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Abstract
The reasonable selection of non-geological disaster samples is of great significance to improve the accuracy of geologi-
cal disaster assessment, reduce the cost of disaster management, and maintain the sustainable development of ecological 
environment. Liulin County was selected as the study area. This paper creatively divided non-geological disaster sampling 
areas by macro-geomorphology, and carried out susceptibility mapping based on random forest (RF) and frequency ratio-
random forest (FR-RF) models. The accuracy of each model was evaluated by receiver operating characteristic curve (ROC) 
combined with the distribution characteristics of geological disasters and the actual urban construction in the study area. The 
results show that the FR-RF model constructed by selecting non-geological disaster samples in hilly area is most suitable 
for the susceptibility mapping of this study area. The different results in different sampling areas are mainly due to the great 
changes in the representativeness of non-geological disaster samples. The distance from the roads is the most important 
factor affecting the occurrence of disasters in the study area. The statistical results of disaster management cost estimation 
and gross domestic product (GDP) value show that the disaster management cost of HFR-RF model decreases by 13.45% 
on average compared with other models, and the ratio of GDP to disaster management cost is relatively high. These research 
results promote the progress of geological disaster prevention technology, maintain the stability of geological environment, 
and are of great significance to the stable and sustainable development of local economy.
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Introduction

In recent years, geological disasters occurred frequently 
all over the world (Arabameri et al. 2019). China is one 
of the countries with high frequency of geological disas-
ters. Geological disasters have the characteristics of sudden 
occurrence and strong destruction, which seriously affect 
the sustainable development of local economy (Yang and 
Hu 2019). According to data released by China National 
Bureau of Statistics in 2021, a total of 100,650 geological 

disasters were reported from 2011 to 2021, with 4834 people 
injured and 2729 killed, leading to direct economic losses of 
45.393 billion yuan. At the same time, due to climate change 
and more extreme rainfall, the rapid urbanization of moun-
tain development and geological disasters caused by human 
engineering activities are gradually increasing (Froude and 
Petley 2018; Gariano and Guzzetti 2016; Lin et al. 2017; 
Zhang et al. 2021). According to the Resources and Environ-
ment Science and Data Center of China, geological disasters 
in Liulin County have threatened 2931 people and 24,2617 
million property and destroyed 11 buildings and 200 roads. 
Scientific and accurate analysis and evaluation of geologi-
cal disasters in Liulin County and the identification of geo-
logical disaster prone areas can reduce the cost of disaster 
management, maintain the safety of ecological environment, 
and have very important significance for the prevention and 
control of local geological disasters (Jiang et al. 2017).

Geological disasters susceptibility is defined as the prob-
ability of geological disasters occurring in a region, which is 

Responsible Editor: Philippe Garrigues

 *	 Zepeng Wang 
	 449139098@qq.com

1	 College of Mining, Liaoning Technical University, 
FuXin 123000, China

2	 College of Environment, Liaoning Technical University, 
FuXin 123000, China

/ Published online: 26 January 2023

Environmental Science and Pollution Research (2023) 30:44756–44772

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-023-25454-2&domain=pdf
http://orcid.org/0000-0001-8401-2997


obtained by analyzing the local geographical environment, 
human engineering activities, and other factors. Researchers 
around the world have applied a variety of methods, both 
qualitative and quantitative, to the assessment of geologi-
cal disasters susceptibility. Qualitative methods are subjec-
tive, while quantitative methods involve numerical analysis 
and calculation (Pawluszek-Filipiak et al. 2020). At present, 
qualitative methods, such as analytic hierarchy process 
(AHP) (Pawluszek and Borkowski 2017) and fuzzy logic 
(FL) (Kanungo et al. 2006), are subject to strong subjec-
tive influence, resulting in large error of evaluation results 
and easy mapping, and their application scope is becoming 
smaller and smaller. Quantitative methods are mainly statis-
tical analysis and machine learning model, such as informa-
tion value (IV) (Ba et al. 2017; Du et al. 2019; Sarda and 
Pandey 2019), frequency ratio (FR) (Khan et al. 2019; Nicu 
2017), and weight of evidence (WOE) (Lee and Oh 2019). 
Support vector machine (SVM) (Huang and Zhao 2018), 
artificial neural network (ANN) (Aditian et al. 2018), and 
random forest (RF) (Akinci et al. 2020; Zhao et al. 2020) are 
the most widely used methods in geological disaster suscep-
tibility mapping (Wang et al. 2022a). However, there is little 
research on the potential impact of the selection of the spatial 
location of non-geological disaster samples on the geological 
disasters susceptibility mapping. Deng selected non-geolog-
ical disaster samples in the very low and low susceptiblity 
areas of the information value model to conduct susceptibil-
ity evaluation (Deng et al. 2021). Li selected non-geological 
disaster samples in the study area by down-sampling method 
to carry out the susceptibility evaluation (Li et al. 2018). An 
uniformly selected non-geological disaster sites 500 m away 
from known disaster sites to conduct susceptibility evalua-
tion (An and Niu 2016). The common point of these studies 
is that they set a single sample selection method in advance, 
without considering whether the non-disaster points selected 
in this way are representative or whether it is more reason-
able to select non-disaster points in other areas. Therefore, 
this paper puts forward hypotheses: can we get more rep-
resentative samples by randomly sampling non-geological 
disaster sample areas divided by macro-geomorphology of 
the study area, and whether the model has better prediction 
effect and higher accuracy? Compared with previous studies, 
the advantage of the hypothesis is that the representative-
ness of negative samples (non-geological disaster samples) 
is closely related to the topography and geomorphology of 
the space, geological environment, and other factors, so 
the sampling area divided in this way can better reflect the 
representativeness of negative samples. According to the 
statistics of disasters in Shanxi Province by Resources and 
Environmental Sciences and Data Center of Chinese Acad-
emy of Sciences, Liulin County, is one of the regions where 
geological disasters occur more frequently over the years. 
Geological disasters such as landslide and collapse occur 

