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Abstract
Accurate remote sensing of the Secchi disk depth (ZSD) in waters is beneficial for large-scale monitoring of the aquatic ecol-
ogy of inland lakes. Herein, an improved algorithm (termed as ZSD20 in this work) for retrieving ZSD was developed from field 
measured remote sensing data and is available for various waters including clear waters, slightly turbid waters, and highly 
turbid waters. The results show that ZSD20 is robust in estimating ZSD in various inland waters. After further validation with 
an independent in situ dataset from 12 inland waters (0.1 m < ZSD < 18 m), the developed algorithm outperformed the native 
algorithm, with the mean absolute square percentage error (MAPE) reduced from 32.8 to 19.4%, and root mean square error 
(RMSE) from 0.87 to 0.67 m. At the same time, the new algorithm demonstrates its generality in various mainstreaming 
image data, including Ocean and Land Color Instrument (OLCI), Geostationary Ocean Color Imager (GOCI), and Moder-
ate Resolution Imaging Spectroradiometer (MODIS). Finally, the algorithm’s application was implemented in 410 waters 
of China based on Sentinel-2 MSI imagery to elucidate the spatiotemporal variation of water clarity during 2015 and 2021. 
The new algorithm reveals great potential for estimating water clarity in various inland waters, offering important support 
for protection and restoration of aquatic environments.
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Introduction

Water clarity is an integrative record of overall water qual-
ity and a convenient indicator for assessing trophic status in 
aquatic sciences and has been routinely and widely measured 
with Secchi disk (ZSD, m) (Bai et al. 2020; Lee et al. 2016; 
Shi et al. 2018; Zhao et al. 2011). The ZSD values depend 
on the intensity light and optically active constituents (e.g., 
chlorophyll-a, total suspended matter, and color dissolved 
organic matter) and play a critical role in understanding 
aquatic environment variations and biochemical processes 

(Feng et al. 2019; Song et al. 2021). ZSD is also useful to 
monitor other bio-optical properties, such as the light availa-
bility for photo-synthetically active radiation (PAR), relating 
to its measurement costs and simplicity (Song et al. 2017; 
Zhang et al. 2012).

Over the past few decades, remote satellite data has also been 
used for estimating ZSD due to its large coverage characteristics 
and rapid data acquisition (Fukushima et al. 2017; Mu et al. 2021; 
Olmanson et al. 2016; Shang et al. 2016). Generally, there are two 
strategies for retrieving ZSD from remote sensing data: empiri-
cal and semi-analytical approaches. The empirical approaches 
usually estimate ZSD by developing a regression model between 
field measured ZSD and remote sensing reflectance (Binding 
et al. 2015; Olmanson et al. 2016; Shi et al. 2018). However, 
the empirical approaches have characteristic of site-specific limi-
tation and may not be transferable to other settings (Lee et al. 
2016; Ren et al. 2018; Xu et al. 2021a). In contrast, previous 
studies have confirmed that semi-analytical methods contain 
greater potential in developing a general approach for estimating 
ZSD (Rodrigues et al. 2017; Yang et al. 2013). Therefore, semi-
analytical algorithms generally provide more reliable results for 
monitoring the ZSD in various aquatic ecosystems.
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An innovative semi-analytical model (termed as ZSDV6) 
based on radiative transfer theory was proposed by Lee et al. 
(2015), and its superior performance was confirmed by sub-
sequent studies (Lee et al. 2016; Shang et al. 2016). How-
ever, several defects may exist when applying the original 
algorithm to various settings with various optical properties. 
Firstly, the estimation of the total absorption coefficients at 
reference wavebands does not work in highly turbid waters 
due to large uncertainties in estimating total absorption coef-
ficients (Liu et al. 2020; Mishra et al. 2014; Watanabe et al. 
2016; Xue et al. 2019). Secondly, the coefficients of the 
original model, determined by open ocean and coastal water 
datasets, may produce over/underestimated inherent optical 
properties (IOPs). The third potential concern was that a fixed 
ratio value of 1.5 was assumed between beam radiance diffuse 
attenuation coefficient (c) and Kd (i.e., KT∕Kd = 1.5). There-
fore, challenges remain for applying algorithms to estimate 
ZSD in various waters, especially in large-scale applications.

Designed to provide continuous observations similar to the 
Landsat series, the MultiSpectral Instrument (MSI) onboard 
the twin satellites (Sentinel-2A and 2B), were launched by the 
European Space Agency Copernicus program in June 2015 and 
March 2017, respectively. With its eight bands from visible to 
shortwave infrared (SWIR) spectral region (443 ~ 835 nm) and 
fine temporal resolutions (5 days), the sentinel-2 MSI data has 
been considered as a superior satellite sensor with high signal-
to-noise ratios (SNR) for regular estimation of target land-cover 
change at regional or global scales. Furthermore, with finer 
spatial resolution (10 m, 20 m, and 60 m) from visible to near-
infrared (NIR) bands, MSI data provides more opportunities 
for enhanced monitoring of water quality parameters in smaller 
inland waters (e.g., water area < 30 km2). However, the system-
atic spatiotemporal variation patterns of ZSD using the above-
mentioned satellite data on a large scale (e.g., national scale) 
have rarely been investigated.

Therefore, the main purposes of this study are to (1) pro-
vide an improved scalable semi-analytical model for esti-
mating ZSD in inland waters with various turbid categories; 
(2) validate a developed model and compare it with existing 
models; (3) demonstrate long-term applications of the devel-
oped model on a national scale using sentinel-2 MSI data.

