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Abstract
The modify-leachate pollution index (m-LPI) was developed with the help of multi-criteria decision-making (MCDM) tech-
nique based on the landfill leachate pollution potential by considering the limitations of traditional methodologies. Across 
India, twenty major landfill sites (LS) were selected for which m-LPI was assessed. Twenty-five experts’ opinions were taken 
for the determination of nine input criteria weights, such as pH, COD, TDS, Cl, Zn, Pb, Cu, annual rainfall, and landfill age 
with the help of a questionnaire-based survey. In this context, six MCDM techniques were investigated to develop m-LPI. 
Among different MCDM techniques selected, weighted aggregated sum product assessment (WASPAS) proved to be an 
effective one with an R2 value of 0.828 and IA value of 0.813. WASPAS gave first and last rank to Kadapa, Andhra Pradesh 
LS (1.677) and Turbhe, Maharashtra LS (2.193), respectively. The investigation revealed that around 90% of LS considered 
in the present study require leachate treatment. WASPAS sensitivity analysis showed that the least sensitive criteria were pH, 
followed by Cl and Zn. The m-LPI can be used by researchers and scientists to investigate and evaluate various challenges 
involved with solid waste management in LS.
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Introduction

The Indian annual municipal solid waste (MSW) genera-
tion is anticipated to be exceeded by 543 million metric 
tonnes (13% global annual MSW) by the year 2050 with the 
combined effects of rapid population growth, urbanization, 
industrialization, and rural-to-urban migration (Somani et al. 
2019; Wijekoon et al. 2022). MSWs are generated from vari-
ous sources including households and commercial or mar-
ket areas with a percentage of contribution of 55–80% and 
10–30%, respectively (Miezah et al. 2015; Abunama et al. 

2019; Abunama et al. 2021). The wastes generated from 
these sources were frequently disposed into non-engineered 
landfill sites (open dumping sites) due to the low operating 
costs as compared to composting, incineration, pyrolysis, 
etc. (Luo et al. 2019; Bisht et al. 2022a, b, c).

Direct disposal of MSW into landfill sites (LS) leads 
to the production of leachate that can take its pathway 
to groundwater and surface water bodies, thereby caus-
ing a serious threat to the environment and human health 
(Zohoori and Ghani 2017; Somani et al. 2019). From the 
literature, it has been observed that the organic, inorganic, 
and heavy metal pollutants affect the leachate quality, 
whereas the quantity of leachate can be affected by site 
hydrology, landfill age (LA), moisture content, and annual 
rainfall (AR) (Malakahmad et al. 2017; Hendrych et al. 
2019). Therefore, quantifying and assessing leachate pol-
lution potential is critical in estimating the potential envi-
ronmental risk (Rajoo et al. 2020).

Kumar and Alappat (2005) established the Delphi tech-
nique-based leachate pollution index (LPI) using eighteen 
leachate quality criteria to better understand the impact 
of leachate pollution in LS. LPI can be effectively used to 
evaluate the pollution potential of LS, and the temporal 

Responsible Editor: Marcus Schulz

 * Namrata Jariwala 
 ndj@ced.svnit.ac.in

1 Department of Environmental Science and Engineering, 
Indian Institute of Technology (Indian School of Mines), 
Dhanbad 826004, India

2 Civil Engineering Department, National Institute 
of Technology, Warangal, India

3 Civil Engineering Department, S.V. National Institute 
of Technology, Surat, India

/ Published online: 11 January 2023

Environmental Science and Pollution Research (2023) 30:41172–41186

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-023-25178-3&domain=pdf
http://orcid.org/0000-0002-1702-0046


and spatial variation of leachate quality. However, due to 
its reliability issues, technological advancement, and the 
emergence of new criteria, this method cannot be applied 
globally for the accurate representation of landfill leachate 
properties (Rajoo et al. 2020). In another study, Rajoo et al. 
(2020) developed the LPI to calculate Leachate Pollution 
Index in Developing Countries (LPIDC) by considering 
two additional criteria, such as volume and liner. Different 
drawbacks, such as inconsistent criteria weights, uncertainty, 
ambiguity, and imprecision along with the lack of environ-
mental criteria considerations (e.g., AR and LA), lead to 
ambiguity in the proper estimation of leachate potential 
(Bisht et al. 2021a, b). Moreover, the correlation between 
values obtained from LPI and LPDIC indices and treatment 
requirements is still lacking. Hence, to overcome the afore-
mentioned drawbacks a systematic mathematical approach 
is requisite for estimating the leachate pollution and decid-
ing whether the treatment is required or not. In this context, 
multi-criteria decision-making (MCDM) techniques can be 
used as an effective tool (Mostafaeipour et al. 2020).