frequently in the area. Especially in recent years, due to the 
intensification of human engineering activities such as road 
excavation and slope cutting, slope stability decreases, and 
geological disasters occur more frequently (Huang et al. 
2016; Li et al. 2022b). The relevant studies have divided 
the macro-geomorphology in detail, and the accuracy of the 
model will not be affected by the geomorphology division 
error. Selecting Liulin County for susceptibility assessment 
cannot only improve the accuracy of local disaster preven-
tion and mitigation, reduce the cost of disaster prevention 
and mitigation, and protect the stability of ecological envi-
ronment, but also provide a theoretical basis for the selec-
tion of non-geological disaster samples in the surrounding 
areas with similar geomorphology. Considering that differ-
ent results may occur when non-geological disaster samples 
are selected for model construction in different areas, the 
FR model is selected to judge such situations. Although the 
prediction accuracy of FR model is generally weaker than 
that of machine learning model, it has an advantage that the 
result of susceptibility mapping is consistent with the actual 
situation on the whole distribution.

To sum up, Liulin County (Shanxi, China) was selected 
as the study area. Combined with GIS technology, the sam-
pling area of non-geological disaster samples was divided 
according to the macro-geomorphology of the study area. In 
combination with previous experience and field conditions, 
the evaluation index of geological disaster susceptibility 
was reasonably selected, and the geological disaster sus-
ceptibility mapping was carried out by using RF and FR-RF 
models. The ROC was used to compare the accuracy of the 
model constructed from the negative samples selected from 
different sampling areas, and the most appropriate model 
was judged by combining the distribution characteristics of 
geological disasters and field conditions in the study area. 
By analyzing the causes of different results in different sam-
pling areas, evaluating the key causes of each model and the 
effects of energy conservation and environmental protection, 
and determining the key areas for disaster prevention and 
control in the study area, it can effectively avoid unnecessary 
economic losses in the process of disaster management and 
governance, and achieve long-term stable and sustainable 
development.

Materials and methodology

Study area

Liulin County is located at the western foot of Lvliang 
Mountain and on the east bank of the Yellow River. It is the 
west gate of Shanxi. It is surrounded by Lishi District, Lin 
County, Zhongyang County and Shilou County. It is between 
110°39′45″ ~ 110°05′33″ east longitude and 37°08′53″ ~ 
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37°37′28″ north latitude (Fig. 1). It has jurisdiction over 8 
towns, 7 townships, and 197 administrative villages, with a 
total population of 346,000 (as of February 15, 2022). The 
County has a warm temperate continental monsoon climate, 
with an average precipitation of 456.3 mm, and the extreme 
values of rainfall over the years are 632 mm and 37.44 mm. 
Liulin County belongs to the hilly and gully area of the Loess 
Plateau in the northwest, and its altitude decreases from east to 
west. The geological tectonic movement uplifted the Lvliang 
Mountain structure, tilted the rock stratum to the west, cut off 
the Yellow River, and formed the bedrock of the county seat, 
which is high in the northeast and low in the southwest. The 
Quaternary loess layer covered on the surface has been eroded 
and denuded by rain for a long time, and is gradually cut into 
complex geomorphic units with undulating beams, ravines, 
crisscrossing hills, and fragmentation. According to the 
results of geological disaster investigation and zoning in Liu-
lin County, a total of 151 geological disaster points (including 
32 collapses, 71 landslides, 1 debris flow, and 47 unstable 
slopes) had been identified. According to the classification 
standard of disaster levels in the technical requirements of 
geological disaster investigation, there were 6 large disasters, 
21 medium disasters, and 124 small disasters in the study area. 
According to the classification standard of danger, there were 
2 large disasters, 4 medium disasters, and 145 small disasters 
in the study area. The landslides in Chengjiazhuang Middle 
School and Shaqu Village were both of large scale, threaten-
ing 1600 people and 7.1 million property. The distribution 

of geological disasters was shown in Fig. 1A. Based on the 
scope of the study area, a raster dataset of Liulin County was 
created, with a grid cell size of 300 m × 300 m (Huang et al. 
2020) and a total of 14,377 grids.

Based on the landform division of Liulin County by Li 
et al. (2022c), in this paper, the study area is divided into 
five non-geological disaster data sampling areas, namely the 
mixed area (the whole study area), mountain area, broken 
plateau area, hilly area, and river valley area (Fig. 1B).

Methodology

The research process is shown in Fig. 2, which is divided into 
three stages: (1) geological disaster investigation, determina-
tion and collection of geological disaster impact factors; (2) 
Firstly, the FR model was constructed, and then the RF and 
FR-RF models were used to map the susceptibility of each 
sampling area. By comparing with the FR model, the model 
with relatively reasonable susceptibility mapping results was 
selected. The accuracy of the model with relatively reasonable 
partition results was tested by ROC curve. The most suitable 
sampling area and model were judged according to the dis-
tribution characteristics of geological disasters and the actual 
urban construction. (3) Analyze the reasons for the differences 
in the model construction results of different sampling areas, 
evaluate the susceptibility zoning map of the most suitable 
study area, the key disaster causing factors, and the energy-
saving and environmental protection effect of each model.

