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Abstract
The major contribution to atmospheric air pollution is from the heavy vehicular emission. At present, it is rising at an alarm-
ing rate. These automotive pollutions can be reduced to a great extent by the exhaust gas after-treatment methods. Among 
these, catalytic converter (CC) is the major source to reduce regulatory emission in the internal combustion (IC) engine. Most 
catalytic materials work in some specific temperature ranges, and they are also costly. In this study, the zeolite 4A (ZSM 
4A) and zeolite 5A (ZSM 5A) powder were converted into a solid mold and tested as a catalytic material in the converter. 
The experimental readings were taken with the fabricated CC at the exhaust with various loads (0, 4, 8, 12, and 16 kg) in the 
single-cylinder Kirloskar 5.2 kW diesel engine. Waste plastics were pyrolyzed into oil and blended with diesel in the 50:50 
ratio of diesel plastic blend (DPB) for this study. Nitrogen oxide (NO) and hydrocarbon (HC) were reduced by 18% and 22% 
respectively for ZSM 5A and 12% and 16% respectively for ZSM 4A.

Keywords Diesel engine · Waste plastic oil · ZSM 4A · ZSM 5A · NO emission

Introduction

Globally, more than 60 million vehicles are manufactured 
on a yearly basis, and 850 million vehicles are under opera-
tion (Chen et al. 2017). Automobile production is projected 
to reach 1400 million by 2030 (Sachuthananthan et  al. 
2019). Waste plastic recycling is essential in the present 
scenario. In these wastes, only 60% of the disposed waste 
plastic material in India is recycled. The non-degradability 
of plastic wastes is a major concern despite its desirable 
characteristics, such as being a lightweight material and the 
possession of resilience. These plastics are analyzed and 
interpreted extensively in terms of non-degradability and 
waste management (Raj et al. 2019). The plastic waste can 
be recycled into fuel as a result of chemical change due to 
the relevance of the chemical treatment processes involved. 
The potential of waste plastic oil usage needs to be analyzed 

in detail. Biofuel, waste plastic oil, waste tire oil, and other 
fuels are considered major alternative fuels for compres-
sion ignition (CI) engine usage (Pandaa et al. 2016). The 
plastic conversion into fuel through pyrolysis is extremely 
important. Also, it is a significant alternative when com-
pared to other sources. The advantage exists in the form 
of a reduction in the oil-import protection of the environ-
mental sources. The undesirable plastic converts with HC 
possess elevated calorific value when compared to the other 
oils (Singha et al. 2019). Researchers have investigated the 
potential of waste plastic pyrolysis in the formation of plastic 
oil. They reported that the usage of low-temperature plas-
tic oil resulted in high brake thermal efficiency. Also, the 
exhaust emissions were low at high temperatures (Dayana 
et al. 2016; Singh and Ruj 2015). The plastic oil and its 
blends with diesel combustion, emission characteristics, and 
performance were investigated. A single-cylinder Kirloskar 
engine using this waste plastic oil produced the same perfor-
mance, and brake thermal efficiency was similar to a normal 
CI engine (Singh et al. 2019; Premkumar and Balaji 2021). 
But carbon monoxide (CO) emission was increased in waste 
plastic oil usage compared to diesel (Balaji and Cherala-
than 2015; Balaji and Cheralathan 2016; Bagus et al. 2015; 
Melkon et al. 2006). The liquid plastic fuel possesses a bet-
ter calorific value when compared to diesel (around 40 MJ/
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Kg). The reduced viscosity of the plastic oil minimizes the 
nitrogen and sulfur in the exhaust system. Many researchers 
used the pyrolysis procedure for mixing individual waste 
plastic variants like polypropene (PP), polyethylene (PE), 
and polystyrene (PS) with the waste plastic (Nikolajsen et al. 
2006; Lai et al. 2003; Zhang et al. 2005).

