-
cient of determination and lower RMSE error values than the 
SWMM model. Also, the SVM underestimates peak flow by 
up to 10%, while SWMM overestimates peak flow by up to 
20%. After all, the SVM algorithm gave quite good results. 
Seo et al. (2016) used SVM and wavelet packet, adaptive 
neuro-fuzzy inference system and wavelet packet, and ANN 
and wavelet packet to forecast river stage. It was revealed 
that WPANFIS has the best MAE, RMSE, and MSRE sta-
tistics of 0.062, 0.0124, and 0.139, respectively, giving the 
best results among all the models. Zhao et al. (2017) used 
a new hybrid model EMD-based chaotic LSSVM (EMD-
CLSSVM) and CLSSVM for annual flow prediction and 
found that this algorithm reduced the RMSE, MARE, and 
MAE error results by 39%, 28.6%, and 25.6%, respectively. 
Eventually, the proposed hybrid model is superior to the 
CLSSVM hybrid model. Ehteram et al. (2018) developed 
a hybrid bat swarm algorithm (HBSA) model, which is a 
hybrid of PSO algorithm and bat algorithm (BA), for the 
optimal detection of the four parameters of the Muskingum 
method. It has been determined that the SSQ error values 
of the proposed HBSA algorithm are 65% and 72% lower 
than those of the BA and PSO algorithms and give perfect 
flood routing results compared to the other methods. Seo 
et al. (2018) applied two hybrid ML models consisting of 
VMD-based least squares support vector regression and 
VMD-based extreme learning machine (VMD-ELM) to 
improve the accuracy of the daily precipitation-flow model. 
It was determined that VMD-LSSVR has MAE, RMSE, and 
MSRE statistics of 1.418, 2.887, and 0.042, and VMD-ELM 
has MAE, RMSE, and MSRE statistics of 1.376, 3.193, and 
0.036, respectively. Both hybrid algorithms gave the best 
results in daily precipitation-flow modeling among ANN, 
ELM, LSSVR, VMD-ANN, DWT-ANN, DWT-ELM, and 
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DWT-LSSVR models. Ma et al. (2019) used LSSVM and 
the classical canonical method of logistic regression (LR) 
on historical flash flood records to evaluate the flash flood 
risk. It has been seen that the LSSVM algorithm works 
with 0.79 accuracy and the LR algorithm works with 0.75 
accuracy. As a result, it was determined that the LSSVM 
algorithm gave better results. Okkan and Kirdemir (2020) 
used the PSO algorithm for each random experiment for four 
different flood data. The hybrid use of PSO with the Lev-
enberg–Marquardt (LM) model was discussed they found 
that the hybrid PSO-LM algorithm gave stable global solu-
tions. Sahana et al. (2020) examined the effectiveness of the 
modified frequency ratio, conventional frequency ratio, and 
SVM model in storm flooding susceptibility assessment. The 
success rate was calculated as the SVM algorithm (0.8221) 
according to the modified frequency ratio model (0.797) and 
the traditional frequency ratio model (0.753). As a result, 
it was found that the SVM algorithm best predicted storm 
flooding in the Sundarban Biosphere. Norouzi and Bazargan 
(2020) calculated the parameters of the linear Muskingum 
model for calculating the downstream hydrograph using 
the PSO model. It has been determined that the calculation 
error is reduced by 66% and 43%, respectively, when the 
proposed model is compared with the case where the first 
and second floods are used. Akbari et al. (2020) used a new 
nonlinear Muskingum method with four variable parameters 
to improve the accuracy of the outflow estimation that cal-
culates the values of hydrological parameters by combining 
both PSO and GA. Compared with the three-parameter and 
best-variable parameter nonlinear Muskingum model, the 
SSQ decreased by 52% and 6.9% for the first and second 
case studies, respectively, and by 76% and 62% for the third 
and fourth case studies, respectively. It has been determined 
that the proposed model gives better results than other non-
linear Muskingum models. Şenel et al. (2020) estimated the 
flow data for the next period in the Yeşilırmak River using 
the ANN model. In this modeling, the time delay size was 
optimized using the Ant Lion Algorithm, and the number 
of hidden layers in the artificial neural networks was added 
to the model and the optimization process was completed. 
Thus, they determined that using heuristic optimization tech-
niques together with ANN gives better results in the estab-
lished model. Wang et al. (2021) proposed a new hybrid 
algorithm (VMD-LSTM-PSO) by combining VMD with 
long short-term memory (LSTM) and PSO for daily runoff 
prediction. They determined that the new model could be 
used in practice for hydrological forecasting based on higher 
forecast accuracy than LSTM-PSO, complementary ensem-
ble empirical mode decomposition-LSTM-PSO, and EEMD-
LSTM-PSO model results. Zhang et al. (2022) applied the 
multivariate empirical mode decomposition (MEMD) 
algorithm to analyze the factors affecting monthly flow. 
They concluded that the MEMD model outcome R2 value 