Study area and data collection

Study area

Our surveyed area across China was divided into six large sub-
regions, the Northeast Plain (NP) and Mountains (NE), Eastern 
Plain (EP), Inner-Mongolian Plateau (MP), Yunnan-Guizhou 
Plateau (YG), Xinjiang province (XJ), and Tibetan-Qinghai 
Plateau (TP) according to geographical conditions and cli-
matic characteristics (Zhang et al. 2019). The sampled waters 

included 20 inland lakes that ranged from clear to highly turbid, 
from shallow to deep, and from oligotrophic to hypereutrophic 
(Fig. 1). These sampled lakes are sporadically distributed from 
the eastern region (NP and EP) to the western region (TP and 
XJ), with altitudes ranging from below 5 to above 4250 m. The 
basic information of 20 sampled lakes is shown in Fig. 1 and 
Table 1. Among the surveyed lakes, hypereutrophic lakes (e.g., 
Lake Taihu) are mainly located in the EP, while mesotrophic 
lakes (e.g., Lake Erhai) are mostly distributed in YG and EP. 
With the exception of Wanlv Lake in EP, most oligotrophic 
lakes are located on the TP, which are characterized by small 
water surface (< 30 km2) and limited human disturbance.

In situ water quality data and spectra data 
collection

The dataset I (calibration)

From 2015 to 2021, water samples were collected by taking 
a total of 276 samples from ten lakes (Fig. 1 and Table 1). 
In situ surface water samples (~ 0.5 m depth) were measured 
using pre-cleaned Niskin bottles and were placed in an ice 
bin at low temperatures (~ 3 °C) for laboratory analysis. The 
measurements of water clarity (ZSD, m) were simultaneously 
taken using a Secchi disk (Li et al. 2020; Ren et al. 2018). 
The Secchi disk is slowly lowered into a water column until 
it disappears from the inspector’s view, the depth at which it 
is no longer visible is recorded as the ZSD value (Zeng et al. 
2020a). Within the following days, water samples were fil-
tered and four water quality parameters, including concen-
tration of total phosphorus (CTP), chlorophyll-a (CChla), total 
suspended matter (CTSM), and the absorption coefficients of 
colored dissolved organic matter (CDOM) at 443 nm (termed 
as aCDOM(443) ) were measured in the laboratory following 
the method described by Zeng et al. (2022a) and Xu et al. 
(2018a). At the same time, the trophic state of sampling lakes 
was evaluated by the Carlson’s trophic state index (TSI) (Carl-
son 1977); the results are shown in Fig. 1 and Table 1.

The corresponding Rrs(λ) was field-measured using an 
Analytical Spectral Devices (ASD) Inc. FieldSpec Pro 
between 14:00 and 16:00. More details of the process are 
provided by previous studies (Cai et al. 2021; Lei et al. 2018; 
Xu et al. 2020, 2021c). At each sampling point, the total 
radiance ( Lt ), the sky-viewing radiance ( Lsky ), and the radi-
ance reflected by a standard gray panel ( Lp ) were collected. 
The Rrs(λ) can be calculated using the following equation:

where raw represents the skylight reflectance at the air–water 
surface and is taken as 2.2% for calm water conditions (Zeng 
et al. 2022b; Zheng et al. 2016).

(1)Rrs(�) = �p
(
Lt − rawLsky

)
∕(�Lp)
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An underwater spectroradiometer (TriOS Mess- und 
Datentechnik GmbH, Rastede, Germany) was used to col-
lect the diffuse attenuation coefficient Kd(�) on site, which 
has a scanning channels range of 320 to 950 nm and a spec-
tral sampling interval of 3.3 nm. After that, the spectral 
sampling interval can be interpolated to a narrow resolu-
tion of 1 nm through indoor data processing. The spectra 
of underwater downward irradiance Ed(�, z) at different 
sampling depths ( z = 0.4, 0.8,…….,3.6 m) were measured 
following the methods suggested by Lei et al. (2020), and 
the Kd(�) was calculated using a non-linear fit equation as 
follows:

Kd(�) was determined only if R2 ≥ 0.95 and the number 
of sampling depths must be more than 3 (Zhang et al. 2012).

The dataset II (validation)

Another dataset (dataset II), including ZSD and Rrs(λ) meas-
urements from 14 lakes, was collected by taking a total of 

(2)Ed(�, z) = Ed(�, 0
−) ∗ exp

(
−Kd(�) ∗ z

)

203 samples from 2015 to 2018 (Fig. 1, Table 1), similar 
protocols used for dataset I were followed. Notice that data-
set II is used as an independent dataset for algorithm verifi-
cation. The distributions of those water samples covered the 
eastern region to the southwest region (Yunnan Province and 
Tibet Plateau) in China (Fig. 1).

Water type classification

We divided waterbodies into three basic types deter-
mined by the shape of Rrs , and a simple but robust water 
type classification algorithm proposed by Balasubrama-
nian et al. (2020) was applied in this study. According 
to Balasubramanian et al. (2020), if Rrs(665) < Rrs(560) 
and Rrs(665) > Rrs(490) , the waterbodies were identi-
fied as slightly turbid waters (ST); if Rrs(665) > Rrs(560) 
and Rrs(740) > 0.01∕sr , the waterbodies were classified 
as highly turbid waters (HT); if Rrs(665) < Rrs(490) , the 
waterbodies were identified as clear waters (CW). Finally, 
there were 120, 84, and 72 samples in dataset I classified 
into HT, ST, and CW, respectively, while 90, 52, and 61 
samples were correspondingly classified in dataset II.

Fig. 1   Location of 20 sampling 
lakes. The blue, green, and red 
triangles mark the oligotrophic, 
mesotrophic, and hypere-
utrophic lakes, respectively

41539Environmental Science and Pollution Research (2023) 30:41537–41552
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Accuracy assessment

Three evaluation indicators, including the coefficient of 
determination (R2), the mean absolute square percentage 
error (MAPE), and root mean square error (RMSE), were 
selected to characterize the performance of the model:

where the Vi
pred

 and Vi
meas

 are the estimated and measured 
values, respectively; n is the number of samples.

