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Abstract
Two interrelated problems exist: the non-renewability of phosphate rock as a resource and the excess phosphate in the water 
system lead to eutrophication. Removal and recovery of phosphorus (P) from waste streams at wastewater treatment plants 
(WWTPs) is one of the promising solutions. This paper reviews strategies for P recovery from waste streams in WWTPs 
are reviewed, and the main P recovery processes were broken down into three parts: enrichment, extraction, and crystalliza-
tion. On this basis, the present P recovery technology was summarized and compared. The choice of P recovery technology 
depends on the process of sewage treatment and sludge treatment. Most P recovery processes can meet the financial require-
ments since the recent surge in phosphate rock prices. The safety requirements of P recovery products add a high cost to 
toxic substance removal, so it is necessary to control the discharge of toxic substances such as heavy metals and persistent 
organic pollutants from the source.
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Introduction

Phosphorus (P) is an essential element for life’s survival and 
P fertilizer has made a significant breakthrough in agricul-
ture. Ensuring the long-term availability and accessibility 
of P sources is critical to the future of humanity. P occurs 
in nature mainly in the form of apatite and is released from 
rock into the soil, recycled by plants and animals, and may 
also be lost due to soil leaching and erosion into streams 
and rivers (Azam et al. 2019). Mining and agriculture have 
accelerated this loss, and large amounts of phosphate ferti-
lizers are used for agriculture and livestock, entering natural 
water bodies through rainfall, the food chain, and eventually 
the sea. When P reaches the ocean and reacts with other 
seawater chemicals, it becomes insoluble. This insoluble P 
sinks to the seabed and is lost. Excessive P in natural water 
bodies can lead to the explosive growth of algae, which 
affects the ecological function of water bodies, known as 
eutrophication.

Currently, the world’s reserves of natural P ore are avail-
able for approximately 50–100 years (Cordell et al. 2009). 
Recycling lost P resources will partly alleviate the P cri-
sis. An average of 21 million tons of phosphate rock is 
mined yearly and goes into human activities as fertilizer 
and other industrial products. About 15% of this P goes into 
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wastewater treatment plants (WWTPs) (Venkiteshwaran 
et al. 2018). Compared with dispersed livestock manure and 
non-point agricultural sources, municipal wastewater has a 
complete collection network and centralized treatment facili-
ties, which makes it easier to recover phosphorus from it and 
is the most promising of all the available sources of recovery 
of P in the waste sector (Rahman et al. 2019). P recovery 
from WWTPs’ waste streams can alleviate the P crisis and 
effectively reduce the emission P concentration and the con-
tribution of WWTPs’ discharge to eutrophication.

Many technologies have been developed to recover P 
from WWTPs waste streams (Cordell et al. 2011), includ-
ing some full-scale technologies (Diaz-Elsayed et al. 2019). 
A schematic overview of P recovery processes is shown 
in Fig. 1. Although there are many technologies, most are 
based on the same principles and follow the basic steps of 
P recovery from wastewater, including enrichment, extrac-
tion, and recovery as bioavailable products. We review the 
last decade of research aimed at P recovery based on WWTPs. 
The classification was carried out from recovery location, 
enrichment, extraction methods, recovery products, scale, 
etc. The network diagram is shown in Fig. 2. Currently, the 
primary P enrichment method is the excessive uptake of P 
by phosphorus-accumulating organisms (PAOs). Of course, 
there are other physical, chemical, and biological P enrich-
ment methods, such as membrane separation processes (Li 
et al. 2021b), adsorption (Bacelo et al. 2020), and microalgae 

(Roy 2017). The P recovery processes can be divided into 
three ways according to the recovery location: direct recovery 
from sewage, recovery from sewage sludge (SS), and recovery 
from sewage sludge ash (SSA) (Cieslik and Konieczka 2017; 
Donatello and Cheeseman 2013; Zhang et al. 2022). Different 
P crystallization products can be obtained by adding various 
metal salts, including struvite generated by magnesium salt, 
apatite induced by calcium salt, and vivianite caused by iron 
salt. Most P recovery is ultimately achieved in the form of Mg, 
Ca, or Fe crystallization products, although some P recovery 
is conducted in P-rich biochar.

In this paper, the P forms in different waste streams of 
WWTPs are introduced, and the enrichment, extraction, 
and recovery technologies into bioavailable products are 
reviewed. The principle, progress, and limitations of the 
technologies are introduced, and the possible obstacles to P 
recovery were evaluated.

P in sewage, sewage sludge, and sewage 
sludge ash

P in sewage

P exists in many forms in sewage and changes with the sew-
age treatment processes. The chemical form of P affects its 
removal and recovery. P can be divided into particulate and 

Fig. 1   Schematic overview of 
P recovery processes.  Adapted 
from Jupp et al. (2021)

28408 Environmental Science and Pollution Research (2023) 30:28407–28421



1 3

dissolved states according to physical properties. According 
to the chemical structure, P can be divided into inorganic P 
and organic P. And according to bioavailability, P can be 
divided into reactive P (RP) and non-reactive P (NRP). In 
practice, separating inorganic P and organic P in a particu-
late state is difficult. Therefore, P in sewage is generally 
divided into particulate phosphorus (pP), dissolved inor-
ganic phosphorus (DIP), and dissolved organic phosphorus 
(DOP).