increased by 24.2% compared to the stepwise multiple linear 
regression models using the original time series and was 
effective. Cai et al. (2022) used the PSO back-propagation 
algorithm on Sentinel-1A satellite data to predict surface 
subsidence. As a result of the study, they determined that 
the MAE value of the results obtained by this algorithm is 
0.17, which is better than six algorithms, such as SVM and 
is an effective tool for providing early warning of surface 
subsidence. Xu et al. (2022) used deep learning neural net-
work model based on LSTM networks and PSO algorithm 
to forecast flood accuracy. It has been determined that the 
PSO-LSTM algorithm has higher forecasting accuracy than 
M-EIES (physical model), ANN, PSO-ANN, and LSTM 
models at all stations in the watersheds and can be used to 
improve accuracy in the short-term flood forecasting model.

As a result of the literature review, flood routing studies 
were carried out with the SVM and ANN models, which are 
the most widely used in research (Okkan and Serbes 2012; 
Shabri and Suhartono 2012; Sudheer et al. 2014; Huang 
et al. 2014). On the other hand, studies such as flood level 
estimation, flood risk, and flood mapping were carried out 
with ML algorithms. Flood routing research topics made 
with hybrid algorithms in the literature have significantly 
increased recently but are limited to specific algorithms 
(Tayfur et al. 2018; Norouzi et al. 2021). For this reason, 
in the literature, it was first investigated how flood rout-
ing estimations give results for a region with the LSSVM 
algorithm which combines various optimization and signal 
decomposition techniques, such as PSO, Wavelet, EMD, 
and VMD, respectively, to improve streamflow estimation 
accuracy. In addition, this research adds innovation to the lit-
erature by comparing the performance of hybrid algorithms 
for flood routing against various statistical performances and 
investigating how the estimating performance changes when 
the parameters of the models are optimized. The contribu-
tion of this article to the literature is to show the latest state 
of artificial intelligence models in flood estimating and to 
evaluate the flood estimating performances of some hybrid 
algorithms by parameter optimization.

This study aims to estimate the hourly flood hydro-
graph of the downstream region by ML models, which are 
LSSVM, PSO-LSSVM, EMD-LSSVM, Wavelet-LSSVM, 
and VMD-LSSVM hybrid techniques. It is hoped that the 
models obtained from the study can be applied to differ-
ent regions to predict flood routing results. In the study’s 
first phase, a training and test model was created with the 
flood hydrograph ML methods measured in the upstream 
and downstream regions. Then, by applying the upstream 
flood data to the established model, the flood values in the 
downstream region were tried to be estimated.

Thus, it is hoped that a future flood will be easily pre-
dicted by applying only input data to the established model, 
without requiring much data such as friction coefficient, 

46076 Environmental Science and Pollution Research  (2023) 30:46074–46091

1 3



slope, and cross-sectional area. For this reason, performing 
analysis processes quickly and in a short time will be vital 
in terms of saving time.

Material and method

Study data and area

Turnasuyu Stream is an Ordu stream originating from 
Giresun Mountains and pouring into the Black Sea. Its 
length is 56 km, its catchment area is 278 km2, and the aver-
age flow is 7.2 m3/s (Bostanci et al. 2016). Observation Sta-
tions on River are located in Eastern Black Sea Basin, and 
the locations of di ̇scharge observati ̇on stati ̇on (DOS) are 
shown in Fig. 1.

The Eastern Black Sea Region is located on the north-
eastern coast of Turkey and is bordered by the Eastern Black 
Sea Mountains to the south and the Black Sea to the North. 
The most important characteristic of this region is that it 
receives abundant precipitation in all seasons, and has very 
sharp valleys and many steep streams with high flow rates 
(Capik et al. 2012).