Fig.1   Location of the study area: A This is a map of geological disasters in the study area; B This is the macro geomorphology division map of 
the study area
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Model

Frequency ratio (FR model)

As a statistical analysis model, frequency ratio was widely 
used in the study of geological disasters susceptibility. 
Different categories of factors had different contributions 
to geological disasters development, and FR was used to 

quantify this difference. The higher the frequency ratio, the 
greater the geological disasters susceptibility. The sum of the 
frequency ratios of each factor subclass was used to deter-
mine the susceptibility index value (Aditian et al. 2018). The 
calculation method in practical application was as follows:

(1)FRij =
Nij

Nr

∕
Aij

Ar

Fig. 2   Flow chart of this study
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where FRij is the frequency ratio; Nij is the number of geologi-
cal disasters grids at the jth level under the ith influencing fac-
tor; Nr is the grid number of geological disasters in the study 
area; Aij is the number of regional grids of the jth level under 
the ith influencing factor; Ar is the total number of grids in the 
study area.

Random forest (RF model)

Originally developed by Breiman (2001), random forest was 
an ensemble model that combines multiple decision trees 
(DTs) for classification and prediction (Rabby et al. 2020). 
Taalab pointed out that there was no rule for determining the 
amount of numbers in the RF, but the accuracy of the model 
did not increase with the number of trees (Taalab et al. 2018). 
The RF algorithm was explained in detail by Catani et al. 
(2013). The random forest algorithm included the following 
steps: (1) obtain the original training data and resample it 
multiple times; (2) at each resampling, select a set of ran-
dom features; (3) given the resampling and a set of random 
features, estimate the decision tree; (4) aggregate the set of 
estimated decision trees in order to get a single decision tree. 
Different from the learning model of other machines, the 
randomly sampled samples and features in the random forest 
model reduced the sensitivity of data noise and outliers in 
the classification process, and effectively avoided over fitting.

One of the characteristics of random forest was that the 
importance of the susceptibility evaluation factor can be 
given. The reduction of the Gini coefficient was used to cal-
culate the importance of each factor to the susceptibility 
classification result. The formula is as follows:

where m, k, and t are the total number of evaluation factors, 
the number of classification trees, and the number of nodes 
in a single tree respectively; DGrij is the reduction value of 
the Gini coefficient in the ith evaluation factor at the jth node 
of the rth tree; Pr is the importance of the rth evaluation 
factor among all evaluation factors.

Coupling model

Pourghasemi, Zhou, and Chowdhuri obtained high prediction 
results by mapping and evaluating geological disaster sus-
ceptibility through coupled models (Chowdhuri et al. 2020; 
Pourghasemi and Kerle 2016; Zhou et al. 2021b). As a statis-
tical analysis model, FR can be connected with environmen-
tal factors, and reassign environmental factors. The assigned 

(2)Pr =

∑k

i=1

∑t

j=1
DGrij

∑m

r=1

∑k

i=1

∑t

j=1
DGrij

factor can be used as the input variable of the machine learning 
model to build a new model (Li et al. 2021).

Model validation method

Previous researchers mostly used receiver operating charac-
teristic (ROC) and area under the curve (AUC) to test and 
evaluate the effect of the model comprehensively (Ayalew 
et al. 2005; Chen et al. 2020; Zhang et al. 2019). The ROC 
curve reflected the relationship between “TPR” and “FPR”.

where TP is the true positive rate; FN is the false negative 
rate; TN is the true negative rate; FP is the false positive 
rate. The value of AUC ranged from 0.5 to 1. The higher the 
value, the higher the accuracy of the model.

Geologic disaster causative factors

An important stage for geological disasters susceptibility analy-
sis was to determine the causative factor that affected the occur-
rence of disasters in the research area. Vakhshoori and others 
pointed out that there were no standard rules for the selection 
of disaster causing factors, and it can be selected according to 
the study area scale, the topographic and geological environ-
mental conditions, geological disaster occurrence mechanism, 
and data availability in the research area (Vakhshoori et al. 
2019). According to the survey results of the study area, the 
comprehensive action of landform, stratigraphic lithology and 
structure, meteorology and hydrology, vegetation, and human 
engineering activities led to the occurrence of geological disas-
ters such as collapse and landslide. Considering these standards 
and combining previous experience (Duan et al. 2022b; Wang 
2019), a total of 12 causative factors were used through GIS 
platform, namely, elevation, slope, aspect, curvature, lithology, 
distance from faults, distance from roads, population density, 
distance from rivers, rainfall, normalized difference vegetation 
index (NDVI), and topographic wetness index (TWI).

The elevation (DEM) data (which can generate slope, 
aspect, curvature, water system, and topographic wetness 
index data), road vector data, and remote sensing data 
(which can generate normalized vegetation cover index) 
of Liulin County were obtained through Geospatial Data 
Cloud. The tomographic data of the study area were 
obtained through satellite images; the average rainfall 
and population density data over the years were obtained 

(3)TPR =
TP

TP + FN

(4)FPR =
FP

FP + TN
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through the Resource and Environmental Science and 
Data Center of the Chinese Academy of Sciences; the 
lithology data were obtained from the 1:100,000 geologi-
cal map of Lvliang City (Wang 2019).