P that is physically transported as a particle by adsorption 
onto hydroxides and clay particles is called pP. In nature, 
the P transported in physical form accounts for about 95% 

of the total P, while in sewage, the proportion of pP is low, 
accounting for about 16 ± 11% of the TP (Venkiteshwaran 
et al. 2018). In the general process of sewage treatment, pP 
can be quickly and thoroughly removed from the sewage 
stream in the primary treatment (Dueñas et al. 2003) and 
transferred into the sludge.

DIP mainly exists in water in orthophosphate or polyphos-
phate, which is also the main P form in sewage. In an aque-
ous solution, orthophosphates may exist in PO4

3−, HPO4
2−, 

H2PO4
−, and H3PO4, and each part’s relative proportion (i.e., 

distribution coefficient) varies with pH. Polyphosphates in 
sewage come from various sources, such as detergents, scale 

Fig. 2   Basic network diagram of P recovery technologies in the last decade (Data from Web of Science Core Collection)
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inhibitors, and food additives. In sewage, polyphosphates 
are hydrolyzed to orthophosphates, a process accelerated by 
organisms and enzymes.

DOP in sewage refers to P combined with organic mat-
ter. It mainly comes from the decomposition of organisms 
and the use of pesticides, flame retardants, and surfactants. 
Components of DOP derived from organic decomposition 
include phosphoprotein, nucleoprotein, phospholipid, and 
carbohydrate phosphate (ester). Organophosphorus can be 
divided into biodegradable parts and non-biodegradable 
parts. Most biodegradable organophosphorus contain a 
P–O–C bond, common in natural organophosphorus com-
pounds, while synthetic compounds containing a P–C bond, 
such as phosphonates, are difficult to biodegrade. Due to 
the extensive use of phosphonates, their transformation and 
fate in the sewage treatment process and water environment 
cannot be ignored.

P in sewage sludge

The characteristics of SS are highly dependent on the tech-
nology and location of the WWTP (Wollmann and Möller 
2018). Decisions made within a WWTP about physical, bio-
logical, or chemical separation techniques for partitioning 
solid from liquid have downstream effects on SS charac-
teristics (Ma and Rosen 2021). Yu et al. (2021) reviewed 
the species, fractions, and characterization of P in SS from 
the perspective of P recovery and compared waste-activated 
sludge (WAS) and chemically enhanced primary sludge 
(CEPS). The P form distribution is shown in Fig. 3. In WAS, 
polyphosphate is the main form of P, accounting for about 
30–80%, while other inorganic P and organic P account for 
10–30%, respectively. In iron-based CEPS, 83 ~ 96% of the 
TP is IP, of which 68 ~ 73% is chemically precipitated P. 
45 ~ 59% of the chemically precipitated metal oxides and 
metal hydroxide adsorb P, and 20 ~ 52% is Fe–P in the form 
of FePO4.

P in sewage sludge ash

The characteristics of SSA depend on the source SS. In addi-
tion, different incineration technologies have unique physical 
mechanisms and incineration temperatures that will change 
SSA’s physical and chemical properties and may impact the 
quality of the SSA products produced.

Phosphate does not volatilize during the drying or incin-
eration of sludge. Instead, phosphate is concentrated in the 
SSA as whitlockite type, tri-calcium phosphates (Ca3(PO4)2) 
(Donatello and Cheeseman 2013). Sometimes Ca2+ is par-
tially replaced by Mg2+, Fe3+, or Al3+ (Adam et al. 2009; 
Donatello 2009). Based on previous research data, the 
proportion of P in SSA ranged from 1.0 to 14.4%, with an 
average ratio of 7.6% (n = 101). The primary forms of P are 

dolomite (Ca9Al(PO4)7), aluminum phosphate (AlPO4), and 
iron phosphate (FePO4). Nanzer et al. (2014) conducted a 
series of analyses, including X-ray powder diffraction, solid-
state 31P direct-polarization magic-angle spinning nuclear 
magnetic resonance, and X-ray absorption near-edge struc-
ture, to determine the direct P speciation in four SSAs. 
Their Analysis found that overall speciation depended on 
the calcium-P mole ratio (Ca/P). Specifically, if Ca/P > 2, P 
is mainly bound to the apatite-like structure. In contrast, P 
is bound to aluminum phosphate, limestone, and apatite-like 
structures.

Enrichment methods

Due to the lack of specific P recovery policies and the 
demand for P recovery products, the main driving force of P 
enrichment in wastewater is to remove P from wastewater to 
meet the increasingly strict P discharge standards. Therefore, 
from the perspective of feasibility, the full-scale P recovery 
process is established based on mature P removal processes 
(EBPR and chemical precipitation P removal). However, 
some emerging laboratory and pilot-scale processes such as 
sorption, membrane separation, and microalgae-based pro-
cesses have shown good P removal and enrichment effects, 
but there are still some obstacles to overcome before full-
scale application.