Kapçullu (E22A063) DOS is located at an altitude of 
18 m at the coordinates 40:57:19 North, 38:00:07 East, 
and Cumhuriyet Köyü (D22A093) DOS at 40:49:54 North, 
37:57:42 East, at the height of 375 m stations, were used in 

Ordu. The flood data of Ordu for the years 2009 and 2013 
were used.

In this study, hourly flood hydrograph was used. The 
input values of the model were selected as D22A093 
DOS upstream data, and the output values were chosen 
as E22A063 DOS downstream data. Using the upstream 
and downstream flood hydrograph data was modeled with 
LSSVM, PSO-LSSVM, EMD-LSSVM, Wavelet-LSSVM, 
and VMD-LSSVM algorithms and passed through train-
ing and testing stages, then evaluated with mean bias error 
(MBE), MAPE, determination coefficient (R2), Nash–Sut-
cliffe efficiency (NSE), Taylor diagrams, and boxplot analy-
sis. In addition, it is examined the effect of data division in 
flood estimating.

In this study, 286 hourly discharge data were used for 
Ordu. These data were trained and tested on various ML 
models. The parameters of DOS are shown in Table 1, and 
DOS hydrographs are plotted in Fig. 2.

Machine learning models

The comparison of the performance of flood routing meth-
ods is established by using ML algorithms such as LSSVM, 
PSO-LSSVM, EMD-LSSVM, Wavelet-LSSVM, and VMD-
LSSVM algorithms which are widely used in the literature 
investigated. While installing the ML models, 70%, 80%, 
and 90% of the data were used for training and testing, 
respectively, and the flood data of the upstream DOS was 

Fig. 1   Location of E22A063-D22A093 DOS
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used as input, and the flood data of the downstream DOS 
was used as output. In the setup of hybrid models, the input 
series decomposed into various sub-signals and the target 
series is predicted. Decomposition allows you to understand 
the underlying structure of time series and reveal patterns or 
trends that may be present. It is important to make predic-
tions about future values and detect unusual data anomalies. 
Also, when a time series does not show significant fluctua-
tions or white noise, underlying trends or seasonality may 
occur in the data. Decomposition can help express these 
patterns and reveal their effects (Zhang and Qi 2005; Wen 
et al. 2019).

Least‑squares support vector machine

LSSVM is a type of SVM used for classification problems 
and regression analysis. The main advantages of LSSVM 
are mathematical traceability, high precision, and direct 

geometric interpretation, which converts the nonlinear 
relationship between outputs and inputs into a linear rela-
tionship and uses the following equation.

In Eq. 1, αi is the weighting coefficient of input data, M 
is the output value, b is the bias, and k(x) is the nonlinear 
mapping function. The LSSVM algorithm minimizes the 
difference between predicted and measured data. Calcula-
tion of αi and b parameters is shown in the equations as 
follows.

Here, C is the regulation parameter. α, I, M, and 1 
parameters are calculated as follows:

(1)M =
∑n

i=1
k
(
x, x

i

)
�
i
+ b

(2)

[
kernel 1

T

1 kernel + C−1I

][
b

�

]
=

[
0

M

]

Table 1   Discharge observation stations

Province/district name Station 
number

Station code Station name Basin name River name Station 
elevation

Area (km2)

Ordu 1 E22A063 Kapçullu Doğu Karadeniz Turnasuyu 18 274,50
2 D22A093 Cumhuriyet Köyü Doğu Karadeniz Turnasuyu 375 210

Fig. 2   Hourly hydrograph of 
E22A063-D22A093 for 2009 
and 2013 flood
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The following equation uses the radial basis function as 
a kernel function.

The LSSVM algorithm is shown schematically in Fig. 3 
(Kadkhodazadeh and Farzin 2021).

Particle swarm optimization

This model is a stochastic population-based technique, and 
each i is a candidate solution whose motion in the search 
space is governed by four vectors. The corresponding Eqs. 5 
and 6 are expressed below.

xi is the position is defined as vi is the velocity, pi is the 
best individual solution position, gbest is the best neighbor 
solution position, c1 and c2 are the acceleration constants, ω 
is the inertia weight, η1 and η2 are the random vectors, and 
◦ is the entry-wise products (Novoa-Hernández et al. 2011).