At temperatures between 500 to 600 °C, the high viscos-
ity oil is produced consisting of long-chain hydrocarbons. 
This resulted in the formation of wax as an oil-phase prod-
uct mass which reduced the undesirable emissions. The CC 
implementation effectively reduces the CO and HC emission 
in internal combustion (IC) engines (Godwin et al. 2005; 
Singha et al. 2019). The global pollution due to a large num-
ber of vehicles is very high. As a result, new international 
norms are developed to keep the pollution levels under con-
trol. The CC reduces CO and HC emissions using zeolite 
as a catalyst. The monolith catalyst design was varied, and 
a suitable design was identified for emission reduction. By 
varying the cone angle and the diameter of the honeycomb 
structure, the monolith catalyst was fabricated. The brake 
thermal efficiency was found to increase by 35% (Miandad 
et al. 2018; Bharathiraja et al. 2019; Dayana et al. 2016). 
When the monolith catalytic converter dimensions were kept 
at 100 × 50 mm, a decrease in emission was observed. The 
zeolite was obtained from the fly ash using alkali fusion, 
followed by hydrothermal treatment. Among the catalysts, 
the coal fly ash gives the maximum feed conversion to a 
lighter product.

While considering selective catalytic reduction (SCR) 
and selective non-catalytic converter (SNCR), ammonia 
plays a major role. It is responsible for the reduction of 
 NOx in flue gases. To reduce NO, the coal fly ash as an 
adsorbing material was suggested. The ammonia gets 
adsorbed on the coal fly ash surface. The adsorption capac-
ity varies with various parameters such as surface area, 
pressure, temperature, and unburnt carbon particles. In this 
process, the zeolite was synthesized using coal fly ash as 
a catalyst to reduce NO, HC, and CO. Fe-zeolite and Cu-
zeolite were found to be more efficient when compared to 
the commercial zeolite. The speed and load of the engine 
were varied to obtain the desired results. The in-house 
zeolite was able to reduce more emissions when compared 
to the conventional CC (Raganati et al. 2014; Hedin et al. 
2013). The combustion of fuel accounts for 81% of the 
world’s industrial energy and remains the dominant supply 
of energy. Automobiles release nearly two different types 
of exhaust emissions. Zeolites possess calcium, sodium, 
and potassium. One of the significant characteristics of 
zeolite is its ability to be readily dehydrated and rehy-
drated. They can be used as molecular sieves and pow-
ders. Zeolites are micro-porous aluminosilicate minerals, 
which are generally used as catalysts and commercial 
adsorbents (Xia and Tang 2012). Zeolite has the property 

of absorbing impurities. The structure of zeolite is porous, 
and hence, it has the ability to trap cations. These cations 
can be exchanged with others in a loosely held contact 
solution. An example of zeolite is  Na2Al2Si3O10. These 
are used as catalysts in several acid-catalytic reactions due 
to their acidic nature. Natural zeolite is formed when vol-
canic rocks and ash layers react with alkaline groundwa-
ter. Natural zeolites are rarely pure, and they are contami-
nated with various substances. These naturally occurring 
zeolites are not used in commercial applications where 
purity and uniformity are required. The zeolites consist 
of silicone (Si), oxygen  (O2), aluminum (Al), zinc (Zn), 
tin (Sn), and titanium (Ti). The term “molecular powder” 
refers to a particular property of the material reflecting 
the tendency of selectively sorting molecules based on 
size. The zeolites possess a regular molecular pore struc-
ture. Zeolites are widely used for the specific separation 
of gases and removal of  NO2,  CO2,  SO2, and  H2O from the 
exhaust gas. They are also used to separate the noble gases 
(Zhang et al. 2016).