Topographic factors

Elevation was the most direct representation of a region’s 
topography and was frequently used to analyze geological 
disasters susceptibility (Hu et al. 2020; Shou and Lin 2020; 
Wu et al. 2020). The elevation of the study area was ranged 
between 597 and 1467 m, and the terrain was high in the east 
and low in the west. In ArcGIS, it was divided into 7 grades 
according to the natural discontinuity method (Fig. 3A), and 
the geological disasters were most distributed between 840 
and 922 m, accounting for about 42.38% of the total.

Slope was one of the key slope stability factors and one of 
the most commonly used parameters in geological disasters sus-
ceptibility analysis (Bordoni et al. 2020; Zhang et al. 2020). The 
slope of the study area was ranged between 0 and 78°, and it 
was divided into 7 grades according to the natural discontinuity 
method (Fig. 3B). The geological disasters were concentrated 
between 14 and 33°, accounting for about 60.26% of the total.

The slope aspect affected the duration and intensity of sun-
shine, the distribution characteristics of rainfall on the slope 
(Erener and Duzgun 2013). Starting from 22.5°, every 45° 
was a direction (337.5 ~ 360° and 0 ~ 22.5° were the north 
direction); − 1 was set as the plane direction, 9 directions in 
total. Geological disasters were not distributed in the plane, 
but evenly distributed in the other 8 directions (Fig. 3C).

Curvature is one of the factors associated with the occur-
rence of geological disasters, representing the shape and ter-
rain of the slope (Pourghasemi et al. 2018). The curvature 
of the research area was divided into level 4 (Fig. 3D), and 
geological disasters were mostly distributed between − 2 and 
0, accounting for about 66.89% of the total.

Topographic wetness index (TWI) is an indicator of the influ-
ence of regional topography on runoff direction and water accu-
mulation, which indicates the change of soil moisture (Saleem 
et al. 2019). The TWI of the study area is divided into seven 
levels (Fig. 3L), and the most geological disasters are distributed 
between 8.1 and 10, accounting for about 48.34% of the total.

Geological factors

Lithology determined the physical and chemical properties of 
rock mass (Sun et al. 2018), and was an important factor in the 
formation and evolution of geological disaster. According to the 
mechanical and other properties of geotechnical, the study area 
was divided into 4 categories (Fig. 3E), among which geological 
disasters were most distributed in loess, accounting for about 
57.62% of the total, and no distribution in magmatic rocks.

Geological tectonic movements deteriorated the mechanical 
properties of rocks (Hong et al. 2015). There were only three 
faults in the eastern part of the study area, and the distances 
were divided into 7 grades according to the natural discontinuity 
method (Fig. 3F). The farther from the fault, the more geological 
disasters were distributed. The distribution of geological disas-
ters beyond 5 km accounted for 94.04% of the total.

Factors of human engineering activities

Factors of human engineering activities reflected the scope 
and intensity of human influence on the natural environment. 
Frequent interference, especially large-scale human construc-
tion activities may cause slopes to lose stability (Kanwal et al. 
2017). Most geological disasters occur in high population 
density or within 1 km from the roads. With the increase of 
distance, the number of geological disasters decreased rapidly 
(Wang et al. 2021). The population density in the study area 
was divided into 4 grades (Fig. 3H), among which geological 
disasters were most distributed between population densities 
of 200 and 300, accounting for about 90.73% of the total. The 
distance from roads was divided into 7 grades according to 
the natural discontinuity method (Fig. 3G), among which the 
geological disasters were most distributed between 437 m from 
the road, accounting for 78.81% of the total.

Meteorological and hydrological factors

The flushing of the rock and soil on the surface of the slope 
by rivers was one of the important reasons for the occur-
rence of geological disasters (Meinhardt et al. 2015). The 
distance analysis was carried out in ArcGIS and divided 
into 7 grades (Fig. 3I), among which the geological disas-
ters distribution frequency within 391 m from rivers was the 
highest, accounting for about 59.6% of the total.

Rainfall was one of the most important factors that 
induce geological disasters. The surface water formed by 
rainfall would not only wash the slope, but also penetrate 
and soften the rock and soil (Wang et al. 2020), reduc-
ing the stability of the slope. Usually, the greater the 
rainfall, the higher the frequency of disasters. Based on 
the annual average data of rainfall in the study area, the 
interpolation analysis was carried out based on ArcGIS 
and divided into 7 grades according to the natural dis-
continuity method (Fig. 3J), among which the geological 
disasters were most distributed within the annual rainfall 
of 470 to 478 mm, accounting for 42.38% of the total.

Environmental factors

Vegetation improved the slope stability by absorbing 
water and strengthening rock and soil. Generally speak-
ing, the higher the vegetation coverage, the stronger 
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the slope stability (Chen et al. 2017). The NDVI was a 
digital representation of the surface vegetation density, 
which ranged from − 1 to 1, and the closer to 1 the value 
was, the lusher the vegetation coverage in the area. The 
vegetation coverage index was obtained after analyzing 

and processing the images of remote sensing. According 
to the natural discontinuity method, it was divided into 7 
grades (Fig. 3K). The geological disasters were most dis-
tributed between − 0.17 and 0.02, accounting for about 
60.93% of the total.