In the PSO algorithm, while the parameters are deter-
mined according to the type of the problem, the initial posi-
tions and velocities of each parameter are calculated respec-
tively. Then the fit values between the limit values of all 
particles are calculated. While the local best (pbest) values 
are estimated at the end of each iteration, the global best 

(3)� =

⎡
⎢⎢⎣

�1
⋮

�n

⎤
⎥⎥⎦
, 1 =

⎡
⎢⎢⎣

1

⋮

1

⎤
⎥⎥⎦
,M =

⎡
⎢⎢⎣

M1

⋮

Mn

⎤
⎥⎥⎦
, I = (1, 1⋯ 1)

(4)k
�
x, x1

�
= exp

�
−‖x − xi‖

2�2

�

(5)vi = �vi + c1�1◦
(
pi − xi

)
+ c2�2◦

(
gbest − xi

)

(6)xi = xi + vi

(gbest) is determined from the current values and updated 
within the velocities of all particles. Accordingly, the result-
ing flow chart is shown in Fig. 4 (Saplioglu et al. 2020).

Empirical mode decomposition

This algorithm offers widely used and adaptable instanta-
neous frequency-based intrinsic mode functions (IMFs) to 
flexibly analyze multi-channel data with linear and non-sta-
tionary time series. Their results are processed into energy-
frequency-time distributions (Huang et al. 1998). Each IMF 
represents a simple oscillation in the signal. The amplitudes 
and frequencies of the IMFs are not fixed but may change 
over time. If x(n) is expressed as a time series:

In Eq. 7, IMF(n) is the components of decomposed sub-
series, and r(n) is the components of decomposed residual 
(Başakın et al. 2021).

Wavelet transform

This algorithm uses a mathematical structure and analyzes 
local changes in time series and information from various 
data sources. This transformation improves data quality by 
providing reliable decomposition of an original time series, 
and prediction accuracy is increased by discrete WT banding 
of the data. In addition, discrete wavelet transform (DWT) 
splits the initial dataset into different resolution levels to 
extract higher-quality data when building the model. It is 
widely used in flood time series predicting due to its valu-
able properties (Mosavi et al. 2018).

(7)x
n
=
∑m

i=1
IMF(n) + r(n)

Fig. 3   The schematic structure 
of the LSSVM algorithm

Input Layer

x1

x2

.

xn

Hidden Layer

k(x,x1)

k(x,x1)

.

k(x,x1)

Output Layer

∑

α1

α2

α3

M

b
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To specify the optimal number of decomposition levels 
in the wavelet transform, the formula based on the signal 
length in Eq. 8 is used.

N shows data length, and L is the decomposition level 
in Eq. 8. DWT is obtained by applying two filters to the 
original signal, where the first filter captures the trend of the 
signal and the second filter captures the trend deviations. If 
the equation related to this is expressed as follows:

In Eq.  9, A is the scale, B is the translation, A1 is 
the low frequency, and B1 is the high frequency. This 

(8)L = int
[
log(N)

]

(9)w = A1 + D1

decomposition process is done for the next levels and 
continues until the desired resolution is obtained, the 
positions and scales are based on the powers of the two 
and discrete time series at any time t, and the related 
equations are expressed as follows:

In Eqs. 10 and 11, a is the dilation factor, b is the time 
factor, R is the reel numbers domain, j is the integer, and 
k is the integer (Başakın et al. 2022).

(10)W = An +
∑n

i=1
Di

(11)DWT�(j, k) = a0
−

j

2∫ R

�
(
a0

−jt − kb0
)
f (t)dt

Fig. 4   PSO algorithm flowchart
Creation of starting swarm, speeds and positions

Calculation of the fitness value of all particles in the swarm

All particles in each swarm are compared with the best of the 
previous swarm and replaced if better.

Stop criteria

Show results

The best local values are compared among themselves and the 
best global is determined as the best.

Position and velocity values are recalculated.
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Variational mode decomposition

This algorithm is a signal decomposition algorithm, and 
each IMF transforms the signal decomposition into an itera-
tive solution to the variation problem. It is also a variation 
problem with a finite bandwidth with a different center fre-
quency, and the original signal is decomposed into K mode 
functions uk(t) (k = 1, 2, · ·, K). The sum of the estimated 
bandwidths for each mode function here is minimized. Thus, 
the variation model equation can be written as:

wk is  the frequency center  of  each IMF, {
wk

}
=
{
w1,w2,… ,wk

}
;
{
uk
}
=
{
u1, u2,… , uk

}
 in Eq. 12 

(Li et al. 2018).