Satellite data collection and preprocessing

A total of 10,523 Sentinel-2 MSI L1C images captured 
in 410 large waterbodies (areas > 10 km2) of China were 
downloaded during the non-freezing period from 2018 to 
2021 from the European Space Agency (https://​scihub.​coper​
nicus.​eu/). Because heavy cloud contaminated imagery is 

(3)MAPE =
1

n

∑n

i=1

(
|||
Vi
meas

− V
i

pred

|||
∕Vi

meas

)
∗ 100%

(4)
RMSE =

�
∑n

i=1

�
Vi
meas

− Vi
pred

�2

n

unsuitable for ZSD estimation, only imagery with free or low 
cloud coverages (< 10%) was selected for analysis. These 
images were atmospherically corrected using Acolite algo-
rithm (Vanhellemont and Ruddick 2014). Water boundaries 
in the images were extracted following the method described 
by Zhang et al. (2019). At the same time, Virtual-Baseline 
Floating macroAlgae Height (VB-FAH) was applied to 
mask the water pixels with heavy algal blooms (Xing and 
Hu 2016). During the field studies conducted from 2015 
to 2019 (dataset I), the field measured time of a total of 65 
points (29 points in Lake Taihu, 12 in Lake Erhai, and 24 
points in Lake Wanlv) was close to Sentinel-2 MSI imaging 
time (± 3 h) and were selected for further validation of the 
accuracy of Acolite atmospheric correction.

The performance of the Acolite algorithm was assessed 
by comparing the field measured and Sentinel-2 MSI-
derived Rrs(�) at the available bands of 443, 490, 560, 665, 
and 740 nm in the ZSD retrieval algorithm. The field meas-
ured Rrs(�) were converted to simulated spectrum using the 
corresponding spectral response functions (SRFs) (Li et al. 
2017b; Zeng et al. 2020b), which can be expressed by the 
following equations:

(5)Rrs(�) =
∑�max

�min

S�Rrs_m(�)∕
∑�max

�min

S�

Table 1   The basic information 
of sampling lake is listed, 
including sampling number, 
date, central longitude (Lon.), 
central latitude (Lat.), water 
area (Area, m2), and trophic 
status between 2015 and 2021

Lake Samples Date Lon Lat Area Trophic state

Dataset I Dongting 35 201,710 113.12 29.34 2579 Hypereutrophic
Taihu 30 201,910 120.19 31.52 2348 Hypereutrophic
Hulun 20 201,509 117.65 49.16 2339 Hypereutrophic
Hongze 30 201,810 118.54 33.12 2069 Hypereutrophic
Bosten 10 201,710 87 41.92 1646 Oligotrophic
Wanlv 60 201,607 114.58 23.79 370 Oligotrophic
Erhai 31 201,609 100.18 25.84 256.5 Mesotrophic
Xingkai 10 201,509 132.45 45.26 148 Hypereutrophic
Weishan 30 202,109 117.17 34.69 1266 Mesotrophic
Maoli 20 202,109 111.94 29.42 38.4 Mesotrophic

Dataset II Poyang 34 201,808 116.67 29.14 3150 Hypereutrophic
Erhai 30 201,810 100.18 25.84 256.5 Mesotrophic
Taihu 30 201,807 120.19 31.52 2338 Hypereutrophic
Chaohu 30 201,508 117.58 31.51 2046 Hypereutrophic
Weishan 15 201,809 117.17 34.69 1266 Mesotrophic
Pangong 4 201,607 79.87 33.46 600 Oligotrophic
Geren 4 201,609 88.54 31.05 476 Oligotrophic
Cuona 6 201,708 91.431 32.07 400 Oligotrophic
Xuru 4 201,507 86.46 30.29 300 Oligotrophic
Fuxian 10 201,509 102.94 24.61 216.5 Oligotrophic
Jiangcuo 5 201,708 90.79 31.52 200 Oligotrophic
Maoli 11 201,510 111.94 29.42 38.4 Mesotrophic
Yangzong 10 201,610 103.01 24.93 31.1 Oligotrophic
Shanpo 10 201,510 112.03 29.43 26 Mesotrophic
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where Rrs(�) is the simulation of the Sentinel-2 MSI Rrs(�) ; 
Rrs_m(λ) is the field-measured Rrs(λ); and S� is the SRF of 
Sentinel-2 MSI, which can be downloaded from the Euro-
pean Space Agency (https://​scihub.​coper​nicus.​eu/).

The performance of the Acolite algorithm applied in 
Sentinel-2 MSI imagery is presented in Fig. S1. The Aco-
lite algorithm had relatively poor performance at blue (443 
and 490 nm) wavebands in Lake Taihu, as well as at NIR 
(740 nm) wavebands in Lake Wanlv, with the MAPE greater 
than 25%. At the same time, Acolite algorithm performed 
well in visible wavebands, with the MAPE ranging from 
17.06 to 21.1% and the RMSE from 0.001 to 0.009 m. Based 
on the atmospheric corrected wavebands at visible and NIR 
bands of Sentinel-2 MSI, i.e., the MAPE values at 443, 490, 
560, 665, and 740 nm were less than 30%, and the RMSE val-
ues maintained low error values, the Acolite atmospheric cor-
rection method is reasonable for these bands and has greater 
potential in retrieving ZSD based on Sentinel-2 MSI data.

Model development

A new semi-analytical model based on QAA algorithm (Lee 
et al. 2015, 2016) (denoted as ZSD20) used to estimate ZSD in 
various waters is proposed in this study. The symbols and 
corresponding description are summarized in Table S1, and 
the derivation process in ZSD20 algorithm corresponding to 
various water types is listed in Table 2.

In step 1, rrs(�) could be determined as (Lee et al. 2015, 2016):

In step 2, u(λ) could be expressed as (Lee et al. 2016):

where g0 and g1 was 0.084 and 0.17, respectively, which were 
suggested by the former study (Lee et al. 1999; Xue et al. 2019).

In step 3, a(λ0) could be determined by making assumption 
that aw

(
�0
)
 is domination (Lee et al. 2016; Xue et al. 2019).