Zeolites are mostly used as catalysts and/or adsorbent 
materials. Zeolites have thus proved useful in systems that 
emit volatile compounds (VOCs), toxic species, stationary 
deNOx, and automotive exhaust emission treatments. Kim 
et al. (2004) examined the silicalite material for its hydro-
phobic characteristics, which enable it to preferentially 
adsorb HCs over water contained in the automotive exhaust. 
Various zeolites including H-ZSM-5 (Li et al. 2005), Cu-
ZSM-5 (Houeida Issa Hamoud et al. 2019), and SSZ-33 
(Elangovan et al. 2004) have also been studied as HC trap-
ping materials for treating DOC. Zeolites ZSM-5 have been 
found to be beneficial. Zeolites are substantially more sta-
ble than VOx/TiO2 at high temperatures and are active for 
 NH3-SCR when replaced with the proper charge-balancing 
cations. Beale et al. (2015) investigated on the effect of Si:Al 
on the nature of the Cu active sites and also detected lower 
Si:Al ratios resulting in a wider amount of  Cu+ production 
at 180 °C using a same gas composition. The zeolite frame-
work, which has significant ion-exchange capacity, excellent 
thermal stability, a diversity of pore apertures, and relatively 
high surface areas, frequently affects the internal diffusion 
of the guest molecules. The majority of heterogeneous reac-
tions that take place over zeolite catalysts rely on the fact 
that these catalysts’ micropores are similar in size to the 
molecules that are adsorbed.

A two-way CC is also called “oxidizing-catalyst” because 
it does two simultaneous actions:

1. Reduction of nitrogen oxides to nitrogen  (N2) 
2CO + 2NO →  2CO2 +  N2

2. Oxidation of CO into  CO2: 2CO +  O2 → 2CO2
3. Oxidation of HC to  CO2 and  H2O: C x  H2 × 2 + [(3x + 1)/2] 

 O2 → x  CO2 + (x + 1)  H2O
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Three-way catalytic converters have the additional advan-
tage of converting nitrous oxide  (N2O) into nitrogen dioxide 
 (NO2). They work on the principle of oxidation and reduction. 
Precious metals such as platinum (Pt), palladium (Pd), and 
rhodium (Rh) are used as catalysts to convert exhaust gases 
into harmless entities. A three-way catalytic converter has 
three tasks.

Based on the literature survey honey-comb structure has 
been used as a wash-coated material to reduce emission in IC 
engine. Chemicals such as Pd, Pt, Rh, and zeolite are coated 
in the catalytic converter. But our research was based on the 
development of a mold for the reduction of emission in IC 
engine. No literature has been found based on the comparison 
of zeolites 4A and 5A. Plastic oil was used in IC engine for 
the purpose of th combustion process and emission reduction 
in different blends but no one related the plastic oil with the 
catalytic converter. Due to this research gap, we developed a 
zeolites 4A and 5A-based mold in the exhaust manifold pipe 
in IC engine. Accordingly, plastic oil blend was included in the 
pre-treatment process. Plastic oil blend and catalytic converter 
are used to reduce and convert harmful emissions such as NO, 
HC, and CO to harmless  H2O and  CO2.

As previously mentioned, plastic oil is a promising way 
to increase thermal efficiency and decrease emissions in IC 
engines by catalytic converter (CC) acting as a catalyst. The 
primary goal of this study is to determine if CC can adhere 
to strict NO, HC, and CO emission regulations. However, 
previous studies mainly focused on the zeolite catalyst not 
using plastic oil combine with CC. Few researchers mainly 
focused on plastic oil and blend plastic oil’s effect on diesel 
engine and combustion process but not focused on plastic 
oil with CC. It is urgently necessary to replicate the dif-
ferent typical aging system conditions to reduce emission. 
Therefore, the present study investigates the plastic oil and 
after-treatment techniques used to reduce emission in a die-
sel engine. Zeolite-based catalysts were compared which is 
best to reduce emission in IC engine. In past studies, zeolite 
was used to reduce emission in IC engine not compared to 
other zeolite 4A and zeolite 5A catalysts which is best to 
reduce engine exhaust emission in IC engine. The synthesis 
catalysts were evaluated for their emission and performance. 
In addition, catalyst characterization was also incorporated 
with its emission behavior and identified in detail using 
FTIR, XRD, SEM, and TEM both before and after exhaust 
gas passes through the catalyst and was analyzed.