MCDM techniques based on mathematical relations 
gained significant attention recently to solve problems 
related to water and wastewater management (Anaokar et al. 
2018; Golfam et al. 2019a, b; Golfam et al. 2021; Azbari 
et al. 2022; Goswami and Ghosal 2022), climate manage-
ment (Golfam et al. 2019a, b), and solid waste management 
(Garcia-Garcia 2022; Torkayesh et al. 2022). Among differ-
ent MCDM techniques, simple additive weighting (SAW), 
weighted product method (WPM), technique for order pref-
erence by similarity to ideal solution (TOPSIS), additive 
ratio assessment (ARAS), evaluation based on distance from 
average solution (EDAS), and weighted aggregated sum 
product assessment (WASPAS) are extensively investigated 
as a decision-making tool in various applications, such as 
environmental sustainability, operational research, quality 
management, and soft computing and technology manage-
ment (Lee and Chang 2018; Xuan et al. 2022). The MCDM 
techniques have already proven effective in decision-making 
in various fields by considering the complexities, inadequa-
cies, and uncertainties involved (Sotoudeh-Anvari 2022; 
Azbari et al. 2021; Ghenai et al. 2020). Unlike LPI, the 
MCDM techniques can produce good performance scores 
based on the available number of criteria. For instance, 
Dehshiri et al. (2022) prioritized the dust sources affecting 
central Iran using four MCDM methods, including WAS-
PAS, EDAS, ARAS, and TOPSIS. In another study, Sadhya 
et al. (2022) employed four MCDM techniques to rank the 
five selected waste-to-energy technology alternatives based 
on six criteria, such as capital cost, global warming poten-
tial, revenue return, operation and maintenance cost, need 
for segregation, and moisture content.

The objectives of this study were (a) to develop m-LPI 
using MCDM techniques, (b) to rank and require treatment 

for LS on basis of m-LPI, and (c) to apply the sensitivity 
analysis to determine the influence of different input criteria 
such as pH, COD, TDS, Cl, Zn, Pb, and Cu on m-LPI.

Methodology

In the present study, an attempt has been made to rank and 
determine the requirement for treatment at twenty LS based 
on the nine input criteria like pH, COD, TDS, Cl, Zn, Pb, 
Cu, AR, and LA using various MCDM techniques such as 
WSM, WPM, TOPSIS, ARAS, EDAS, and WASPAS. One 
LS named CPCB 2016 leachate permissible values (LS-21) 
is incorporated in order to determine the treatment require-
ment for LS.

Study area and data acquisition

A literature survey was conducted where forty influencing 
inputs criteria were investigated for landfill leachate poten-
tial. The availability of data had been a major determin-
ing factor in input criteria selection. Thus, only nine input 
criteria have been chosen from forty criteria for twenty LS 
in India. The twenty LS were chosen based on the city’s 
socioeconomic condition as well as its geographical loca-
tion (Fig. 1). These nine input criteria were pH, TDS, Cl, 
COD, Zn, Pb, Cu, AR, and LA from the organic, inorganic, 
heavy metal, and other environmental criteria. Eight criteria 
data were taken from reference literature papers, while the 
rainfall data for each LS was taken from the Indian Meteoro-
logical Department during the respective sample collection 
year. The complete flow of methodology is shown in Fig. 2. 
The overall analytical results of input criteria are represented 
in Table 1 and landfill leachate data characteristics used in 
the study are shown in Table S1.

TDS concentration values of 90% LS exceeded the CPCB 
permissible limit (2100 mg/L) of CPCB (2016). The age 
of the LS and volatile acid accumulation in the methano-
genic bacteria environment were the two major factors that 
influenced the pH of the leachate (Mor et al. 2018). Twenty 
percent of the LS were acidic, while the rest were alkaline. 
Eighty percent of the LS exceeded the permissible limit of 
Cl concentration (1000 mg/L). Heavy metals in MSW were 
primarily produced by the electroplating, tannery, and steel 
industries (Somani et al. 2019). Thirty percent of the LS 
exceeded the permissible limit of Zn concentration (5 mg/L). 
Cu concentration in 15% of the LS exceeded the permis-
sible limit (3 mg/L). Pb concentrations in 85% of the LS 
exceeded the permissible limit (0.1 mg/L). A high biode-
gradable fraction of MSW was generated in India, implying 
high COD values (Somani et al. 2019). The COD values of 
all LS exceeded their permissible limits (250 mg/L).
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Fig. 1  Locations of the landfill 
sites across India