According to ZSDV6 algorithm (Lee et al. 2009), a
(
λ0
)
 

could be calculated by selecting the reference bands to 
560 nm and 670 nm in CW and SW, respectively. Mean-
while, a

(
λ0
)
 should be estimated at near infrared region 

(NIR) in HT, in order to meet an assumed condition that 
the water absorption aw

(
λ0
)
 dominates in NIR (i.e., 

aw(NIR) ≈ a(NIR) ) (Cai et al. 2023; Rodrigues et al. 2017; 
Xue et al. 2019). However, such assumptions are not held 
because the absorption of particulate matter ( ap(λ) ) cannot 
be ignored in such waters (Le et al. 2009; Zeng et al. 2021), 
and a large difference may occur between in-situ a(NIR) 
and aw(NIR) . To fill this gap, we located λ0 to MSI-740 nm, 
then estimated anw(740) from its empirical relationship with 
Rrs(740) based on field-measured data (dataset I, N = 120) 
(Fig. 2a). Therefore, Eq. (8) can be modified as (9):

(6)rrs(�) =
Rrs(�)

0.52 + 1.7Rrs(�)

(7)u(λ) =
−g0 +

√
(g0)2 + 4g1 ∗ rrs(λ)

2g1

(8)a
(
�0
)
= aw

(
�0
)
+ anw

(
λ0
)

Table 2   The derivation flowchart of ZSD20 algorithm for clear (CW), slightly turbid (ST), and highly turbid waters (HT)

Step Property CW ST HT

1 r
rs
(�) r

rs
(�) = R

rs
(�)∕(0.52 + 1.7Rrs(λ)) Same Same

2 �(�)

μ(λ) =
−g0+

[
(g0)

2
+4g1rrs(λ)

] 1
2

2g1

g0 = 0.084, g1 = 0.17

Same Same

3 α(�0) x = log(
r
rs
(443)+r

rs
(492)

r
rs
(560)+5

rrs (665)

rrs (492)
r
rs

(665)
)

α(560) = αw(560) + 10
−1.146−1.366x−0.469x2

α
(
�0
)
=
�w(665) + 0.39
(

Rrs(665)

Rrs(443)+Rrs(492)

)1.14

�
(
�0
)
≈ �w(740)

+8.14∗ R
rs
(740) + 0.066

4 b
b
(�0) b

b

(
�0
)
=

�(�0)�(�0)
1−�(�0)

�0 = 560

Same
�0=665

Same
�0=740

5 b
b
(�) b

b
(�)=b

b
(�0),� = �0 = 560 b

b
(�) = (b

b

(
�0
)
− b

w

(
�0
)
) ∗

(
�0

�

)Y

+ b
w
(�)

Y = 3.99 − 3.59exp(−0.9
r
rs
(443)

r
rs
(560)

)

Same

6 a(�) a(�) = ((1 − �(�))b
b
(�)∕�(�) Same Same

7 Kd(�) Kd(�) = (1 + 0.0124�
w
)a(�) + 3.16

(1 − 0.52exp(−10.8 ∗ a(�)))b
b
(�)

Same Same

8 Z
SD Z

SD
=

1

K
d
(�)+K

T
(�)
ln
(
T
r

|rT−rW|
C
r

t

)

K
T
=
(
a + b

b

)
1.04(1 + 5.4u)0.5

Same Same
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In step 4, bb(λ0) could be expressed as:

Furthermore, bb(�) could be retrieved from bb
(
�0
)
 as (Lee 

et al. 2016):

where the power-law exponent values of bb(�) (Y) were 
obtained from different bands ratio as following equations 
(Xue et al. 2019):

In step 6, a(�) could be retrieved from bb(�) as (Lee et al. 
2016):

In step 7, the diffuse attenuation coefficient Kd(�) could 
be retrieved from a(�) and bb(�) based on following equation 
(Lee et al. 2015):

(9)a(740) = aw(740) + 38.14 ∗ Rrs(740) + 0.066

(10)bb
(
�0
)
=

�
(
�0
)
�
(
�0
)

1 − �
(
�0
)

(11)bb(�) = (bb
(
�0
)
− bw

(
�0
)
) ∗

(
�0

�

)Y

+ bw(�)

(12)Y = 3.99 − 3.59exp(−0.9
rrs(443)

rrs(560)
)

(13)a(�) = ((1 − �(�))bb(�)∕�(�)

(14)
Kd(�) =

(
1 + m0 ∗ θs

)
a
(
λ0
)
+ m1(1 − m2exp(−m3a

(
λ0
)
))bb(λ0)

where Kd(560) always represents the minimum Kd value 
among the transparent spectral domain (443 ~ 665 nm) in 
the original model (Zeng et al. 2020a); θs is the subsurface 
solar zenith angle; m0−3 are model parameters, which were 
derived using Hydrolight simulations based on oligotrophic 
waters and Case-1 models of Morel and Maritorena (2001) 
for optical properties by assuming the IOPs were vertically 
constant (Lee et  al. 2013). Therefore, those parameters 
( m0−3 ) should be retuned using in situ data (dataset I) in 
order to meet the application of inland waters, similar to Lee 
et al. (2013). In detail, we fixed the same values for m1 , m2 , 
and m3 , but varied m0 , the optimal value of m0 was further 
confirmed based on nonlinear best fit. The values of m1−3 
were derived in the same way. The retuned values of the 
four model parameters ( m0−3 ) were 0.012, 3.16, 0.52, and 
10.7, respectively. Figure 2b presents the matchup points 
between the in situ and the retrieved Kd(560) where all of 
the samples were evenly distributed along the 1:1 line with 
low MAPE (10.24%) and RMSE (0.81/m), indicating that 
the new values of the parameters ( m0−3 ) are satisfactory for 
estimation of Kd(560).