Testing routing success

The first method used to measure the model’s success is 
MAPE, calculated by dividing the absolute error in each 
period by the values observed for that period.

where Qt is the observed discharge, Pt is the predicted dis-
charge, and n is the number of data (Widiasari et al. 2017).

The second criterion used to measure the model’s suc-
cess, NSE, is calculated by subtracting the ratio of the mean 
squared errors and the variance of the observed values from 
1. The NSE equation is written below:

where n is the the number of predictions and observa-
tions, Qoi is the ith observed discharge, Qpi is the ith pre-
dicted discharge, and Qo is the average of observed discharge 
(Başakın et al. 2021).

The third criterion used to measure the model’s success, 
R2, represents the linear regression between the predicted 
and actual values and is expressed by the formula below. 
In trend analysis, it gains weight and is defined as a value 
between 0 and 1. If the result value approaches 1, the better 
the harmony or relationship between the two factors (Zare 
and Koch 2014).

(12)

⎧
⎪⎨⎪⎩

min

�∑K

1
‖�t

��
�(t) +

i

�t

�
uk(t)

�
e−j�kt‖2

2

�

�
uk
�
,
�
wk

�
s.t

∑K

k=1
uk(t) = f (t)

(13)
MAPE =

∑n

t=1

�Qt−Pt�
Qt

n

(14)NSE = 1 −

⎡⎢⎢⎢⎣

∑n

i=1

�
Qpi − Qoi

�2
∑n

i=1

�
Qoi − Qo

�2

⎤
⎥⎥⎥⎦

In Eq. 15, QiPredicted is the predicted discharge, Qmean-

Predicted is the average of predicted discharge, QiObserved 
is the observed discharge, Qmean

Observed is the average of 
observed discharge, and n is the number of data.

The fourth criterion used to measure the model’s suc-
cess, MBE, is shown in Eq. 16. This formula is expressed 
as the mean deviation of the predicted values from the 
observed data and provides information about the long-
term performance of the models (El Boujdaini et al. 2021).

In Eq. 16, Qipredicted is the predicted discharge, Qimeasaured 
is the observed discharge, and n is the number of data.

The fifth criterion used to measure the model’s success 
is boxplots which gives detailed information about the 
data distribution and maximum and minimum data for the 
established models. The advantage of this graph is that it 
can show how a model predicts the maximum, minimum, 
median, and quintile values (Nhu et al. 2020; Dehghani 
et al. 2022).

The sixth criterion used to measure the model’s success 
is the Taylor diagram which provides a graphical sum-
mary of the results. This diagram includes the correlations, 
RMSE, and standard deviation values of the data obtained 
from the models. The x and y axes show the standard devi-
ation values, and quarter circle arcs show the diagram’s 
correlation coefficient and RMSE values (Taylor 2001).

Results and Discussion

This study compares LSSVM, PSO-LSSVM, EMD-
LSSVM, Wavelet-LSSVM, and VMD-LSSVM techniques 
for modeling floods in Ordu in 2009 and 2013. In addition, 
it is aimed to examine the effect of data division in flood 
estimating. Accordingly, 70%, 80%, and 90% of the data 
were used for training, respectively. Model results were 
evaluated visually using various statistical indicators, Tay-
lor diagrams, and a boxplot. The optimal decomposition 
level (L) must first be determined to decompose input vari-
ables with DWT. Therefore, Eq. (5) was used to determine 
the L value in this study. Then, using Eq. (5), L = 3 was 
determined. Although the level of decomposition can be 
determined by trial and error, this process is grueling and 
time-consuming. For this reason, three commonly used 

(15)R2 =
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��
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decomposition levels were chosen in this study (Nourani 
et al. 2009; Seo et al. 2018; Shafaei and Kisi 2016). Fig-
ure 5 shows flood data divided into subcomponents by 
WT, EMD, and VMD techniques.

PSO uses global best result (gbest) values and pbest 
when updating particle velocities and positions. This 
search process is terminated when the maximum number 
of iterations is reached. In this study, PSO was modeled 

with 100 iterations. Since the number of particles (N) and 
c constants changes according to the problem to be solved, 
different experiments have been made. Accordingly, N = 20 
and c1 = c2 = 2 values were chosen because they showed 
very successful results. The radial basis kernel function 
was used when setting up the SVM model.