Fig. 2  Complete flow of meth-
odology
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Weights assigned to the input criteria

The literature revealed that the equal weight assigned to 
the input criteria for the development of indices caused 
the unevenness and inconsistencies in the index structure 
(Babcock 1970; Ott and Thorn 1976; Bisht et al. 2022c). 
Moreover, the assignment of statistical weights might cause 
irrational weighting, with insignificant criteria receiving a 
higher relative weight. Hence, expert opinions were taken 
to the determine weights of the input criteria for this study 
(Sebastian et al. 2019).

A Google form was created which was sent via email to a 
list of experts around 60 who were primarily academicians, 

Ph.D. scholars, and consultants in the field of environmen-
tal engineering. Saaty (1977) developed fuzzy numbers for 
seven linguistic terms to describe the degree of satisfaction 
with decision-making criteria for alternatives. In general, 
there were no concrete sentences to support the idea that the 
best linguistic terms were three, five, seven, and nine (Chen 
and Hwang 1992). Hence, a five-point Saaty scale with five 
linguistic terms and their respective fuzzy number had been 
selected for understanding the importance of the inclusion 
of each criterion in the development of the modify-leachate 
pollution index (m-LPI) for the LS (Khambete and Christian 
2014). The linguistic term and their respective fuzzy number 
on the five-point Saaty scale are represented in Table 2. The 
normal weights of criteria for m-LPI were evaluated with the 
help of the normalized fuzzy weights technique. The paper 
explains all steps for calculating weights, such as fuzzifica-
tion and defuzzification (Khambete and Christian 2014).

MCDM techniques

Six MCDM techniques such as SAW, WPM, TOPSIS, 
ARAS, EDAS, and WASPAS were employed to rank and 
determine the requirement of treatment for LS. The high 
and low leachate degree of potential of the LS represents the 
lower LPI and rank and higher LPI and rank, respectively for 
six MCDM techniques.

Simple additive weighting (SAW)

In 1968, Fishburn introduced the SAW technique (weighted 
sum method), which was one of the simple as well as mostly 
applied MCDM techniques (Fishburn et al. 1968). Gener-
ally, in SAW, cost criteria were converted to benefit criteria 
whereas non-cost criteria were converted into non-benefit 
criteria. With the normalization step, the largest criterion 
changes to the lowest and vice versa. In the final step, the 
alternative total score is to be multiplied by the weight of 

Table 1  Descriptive statistics of input criteria of landfill sites

* All the input criteria are mg/L except pH, AR (mm), and LA (years)

Parameters* Maximum Minimum Mean Standard deviation

TDS 24,644.3 1156 11,868.447 8265.270
pH 9.6 0.914 7.905 1.982
Cl 11,948.67 150 12,089.421 3925.633
COD 57,300 250 3973.440 13,510.080
Zn 9.8 0.27 3.998 2.843
Cu 3.62 0.07 1.323 1.273
Pb 4.27 0.02 1.007 1.103
AR 2891.5 450 1046.311 622.131
LA 51 5 19.421 13.045

Table 2  Linguistic terms and fuzzy numbers

Linguistic terms Fuzzy numbers

Very high important (0.7,0.8.0.9,1)
High important (0.5,0.6,0.70.8)
Important (0.3,0.4,0.5,0.6)
Low important (0.1,0.2,0.3,0.4)
Very low important (0,0,0.1,0.2)

Fig. 3  Complete steps for SAW
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each criterion (Roozbahani et al. 2018; Akras et al. 2022). 
Figure 3 depicts the complete SAW procedure.

Weighted product method (WPM)

In 1969, Bridgeman anticipated WPM, which is similar to 
SAW (Bridgman 1992). The main difference was that in the 
mathematical process the number of ratios was multiplied 
in order to compare each decision alternatively with others. 
In WPM, each criterion’s ratio was increased to the power 
equivalent of its relative weight of criteria (Triantaphyllou 
and Mann 1989). This step allows the dimensionless analysis 
by removing the measurement units, allowing this technique 
to be applied to both single as well as multidimensional deci-
sion hypotheses (Mulliner et al. 2016). Figure 4 depicts the 
complete WSM procedure.