Fig. 3   Factors classification: A Elevation; B Slope; C Aspect; D Curvature; E Lithology; F Distance from faults; G Distance from roads; H 
Population density; I Distance from rivers; J Rainfall; K NDVI; L TWI
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Results

Model building

According to Wang’s (2019) research experience in this 
area, the sample selection ratio of geological disasters 
and non-geological disasters is 1:1. Combined with non-
geological disasters samples (151 samples from each 
sampling area) randomly selected in five sampling areas 
(mountain area, broken plateau area, hilly area, river 
valley area, and mixed area) to construct ten models of 
mountain RF (MRF), broken plateau area RF (BRF), hill 
RF (HRF), river valley RF (RRF), mixed RF (MIRF), 
mountain FR-RF (MFR-RF), broken plateau area FR-RF 
(BFR-RF), hill FR-RF (HFR-RF), river valley FR-RF 
(RFR-RF), and mixed FR-RF (MIF-RF). Susceptibil-
ity zoning map is divided into five levels according to 
the natural discontinuity method, namely very low, low, 
moderate, high, and very high. Among them, the distance 
between non-geological disasters samples should be more 
than 500 m, and 500 m away from the known geological 
disasters samples.

Geological disasters susceptibility mapping by FR model

FR model is one of the statistical analysis models. According 
to Eq. (1), calculate the frequency ratio of each classifica-
tion in each causative factor (Table 1). All the calculated 

frequency ratios are loaded into the raster data of the study 
area, so that each raster will store the frequency ratios of the 
corresponding classification of the 12 causative factors. The 
total frequency ratio of the grid can be obtained by summing 
the frequency ratios of all the disaster causing factors in the 
grid. According to the interpolation analysis of the total fre-
quency ratio of each grid, the susceptibility map of the study 
area was obtained and divided into five levels (Fig. 4, Fig. 5).

Geological disasters susceptibility mapping by RF model

RF model is a machine learning algorithm that requires input 
of initial variables. Attribute values of each evaluation index 
of disaster and non-disaster samples were extracted based 
on ArcGIS platform. The sample was divided into training 
sets and test sets according to 7:3 (Hussain et al. 2021; Sahin 
et al. 2020; Zhou et al. 2021a). A total of 302 data samples 
(151 disaster data and 151 selected non-disaster samples) 
from five sampling areas were successively brought into the 
RF model for training and testing. The test accuracy was all 
higher than 0.9, indicating that the model had high accuracy. 
By bringing the original value of each evaluation index of 
14,377 units in the study area into the trained model, the 
probability of geological disaster occurrence in each unit can 
be obtained. Based on the probability of geological disaster 
occurrence in each unit, the zoning diagram of the vulner-
ability of each model can be obtained by interpolation analy-
sis according to the natural discontinuity method (Fig. 4).

Table 1   Causative factors classification range and FR values

Classification range FR values

Elevation (m) 597 ~ 741; 741 ~ 840; 840 ~ 922; 922 ~ 997; 997 ~ 1076; 
1076 ~ 1185;> 1185

1.5177; 0.9293; 2.0969; 1.0041; 0.4739; 0.1146; 0

Slope (°) 0 ~ 6; 6 ~ 10; 10 ~ 13; 13 ~ 17; 17 ~ 21; 21 ~ 26;> 26 1.4023; 1.3351; 0.8429; 0.9190; 0.7801; 0.8115; 0.3808
Aspect (°) Plane; North; Northeast; East; Southeast; South; South-

west; West; Northwest
0; 1.2603; 0.9210; 1.2007; 1.3458; 0.8592; 0.7007; 

0.7563; 1.2695
Curvature  < -2; -2 ~ 0; 0 ~ 2;> 2 0; 1.4960; 0.5999; 0
Lithology Carbonate rocks; Metamorphic rocks; Magmatic rocks; 

Loess
0.9510; 1.8600; 0; 1.0140

Distance from faults (m) 0 ~ 500; 500 ~ 1000; 1000 ~ 2000; 2000 ~ 3000; 3000 ~ 
4000; 4000 ~ 5000;> 5000

0; 1.4994; 0.8352; 1.1852; 0; 0.8035; 1.0250

Distance from roads 0 ~ 437; 437 ~ 960; 960 ~ 1541; 1541 ~ 2208; 2208 ~ 
3049; 3049 ~ 4224;> 4224

2.6823; 0.2617; 0.3569; 0.3189; 0.3886; 0; 0

Population density (/km2)  < 100; 100 ~ 200; 200 ~ 300;> 300 0.6521; 0.5005; 0.9984; 2.1158
Distance from rivers (m) 0 ~ 391; 391 ~ 794; 794 ~ 1216; 1216 ~ 1684; 1684 ~ 

2236; 2236 ~ 3051;> 3051
2.4118; 0.4460; 0.6174; 0.5260; 0.6493; 0.5391; 0

Rainfall (mm) 440 ~ 462; 462 ~ 470; 470 ~ 478; 478 ~ 486; 486 ~ 495; 
495 ~ 504;> 504

1.2067; 0.9045; 1.8261; 1.2475; 0.4966; 0.2548; 0

NDVI  − 0.45 ~ − 0.17;- 0.17 ~ − 0.04;- 0.04 ~ 0.02; 0.02 ~ 
0.08; 0.08 ~ 0.16; 0.16 ~ 0.28;> 0.28

0.9918; 2.2916; 1.1364; 0.6615; 0.7839; 0.2355; 0.4481

TWI 3.7 ~ 5.7; 5.7 ~ 6.6; 6.6 ~ 7.4; 7.4 ~ 8.1; 8.1 ~ 9; 9 ~ 10; 
10 ~ 15.2

0.8741; 0.8839; 0.6176; 0.7542; 1.4154; 1.6543; 0.6960
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Geological disasters susceptibility mapping by FR‑RF model