Table 2 shows the estimation results of the 2009 floods 
of the test set obtained by the LSSVM, W-LSSVM, 

Fig. 5   Subcomponents of the 
flood data of 2009 separated by 
various signal decomposition 
techniques: a dmey wavelet, b 
db 10 wavelet, c EMD, d VMD

Table 2   Flood routing results 
for 2009 in test data

* mark indicates the best model among all models, the ** mark indicates the most appropriate data division 
value, and bold characters present the best algorithm of the selected data division ratio

Train-test ratio (70:30%)** Train-test ratio (80:20%) Train-test ratio (90:10%)

NSE R2 MAPE MBE NSE R2 MAPE MBE NSE R2 MAPE MBE

LSSVM LSSVM LSSVM
0.99 0.99 0.03 0.001 0.98 0.98 0.02  − 0.03 0.85 0.87 0.02 0.01
Dmey wavelet LSSVM Dmey wavelet LSSVM Dmey wavelet LSSVM
0.85 0.86 0.09 0.14 0.28 0.43 0.11 0.54  − 4.05 0 0.15  − 1.59
DB 10 wavelet LSSVM DB 10 wavelet LSSVM DB 10 wavelet LSSVM
0.86 0.90 0.09 0.20 0.72 0.77 0.08 0.19  − 0.23 0.42 0.07  − 0.03
EMD-LSSVM EMD-LSSVM EMD-LSSVM
0.74 0.87 0.08 2.88 0.81 0.82 0.04 0.49  − 0.99 0.75 0.05 1.37
VMD-LSSVM VMD-LSSVM VMD-LSSVM
0.48 0.57 0.21  − 1.68 0.13 0.35 0.14  − 2.27  − 0.56 0.61 0.06 0.12
PSO-LSSVM PSO-LSSVM PSO-LSSVM
0.99* 0.99* 0.02* 0.07* 0.98 0.98 0.02 0.001 0.86 0.87 0.07 -0.01
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EMD-LSSVM, VMD-LSSVM, and PSO-LSSVM 
approaches. The results were evaluated according to the 
NSE and R2 values closest to 1 and the lowest MAPE and 
MBE values. Accordingly, the most successful model for 
all data partition ratios was PSO-LSSVM. In addition, 
the weakest flood estimation was made with the VMD-
LSSVM hybrid model. Finally, when the effect of data 
division ratios on model performance was evaluated, the 
most successful estimation performance was obtained with 
the train-test ratio (70:30%).

In Fig. 6, test results were evaluated with Taylor diagrams 
to visually assess the success of stand-alone and hybrid 
techniques in estimating floods in 2009. In these diagrams, 
model successes were assessed according to the closeness 
of the estimation models to the reference point, which is the 
actual value, and RMSE, correlation, and standard deviation 

values. These diagrams determined the best model for all 
data division ratios as the PSO-LSSVM hybrid model. In 
addition, it is noteworthy that the single LSSVM model 
shows close estimation accuracy to the PSO- LSSVM model.

In Fig. 7, boxplots are shown to evaluate the success of 
the models used in estimating the floods of 2009. It is aimed 
to determine the best model by comparing the distribution, 
median, mean, and percentile slices of the predicted values 
with the actual values with boxplots. When Fig. 7 is exam-
ined, the most overlapping model is the PSO-LSSVM hybrid 
in terms of overlapping of data parameters such as median, 
quartiles, and maximum and minimum values of real data 
and predicted data. These graphs decided the best model for 
all data division ratios as the PSO-LSSVM hybrid model. 
In addition, it has been seen that the single LSSVM model 
produces realistic estimations.

Fig. 6   Taylor diagrams of test results of 2009 flood. a Train-test ratio 70–30%, b train-test ratio 80–20%, c train-test ratio 90–10%
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Figure 8 shows the scatter plots for the best flood routing 
models in 2009. Again, graphs are used for comparison of 
model accuracy. Scatter plots show the degree of correla-
tion and distribution between predicted and observed values. 
When the scatter plots were analyzed, it was deduced that 
the PSO-LSSVM models produced close to the truth esti-
mates because the predicted values were collected on the 
45-degree regression line of the actual values.

Table 3 presents the estimation results of the 2013 floods 
of the test set obtained by ML, bio-inspired algorithm, and 
signal process approaches. When the results were inter-
preted according to the NSE and R2 values closest to 1 and 
the lowest MAPE and MBE values, it was seen that the 

PSO-LSSVM hybrid model was superior to the other mod-
els. In addition, the weakest flood estimation was produced 
with the VMD-LSSVM hybrid model. When the effect of 
data division ratios on model performance is examined, the 
most successful estimation performance was obtained with 
the train-test ratio (70:30%).