After that, the ZSD is derived based on following equation 
(Lee et al. 2015):

where rT is the radiance reflectance right above a target and 
is approximately 0.27/sr (Duntley and Preisendorfer 1952; 

(15)ZSD =
1

Kd(�) + KT (�)
ln

(

Tr

||rT − rW
||

Cr
t

)

Fig. 2   Relationships between 
a
nm
(740) and R

rs
(740) in highly 

turbid waters (a). The matchup 
points between the in situ and 
the retrieved K

d
(560) from 

improved model (b) and origi-
nal model (c). The values of 
K
T
∕K

d
 vary in various waters, 

and the dash line indicated the 
equation of K

T
∕K

d
= 1.5 in 

original ZSDV6 algorithm (d)
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Lee et al. 2015). The rW represents the radiance reflectance 
of water corresponding to the wavelength with Kd , which 
can be calculated following Eq. (6). The Tr is approximately 
equal to 0.54/sr, representing the radiance transmittance 
(Wei et al. 2015). The Cr

t
= 0.013/sr represents the contrast 

threshold of what is visible in air (Lee et al. 2015). The KT 
is the upward diffuse attenuation coefficient, and the bottom 
is assumed to be a Lambertian reflector (Lee et al. 2015; 
Volpe et al. 2011):

where RI is the refractive index value of pure water, which 
is equal to an empirical constant of 1.34, and u is defined 
as bb∕(a + bb) (Jiang et al. 2019). Therefore, the KT∕Kd 
only depend on the u when �s is confirmed. According to 
the study of Lee et al. (2015), an empirical equation of 
KT = 1.5Kd was determined using a large dataset covering 
different IOPs, including Case-1 and Case-2 waters. Never-
theless, previous studies found that the value of KT∕Kd can 
vary and depends on the optical properties (Jiang et al. 2019, 
Lee et al. 1994, Philpot 1989), which means that the fixed 
value of KT∕Kd may produce large bias for estimating ZSD 
in various waters.

According to our field measured data, the values of 
KT∕Kd showed a wide range (0.5–1.71) in different waters 
(Fig. 2d), which was different from the empirical constant 
of 1.5 suggested by Lee et al. (2016). The average values 
of KT∕Kd were 1.44 in highly turbid (HT), whereas much 
lower mean values of 0.88 and 0.69 in clear waters (CW) 
and slightly turbid waters (ST) were found, respectively. 
Based on the above findings, we can conclude that the new 
algorithm has satisfying performance in deriving a , Kd , and 
KT∕Kd in various waters, and it can be applied to identify 
weaknesses in the original ZSDV6 algorithm. According to 
previous studies (Liu et al. 2020; Xue et al. 2019), the 
bio-optical properties of inland waters are strongly influ-
enced by the absorption and backscattering of water quality 
parameters, which are significantly different from the train-
ing dataset collected from marine and coastal waters by the 
original ZSDV6 algorithm (Lee et al. 2016). For example, the 
lakes in Yangtze River Plain cover a wide range of Cchla 
of 2.48–320.53  mg/L and aCDOM(440) of 0.05–2.18/m 
(Deyong et al. 2009; Xu et al. 2021b; Zeng et al. 2022a), 
while relatively small values of Cchla (0.2–40 mg/L) and 
aCDOM(440) (0.02–0.4/m) were found in the training dataset 
of original ZSDV6 algorithm (Lee et al. 1994). These find-
ings indicated that high dynamic of bio-optical properties 
(e.g., a and bb ) of inland waters may lead to a wide range 
of u , Kd , KT  , and ultimately, KT∕Kd . Based on the above 

(16)

KT =
(
a + bb

)
1.04(1 + 5.4u)0.5 = Kd

1.04(1 + 5.4u)0.5

1(

1−
sin(�s)

2

RI2

)
0.5

analysis, we can conclude that the value of KT∕Kd vary in 
different waters, and the application of the original ZSDV6 
algorithm in various waters requires specific parameteriza-
tion. Therefore, we re-calculated the values of KT and Kd in 
the new algorithm following Eqs. (14) and (16).

Results

Biogeochemical characterization

The basic statistics of the field collected water quality 
parameters in investigated waters are presented in Table S2, 
comprising a wide variability and covering a wide con-
centration range of water parameters. The CW have very 
low CChla (0.14–19.88 μg/L), aCDOM(443) (0.098–1.01/m), 
and CTSM (0.47–4.52 mg/L), but high average ZSD value 
(3.23 m). The ST have moderate CChla (7.27–34.34 μg/L), 
aCDOM(443) (0.15–1.87 m−1), and CTSM (1.96–7.5 mg/L). On 
the contrary, HT is characterized by low water clarity (mean 
ZSD of 0.43), which closely related to relatively higher CChla 
(4.45–30.93 μg/L), aCDOM(443) (0.41–3.78/m), and CTSM 
(2.5–200.53 mg/L).

Performance of the developed algorithms

Three key improved processes are implemented in the 
new algorithm. First, suitable reference bands (560 nm, 
670 nm, and 740 nm) were available for various waters 
to estimate the reference total absorption a

(
λ0
)
 . Sec-

ondly, some specific but more accurate parameterization 
steps of derived Kd were adopted in the new algorithm to 
reduce defects. Third, more accurate values of KT∕Kd were 
obtained in the new algorithm. Figure 3 shows the perfor-
mance of the ZSDV6 algorithm (a, b, c, and g) and ZSD20 
algorithm (d, e, f, and h) in three types of water based on 
dataset I. The original algorithm may have a moderate per-
formance in CW with a MAPE of 30.86% and an RMSE 
of 1.28 m (Fig. 3a), which can be improved by using the 
new developed algorithm with relative higher accuracy 
(MAPE = 16.88%, RMSE = 0.63 m) (Fig. 3d). At the same 
time, similar performances were found between the orig-
inal and new algorithm in water samples dominated by 
phytoplankton (Fig. S2), which are located in the center of 
the lake and keep stable deposition condition and are not 
susceptible to environmental disturbance. In ST and HT, 
both in non-phytoplankton and phytoplankton-dominated 
waters, significant underestimations were found for the 
original algorithm, while the new algorithm performed 
better (Fig. S2 and Fig. 3). Figure 3g and h summarize the 
total performance of the original algorithm and our devel-
oped algorithm. It can be concluded that the improved 
algorithm of ZSD20 gave more accurate performance, with 
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value of MAPE reduced from 31.9 to 12.7% and RMSE 
reduced from 0.74 to 0.34 m.