Enhanced biological phosphorus removal

At present, the mainstream P removal method is Enhanced 
biological P removal (EBPR). The EBPR process relies on 
a specific group of bacteria, called polyphosphate accumu-
lating organisms (PAOs), to accumulate phosphate from 
wastewater more than its growth requirements under alter-
nating anaerobic and aerobic/anoxic conditions to complete 
the separation and enrichment of P from wastewater. The 
P enrichment mechanism is shown in Fig. 4. In this way, 
90% of the P in sewage can be removed, the P content of 
the resulting sludge is 5–7%, and the net P removal of the 
whole system is achieved by discharging the excess sludge. 
Through a complete aerobic (anoxic) and anaerobic process, 
EBPR can obtain a higher concentration of P in the anaero-
bic supernatant, thus completing the enrichment of P in the 
liquid phase, which provides a pre-stage for a series of main-
stream P-recovery strategies (Zhang et al. 2022).

Chemical precipitation

Chemical precipitation is the earliest method to remove P 
from sewage. In response to eutrophication, chemical pre-
cipitation has been widely used in Switzerland since the 
1950s to remove P from wastewater (Morse et al. 1998). At 
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Fig. 3   Species and distribution 
of P in WAS (a) and Fe-dosed 
CEPS (b).  Adapted from Yu 
et al. (2021). Data from Li 
et al. (2018); Liu et al. (2019); 
Pokhrel et al. (2018); Wu et al. 
(2015); Xie et al. (2011). The 
mosaic charts are gained by the 
average value of the ranges

Fig. 4   Schematic diagrams of the PAO metabolism.  Modified from Yuan et al. (2012)
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present this simple method is widely used in most countries 
of the world. Chemical precipitation is essentially a phys-
icochemical process involving the addition of a bivalent or 
trivalent metal salt to sewage resulting in the precipitation of 
insoluble metallic phosphate. The most suitable metals are 
iron and aluminum, added in the form of chloride or sulfate.

Although chemical precipitation is simple and does not 
require additional processes, chemically precipitated P is 
difficult to separate from sludge. And phosphates, in the 
form of iron phosphate or aluminum phosphate, are dif-
ficult to use in agriculture (iron phosphate is insoluble in 
acidic conditions and aluminum phosphate is toxic to plant 
roots). Therefore, many alternative P recovery technologies 
have been developed. However, the latest study found that 
vivianite would form in iron-based P removal sludge under 
anaerobic conditions (Wilfert et al. 2016), which brings a 
new way for P recovery, which will be introduced in the 
“Vivianite” section.

Adsorption

Adsorption is generally considered an effective and attrac-
tive treatment process because of its ease of operation, sim-
plicity of design, ability to remove P at very low concen-
trations, and minimal waste production (Loganathan et al. 
2014). There are five main mechanisms of phosphate adsorp-
tion: (a) ion exchange (outer-sphere surface complexation), 
(b) ligand exchange (inner-sphere surface complexation), (c) 
hydrogen bonding, (d) surface precipitation, and (e) diffu-
sion into the interior structure of the sorbent (Loganathan 
et al. 2014). The predominant type of mechanism operating 
in an adsorption process depends on the physical and chemi-
cal characteristics of the adsorbents and the environmen-
tal/operational conditions. Adsorbents can be divided into 
four categories: inorganic adsorbents, organic adsorbents, 
industrial by-products, and biological waste. Applications 
of adsorption on P recovery can be divided into two ways: 
adsorbed by the renewable adsorbents then desorption to 
form P-rich solutions, or by the low-cost adsorbents then 
direct land application.

Among the adsorbents, metal oxides and hydroxides 
generally have a high phosphate adsorption capacity. Ther-
mal treatment and acid treatment can enhance the adsorp-
tion capacity of some adsorbents, such as layered double 
hydroxides (LDHs) (Cheng et al. 2010), Fe, Al oxides and 
hydroxides, and red mud (Bhatnagar et al. 2011). Surface 
modification of adsorbents by grafting metal or organic 
groups will also improve the adsorption capacity of adsor-
bents (Bacelo et al. 2020). However, the modification of 
adsorbents increases the costs. These materials with high 
adsorption properties are promising in the case of very low 
P emission concentration requirements.

An adsorbent suitable for P recovery should not only have 
a high phosphate adsorption capacity and cost-effectiveness 
but also be easy to desorb phosphate and be efficiently regen-
erated and used for a long time. Desorption of phosphate is 
the leaching of adsorbed phosphate with acid, base, or salt. 
Phosphate in desorption solutions can be recovered in the 
form of calcium phosphate compounds by adding CaCl2 or 
Ca(OH)2 and used as fertilizers or feedstock for fertilizers.

Although many industrial by-products and organic wastes 
have low absorbability, they are attractive because of their 
low cost (mainly transport costs). The low absorbability can 
be overcome with the large usage of these materials. These 
materials are recommended for use in areas where they are 
locally available to reduce transport costs. Low-cost adsor-
bents with low toxic substance concentrations can be used 
directly after phosphate adsorption.