Materials and methods

Plastic oil

Waste plastic is converted into useful oil through the 
pyrolysis process in the absence of oxygen. In the current 

investigation, the waste plastic, which was collected from 
different areas and sources, is heated in a temperature range 
of 250–370 °C for 1 h in a pyrolysis reactor vessel in a 
step-by-step manner. Due to this, the dioxins are formed as 
furans. These impure chemical reactants are easily destroyed 
by the catalytic processes. Consequently, different types of 
waste plastic blends can be used in the pyrolysis reactor and 
separated in the condenser using the fractional distillation 
process resulting in the formation of pure waste plastic oil. 
Figure 1 shows the plastic oil chemical structure. The prop-
erties of the test fuels are given in Table 1. The values of 
the properties were taken from the various reference papers. 
The mixing ratio of waste plastic and C10-C30 organic com-
pounds was considered. Plastic oil, compared to diesel, has 
a low calorific value and less sulfur content. The oil-based 
physical and chemical properties were determined using the 
American Society of Testing and Materials (ASTM) stand-
ards and compared with the 50:50 blend. The properties and 
chemical formation of the plastic oil, specifically as a DPB, 
are very similar to neat diesel.

Conversion of plastic oil via pyrolysis method

Plastic oil was purchased from Srinivasa Enterprises India 
Private Limited, Chennai. The waste plastic oil was con-
verted into pure plastic oil via the pyrolysis process. The 
plastic oil obtained by the pyrolysis process contains approx-
imately 93% yield, 5% residue, and 2% gases. Temperature 
range about 32 to 280 °C, and the yield was formed after 
3 h duration.

Preparation of activated ZSM 4A and ZSM 5A

Table  2 shows the composition of ZSM 4A and ZSM 
5A. The zeolite 4A powder (40%) has the components of 

Fig. 1  Structure of plastic oil. *Courtersy Hao Tang et al. (2012)
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bentonite clay (10%), plasticizer (10%), white cement as a 
binder (10%), and distilled water (30%). These components 
are stirred for 2 h resulting in the form of a zeolite paste, 
as shown in Fig. 2. Holes of 2 mm diameter are drilled in 
the mold cavity. The finishing of the plastic pipe is covered 
by the molding material. The combination was sustained 
at atmosphere temperature for 24 h. After this, the plastic 
cover was removed, and the final mold was heated in a muf-
fle furnace from 150 to 450 ℃. A time interval of 20 min 
was followed for a step-by-step increase in temperature till 
the substance attains sufficient hardness.

The ZSM 5A powder (53%) was mixed with bentonite 
clay (8%), carboxymethyl cellulose binder (5%), and dis-
tilled water (34%). The components were stirred constantly 
to form a paste. The applied torque was monitored during 
stirring to ensure consistency for homogeneous mixing. The 
zeolite paste was placed in the prepared mold cavity, and 
uniform pressure was applied to ensure an absence of gaps, 
as shown in Fig. 3. The hole pattern was created on the 
mold uniformly (10 mm) with the help of plastic pipes. The 

prepared mold was dried for 96 h in direct sunlight. After 
drying, the pipes were removed from the mold. The result-
ing mold was kept in the furnace initially at 100 °C with an 
increase of 50 °C every 30 min until the temperature reaches 
450 °C with a soaking period of 1 h. Then, it is finally kept 
for 1 h for the removal of calcination.

The ZSM 4A and ZSM 5A were calcinated in an air 
atmosphere for 4 h at 500 °C. The main purpose of activat-
ing the catalyst is to reduce the emission drastically in the 
IC engine. According to the chemical process hypothesis, 
the chemical reaction phase should be included because it 
is where many intricate chain reactions take place. These 
reactions are found to reduce emissions. In this investiga-
tion, the catalytic converters are used to reduce pollutants in 
spite of their reactions at low temperatures and to function 
under optimal circumstances. The reaction mechanisms are 
revealed in Figs. 4 and 5 (Madasamy et al. 2012).