Technique for order preference by similarity to ideal 
solution (TOPSIS)

TOPSIS technique evaluated the best option by consider-
ing the basis of local to the positive ideal solution (PIS) 
and non-local from negative ideal solution (NIS) (Hwang 
and Yoon 1981). PIS gives the solution, which maximizes 
profit criteria and minimizes cost criteria, while NIS was 
the exact opposite. The PIS was created from all of the great 
achievable qualities of criteria, while the NIS constitutes bad 
achievable values of criteria. This method took into account 
the specific scores received from each criterion for evolu-
tion and normalization of the decision matrix. The order of 
priority of the options was finalized by taking into account 
the distance coefficient of each option (Sadhya et al. 2022). 
Figure 5 depicts the TOPSIS procedure in detail.

Additive ratio assessment (ARAS)

Turskis and Zavadskas invented ARAS in 2010. To select 
the best alternatives, quantitative measurements and utility 
theory were used for the assessment of optimality function 
values and ranking (Sivalingam et al. 2022). Its widespread 

use and explosive growth were the results of its simple as 
well as direct and easy steps, producing reasonable and rel-
atively accurate results to rank various alternatives as per 
their performance based on selected weighted evaluation 
criteria (Ghenai et al. 2020). Figure 6 depicts the ARAS 
procedure in detail.

Evaluation based on distance from average solution (EDAS)

In 2015, Ghorabaee proposed the EDAS. It had to be a novel 
MCDM technique that assessed positive and negative dis-
tances from solutions rather than ideal and non-ideal solu-
tions to assess conflicting criteria (Feng et al. 2018; Orji 
et al. 2022). This technique employed two actions to assess 
the applicability of the alternative: the positive distance 
from average (PDA) and the negative distance from average 
(NDA). These calculations could be used to determine how 
different each solution (alternative solution) was from the 
average solution. The alternatives score higher on PDA and 
lower on NDA. A higher PDA and/or lower NDA value indi-
cated a better (alternative) solution than the general solution. 
This technique was extremely useful when there were con-
flicting standards (Mostafaeipour et al. 2020; Mishra et al. 
2020). The EDAS’s statistical advantages were in providing 
a robust and accurate ranking of alternatives (Behzad et al. 
2020). Figure 7 depicts the EDAS procedure in detail.

Weighted aggregated sum product assessment (WASPAS)

WASAPAS was one of the best MCDM techniques for 
accuracy and reliability based on two MCDM techniques, 
i.e., SAW and WPM (Zavadskas et al. 2012; Mostafaeipour 
et al. 2020). The optimized WASPAS method has a strong 
benefit over the standard WASPAS method in determining 
the optimal λ value, which is calculated using the practical 
concept of variance. Moreover, stochastic errors occur when 
determining the initial values of criteria. Using the optimal λ 
value to achieve fall ranking ensures that the estimated vari-
ance of the relative importance of each alternative is kept 
to a minimum. It has been used to solve MCDM problems 

Fig. 4  Complete steps for WPM
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to improve ranking accuracy, and it has the highest estima-
tion accuracy (Mishra and Rani 2018). Figure 8 depicts the 
complete WASPAS procedure.

Leachate pollution index

The traditional approach LPI was proposed by Kumar and 
Alappat (2005) to calculate the index score for landfill 
leachate pollution. The LPI is shown in Eq. (1).

(1)LPI =

n∑

i=1

wiCi∕

n∑

i=1

wi

where Ci and wi are the sub-index score and weights for 
the ith criteria, respectively, and n was the number of input 
criteria.

Performance evaluation

Performance evaluation techniques such as R2, RMSE, 
MAPE, and IA were used in this study to evaluate the 
best MCDM technique for the m-LPI among six MCDM 
techniques. The equation of RMSE, MAPE, and IA 
are expressed in Eqs. (2), (3), and (4), respectively. 
Furthermore, the impact of seven criteria, such as pH, 

Fig. 5  Complete steps for TOPSIS
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COD, TDS, Cl, Zn, Pb, and Cu, on m-LPI was deter-
mined through a sensitivity analysis using a Taylor dia-
gram (Taylor 2001). In this case, one of the criteria was 
changed at a time while the other remained constant. 
Based on the study data, the criteria values were changed 
between their minimum and maximum values, i.e., ran-
dom values. The other criteria were left of their original 
values (Radwan et al. 2018). Among the different criteria 
selected, AR and LA criteria were not considered during 
the sensitivity analysis due to the no variation in their 
characteristics throughout the year.