Membrane separation processes

The membrane separation process is considered a promis-
ing P enrichment method because it is selective for pollut-
ants and can be targeted to separate specific toxic substances 
(Gerardo et al. 2015). Compared to the other P removal and 
enrichment processes mentioned earlier, the membrane sepa-
ration process is more stable in operation, more selective for 
P, and produces less waste (Azam et al. 2019; Rittmann et al. 
2011). According to the driving force, the membrane separa-
tion processes can be divided into pressure-driven, osmotic 
pressure-driven, and electric-driven. In the P recovery pro-
cess, membrane separation is first applied in the separation 
of P recovery products, such as the use of microfiltration 
and ultrafiltration for the separation of P recovery products 
generated by chemical precipitation (Disha et al. 2012; 
Gerardo et al. 2013). Membrane separation processes includ-
ing nanofiltration, forward osmosis, membrane distillation, 
and electrodialysis are also used to separate the liquid phase 
and sludge phase after P extraction from sludge. Relevant 
studies are shown in Table 1.

Nanofiltration, reverse osmosis and other membrane sepa-
ration processes with high phosphate retention rates have 
also been extensively studied (Li et al. 2021b). However, 
due to the serious membrane fouling, these pressure-driven 
membrane separation processes cannot adapt to the com-
plexity of wastewater. Emerging technologies such as for-
ward osmosis and electrodialysis have lower membrane foul-
ing tendencies and are expected to help solve this problem. 
In particular, the forward osmosis process can be used in the 
MBR process, which has better pre-preparation. Xie et al. 
(2014) coupled forward osmosis and membrane distillation 
processes for P recovery from sludge. OMBR P recovery 
system using forward osmosis combined with microfiltra-
tion also shows its potential (Qiu and Ting 2014; Qiu et al. 
2016a, b). Meanwhile, nanofiltration, electrodialysis, and 
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other membrane separation processes can complete the sepa-
ration of heavy metals and organic pollutants and improve 
the safety of P recovery products (Li et al. 2021b). However, 
the regeneration of the draw solution in the forward osmosis 
process is a problem to be solved. For electrodialysis, high 
energy consumption and long separation time are the main 
factors that limit its large-scale application.

Extraction methods

After enrichment by the processes mentioned above, P-rich 
liquid phases (anaerobic supernatant, anaerobic sludge 
digestion, P-rich desorption solutions, and P-rich solutions 
formed by membrane separation, etc.) or solid phases (waste 
activated sludge, chemically precipitated sludge, P-rich 
adsorbents, etc.) are usually included. Some P-rich solutions 
and solids can be used directly as fertilizer, but most P-rich 
SS and SSA need to be extracted for recovery.

Extracted from sewage sludge

As mentioned earlier, in existing wastewater treatment 
plants, approximately 90% of P from influent water enters 
the sludge. Most of the P in the sludge is stored in adeno-
sine triphosphate by phospho-accumulating bacteria through 
the EBPR process, and some of the P is precipitated into 
the sludge by aluminum salts or iron salts in the process of 
chemical P removal. The concentration of total P in sludge 
depends on the inlet water quality and the method used in 
the sewage treatment plant. Sludge contains many patho-
genic bacteria, parasite eggs, heavy metals, and some toxic 
and harmful organic substances that are difficult to degrade, 
which limits its direct land use (Jupp et al. 2021). As a 
result, in Germany, the Netherlands, Switzerland, and other 
countries, the agricultural use of sludge has been banned 
by legislation, so P needs to be extracted from sludge and 
its leachate. For EBPR sludge, the supernatant with a high 
concentration of P can be obtained by anaerobic digestion, 

and then P can be recovered by crystallization. In addition, 
ways to recover P in the form of vivianite by adding iron 
salts to sludge are also being established. Other methods 
of extracting P directly from sludge are mainly divided into 
wet-chemical and thermochemical treatments.

Wet‑chemicaltreatment

Wet-chemical processes use acidification or alkalization to 
treat sludge and enhance P release. The extractants used for 
P extraction in SS are shown in Table 2. P release can be 
improved by pretreatment methods such as ultrasound and 
microwave but at an additional cost. Treating sludge with 
inorganic acid will release heavy metals synchronously, 
so measures should be taken to prevent heavy metals from 
entering the recycled products during P recovery. For exam-
ple, the polarity of the nanofiltration membrane is used to 
exclude cations through phosphoric acid ions, and the phos-
phoric acid and heavy metals are separated by electrodialysis 
(Guedes et al. 2014).

Thermochemical treatment

Thermochemical treatment is a series of sludge treatment 
methods utilizing high temperature, mainly including the 
hydrothermal method (Shi et  al. 2019; Yu et  al. 2017), 
pyrolysis (Tang et al. 2018), and gasification (Acelas et al. 
2014). The main difference between these methods lies in 
the temperature and oxygen content used. Thermochemical 
treatment can simultaneously remove pathogens and organic 
matter in sludge, but inorganic metal and non-metal pol-
lutants are still retained. Therefore, heavy metal pollutants 
in P recovery products obtained after pyrolysis and sludge 
gasification are concentrated, limiting its application pros-
pects. It is more suitable for treating phospho-rich wastes 
such as kitchen waste and livestock manure with less heavy 
metal pollutants.