Fabrication of casting

The outer casing of the CC was made using hollow steel 
tubes. The tubes were welded together to prepare the outer 
case. The main CC casing section was fabricated with 
a diameter of 8 cm and a length of 60 cm. Four uniform 
holes were drilled with 8 mm diameter as shown in Fig. 6. 
Tungsten inert gas welding (TIG) was used to ensure proper 
welding between different parts of the CC. To enhance the 
serviceability of the casing, external threads were cut on one 
side of the main section, and internal threads were cut on the 
reducer. To ensure proper fitting, the threads were cut up to 
a length of 2 cm.

Table 1  Properties of test fuels

* Courtesy – Balaji Gnanasikamani et al. (2015), Mani et al. (2009)

Properties Test standard Diesel Waste plastic oil Diesel plastic 
blend (DPB)

Calorific value (kJ/kg) ASTM D240 44,450 42,350 43,540
Flash point (°C) ASTM D93 51 43 47
Fire point (°C) ASTM D93 57 64 59
Pour point (°C) ASTM D97 7  <  − 14 -
Ash content (%) ASTM D482 0.14 0.0035 0.045
Sulphur content (% wt.) ASTM D 129  < 0.035  < 0.002  < 0.015
Colour Orange Pale black Pale black
Kinematic viscosity (Cst) at 40 °C ASTM D 445 2.11 2.51 2.31
Aromatic content (%) ASTM D5186 20 55 34
Density (kg/m3) IP 131/57 834 792 798
Cetane number ASTM D613 55 51 52
Gum in existent (gm/m3 max.) ASTM D 381 36 - -
Specific gravity at 30 °C ASTM D891 0.87 0.82 0.85
Carbon residue (% of wt) ASTM D189 0.7 0.5 0.6
Specific heat (kJ/kg K) ASTM E1269 2.2 48 -

Table 2  Composition of ZSM 4A and ZSM 5A

Components ZSM 4A ZSM 5A

SiO2 33.10 33.20
Al2O3 27.50 28.01
Fe2O3 0.36 0.32
TiO2 0.16 0.15
Na2O 20.01 15.90
K2O  < 0.1  < 0.09
Loss of ignition 18.34 17.89
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Experimentation

The experimental work was done using a Kirloskar make 
5.2 kW, water-cooled DI engine connected to an eddy cur-
rent dynamometer, with natural aspiration. An AVL gas ana-
lyzer was used to measure the exhaust gas in the tailpipe. 
The smoke meter was also used to measure the % of smoke 
opacity. Figures 7 and 8 represent the layout and photo-
graphic view for the experimental setup.

Results and discussion

Characterization

ZSM 4A and ZSM 5A catalyst samples were subjected to 
XRD characterization. These catalysts have strong diffrac-
tion pattern with numerous features. The XRD patterns of 
the ZSM 4A and ZSM 5A catalysts before and after the 
investigations were given in Figs. 9, 10, 11, and 12. There 
are adsorption distinctions between the ZSM 4A and ZSM 
5A catalysts due to the phase transformation between the 
catalysts. For ZSM 4A, sharp peaks were seen at 2θ values 
of 7°, 10.2°, 12.6°, 16.3°,21.8°, 24°, 26.4°, 27.2°, 30.6°, 31°, 
31.1°, 32.7°, 33.6° and 34.1° that has been reported in the 
literature (Zamani et al. 2013) which can be indexed to the 