At the same time, we used dataset II (described in the 
“The dataset II (validation)” section) as an independent 
dataset to further test the generality and effectiveness 
of the proposed algorithm in other waters. The statisti-
cal validations are summarized in Table 3. Although an 
encouraging performance was confirmed using the new 
algorithm (MAPE = 19.4%, RMSE = 0.67 m), some unsat-
isfactory results also existed, such as some underestima-
tions of surveyed lakes in Tibet Plateau, which may be 
related to imperfect atmospheric correction in this area. 
Regrettably, the field measured spectral data that was 
closest to Sentinel-2 MSI imaging time was lacking in 
the examination of the Acolite atmospheric correction. 
Although these defects were found in our dataset, the new 
algorithm performed well with satisfactory accuracy and 
had great potential to further estimate the ZSD in satellite 
images.

Fig. 3   Performance comparison between ZSDV6 algorithm (a, c, e, and g) and ZSD20 algorithm (b, d, f, and h)

Table 3   The performance of ZSD20 in 14 lakes based on validated 
dataset (dataset II)

*Surveyed lakes in Tibetan Plateau

Surveyed lakes In situ 
mean 
ZSD

Predicted 
mean ZSD

MAPE (%) RMSE (m)

Dongting 0.51 0.49 19.2 0.05
Erhai 0.73 0.69 21 0.06
Taihu 0.5 0.46 17.6 0.04
Chaohu 0.28 0.31 20.5 0.04
Weishan 0.52 0.61 25.3 0.09
Pangong* 3.27 2.45 23.5 0.93
Geren* 3.4 2.69 39.8 2.32
Cuona* 4.6 2.7 36 2.7
Xuru* 4.2 2.62 37.9 2.57
Fuxian 4.6 4.15 17.5 0.52
Jiangcuo* 2.93 2.79 37.1 1.02
Maoli 0.65 0.59 26.9 0.06
Yangzong 2.09 1.94 18.5 0.62
Shanpo 0.37 0.42 25.2 0.05
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Spatiotemporal variation of water clarity

Seasonal distribution of ZSD

To demonstrate the application of the developed model 
(ZSD20) in inland waters, we mapped spatiotemporal distri-
bution of ZSD in 410 waters of China, including natural lakes 
and artificial reservoirs. These waterbodies account for more 
than 60% of all waterbodies across China with an area more 
than 10 km2. The seasonal variations of water clarity in these 
waterbodies is shown in Fig. 4 and Fig. S3, which shows 
long-term mean values between 8.24 m (in Lake Yamdrok) 
and 0.1 m, indicating remarkable spatial and temporal het-
erogeneity during the observed period (2015–2021), which 
may be related to different factors among different sub-
regions (Liu et al. 2021a; Shen et al. 2020).

The ZSD of 410 waters across China showed a rela-
tively high ZSD in summer (1.03 ± 1.26 m) and autumn 
(1.02 ± 1.21 m) but low ZSD in spring (0.69 ± 0.66 m) 
and winter (0.6 ± 0.72  m), exhibiting a significant 

temporal variation of water clarity between different 
seasons (Fig. 4). It was observed that a relatively small 
seasonal variation of ZSD was found in Huaihe Basin and 
middle and lower reaches of Yangtze River Plain (HB-
MLYRL) (Fig.  5), which may be related to the stable 
dominant factors in these areas. The waters in these areas 
always receive major impacts from hydro-climatological 
events and anthropogenic interference throughout the year, 
resulting in low water clarity (Song et al. 2020; Wang et al. 
2022; Xu et al. 2018b).

At the same time, the seasonal dynamic in proportion 
of water types was statistically analyzed. The highly turbid 
waters (HT) always maintain the highest proportion of water 
types in all seasons (≥ 70%), especially in spring (80%). 
For slightly turbid waters (ST), the highest percentage was 
reached in summer, which had a higher proportion of 21% 
than those in winter (13%), spring (17%), and autumn (19%). 
The largest proportion of clear waters (CW), accounting for 
11% of all waters, were found in autumn, with only 3% and 
4% in spring and winter, respectively.

Fig. 4   The seasonal variations of water clarity in lakes of China. The 
retrieval results of ZSD in some lakes are not shown due to lake freez-
ing period in winter. The waterbodies in Huaihe Basin and middle 

and lower reaches of Yangtze River Plain (HB-MLYRL) are marked 
by the dashed rectangle
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Spatial distribution of ZSD

For spatial pattern, waterbodies with low ZSD were observed 
in Eastern China (MP, NE, and EP), where the ZSD ranged 
from 0.1 to 7.31 m with an average value of 0.25 m (Fig. 6). 
Most waters in Eastern China are characterized by shallow 
water depth and highly turbidity, water clarity was influ-
enced by weather conditions and high disturbance from 
anthropogenic activities (Lei et al. 2020; Song et al. 2020). 
Conversely, the waters in TP exhibited the highest long-term 
mean ZSD (2.7 ± 1.4 m), which was much higher than that 
of all surveyed waters (0.77 ± 0.75 m). The proportion of 
lakes with different water types is shown in Fig. 4b. Over 
50% of lakes in EP, MP, NE, and XJ are characterized by 
highly turbidity. The largest proportion of CW was found in 
TP, accounting for 40.98% of all waters, with only 1.64% 
and 1.67% in MP and NE, respectively. According to previ-
ous studies (Liu et al. 2021b; Pi et al. 2020), most waters 
in TP are characterized by deep water depth (> 15 m), sta-
ble deposition condition, and low human disturbance, and 
are not susceptible environmental disturbance and maintain 
relatively higher ZSD. In addition, increasing trends of ZSD 

were found from low–high latitudes and east–west longi-
tudes, indicating that the eutrophic conditions of waters in 
southern and western China are better than those in north-
ern and eastern China (Fig. 6b), which is consistent with 
previous findings (Hu et al. 2022; Song et al. 2020). It can 
be concluded that water clarity exhibited significant spatial 
variations in China based on the above analysis.

Discussion

Necessity of the improvements in new algorithms

Varied optical active components result in complex bio-
optical properties in inland waters characterized by various 
optical water types. Even at the same phenological period, 
a single waterbody can also exhibit significant spatially het-
erogeneous distribution of water optical properties (Matsu-
shita et al. 2015), resulting in the varied performance of ZSD 
algorithm among those water types. Therefore, the specific 
optical properties should be considered when applying the 
ZSD algorithms to various waters.