Table 1   The study of membrane separation processes in separating liquid and solid phases after P extraction

Source Method Product Focus/highlights Reference

Anaerobically digested sludge (BNR process) Forward osmosis/
membrane distillation

MAP Membrane fouling Xie et al. (2014)

Trout farm sludge Microfiltration HAP Pilot scale Gerardo et al. (2015)
Digested sludge centrate Forward osmosis Ca-P Seawater-driven Ansari et al. (2016)
Aerobic sludge Electrodialysis - Organic contaminants Guedes et al. (2016)
- Nanofiltration - Heavy metals Thong et al. (2016)
Sludge from lab-scale EBPR reactor Electrodialysis - Nitrogen removal Geng et al. (2018)
Sludge dewatering liquid Membrane distillation/

membrane crystal-
lization

MAP Produce an ammonia-rich stream Quist-Jensen et al. (2018)
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Physical approaches enhance the extraction of P 
from sludge

In addition to the two types of chemical treatment, physi-
cal approaches can also be used to enhance the release 
of P from SS, including microwave, ultrasound, and 
ozonation, but additional costs are required. Examples 
of enhanced P extraction using physical approaches are 
shown in Table 3.

Extracted from sewage sludge ash

Incineration of SS can reduce solid volume by more than 
90%. Phosphate is thermally stable and will not volatil-
ize during sludge drying or incineration at 800–900℃ but 
is concentrated in SSA in the form of calcium phosphate 
(Mg2 + , Fe3 + , or Al3 + may partially replace Ca2+). The P 
content of SSA produced is between 9 and 13.1%. In addi-
tion, the incineration process will destroy organic matter and 
pathogens that interfere with P recovery. Therefore, P recov-
ery from SSA has excellent advantages. Its primary disad-
vantage is that the construction of standard sludge incinera-
tion facilities requires a significant investment, which has 
high requirements for the scale and centralization of sludge 

treatment, so it may not be suitable for decentralized and 
small sewage treatment facilities. Since most heavy metals 
do not volatilize during sludge incineration, the content of 
heavy metals in ash is higher. Meanwhile, due to the high 
content of Fe–P and Al–P in SSA, it is restricted from being 
directly used as fertilizer. Therefore, it is necessary to extract 
P from SSA to remove heavy metals and recover P in a bio-
available form.

Wet‑chemical treatment

Like the wet-chemical treatment of SS, the wet-chemical 
treatment of SSA generally leaches P by organic or inor-
ganic acids, and studies on SSA with high aluminum and 
P content are also carried out by alternating acid–base 
leaching (Petzet et al. 2011). The extractants used for P 
extraction in SSA are shown in Table 4. The synchronous 
release of heavy metals usually accompanies the process 
of extracting P in SSA, and P and heavy metals can be 
separated by electrodialysis (Guedes et al. 2014) and ion 
exchange (Xu et al. 2012) and adsorption (Li et al. 2021a). 
Other studies (Fang et al. 2018b; Gorazda et al. 2012) 
reduced the release of heavy metals by changing the type 
and concentration of acid, but the P release efficiency 

Table 2   The extractants used 
for P extraction in SS

Extractants Sample P release 
efficiency 
(%)

pH Reference

NaOH Excess sludge 36.5 ~ 46.0 10.5 ~ 12 Bi et al. (2014), Chen 
et al. (2019), He et al. 
(2017)

H2SO4 Excess sludge 68 2 ~ 4 Quist-Jensen et al. (2019)
Residue after gasification 92 2 Acelas et al. (2014)

HNO3 Residue after gasification 81.5 0.7 Gorazda et al. (2018)
HCl Excess sludge 38.0 4 He et al. (2017)
H3PO4 Residue after gasification 73.5 1.24 Gorazda et al. (2018)
Oxalic acid Residue after gasification 95 2 Acelas et al. (2014)
Biological acidification Excess sludge 40 4.7 Guilayn et al. (2017)
EDTA Excess sludge 36.5 - Hu et al. (2021)

Table 3   Examples of enhanced P extraction using physical approaches

Physical approaches Sample P solubilization Treatment time P recovery Reference

Microwave Activated sludge 170% 3 min 95% Xiao et al. (2017)
Excess sludge 100% 5 min 97.42% Chang et al. (2019)
Municipal sewage sludge - 60 min 98.5% Fang et al. (2021)

Ultrasound Raw swine manure 40% 1.5 h 85% Zhang et al. (2018)
Ozonation Excess sludge 35.5% - 29% Qiang et al. (2015)

Digester supernatant 20% - 86.4% Vasenko et al. (2020)
Current Waste activated sludge 26.7% 15 min - Hu et al. (2018)

Waste activated sludge 430% 60 min - Xu et al. (2021)
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also decreased. Besides, the P-rich solution extracted by 
wet-chemical treatment will produce waste acid after P 
recovery, which needs further treatment and disposal. 
Therefore, the P leaching process with low environmental 
impact can also be considered. Söldner et al. (2019) used 
deep eutectic solvents (DESs) based on natural products as 
extraction media for P from incinerated sewage sludge ash. 
Semerci et al. (2019) carried out batch bioleaching experi-
ments with Sulfur oxidizing bacteria (SOB) to optimize 
the process in terms of P dissolution. Generally, the P-rich 
solution extracted by the wet-chemical method needs to 
recover P in the form of MAP or Ca–P by adjusting pH to 
alkaline. There have also been studies on the use of acid-
resistant adsorbents to adsorb P in leaching solutions (Li 
et al. 2021a).