(200), (220), (222), (420), (440), (600), (622), (640), (642), 
(694), (600), (840), (842), and (664) reflections of the cubic 
crystalline system for before and after the investigation. 
Additional peaks in the powder diffraction pattern would 
indicate the presence of a crystalline impurity. The XRD 
spectrum of the zeolite 5A is presented in Fig. 11. Zeolites 
are known to give diffraction peaks at 2θ = 9.05°,15.71°, 
23.36°, 24.18°, 25.61°, and 30.17° attributed to (111), (051), 
(313), (323), and (062) planes, which is a pentasil struc-
ture of ZSM-5A zeolite equivalent to the JCPDS card no. 
89–1421 (Jesudoss et al. 2017). The presence of the afore-
mentioned peaks in zeolite is indicative of the successful 
formation of ZSM 5A. We have also calculated the mean 
crystalline size of the samples using the Debye–Scherer 
equation. The average crystalline of the samples ZSM-5A 
zeolite was 19.34 nm, respectively. The broadening of the 
diffraction lines indicates the presence of nanometer-sized 
crystals. These samples exhibit good crystallinity, and it has 
the property of observing oxygen from the harmful gases; it 
observes oxygen from NO and splits it into  N2 and  O2, and 
HC and CO are converted into  H2O and  CO2.

The FTIR spectra of zeolite 4A before and after treatment 
are shown in Figs. 13 and 14. In the FTIR spectrum of the 
zeolite 4A, the characteristic bands for zeolite framework at 
566  cm−1 due to the external vibration of double four-rings, 
(Si, Al)-O asymmetric stretching, The board band at around 

Fig. 2  Photographic view of 
zeolite mold 4A
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3100–3600  cm−1 are related to OH. Meanwhile, the FTIR 
result shows that the major peaks are at 3288  cm−1 for –OH, 
1735  cm−1 for C = O stretching, 834  cm−1, and 547  cm−1 
(symmetrical stretching vibration of Si–O and Al-O bond 
of zeolite) (Prasad et al. 2011; Zhao et al. 2009). Due to the 
availability of hydroxyl groups, hydrogen-bond interaction 
is possible between the zeolite and the carboxyl group of 
carboxyl methyl cellulose (CMC). This chemical interaction 
is reflected in the FTIR spectra (Fig. 13). A major redshift 
of the main zeolite peak (3288  cm−1) is considered a strong 
indication for zeolite (Chen and Pan 2021). The zeolite 5A 
framework vibrations and silanol groups were (as shown in 
Fig. 15) ~ 1100  cm−1 (internal asymmetric stretch), 798  cm−1 
(external symmetric stretch), and 459  cm−1 (T-O bend) cor-
responding to siliceous materials. The ZSM-5A zeolites dis-
play the characteristic bands at 3474  cm−1 due to framework 
Al–OH. The characteristic band of the double five rings of 

the zeolites is located at 549  cm−1 (Chu et al. 2009), which 
can be used to determine the crystalline degree of the sam-
ples (Larsen 2007). The high intensity of the 549  cm−1 band 
suggests that the ZSM 5A has a great crystalline degree, as 
confirmed by the XRD patterns. The characteristic band of 
silanol groups is observed at 972  cm−1 (Fang and Hu 2006). 
It is noted that the intensity of silanol groups in the ZSM 
5A may be related to the surface areas of zeolites (Fig. 16).

SEM and EDX images of ZSM 4A and ZSM 5A are 
given in Figs. 17, 18, 19, and 20. ZSM 5A has greater 
adsorption due to its large particle size with a high degree 
compared to ZSM 4A. These particles are surrounded in 
correlation to noble metals as described and also contain 
higher activity. When compared to ZSM 4A, these inter-
granular pore structures were more closely packed and 
easily adsorbed the same shape and size emitted. The size 
of ZSM 4A before is 4 μm at 20,000 magnifications and 

Fig. 3  Photographic view of zeolite mold 5A
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Fig. 4  Detailed chemical reaction pathway of ZSM 4A

Fig. 5  Detailed chemical reac-
tion pathway of ZSM 5A
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after is 500 μm at 100,000 magnifications. The morphol-
ogy structure was identified as a cube. As bentonite clay is 
used as an inorganic binder, the cube structure is formed 
and visible through the SEM image (Ojuva et al. 2015). 
The size of ZSM 5A before is 500 μm at 1,000,000 mag-
nifications and after is 500 μm at 100,000 magnifications. 
The main reason for incomplete elimination is indeed the 
existence of organic templates from the structure in the 
zeolite (Follmann and Ernst 2016). This tends to result 
in mesoporosity and cavity distribution as zeolite is con-
firmed by nitrogen oxide adsorption analysis.