Fig. 5   The seasonal variations 
of water clarity in Huaihe Basin 
and middle and lower reaches 
of Yangtze River Plain (HB-
MLYRL)
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In the original algorithm of ZSDV6, the inherent optical 
properties (IOPs) were first derived based on the QAA algo-
rithm, the ZSD was further derived relying on the minimum 
Kd value among the transparent spectral domain and its cor-
responding Rrs(�) without parameter adjustments in open 
ocean and coastal waters (Lee et al. 2016; Shang et al. 2016). 
Nevertheless, several significant shortages of the original 
QAA were found for applications in inland waters (Bai et al. 
2020; Jiang et al. 2019; Rodrigues et al. 2017). In this study, 
obvious underestimation of the original algorithm was found 
in ST (MAPE = 34.3%, RMSE = 0.63 m) with poor perfor-
mance in CW (MAPE = 30.89%, RMSE = 1.33 m) and HT 
(MAPE = 36.1%, RMSE = 0.11 m) (Fig. 3) which may be 
due to the following reasons.

Firstly, the existing estimation algorithm of IOPs at 
fixed reference wavebands may produce large bias in inland 
waters due to scattering and absorption (Wang et al. 2017; 

Watanabe et al. 2016). Therefore, it is necessary to select 
suitable reference wavebands and bridge the difference 
between the estimated and field values of total absorption 
coefficient in various inland waters (Step 3 in Table 2). 
Additionally, it is possible that the coefficient parameters of 
derived Kd in the original algorithm were not applicable to 
inland waters (Watanabe et al. 2016). Therefore, some spe-
cific parameterization steps were adopted in the new algo-
rithm to reduce defects (see in Fig. 2). The third issue is that 
a fixed ratio value of KT∕Kd may lead to an obvious bias 
estimation in inland waters. In this study, the seasonal values 
of KT∕Kd in 410 waters across China were derived using 
data from 2015–2020, which span a wide range of 0.5–1.81 
(Fig. 7). It can be seen that the values of KT∕Kd tend to be 
smaller in clear water (average value of 0.73), slightly tur-
bid waters (1.05), and highly turbid waters (1.47), which is 
similar to previous study by Jiang et al. (2019). Therefore, 

Fig. 6   The spatial distribution in water clarity of 410 waters (a), the proportion of various water types in six sub-regions (b), with statistical 
results sorted by latitude (c) and longitude (d)
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improvements are needed in the newly developed algorithm 
for application in various inland waters. Compared to the 
native algorithm, three important improvements have been 
made in the new algorithm. First, a strategy was designed 
to select suitable reference bands (560 nm, 670 nm, and 
740 nm) for various waters to estimate the reference total 
absorption a

(
λ0
)
 . Secondly, optimized Kd were obtained to 

reduce defects. Third, more appropriate values of KT∕Kd 
were implemented in the new algorithm. The validation 
results indicated that the new algorithm gave more accurate 
performance, with RMSE reduced from 31.9% to 12.7% and 
RMSE from 0.74 to 0.34 m (Fig. 3).

Comparison with existing algorithms

A number of empirical and semi-analytical algorithms have 
been developed to derive ZSD in various waters, covering 
clear waters to highly turbid waters (Feng et al. 2019; Lee 
et al. 2016; Mishra et al. 2014; Rodrigues et al. 2017), which 
were selected for comparison with the algorithm in this 
study (Table 4). These algorithms can be separated into two 
groups: the empirical algorithm group (Binding et al. 2015; 

Giardino et al. 2001; Olmanson et al. 2011; Ren et al. 2018; 
Wu et al. 2008a, 2008b; Zhang et al. 2021) and the semi-
analytical algorithm group (Lee et al. 2016; Rodrigues et al. 
2017). However, the performance of these algorithms cannot 
be directly compared due to the significant differences of 
band settings in various sensors (e.g., MODIS and Landsat 
8). Therefore, all key parameters in the original algorithms 
must be re-calibrated and validated using the simulated spec-
trum and field measured datasets.

The performance comparisons between existing algo-
rithms and our algorithm is presented in Table 4. The 
model of Ren et al. (2018), originally calibrated and vali-
dated with data collected from moderate to highly turbid 
waters, shows relatively higher accuracy (MAPE = 68.44% 
and RMSE = 0.59 m) compared to others, but a much 
lower accuracy than the original (MAPE = 21.68% and 
RMSE = 0.076 m). In contrast, the model of Olmanson 
et al. (2011) yielded a worse performance than others 
based on simulated data, with MAPE = 255.91% and 
RMSE = 4.48  m. Meanwhile, the single band models 
of Zhang et al. (2021), Wu et al. (2008b), and Binding 
et al. (2015) also produced relatively poor performance 

Fig. 7   The seasonal average K
T
∕K

d
 in various waters. The retrieval results in winter are not shown due to lake freezing period in winter
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based on our validation data. These models are character-
ized by their simplicity of form and ease of application 
(Binding et al. 2015; Lei et al. 2020; Zhang et al. 2012). 
However, the choice of a single band usually varies with 
the optical properties of the water, developing a generic 
estimation model for various types of water may produce 
large uncertainties based on site-specific data (Alikas and 
Kratzer 2017; Binding et al. 2015; Zhang et al. 2012).

Based on two existing semi-analytical algorithms, sig-
nificant differences were also observed between the field 
measured and estimated ZSD after the evaluation of two 
models from Lee et al. (2016) and Rodrigues et al. (2017) 
which were carried out based on the same in situ meas-
urements, with MAPE and RMSE of 31.58%, 0.83 m, 
and 75.89%, 1.6  m, respectively (Table  2), showing 
poorer accuracy compared to the new proposed models 
(MAPE = 19.4%, RMSE = 0.67 m). These findings were 
consistent with previous studies where inadequate perfor-
mance may occur when these semi-analytical models are 
applied in turbid inland and coastal waters, such as Lake 
Taihu, Lake Hongze, Lake Dongting, the Bohai Sea, and 
the Yellow Sea (Bai et al. 2020; Feng et al. 2019; Jiang 
et al. 2019; Shang et al. 2016). Although semi-analytical 
algorithms show greater potential than empirical algo-
rithms for retrieving ZSD, they are also sensitive to errors 
introduced by different water optical properties (Rodri-
gues et al. 2017; Yang et al. 2013). Overall, our proposed 
algorithm showed the best estimation effect when com-
pared to existing algorithms.