Thermochemical treatment

The focus of thermal-chemical treatment is to remove heavy 
metals from SSA and improve the bioavailability of P. At 
high temperatures of 900 ~ 2000℃, the chlorine donor can 
react with the heavy metal oxides to produce chlorides, 
which are easily gasified or liquefied, thus separating from 
the P remaining in the solid phase. This is because the chlo-
rides of most heavy metals have lower melting and boil-
ing points. The melting and boiling points of chlorides and 
oxides of primary heavy metals are shown in Table 5.

When the chlorine donor is MgCl2 or CaCl2, the conver-
sion of Al–P and Fe–P to Mg–P or Ca–P in SSA can be pro-
moted, and the bioavailability of SSA can be improved (Li 
et al. 2015; Nowak et al. 2012). This process can be carried 

Table 4   The extractants used for P extraction in SSA. (ISSA, incinerated sewage sludge ash; PSSC, pyrolyzed sewage sludge char; LS ratio, liq-
uid to solid ratio)

Extractants Sample P release LS ratio (L/kg) Concentration Contact time Reference

H2SO4 ISSA 100% 150 0.05 M 4 h Biswas et al. (2009)
ISSA 80% 20 0.5 M 30 min Donatello et al. (2010)
Combusted PSSC 90% 150 0.05–0.53 M 2–24 h Atienza–Martínez et al. (2014)
ISSA 90% 20 0.6 M 30 min Kleemann et al. (2017)
PSSC 89% 10 0.8 M 30 min Kleemann et al. (2017)
ISSA  > 70% 10 0.5 M 2 h Li et al. (2017)
ISSA 92% 20 0.2 M 2 h Boniardi et al. (2021)

HNO3 ISSA 94.89% - 2.71 M - Gorazda et al. (2012)
ISSA  > 70% 10 0.5 M 2 h Li et al. (2017)

HCl ISSA 100% 150 0.1 M 4 h Biswas et al. (2009)
ISSA 95% 50 0.5 M 2 h Xu et al. (2012)
ISSA 85% 20 0.2 M 2 h Boniardi et al. (2021)

H3PO4 ISSA 96.1% - 2.68 M - Gorazda et al. (2012)
Oxalic acid ISSA  > 70% 10 0.5 M 2 h Li et al. (2017)
Citric acid ISSA  > 70% 10 0.5 M 2 h Li et al. (2017)
EDTA ISSA  < 30% 10 0.05 M 2 h Li et al. (2017)

ISSA - 20 0.02 M 2 h Fang et al. (2018a)
EDTMP ISSA  < 30% 10 0.05 M 2 h Li et al. (2017)
Deep eutectic solvents ISSA 18.3% 50 - 2 h Söldner et al. (2019)

ISSA 46.6% 50 - 24 h Söldner et al. (2019)
Sulfur oxidizing bacteria ISSA 76% - 0.5 M 5 d Semerci et al. (2019)

Table 5   Melting points and 
boiling points of six heavy 
metal chlorides and oxides. 
Adapted from Galey et al. 
(2022)

a sublimation, bdecomposition

Heavy metals Cadmium Chromium Copper Lead Nickel Zinc

Chlorides CdCl2 CrCl3 CuCl2 PbCl2 NiCl2 ZnCl2
Melting point (℃) 564 631 498 501 1009 317
Boiling point (℃) 960 945 993 954 970a 732
Oxides CdO Cr2O3 Cu2O PbO NiO ZnO
Melting point (℃) 2435 1236 886 1955 1975
Boiling point (℃) 1540a 4000 1800b 1470 2000a

28415Environmental Science and Pollution Research (2023) 30:28407–28421



1 3

out simultaneously with sludge incineration (Jeon and Kim 
2018). In addition, adding Na/K salt during thermochemi-
cal treatment (Herzel et al. 2016; Stemann et al. 2015) or 
co-incineration sludge with biomass (Zhao et al. 2018) can 
also improve the bioavailability of SSA. After being treated 
by these methods, most of the P in SSA exists in Ca-Mg-P 
or Ca-Mg-P with Na and K, and the heavy metal content is 
low, which can be directly used as a slow-release fertilizer.

Crystallization methods

Except for P-rich biochar and treated SSA used directly as 
fertilizer, most P recovery configurations eventually precipi-
tate P as phosphate by crystallization, both from the liquid 
phase and sludge. The primary product forms are struvite, 
hydroxyapatite, and vivianite.

Struvite

Struvite, chemically composed of magnesium ammonium 
phosphate (MAP, MgNH4PO4·6H2O), first came to the atten-
tion of the wastewater treatment industry for scaling in the 
pipes of WWTPs. Generally, MAP crystals are generated by 
adding MgCl2 and NaOH to the P-rich solution. The reaction 
process is shown in Eq. 1, where n is 0, 1, 2.