The FR model can be connected with the causative factor, and 
the causative factor can be reassigned. The assigned factor can 
be used as the input variable of the machine learning model to 
build a new model. The frequency ratio of each factor was taken 
as the input variable into the RF model, which was divided into 
training set and test set by 7:3. Similarly, the 14,377 assessment 
units in the study area were also reassigned with FR, and the 
assigned 14,377 assessment units were brought into the previ-
ously trained model to obtain the probability of occurrence of 
geological disasters in each unit. The vulnerability map can be 
obtained by interpolation analysis of generated probability in 
ArcGIS. The research can be divided into five levels by natural 
discontinuity method, namely, very low, low, moderate, high, 
and very high (Fig. 5).

Model validation

ROC curve is simple and intuitive, which is a typical method 
to evaluate the prediction ability of models. When AUC 

value of the area under ROC curve is greater than 0.8, the 
prediction effect of the model is good; when AUC value is 
greater than 0.9, the prediction effect is excellent. By com-
paring the models in Figs. 4 and 5 with the FR model, it can 
be seen that the prediction results of BRF, RRF, BFR-RF, 
and HFR-RF have large errors with the results of the FR 
model, so the ROC curve test of these four models is not 
carried out. Figure 6 shows that AUC values of all models 
are higher than 0.8, and the prediction effect is good.

Discussion

Evaluation of susceptibility maps of different area

It can be seen from Fig. 4 and Fig. 5 that when non-geolog-
ical disaster samples are sampled in the valley area, most of 
the valley areas are low and very low susceptibility areas, and 
there are a large number of areas above the low susceptibility 
areas in the northeast and southeast mountain areas. When 
non-geological disaster samples are sampled in the broken 

Fig. 4   The geological disasters susceptibility zoning maps by RF model
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plateau area, most of the northeast and southeast areas are 
above the middle susceptibility areas. Compared with the 
FR model, the spatial distribution error of the model con-
structed in these two sampling areas is great. Therefore, it is 
not suitable for the study area to select non-geological disas-
ter samples in the broken plateau and river valley as sampling 
areas. When non-geological disaster samples are sampled 
in hilly area, mountainous areas and mixed area, and river 
valley areas were mostly high and very high susceptibility 
areas, while mountainous areas are mostly low and very low 
susceptibility areas. Compared with FR model, the overall 
spatial distribution is basically consistent. As can be seen 
from the MRF susceptibility zoning map, the study area has 
a large area and a large area of continuous distribution, which 
does not conform to the actual situation of the study area. The 
large area and continuous distribution in HRF susceptibility 
zoning map has decreased a lot, but the whole north, espe-
cially the northwest, is almost all above the low susceptibility 
area. From the perspective of urban construction, if most of 
the research area is in the very high susceptibility area of geo-
logical disasters, it will not be suitable for urban construction 
and human production and life. But there are many towns and 

Fig. 5   The geological disasters susceptibility zoning maps by FR-RF model

Fig. 6   ROC curves
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even city centers in the west and middle. As can be seen from 
the susceptibility zoning map of FR model in the northwest 
region, there are scattered very low and low susceptibility 
areas, so the prediction accuracy of MRF and HRF models 
is low. According to the susceptibility zoning maps of MFR-
RF, HFR-RF, and MIRF and MIFR-RF, the situation of large 
area continuous distribution has basically disappeared, which 
is closer to the actual situation than the prediction results of 
MRF and HRF models. However, MFR-RF is still moderate 
and high susceptibility areas in most northwest areas. Many 
villages and towns are distributed in the northwest, such as 
Mengmen Town, Chengjiazhuang Town, Houfengjiagou Vil-
lage, Yaotou Village, and Majita Village (Fig. 7). Similarly, 
the FR model shows that the northwest is scattered with very 
low and low susceptibility areas, which is also in contradic-
tion with the reality. The FR model showed high and very 
high susceptibility area along the central road and on both 
sides of the Sanchuan River, while the MIRF and MIFR-RF 
models showed low and moderate susceptibility areas, which 
were inconsistent with each other. The HFR-RF model is 
the most consistent model with the distribution of FR model 
susceptibility zoning map. Similarly, the HFR-RF model also 
reflects the advantages of the machine learning model, that 
is, it is more accurate and more accurate than the statistical 
analysis model. For example, there are more low suscepti-
bility areas in the northwest region, while the high and very 
high susceptibility areas in the central and northern regions 
are much reduced. Fifty-one percent of the HFR-RF model 
belongs to low and very low susceptibility areas, and there 
is no large and continuous distribution of high and very high 
susceptibility areas. At the same time, AUC value is higher 
than MIRF and MIFR-RF. The susceptibility zoning map is 
reasonable and meets the requirements of urban construc-
tion. Therefore, the FR-RF model with non-geological dis-
aster samples sampled in hilly areas is most suitable for the 