In Fig. 9, the test results are compared with Taylor dia-
grams for the visual analysis of the performance of the 
approaches used in predicting the 2013 floods. In these 
diagrams, the model performances are compared according 
to the closeness of the estimation models to the reference 
point, which is the true value, and the correlation, RMSE, 
and standard deviation values. According to these diagrams, 

Fig. 7   Boxplot diagrams of the test set of 2009 flood. a Train-test ratio 70–30%, b train-test ratio 80–20%, c train-test ratio 90–10%
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LSSVM and PSO-LSSVM models made the closest estima-
tions for the train-test ratio (70:30%) and (80:20%). How-
ever, in the train-test ratio (90:10%), the EMD-LSSVM 
hybrid model showed the best results.

In Fig. 10, boxplots used to rank the estimation success 
of the models used in the estimation of the 2013 floods are 
shown. Boxplots effectively reveal the best model by com-
paring the distribution, median, mean, and percentiles of the 
predicted and actual values. According to these diagrams, 
the PSO-LSSVM model made the closest estimations for all 
train-test ratios.

Figure 11 shows the scatter diagrams and the spread of 
errors for the best model for modeling the floods of 2013. 
Scatter plots show the correlation between predicted and 

observed values and the degree of scatter. It is used to 
express the intervals at which the errors increase. When 
the scatter plots are analyzed, it is seen that the estimated 
values ​are gathered around the 45-degree line of the actual 
values. This plot indicates that the PSO-LSSVM models 
make estimations of actual values.

This study aims to estimate the hourly flood hydro-
graph of the downstream region by ML models, which are 
LSSVM, PSO-LSSVM, EMD-LSSVM, Wavelet-LSSVM, 
and VMD-LSSVM hybrid techniques. For this purpose, 
upstream data as input and downstream data as output are 
presented to the model in Turnasuyu River. At the end of 
the study, ML algorithms allow effective and reliable use 
of flood estimation. Furthermore, the results of the Zhao 

Fig. 8   Scatter plots of flood routing of the 2009 year. a Train-test ratio 70–30%, b train-test ratio 80–20%, c train-test ratio 90–10%
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Table 3   Flood routing results 
for 2013 in test data

* indicates the best model among all models, ** indicates the most appropriate data division value, and 
bold characters present the best algorithm for the selected data division ratio

Train-test ratio (70:30%)** Train-test ratio (80:20%) Train-test ratio (90:10%)

NSE R2 MAPE MBE NSE R2 MAPE MBE NSE R2 MAPE MBE

LSSVM LSSVM LSSVM
0.771 0.98 0.05 2.46 0.32 0.76 0.03 1.11 0.421 0.78 0.02 0.89
Dmey wavelet LSSVM Dmey wavelet LSSVM Dmey wavelet LSSVM
0.32 0.96 0.08 4.31  − 1.04 0.31 0.04 0.58  − 1.12 0.54 0.04 1.69
DB 10 wavelet LSSVM DB 10 wavelet LSSVM DB 10 wavelet LSSVM
0.46 0.93 0.07 3.69  − 0.28 0.57 0.03 1.01  − 0.28 0.65 0.03 0.84
EMD-LSSVM EMD-LSSVM EMD-LSSVM
0.42 0.80 0.08 0.93  − 3.00 0.74 0.07  − 2.12 0.79 0.90 0.01 0.09
VMD-LSSVM VMD-LSSVM VMD-LSSVM
0.001 0.87 0.11  − 4.39  − 19.4 0.28 0.20  − 7.20 0.71 0.80 0.02 0.25
PSO-LSSVM PSO-LSSVM PSO-LSSVM
0.94* 0.97* 0.02* 0.15* 0.73 0.73 0.01 0.005 0.80 0.80 0.01  − 0.01

Fig. 9   Taylor diagrams of test results of 2013 flood. a Train-test ratio 70–30%, b train-test ratio 80–20%, c train-test ratio 90–10%
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et al. (2017), Alizadeh et al. (2021), Tayfur et al. (2018), 
and Wang et al. (2021) studies in the literature are compat-
ible with the presented research.