Therefore, the controlled recovery of struvite from sew-
age can help save maintenance costs for pipes and machinery 
while completing the recovery of ammonium from sewage. 
Its disadvantages are that the precipitation of MAP requires 
a higher pH value, and because of the large solubility prod-
uct of MAP (Table 6), it has a higher requirement for P 
concentration, and the P recovery efficiency is relatively low. 
Struvite requires a higher concentration of ammonium in the 
solution, and the product is susceptible to Ca2+ and other 
impurities. Struvite can be used as a slow-release fertilizer.

(1)
Mg2+ + NH+

4
+ HnPO

3−n
4

+ 6H
2
O → MgNH

4
PO

4
∙ 6H

2
O + nH+

Hydroxyapatite (calcium phosphates)

Calcium ions can form a variety of possible precipitates with phos-
phate groups in solution, the most stable form being hydroxyapatite 
(HAP, Ca5(PO4)3OH). In the process of P recovery with calcium 
salts, precursors such as amorphous calcium phosphate (ACP) are 
usually formed and then gradually transformed into HAP, which 
is the most thermodynamically stable. The chemical formula and 
solubility product of the main calcium phosphate are shown in 
Table 5. After aging, the main hydroxyapatite products can be 
used as slow-release fertilizers and as raw materials in the fertilizer 
industry. At present, some studies (Guo and Li 2020; Magrí et al. 
2021) have shown that mineral cores composed of HAP will form 
in the interior of anammox granular sludge, which also provides 
a new idea of the P recovery process, but it is not within the scope 
of this paper.

Vivianite

Wilfert et al. (2016) found that vivianite (Fe3(PO4)2·8H2O) 
accounted for 10 to 30% of the total P in biological P removal 
sludge and 40 to 50% in iron-based P removal sludge in 
WWTPs, which provided a new insight for P recovery. Vivian-
ite is mainly formed by reduced Fe3+ induced by dissimilatory 
metal-reducing bacteria (DMRB) under reductive conditions 
(O’Loughlin et al. 2013; Rothe et al. 2016). Compared with 
MAP and HAP, the recovery of P in vivianite does not rely 
on EBPR processes and can be used in WWTPs with an iron-
based P removal. Meanwhile, vivianite can exist in a wide 
range of pH, and the most suitable pH for precipitation is 6–8, 
which can fully adapt to the fluctuation of sewage pH. Vivian-
ite formed in sludge can be separated by magnetic separation. 
Prot et al. (2019) used a lab-scale Jones magnetic separator 
to treat chemical P removal sludge and realized a concentra-
tion factor for P and iron of 2 to 3. The separation product 
contained 52–62% of vivianite. Wijdeveld et al. (2022) used a 
pilot-scale magnetic separator (capacity of 1.0 m3/h) to recover 
vivianite from the digestive sewage sludge and recovered more 
than 80% vivianite in three cycles. In the concentrated P prod-
ucts produced, the content of vivianite was up to 800 mg/g, 
and the range of P was 98 mg/g. However, vivianite is incom-
patible with the mainstream fertilizer industry, and further 
research is needed to market it. In addition, due to the potent 
inhibition of the vivianite formation by Al3+, this method is not 
recommended for treating aluminum-based P removal sludge.

Comprehensive discussion

Technology selection based on upstream processes

Overall, different sets of the P recovery process are decided by 
the objective of sewage treatment and wastewater treatment 

Table 6   Solubility product constant Ksp of typical phosphate (Repre-
sented by pKsp, the data came from the Visual MINTEQ 3.1 database)

Typical phosphate pKsp Typical phosphate pKsp

Ca3(PO4)2 (am1) 25.5 Struvite (MgNH4PO4·6H2O) 13.3
Ca3(PO4)2 (am2) 28.3 Mg3(PO4)2 23.3
Ca3(PO4)2 (beta) 28.9 MgHPO4·3H2O 18.2
Ca4H(PO4)3·3H2O 48.0 Vivianite (Fe3(PO4)2·8H2O) 37.8
CaHPO4 19.3 Strengite (FePO4·2H2O) 26.4
CaHPO4·2H2O 19.0 AlPO4·1.5H2O 20.5
Hydroxyapatite 

(Ca10(PO4)6(OH)2)
44.3 Variscite (AlPO4·2H2O) 22.1
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process. Although the concept of a water resource recovery 
factory (WRRF) has been put forward and conceptualized, 
the WRRF demonstration plant has been established all over 
the world, the target of the sewage treatment plant design is 
still on pollutant removal, and this situation will continue 
for decades. First, it is challenging to transform the sewage 
treatment plant process and train technical personnel. Sec-
ond, further economic development and environmental pro-
tection level have different requirements for the function of 
WWTPs. Therefore, the research on P recovery technology 
based on the widely used sewage P removal process is cur-
rently mainstream. Although a wide range of technologies 
exists, the technology choices for a given WWTP will be lim-
ited by local policies and regulations, the characteristics of the 
effluent accepted, the sewage treatment processes (especially 
P removal processes) used in sludge treatment facilities, meth-
ods, etc. For example, in the typical case of WWTPs using 
the EBPR process, P recovery from the waterline or untreated 
P-rich sludge can only be considered because agricultural use 
of P-rich sludge is prohibited, and sludge disposal is mainly 
landfill or mixed with industrial sludge and incinerated for 
use as construction material. For WWTPs that use Fe salt to 
remove P, recovering vivianite from sludge is almost the only 
way to recover P, while for WWTPs that use Al salt to remove 
P, it is not easy to find a location for P recovery. Therefore, to 
achieve comprehensive P recovery from sewage, it is neces-
sary to change the goal of sewage treatment fundamentally, 
consider P recovery, and do overall planning in the design of 
WWTPs and sludge treatment and disposal facilities. And that 
needs to be driven by policy.