Emissions characteristics

NO emission During the combustion of the air–fuel mix-
ture, differing types of NO emission were formed, includ-
ing thermal NOx, fuel NOx, and prompt NOx. The NOx 
emissions were highly anticipated, which were responsible 
for various complications. These emissions were reduced 
using different techniques, but they were not sufficient for 
the control of NO emissions in the IC engine. These emis-
sions prove to be the most detrimental pollution variants in 
the ignition stage. The main reasons for this are identified 
in the combustion process. The components involved in the 
reactions, the concentrations, the increase in the combus-
tion chamber temperature, and the increased time dura-
tion of the combustion process influence the NO formation 
(Deshwar et al. 2023). Figure 21 shows the emission of 
NO with an increase in load under DPB usage. During the 

Fig. 6  Layout and photographic view of catalytic converter casing

Fig. 7  Layout of experimental 
setup
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Fig. 8  Photographic view of a test engine

Fig. 9  XRD pattern of ZSM 4A before catalyst

Fig. 10  XRD pattern of ZSM 4A after catalyst

Fig. 11  XRD pattern of ZSM 5A before catalyst

Fig. 12  XRD pattern of ZSM 5A after catalyst

Fig. 13  FTIR pattern of ZSM-4A catalyst before
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combustion of fuel and air mixture in the cylinder, the oxi-
dation of nitrogen results in the formation of NO and  NO2 
(Balaji Subramanian 2021). The  NO2 is the main undesir-
able emission particulate in the CI engine elevated heat 
release rates (Mani et al. 2009).

The DPB is a higher aromatic content fuel with a sig-
nificant ring structure. Usually, fuels with ring structures 
have a high adiabatic flame temperature, which results 
in a higher heat release rate. The results revealed that 
the increase in engine load was proportional to the NO 
emission. Here also, the results show the increase of NO 
emission with the engine load. Furthermore, the inclu-
sion of the CC resulted in a decrease in NO emission 
when compared with the DPB. From Fig. 21, it is clear 
that the NO emission for diesel, DPB, DPB + ZSM 4A, 
and DPB + ZSM 5A was 1200, 1050, 970, and 890 ppm, 
respectively. The fuel consumption increases with load to 
augment the power output and speed, which enhances the 
cylinder temperature. The NO emission decreases by 12 
and 18% for DPB + ZSM 4A and DPB + ZSM 5A com-
pared to DPB.

The emission of the unburned HC is responsible for 
the smog formation. Incomplete fuel combustion, lower 
in-cylinder temperatures, and excessive lean mixture for-
mation are the main reasons for HC emission (Mathanraj 
Vijayaragavan 2021). Other reasons include the fuel vis-
cosity, volatility, and the presence of lesser temperature 
zones inside the combustion chamber. Higher viscos-
ity results in the formation of huge droplets, and the 
vapor pressure results in incomplete combustion, which 
increases the HC emission. Figure 22 shows the varia-
tion of HC emission with brake power. For DPB + ZSM 
4A, the HC decreased by 16%, and the decrease was 
22% under DPB + ZSM 5A usage compared to DPB. The 
emission was further reduced by passing the exhaust 
gases through the CC. The reduction was due to the 
reaction of the exhaust gases with the catalyst.