susceptibility mapping of this study area. Li et al. (2022a) 
selected 902 negative samples unconditionally and randomly 
in the study area to evaluate the susceptibility of geologi-
cal disasters combined with IV and IV-LG models, and the 
accuracy of the two models was almost the same, without 
any improvement. Duan et al. (2022a) randomly generated 
an equal amount of non-disaster points 100 m away from the 
disaster point, and the susceptibility was evaluated by RF 
and SVM, and the AUC value of ROC curve test was not 
more than 0.72. An and Niu (2016) combined with SVM to 
evaluate the susceptibility beyond 500 m of the disaster point, 
and the model training accuracy was 81.41%. Kavzoglu et al. 
selected random negative samples in river channels and low 
slope areas to evaluate landslide susceptibility by MCDA 
and SVR methods, and the results showed that the predicted 
results of these two methods were higher than those of LG 
model (Kavzoglu et al. 2014). Wang Shibao et al. selected 
negative samples in areas with low information value model 
and very low susceptibility, and used CNN model to evaluate 
landslide susceptibility. Compared with ANN model, AUC 
value only increased by 0.03 (Wang et al. 2022b). There are 
also some methods to select negative samples by special 
methods (Chen et al. 2021; Su et al. 2022). Although these 
studies have obtained good results, there is no discussion 
on whether the accuracy of negative sample model selection 
can be improved by other methods. Through this study, it 
can be seen that the selection accuracy of negative samples 
in different regions varies greatly, and the selection of nega-
tive samples in a reasonable region will greatly improve the 
accuracy of the model. Therefore, the reasonable selection 
of non-geological disaster samples is of great significance to 
improve the accuracy of the susceptibility evaluation results.

According to the HFR-RF susceptibility zoning map in 
Fig. 5, very low susceptibility areas are concentrated in the 
south, southeast, and northeast regions. These areas have 

Fig. 7   3D map of northwest
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higher elevations and steeper slopes, and rain flows naturally 
to lower elevations. The vegetation is luxuriant, the ability of 
soil fixation is strong, and the rainwater that penetrates into 
the soil is also absorbed by the vegetation. At the same time, 
it is far away from densely populated areas, and human engi-
neering is very little, which makes it a very low risk area for 
geological disasters. The low susceptibility area is within the 
very low susceptibility area, mainly distributed in the south-
west and west, scattered in the northwest. In these areas, the 
elevation, rainfall and NDVI are lower than those in the very 
low susceptibility area, and human engineering activities 
are still less. The moderate susceptibility areas are mainly 
distributed in the central and northern areas, and scattered 
in the southwest. These areas have been close to densely 
populated areas, with more roads and the elevation is in the 
transition zone of the study area. Rainfall has decreased a 
lot, vegetation coverage has become low, and some areas 
have been in very low vegetation coverage area, and water 
system has become more. The high susceptibility areas are 
mainly distributed in the central and northern regions. The 
surface layer of these areas is mostly covered by loess, with 
very low vegetation coverage, weak soil fixation ability, 
minimal rainfall, and serious soil erosion. At the same time, 
it is located in the low-elevation area of the study area, close 
to the roads, strong human activities and developed water 
system, making it a highly susceptibility area. High rock 
along the roads and river on both sides of the concentration 
distribution in study area, especially in central and northern 
is most concentrated. These areas are human concentration 
areas, roads is more, human engineering activities destruc-
tion of slope stability. Although the rainfall is small or very 
small, the vegetation coverage is very low, and the altitude 
is low. Most of them are hilly gully and valley terrace. The 
mountain rainfall flows to the region, and the rainwater seeps 
into the rock and soil, making the slope that was originally 
damaged by the project more unstable. Moreover, there are 
many water systems, which have a strong erosion capac-
ity on the slope. Many factors together to make these areas 
become extremely susceptibility area and key area of Liulin 
County geological disaster control and prevention.

Difference analysis of the results of susceptibility 
evaluation

Negative samples were randomly selected from different 
sampling area to build the geological disasters susceptibil-
ity model have great difference. From the perspective of RF 
model itself, RF model is the result of classification and 
comprehensive evaluation of many decision trees. When the 
training set of sample quantity change, each the result of 
a decision tree to select feature will change. When many 
trees are clustered, the model judgment will be different, that 
is, the probability of geological disasters in each grid will 

change accordingly. The most important reason is whether 
the randomly selected negative samples are representative. 
The negative samples selected by BRF, BFR-RF, RRF, and 
RFR-RF models are located in the broken plateau and river 
valleys, which are the high-frequency areas of the distribu-
tion of geological disaster points. Therefore, the causative 
factor attribute values stored by negative samples are very 
similar to those of positive samples. The characteristics of 
positive and negative samples may be confused in the pro-
cess of RF model construction. The opposite is actually the 
case (Fig. 4BRF). The MRF model will have a continuous 
large area distribution, because the negative sample selected 
in the mountainous area has a relatively “extreme” attribute 
value of the causative factor. For example, rainfall, elevation, 
slope, and NDVI are generally the highest in the study area, 
while lithology is generally the most stable, and it is gener-
ally far away from roads and water systems. So when mod-
eling, areas that do not fit these characteristics are consid-
ered not very low or low susceptibility areas. However, the 
negative samples selected in the hilly area are representative, 
and their attribute characteristics include the characteristics 
of the whole study area, and there is no case of “extreme” 
attribute value of disaster causing factors. Secondly, it is not 
in the high frequency area of the distribution of geological 
disaster points, so there will be no situation contrary to the 
actual situation, which is also consistent with the research 
results of Wang et al. (2022a). The prediction effect of 
FR-RF model is better than that of RF model, because the 
coupled model can eliminate the differences in dimensions, 
properties and other aspects of RF model, and ensure the 
objectivity of causative factors in model analysis.