Economic and environmental impact

The main reason that restricts the development of P 
recovery and the application of most emerging P recov-
ery technologies is not economical enough. The cost of P 
recovery from WWTPs includes the price of P enrichment 
and separation. Due to the strict restrictions on wastewa-
ter P discharge in most areas, the cost of P enrichment is 
included in the P removal processes. Therefore, only the 
cost of P separation must be considered when P recovery 
is established based on biological P removal or chemical P 
removal processes currently widely used in WWTPs. But 
at present, the cost of P recovery is still higher than the 
value of its products, and even in most parts of the world, 
barriers to the entry of P recovery products into the market 
have not been cleared. The value chains are hard to build.

The cost of the P recovery process can be divided into 
construction cost, operation cost, and product storage and 
transport cost. The main cost of direct P recovery from sew-
age is in the chemicals (calcium salts, magnesium salts, and 
NaOH) added. In contrast, the recovery of P from SS or SSA 

requires additional cost of P extraction, such as acid or alkali 
required by wet-chemical processes and high temperature 
and chlorine donors required by thermochemical processes. 
However, even after EBPR enrichment, the concentration 
of P in the liquid phase is still low, with low P recovery effi-
ciency and high treatment flux, resulting in higher facility 
construction and operation costs. The efficiency of P recov-
ery from SSA is very high, and the transportation cost is the 
lowest. For the recovery of P from SS and SSA, the highest 
cost lies in the construction cost of pre-processing. The cost 
of P recovery from SS and SSA will be significantly reduced 
for the area with centralized sludge treatment and incinera-
tion facilities. Cost savings can also be achieved by using 
waste heat, renewable energy sources, and concentrated sea-
water as precipitators.

In addition to cost, the economics of P recovery processes 
also depend on the value and bioavailability of the recovered 
products. Magnesium ammonium phosphate can be directly 
used as a slow-release fertilizer, and calcium phosphate can 
be well-compatible with the mainstream fertilizer produc-
tion industry. The use of bipolar membrane electrodialysis 
can be used to recover P in the form of phosphoric acid. Of 
course, some pretreatment or post-treatment to ensure the 
purity and safety of the product. At the same time, there 
are emerging technologies to recover P in the form of more 
valuable P compounds and simultaneous recovery of organic 
matter and heavy metals. These valuable by-products will 
further promote P recovery in the market. With the further 
improvement of the cost of P ore mining and the quality 
of P recovery products, the price gap between phosphate 
rock (PR) and P recovery products will be narrowed. It is 
estimated that when the price of PR increases to 100 $US/t, 
it is expected to achieve true self-sufficiency in wastewater 
P recovery. By the time the paper was written, the price had 
risen to $US/t (for Moroccan PR) as the international situ-
ation changed, so if a market for P recovery products could 
be created, most of the current P recovery processes would 
be profitable.

Toxic substances and safety

The safety of the P recovery process and products mainly 
lies in the migration of heavy metals, persistent organic pol-
lutants, endocrine-disrupting chemicals, and other emerging 
contaminants from sewage and sludge to P recovery prod-
ucts. For the process of P recovery from the liquid phase, 
because the heavy metals, antibiotics, and other emerging 
contaminants in sewage are concentrated in the sludge, the 
concentration of toxic substances in the liquid phase is low. 
However, it may also be enriched through the adsorption 
and co-precipitation of seed and crystallization products. 
Since SS accumulates toxic substances in sewage, it is nec-
essary to consider the transformation and fate of almost all 
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inorganic and organic pollutants when recovering P from 
SS. Incineration removes virtually all organic impurities and 
concentrates inorganic contaminants such as heavy metals 
in SSA. However, due to the relatively single types of toxic 
substances, it is easier to develop targeted technologies for 
separation. The evaluation and realization of the safety of P 
recovery products need additional costs, even more than the 
cost of P recovery itself. Therefore, it is of great significance 
to limit and divert the discharge of toxic substances from the 
stage of sewage generation and discharge into the sewer line.

Conclusion

The P entering the WWTPs can be transformed and enriched 
to form a P-rich liquid phase and sludge phase. P-rich SS 
and SSA can be treated by wet-chemical or thermochemi-
cal methods and then recovered in the form of HAP, stru-
vite, and vivianite by crystallization through the liquid and 
sludge. P-adsorbed biochar and treated SSA can also be used 
directly as fertilizer. The choice of P recovery technology 
depends on upstream processes and infrastructure design and 
construction. With the significant increase in PR price, most 
P recovery processes can now meet economic requirements 
if a P recovery market is established. The main limiting fac-
tor is that the safety requirement of P recovery products will 
lead to a considerable cost for pollutant removal. Therefore, 
it is necessary to control the discharge of toxic substances 
such as heavy metals and persistent organic pollutants from 
the source.
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