Figure 23 depicts the variation of CO emission with 
brake power. The CO emission is particularly harmful 
as a toxic gas, and it manifests itself primarily as a poor 
combustion by-product due to insufficient oxygen sup-
ply. Another reason is due to the lower rich mixture and 
flame temperature. This emission reduces under DPB as 
oxygen levels rise, resulting in better combustion due 
to the conversion of CO into  CO2 (Toops et al. 2010; 
Khoramzadeh et al. 2019). Another reason is that the 
ZSM 4A is an adsorbent by nature. The CC was found to 
effectively reduce CO emissions. There are also polar-
ized degrees and containment of quadrupole moments 
in the emission reduction (Battaglia et al. 1981). The 
comparative features between the ZSM 5A and ZSM 

Fig. 14  FTIR pattern of ZSM-4A catalyst after

Fig. 15  FTIR pattern of ZSM-5A catalyst before

Fig. 16  FTIR pattern of ZSM-5A catalyst after
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4A justify the efficiency of the CC to reduce CO emis-
sions. The CO emissions were reduced by 20% when 
DPB + ZSM 4A were used with the DPB and by 25% 
when the DPB + ZSM5A were used with the DPB.

Figure 24 shows the variation in smoke emission. The 
smoke emission for diesel, DPB, DPB + ZSM 4A, and 
DPB + ZSM 5A were 89, 90, 94, and 98%, respectively. 
The smoke intensity increases with an increase in engine 
load, which was observed in all the tests conducted. 

Fig. 17  SEM Image of ZSM-4A 
catalyst both before and after

Fig. 18  EDX Image of ZSM-4A catalyst both before and after
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The smoke opacity decreases by 7% and 12% under 
DPB + ZSM 4A and DPB + ZSM 5A, respectively, when 
compared to DPB. The oxygen levels decreased, and the 
C–C bond levels increased, which resulted in an aromatic 
content elevation. So, the smoke level was reduced under 
the DPB + ZSM 5A catalyst usage.

Performance characteristics

The brake thermal efficiency (BTE) was observed under vari-
ous load changes. The BTE values which are observed under 
diesel usage were higher when compared to the plastic oil 
usage. Also, the calorific values and other flow characteris-
tics were low due to the higher viscosity of fuel and the sub-
standard air–fuel mixtures. These factors were responsible for 
the decrease in the BTE under plastic oil usage compared to 

Fig. 19  SEM Image of ZSM-5A 
catalyst both before and after

Fig. 20  EDX Image of ZSM-5A catalyst both before and after
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diesel, as shown in Fig. 25. A decrease in BTE, which was 
noted for DPB + ZSM 5A, was also seen for plastic oil.

Conclusion

The performance and emission characteristics of the DPB 
fuel in an unchanged CI engine with a CC using ZSM 4A 
and ZSM 5A catalyst were analyzed experimentally. Based 
on the results, it was concluded that the adsorption level of 
the zeolite was augmented at elevated temperatures of the 
exhaust gas. The catalyst ZSM 5A performed well, resulting 
in an amplification of the pore structure when compared with 
ZSM 4A. The other conclusions are as follows:

Fig. 21  Variation of NO emission

Fig. 22  Variation of HC emission

Fig. 23  Variation of CO emission

Fig. 24  Variation of Smoke emission

Fig. 25  Variation of BTE
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1. The DPB + ZSM 4A reduced NO emission by 12%, and 
the DPB + ZSM 5A reduced NO emission by 18% com-
pared to DPB. The ZSM 5A was more effective than 
ZSM 4A in the reduction of NO emission.

2. The DPB + ZSM 4A and DPB + ZSM 5A minimized the 
HC emission by 16% and 22% compared to DPB. This 
was due to the tendency of the DPB + ZSM 5A catalyst 
to provide oxygen which added the surface lattice oxy-
gen to the HC compounds.

3. The DPB + ZSM 4A and DPB + ZSM 5A minimized the 
CO emission by 8% and 10%, respectively, compared to 
DPB.

4. The DPB + ZSM 4A and DPB + ZSM5A decreased the 
smoke emission by 7% and 11%, respectively, when 
compared to DPB. There was no significant change in 
the brake thermal efficiency.
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