Evaluation of causative factors

According to the weight contribution of the disaster caus-
ing factors of the FR-RF model sampled by non-geological 
disaster samples in hilly areas (Fig. 8), the distance from 
the road, the distance from the river, elevation, and rain-
fall are the most important factors affecting the occurrence 
of geological disasters in the study area. Among them, the 
greatest contribution is the distance from the road. Accord-
ing to Fig. 3, Fig. 5, and Table 1, the areas with very high 
susceptibility are almost all distributed on both sides of 
the road. The farther away from roads, the fewer disaster 
points, and the trend declined rapidly. From this, it can be 
judged that the construction of roads in the study area was 
the most important factor affecting the occurrence of geo-
logical disasters. Elevation and rainfall were also the key 
factors for it. Since the occurrence of geological disasters 
was the result of the joint action for multiple factors, the 
study area was not an area that the higher the elevation, 
the greater the rainfall, the more susceptible to disasters. 
For example, the impact of rainfall on geological disasters 
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should be considered together with NDVI. The northeast and 
southeast regions were the areas with the highest elevations 
and the most rainfall in the study area. However, these areas 
were covered with lush vegetation, which had a strong soil-
fixing ability and absorbed more rainfall. At the same time, 
due to the high elevation and relatively large slope aspect, 
the rainfall also flowed to the low-elevation areas. In addi-
tion, there was less human engineering and the population 
density was relatively low, so it became a very low suscep-
tibility zoning in the study area. However, the central and 
north-central regions were in the transition zones of eleva-
tion and rainfall in research area. Due to the sparse coverage 
of vegetation, the ability to solidify the soil was not strong. 
And there were many mountain streams and valley bottoms, 
so the rainwater flowed to these areas. At the same time, 
the population density was large and so was the amount of 
human engineering. Although the slope was not very steep, 
it was the most susceptible factor to geological disaster in 
the research area. River was also one of the most important 
factors in the research area. For example, the Sanchuan River 
and its tributaries crossed the central regions of the research 
area. Then combining the common effects of other factors, 
it would make the area susceptible for geological disaster.

Energy saving and environmental protection

Land-use and GDP are important evaluation indicators of 
ecological environmental security and sustainable economic 
development (Zhao et al. 2006). The cost of disaster man-
agement and potential economic loss are closely related to 
the accuracy of geological disaster susceptibility zoning 

map, and the accuracy has become the focus of geological 
disaster prevention and control (Pourghasemi et al. 2019). 
In the process of GDP rasterization, the GDP distribution 
weights of land use types, night light brightness, and resi-
dential density are mainly considered, and the calculation 
formula is as follows:

where DPij is the value of grid cells after spatialization; 
GDP is the GDP statistic value of the county district unit 
where the grid cell is located; Qij is the total weight of land 
use type, night light brightness and residential density of the 
grid cell. Q is the total weight of land use type, night light 
brightness and residential density of the county administra-
tive unit where the grid cell is located.

The cost of disaster management is mainly estimated 
through labor costs (LC), material costs (MC), and con-
struction machinery usage costs (CMUC) (Eq. 6), and the 
damage rate (in this paper, it is expressed as GDP/disaster 
management cost) is used as an objective quantitative indi-
cator of damage degree (Yum et al. 2020). The susceptibil-
ity zoning map, land-use, and GDP distribution map were 
superimposed to calculate the total GDP value of each model 
and the potential threat of soil resource information, and to 
comprehensively analyze the potential impact of regional 
geological disasters on economic development.

where DGC is the disaster governance costs, LC is the 
labor costs, LC = ∑ working hours × unit price, MC is the 

(5)GDPij = GDP ×

(

Qij

Q

)

(6)DGC = LC +MC + CMUC

Fig. 8   Contributions of causa-
tive factors
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material costs, MC = ∑ material consumption × unit price, 
CMUC is the construction machinery usage costs, CMUC 
= ∑ machinery consumption × unit price.

Under each model, the ratio of disaster management 
costs, total GDP, and loss rate in different sampling areas 
(Table 2) showed that the ratio of disaster management costs 
and GDP loss of HFR-RF model is the lowest, and its eco-
nomic benefit is the best. In line with the above, HFR-RF 
model is the most suitable model in the study area, and its 
management costs decreases by 13.45% on average com-
pared with other models. This indicates that using FR-RF 
model to sample non-geological disaster samples in hilly 
areas has better effect on energy conservation and environ-
mental protection, and can effectively reduce the cost of 
disaster management.

Conclusion

Accurate and scientific analysis of geological disaster sus-
ceptibility is the key step to ensure the safety of ecologi-
cal environment and sustainable development of regional 
economy. This study innovatively evaluated the suscepti-
bility of negative samples by dividing them into macro-
geomorphic areas, and the results showed that the method 
was feasible. However, the susceptibility results of negative 
samples selected in different sampling areas are quite dif-
ferent, mainly because of the different representativeness 
of negative samples selected. Therefore, appropriate topo-
graphic and geomorphic areas must be selected for sam-
pling by this method. In this paper, the prediction effect of 
negative samples selected in hilly area is excellent, which is 
higher than the prediction accuracy of other sampling areas 
and previous researchers. By comparing energy conservation 
and environmental protection, the disaster management cost 
of HFR-RF model is reduced by 13.45% on average com-
pared with other models, and its GDP/disaster management 
cost ratio is significantly increased. This study can provide 
a scientific basis for the selection of negative samples for 
geological hazard susceptibility assessment in the Loess 
Plateau of North China.
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