(2)RMSE =

√√√
√

n∑

i=1

(Ŷj − Yj)
2

∕n

(3)MAPE = 100∕n(
∑n

i=1

||
|
Yj − Ŷj∕Yj

||
|
)

(4)IA = 1 −

n∑

i=1

(Ŷj − Yj)
2

∕

N∑

i=1

[
|||
Ŷj − Ŷm

|||
−
|||
Yj − Ym

|||
]
2

where Yj and Ŷj were the traditional LPI and MCDM LPI 
values, Ym and Ŷm were the mean of the traditional LPI and 
MCDM LPI values, and n was the number of LS.

Results and discussion

Weights assigned to the input criteria

The use of a questionnaire-based survey response sheet, 
expert opinions consistency analysis, and geometric mean 
allowed for the elimination of competing hypotheses and 
the identification of reliable criteria results (Sadhya et al. 
2022). The normal weights of each criterion for the m-LPI 
have been depicted in Fig. 9. It can be observed that the AR 
and LA along with Pb scored the highest weight criteria, 
whereas Cu has the lowest criteria in determining the m-LPI. 
Similarly, Kumar and Alappat (2005), Mishra et al. (2016), 
and Gautam and Kumar (2021) studies found higher and 
lower weight criteria were AR and LA, as well as Cu. The 
order of the weights of the criteria was AR ≥ LA > Pb ≥ pH 
> COD ≥ TDS ≥ Cl ≥ Cu. The highest criteria weights for AR 
and LA attributed to the exudation of the leachate in terms of 
quantity and quality, while a lower weight for Cu indicates 
landfill setting.

Correlations between input criteria

As most of the landfill leachate input criteria were normally 
distributed, Pearsons’s correlation matrix was used to ana-
lyze the correlation between the criteria as represented in 
Table 3. The results showed a very strong positive correla-
tion between Cl and TDS (0.852). Some potential reasons 
include the presence of high concentrations of Cl in the lea-
chate, which could directly lead to increased TDS levels. 
Moreover, the highest negative correlation between COD 
and Cu was found − 0.375 respectively. It may be possible 
that the Cu was binding to the organic matter in the leachate 
and is not available for COD uptake.

MCDM techniques

SAW

The different MCDM LPI values for respective MCDM 
techniques and traditional LPI values of LS are represented 
in Table 4. SAW can develop a clear understanding of the 
decision-maker and how these alternatives relate to the mul-
tiple criteria. The ranking and SAW LPI of the LS were 
determined by aggregating the criteria of each LS (Ak). SAW 
LPI values for different LS based on the SAW algorithm 

Fig. 6  Complete steps for ARAS
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(Fig. 3) are shown in Table 4. The SAW LPI of different LS 
ranges from 0.261 to 0.635. The highest SAW LPI value was 
observed for LS-5 (0.635) followed by LS-18 (0.554) and 
LS-1(0.513), whereas the lowest SAW LPI value was for 
LS-13 (0.261). It could be due to the SAW LPI of each LS 
being obtained using the SAW by aggregating the values of 
that LS in various criteria while accounting for the weight 
of each criterion.

WPM

The ranking and WPM LPI values for different LS were 
determined by aggregating the criteria of each LS (Bk). 
WPM LPI values of different LS were generated depending 
on the steps of the WPM algorithm (Fig. 4) and shown in 
Table 4. The WPM LPI of different LS ranges from 0.721 to 
8.428. The WPM LPI value of LS-17 was observed lowest 

(0.721) and followed by LS-13 (7.290) whereas LS-5 was 
the highest WPM LPI value (8.428). It could be due to each 
ratio being increased to the power equivalent of the corre-
sponding criterion’s weight factor, one for each criterion, to 
compare each possibility to the others.

TOPSIS

The deviation from Euclidian distance from the PIS (dij+) 
and separation from the NIS (dij−) was evaluated for each 
criterion. The alternatives were ranked concerning their rela-
tive closeness value (Ri), with the best alternatives having 
a lower value (lower LPI and rank) of Ri. TOPSIS LPI val-
ues of the different LS are depicted in Table 4 based on the 
TOPSIS algorithm (Fig. 5). The TOPSIS LPI of different LS 
ranges from 0.124 to 0.631. It was found that the LS-5 got a 
high-performance score (0.631) followed by LS-12 (0.545) 

Fig. 7  Complete steps for EDAS
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and LS-1 (0.513) whereas the lowest performance score was 
LS-13 (0.124). It could be selected best LS should have the 
shortest distance from the PIS and the longest distance from 
the NIS (Hwang and Yoon 1981).