Tayfur et al. (2018) used ant colony optimization, artificial 
neural network (ANN), genetic algorithm (GA), and PSO algo-
rithms for flood hydrograph estimating. It has been determined 
that the models make flood hydrograph estimating effective and 
can be used profitably for flood hydrograph estimating. Further-
more, this study is compatible with Tayfur et al. (2018) flood 
routing study in establishing the PSO model and obtaining 
generally successful results in estimating flood routing results.

As a result of the models made by combining the 
LSSVM algorithm with PSO and signal processing tech-
niques, it has been concluded that it is effective and reli-
able in streamflow estimations. Zhao et al. (2017) applied a 
new hybrid algorithm based on the EMD model for annual 
streamflow estimation. It was identified that the EMD-based 
chaotic LSSVM (EMD-CLSSVM) hybrid algorithm gives 
better results than CLSSVM hybrid model for estimating 
annual streamflow. The study’s results significantly overlap 
with Zhao et al. (2017) hybrid models in producing effec-
tive streamflow estimation results. Alizadeh et al. (2021) 

Fig. 10   Boxplots of the 2013 floods test set. a Train-test ratio 70–30%, b train-test ratio 80–20%, c train-test ratio 90–10%
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used wavelet transform (WT), ensemble EMD (EEMD), and 
mutual information (MI) to estimate river-level streamflow 
as a hybrid preprocessing approach and determined that 
the proposed WTEEMD-MI hybrid algorithm improves 
the accuracy of different modeling strategies. Wang et al. 
(2021) used a new hybrid algorithm (VMD-LSTM-PSO) 
by combining VMD with LSTM and PSO for daily runoff 
prediction. It was identified that the new model could be 
used in practice for hydrological estimating based on high 
estimating accuracy. Although decomposition techniques 
are successful in estimating river-level streamflow and daily 
runoff prediction, it contradicts Alizadeh et al. (2021) and 
Wang et al. (2021) studies regarding low performance in 

flood routing calculations. However, it overlaps with the 
literature in optimizing the machine learning model with 
PSO. It is thought that the occurrence of this contradiction 
depends on the data length and data type used.

Conclusion

This study combined the LSSVM technique with PSO and 
various signal decomposition techniques to model two flood 
events in Ordu. In addition, it is aimed to evaluate the effect 
of the training-test ratio on flood routing. The main results 
obtained in the study are listed as follows:

Fig. 11   Scatter plots of flood routing of the 2013 year. a Train-test ratio 70–30%, b train-test ratio 80–20%, c train-test ratio 90–10%
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•	 The most successful technique in flood routing was deter-
mined as PSO-LSSVM.

•	 ML parameters optimized with the PSO algorithm 
showed higher estimation accuracy than hybrid models 
established with inputs separated by signal processing 
techniques.

•	 The highest success in flood routing models was obtained 
using train-test ratio (70:30%).

•	 The study outputs are essential for various government 
agencies, hydrologists, agronomists, civil engineers, and 
urban and regional planners.

It has been shown in the literature that AI techniques 
have successful results in flood estimation and the estima-
tion accuracy of optimized algorithms has been increased. 
These outputs are largely in line with the work done, and it 
is concluded that AI techniques produce highly accurate and 
cost-effective solutions for modeling complex mathematical 
expressions of floods. As a result, it has been proven that the 
loss of life and property against floods can be reduced by 
disseminating artificial intelligence techniques for develop-
ing flood estimating systems. In addition, thanks to the flood 
routing estimation model obtained in the study, it is possible 
to carry out early warning, awareness, and preparation stages 
against floods effectively and to implement flood risk man-
agement successfully.

The study’s main limitation is that only two DOS were 
used on the same stream. Usually, there is one DOS on the 
same stream. It is thought that ML models established for 
different regions by increasing the number of DOS will pro-
duce effective results. It is hoped that the effects of a flood 
on the environment can be predicted thanks to a network to 
be established that can be controlled from a central location 
and that the measures to be taken by informing the relevant 
units will save many lives.

In future studies, flood estimation accuracy can be inves-
tigated by combining bio-inspired algorithms such as whale 
optimization algorithm, gray wolf optimizer and artificial 
bee colony, ant colony optimization, chaos game optimi-
zation, robust empirical mode decomposition, discrete 
multiresolution analysis, and various signal decomposition 
techniques such as empirical wavelet transform and vari-
ational mode decomposition with tree-based and neural net-
work–based ML techniques.
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