Advantage and limitations of the model

The new semi-analytical model was developed on the basis 
of extensive field measured SDD and Sentinel-2 MSI sim-
ulated spectra, and the calibration and validation datasets 
in the model were collected from different types of water 
with various dataset over a large geographical area, demon-
strating the model’s promise for applications in ZSD system 
assessments on a continental/global scale. Several key wave-
bands were applied for developing the model, which are also 
equipped on almost all current earth resource satellites and 
ocean color satellite platforms (e.g., Sentinel-3, GOCI, and 
MODIS). The new algorithm performed well with satisfac-
tory accuracy (MAPEs < 39%, RMSEs < 19 m) (Table S3), 
implying that it had broad applicability for the estimation of 
ZSD using a variety of satellite data. However, it should be 
noted that these satellite data may has limited applications 
in smaller inland waters (e.g., water area < 10 km2) due to 
poor spatial resolution (> 250 m).

At the same time, a number of limitations and chal-
lenges may stand in the way of practical applications of the 
proposed method. The atmospheric correction effects are 
an important factor affecting the accuracy of biochemical 
parameter retrievals in inland waters (Lei et al. 2019; Ren 
et al. 2018). In this study, the Acolite model corrected MSI 
imagery showed promising performance in most visible 
wavebands, with MAPE < 22% and RMSE < 0.002 (Fig. 2). 
However, the Acolite model may produce relatively poor 
performance at blue (443 and 490 nm) wavebands in highly 

Table 4   Comparison of 
performance of dataset II 
between the existing models and 
the proposed models

Type Reference Equation form MAPE RMSE

Empirical Giardino et al. (2001) ZSD = -0.715*(R(560/R(665))) + 0.751 163.01% 1.59 m
Wu et al. (2008a) ZSD = 1.133–10.533*R(665)-13.805*(R833) 73.63% 1.03 m
Wu et al. (2008b) ZSD = exp(0.76–14.72*R(665)) 115.98% 2.21 m
Olmanson et al. (2011) ZSD = 2.29*R(490)/R(665)-16.39*R(490)-0.14 255.91% 4.88 m
Binding et al. (2015) 1/ZSD = 0.1701*R(560)3–

0.36*R(560)2 + 0.463*R(560) + 0.04
175.7% 1.35 m

Ren et al. (2018) ZSD = 1.7351*exp(-2.141*R(665)/R(560)) 68.44% 0.92 m
Zhang et al. (2021) ZSD = 0.0046*R(665)-1.26 233.56% 3.31 m

Semi-analysis Lee et al. (2016) Step1: QAAv6— > a(�)&b
b
(�) 31.58% 0.83 m

Step2: a(�)&b
b
(�)— > Kd(�)

Step3: Kd(�)&&Rrs(�)— > ZSD

Rodrigues et al. (2017) Step1: QAAR17— > a(�)&b
b
(�) 75.89% 1.6 m

Step2: a(�)&b
b
(�)— > Kd(�)

Step3: Kd(�)&&Rrs(�)— > ZSD

This study Step1: QAAZ20— > a(�)&b
b
(�) 19.4% 0.67 m

Step2: a(�)&b
b
(�)— > Kd(�)

Step3: Kd(�)&&Rrs(�)— > ZSD
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turbid waters, as well as at NIR (740 nm) wavebands in 
clean waters (Fig. S1). There is no doubt that these negative 
effects, although the errors remain within permissible limits, 
could introduce uncertainty into the resulting IOPs and fur-
ther reduce the final accuracy of the algorithms. Therefore, 
a reliable estimation of water quality parameters is closely 
related to the accuracy of corrected spectra, indicating that 
an excellent atmospheric correction model with high accu-
racy is necessary.

Furthermore, the bottom effect of shallow water may 
introduce significant uncertainty on ZSD estimation. For 
optically deep waters, the upwelling water leaving radiance 
is regarded as the contributions of water column constituents 
and the bottom effect can be ignored (Li et al. 2017a, 2018; 
Wei et al. 2018). However, such assumptions may not hold 
in optically shallow waters, thus greatly limiting the applica-
tion of the algorithms. To avoid the reflectance contribution 
from lake bottom, the new model in this study was calibrated 
and validated using datasets where euphotic depth is signifi-
cantly lower than water depth. As there is currently insuffi-
cient data to validate whether the constructed algorithms can 
accurately estimate ZSD in open ocean water or clear waters, 
caution should be taken when applying the newly developed 
algorithm under these conditions.

Conclusions

An improved semi-analytical algorithm (ZSD20) was devel-
oped for estimating water clarity in various waters with a 
wide range of water optical properties, which was recali-
brated and re-parameterized by our field measured data col-
lected from 16 lakes in China, acquiring a satisfying total 
performance (MAPE = 19.4%, RMSE = 0.67 m). The algo-
rithm was implemented in 410 waters of China to demon-
strate significant spatiotemporal variation of water clarity 
based on Sentinel-2 MSI imagery from 2018 to 2021. Com-
pared to the native algorithm (ZSDV6), three key improved 
processes are contained in the new algorithm. First, a strat-
egy was designed to select suitable reference bands (560 nm, 
670 nm, and 740 nm) for new algorithm to estimate the ref-
erence total absorption a

(
λ0
)
 . Secondly, some specific but 

more accurate parameterization steps of derived Kd were 
adopted in the new algorithm to reduce defects. Third, more 
realistic values of KT∕Kd were implemented in the hybrid 
algorithm. This study provides a new strategy for estimating 
water clarity in various waters with a wide range of opti-
cal properties, benefitting the monitoring and mitigation of 
adverse effects on aquatic ecosystems.
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