The ranking and ARAS LPI values for different LS were 
evaluated according to the appraisal score value Ki and the 
best LS (lower LPI value) were those that have a lower value 
of Ki. Table 4 depicts ARAS LPI values for different LS that 
were generated based on the steps of the ARAS algorithm 

(Fig. 6). According to ARAS, the ARAS LPI values of vari-
ous LS range from 0.234 to 0.766. The ARAS LPI value was 
observed lowest at LS-13 (0.234) and followed by LS-17 
(0.271) and LS-10 (0.279) whereas LS-5 was the highest 
ARAS LPI (0.766). It could be due to the complicated rela-
tive effectiveness of a feasible LS being directly related to 
the relative effect of the key criteria’s values and weights, 
with the ARAS relying on quantitative calculations and util-
ity function values of LS.

Fig. 8  Complete steps for 
WASPAS

Fig. 9  Weights of the input criteria
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EDAS

The ranking and EDAS LPI values of the different LS were 
evaluated on basis of appraisal score value  (ASi) and the 
best LS (lower LPI value and rank) were those that have a 
lower value of  ASi. EDAS LPI values (Table 4) were gener-
ated based on the steps of the EDAS algorithm (Fig. 7). LPI 
values of different LS range from 0.233 to 0.901. LS-5 had 
the highest EDAS LPI value (0.901), followed by LS-12 
(0.717), and LS-1(0.706), while LS-21 had the lowest EDAS 
LPI (0.233). It could be due to the best LS depending upon 
the positive and negative distance from the average solution 
than an ideal and anti-ideal solution.

WASPAS

The ranking and WASPAS LPI values for different LS were 
evaluated by combining the two models, namely WSM 
and WPM by WASPAS technique. WASPAS LPI values 
(Table 4) are generated based on the steps of the WASPAS 
algorithm (Fig. 8). In this study, the optimized WASPAS 
technique was assessed by considering λ value ranging 
between 0 and 1 with an interval of 0.1. The WASPAS LPI 
values with the existing traditional LPI values were com-
pared based on R2 for each λ value to optimize WASPAS. 
Hence, the investigation found the optimized value with 
λ = 0.8 with an R2 value of 0.82. Moreover, it was observed 

Table 3  Correlation matrix 
between input criteria

Pearson 
correlation

TDS pH COD Cl Zn Cu Pb AR LA

TDS 1
pH  − 0.242 1
COD 0.427  − 0.514 1
Cl 0.852  − 0.193 0.338 1
Zn 0.041 0.046  − 0.185 0.058 1
Cu  − 0.138 0.322  − 0.375  − 0.277 0.695 1
Pb 0.312 0.082  − 0.192 0.202 0.051 0.222 1
AR  − 0.074 0.063 0.394  − 0.264  − 0.190 0.196 0.303 1
LA 0.111 0.111  − 0.255 0.094  − 0.051 0.137 0.027  − 0.106 1

Table 4  Summary of different 
MCDM LPI with respective 
MCDM techniques and traditional 
LPI values of landfill sites

Landfill sites WSM
LPI

WPM
LPI

TOPSIS
LPI

EDAS
LPI

ARAS
LPI

WASPAS
LPI

Traditional
LPI

LS-1 0.513 8.290 0.513 0.569 0.706 2.068 34.501
LS-2 0.405 7.507 0.432 0.509 0.421 1.825 25.206
LS-3 0.365 7.851 0.311 0.391 0.417 1.863 26.064
LS-4 0.360 7.651 0.242 0.377 0.259 1.818 16.567
LS-5 0.635 8.428 0.631 0.766 0.901 2.193 33.001
LS-6 0.341 7.600 0.265 0.355 0.280 1.793 16.189
LS-7 0.437 7.801 0.402 0.505 0.534 1.910 27.799
LS-8 0.350 7.644 0.197 0.349 0.317 1.809 13.161
LS-9 0.404 7.856 0.272 0.429 0.440 1.895 19.703
LS-10 0.329 7.597 0.213 0.279 0.323 1.783 12.980
LS-11 0.510 8.115 0.460 0.558 0.600 2.031 33.214
LS-12 0.489 8.227 0.545 0.576 0.717 2.037 32.769
LS-13 0.261 7.290 0.124 0.234 0.034 1.667 10.129
LS-14 0.512 8.079 0.419 0.528 0.591 2.026 36.060
LS-15 0.458 8.166 0.370 0.500 0.566 1.999 30.614
LS-16 0.511 8.183 0.388 0.521 0.567 2.046 29.543
LS-17 0.305 7.207 0.199 0.271 0.216 1.685 8.344
LS-18 0.554 8.179 0.440 0.574 0.667 2.079 33.187
LS-19 0.493 8.120 0.390 0.510 0.589 2.018 23.631
LS-20 0.362 7.726 0.268 0.361 0.317 1.835 15.543
LS-21 0.325 7.335 0.169 0.300 0.233 1.727 8.663
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that if λ is more than 0.5 the R2 is near 0.82 while λ is ≤ 0.5 
the R2 is close to 0.80. The WASPAS LPI value of differ-
ent LS ranges from 1.667 to 2.193. The WASPAS LPI of 
the LS-13 was lowest (1.667) followed by LS-17 (1.685) 
while LS-5 was found to have the highest performance 
score (2.193). Moreover, the optimization of λ value directly 
impacts the performance of decision-making and along used 
to develop a consensus among decision-makers.

Comparing the ranks of several LS generated 
by various MCDM methods

A comparative study was performed for ranks of all LS by 
the six selected MCDM techniques shown in Table 5. It was 
found that almost all the MCDM techniques gave the first 
rank to LS-13 whereas last to LS-5. It could be due to land-
fill leachate input criteria values of AR and LA being more 
in the LS-13. It was also observed that LS-5 got the last rank 
by all MCDM techniques while it got the fifth rank by the 
traditional LPI technique. LS-7 got the twelfth rank by the 
four techniques like WSM, TOPSIS, ARAS, and WASPAS. 
It was observed that different LPI values were observed for 
all selected LS. Tscheikner-Gratl et al. (2017) applied five 
MCDM models such as WSM, AHP, ELECTRE, TOPSIS, 
and PROMETHEE for ranking and obtained that the find-
ings of the various models were not similar. Moreover, the 
author also revealed that employing more than one MCDM 

technique increases the reliability of the findings and allows 
for consistency checking. In another study, the wastewater 
treatment alternative ranking was investigated by Kalbar 
et al. (2015) considering unequal and equal weights for all 
criteria revealing different rankings for the alternatives.

Performance evaluation of m‑LPI

In order to investigate, the best MCDM technique for the 
development of m-LPI was evaluated by comparing their 
MCDM LPI with the traditional LPI values using perfor-
mance evaluation techniques such as R2, RMSE, MAPE, 
and IA (Table 6). According to the performance evalua-
tion techniques, WASPAS was the best-fitting among six 
MCDM techniques (R2 = 0.828, and IA = 0.813), followed 
by WASPAS > EDAS > TOPSIS > ARAS > WPM > WSM. 
The best performance of WASPAS could be due to it being 

Table 5  Summary of ranks of 
LS with respective MCDM 
techniques and traditional LPI

Landfill sites WSM
LPI

WPM
LPI

TOPSIS
LPI

EDAS
LPI

ARAS
LPI

WASPAS
LPI

Traditional
LPI

LS-1 19 20 19 19 18 19 20
LS-2 11 4 16 11 13 8 11
LS-3 9 11 10 9 9 10 12
LS-4 7 8 6 5 8 7 8
LS-5 21 21 21 21 21 21 17
LS-6 5 6 7 6 6 5 7
LS-7 12 10 14 12 12 12 13
LS-8 6 7 3 8 5 6 5
LS-9 10 12 9 10 10 11 9
LS-10 4 5 5 4 3 4 4
LS-11 16 14 18 17 17 16 19
LS-12 14 19 20 20 20 17 16
LS-13 1 2 1 2 1 1 3
LS-14 18 13 15 16 16 15 21
LS-15 13 16 11 14 11 13 15
LS-16 17 18 12 13 15 18 14
LS-17 2 1 4 3 2 2 1
LS-18 20 17 17 18 19 20 18
LS-19 15 15 13 15 14 14 10
LS-20 8 9 8 7 7 9 6
LS-21 3 3 2 1 4 3 2

Table 6  Performance evaluation for m-LPI

MCDM techniques R2 RMSE MAPE IA

WSM 0.799 24.521 97.940 0.897
WPM 0.796 17.731 58.801 0.314
TOPSIS 0.820 24.582 98.459 0.906
EDAS 0.832 24.422 97.882 0.885
ARAS 0.806 24.486 97.891 0.894
WASPAS 0.828 23.132 90.113 0.813
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one of the newest methods of the MCDM technique and is 
increasingly used because of its high accuracy and short 
calculation stages; moreover, its ability to produce an accu-
rate and unbiased solution. In addition, the optimization of 
λ value in WASPAS directly impacts the performance of 
decision-making and along used to develop a consensus 
among decision-makers. The method is useful for the com-
plete ranking of alternatives; however, it only takes into con-
sideration minimum and maximum values (Dehshiri et al. 
2022; Firouzi et al. 2021). Xuan et al. (2022) revealed that 
WASPAS was an efficient MCDM technique among others 
to determine the most appropriate solar-hydrogen generation 
region in Uzbek. In another study, Azbari et al. (2022) stated 
that WASPAS was the best MCDM technique for finding the 
best alternatives for wastewater reuse allocation alternatives 
at provinces of Iran.

The WSPAS technique suggested that 90% of LS required 
treatment whereas 10% of LS does not require treatment 
(LS-13 and LS-17). Lower criteria values at the LS-13 
(1.667) and LS-17 (1.685) were observed which are below 
LS-21 permissible values (1.727). It could be due to the LA, 
continuous aeration, and rainfall (Yadav et al. 2014; Somani 
et al. 2019). WASPAS resulted in lower and higher ranks for 
LS-13 and LS-5 (2.193). LS-5 was an active landfill cell, 
and the leachate produced was an acetogenic phase (Mishra 
et al. 2016). It could be an essential decision-making for 
policymakers to determine the appropriate treatment of 
landfill leachates and the ranking of LS. Overall, this study 
could benefit researchers and scientists in terms of resource 
allocation, standard enforcement, ranking of LS, treatment 
requirements, and public information about the quality of 
leachate for well solid waste leachate management.

Sensitivity analysis

Sensitivity analysis was conducted on basis of the Taylor 
diagram for the WASPAS technique shown in Fig. 10. It was 
used to assess the variability of the WASPAS LPI values and 
ranking of LS as each criterion value was changed, one at a 
time. The order of criteria sensitivity was found as Pb > TD
S > Cu > COD > Zn > Cl > pH. The least influencing criterion 
found was pH (R = 0.99). pH does not affect the ranking 
and LPI values of LS in the acidic medium, basic medium, 
and neutral medium. The most influencing criterion found 
was Pb, which was a highly sensitive criterion because it 
degraded differently than other heavy metals. Its concentra-
tions in leachate were primarily due to chemicals used for 
photograph processing, disposal of batteries, pipes and lead-
based paints, etc. (Abunama et al. 2019).

Conclusions

This study described a novel approach of m-LPI for the 
assessment of leachate pollution potential for twenty LS 
across India with the help of MCDM techniques. The present 
study considered nine input criteria for developing m-LPI 
using MCDM techniques which were not explored previ-
ously. Among all, WASPAS was proved to be the best tech-
nique with R2 = 0.828 and IA = 0.813 for determining the 
ranking and treatment requirement of leachate compared to 
the traditional LPI method. However, WASPAS only takes 
into consideration of minimum and maximum values of the 
criteria. According to the study, 90% of the LS require lea-
chate treatment based on effectively selected criteria LA and 

Fig. 10  Taylor diagram for sen-
sitivity analysis of input criteria
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AR for m-LPI. The sensitivity analysis also revealed that the 
pH was the least influencing criterion followed by Cl and 
Zn. In the present study, only seven input criteria were con-
sidered due to the availability of limited data on LS across 
India, which is one of the limitations that need to be consid-
ered for future investigations. Furthermore, criteria weights 
were calculated with a questionnaire survey and normalized 
fuzzy method; however, entropy methods can be explored 
to avoid ambiguity during the survey. The findings of this 
study will assist decision-makers in planning appropriate 
corrective actions to avoid solid waste leachate pollution. 
The m-LPI could help urban authorities and policymakers 
in all the undeveloped and developing nations to decide 
biomining activity and trend analysis of LS after closure of 
land filling sites.
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