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Abstract
This study analyzes the effects of transportation infrastructure on carbon emissions (CE) based on the level of urban economic 
agglomeration. For this purpose, 281 Chinese cities are considered during the period 2003–2017. A Moran’s I index is used 
to assess the spatial distribution characteristics of transportation infrastructure and CE. In addition, a spatial Durbin model is 
employed to explore the spatial spillover effect of transportation infrastructure on CE. Furthermore, economic agglomeration 
is considered as a crucial transmission mechanism. The empirical results show that (1) a significant spatial autocorrelation 
exists between transportation infrastructure and CE. (2) Transportation infrastructure significantly aggravates CE, with the 
“neighboring effect” being surprisingly more potent than the “local effect.” (3) Economic agglomeration is a valid transmis-
sion channel through which transportation infrastructure affects CE, the intensity of which varies with the level of economic 
agglomeration. Our recommendation is that policy-makers should pay attention to the development of local transportation, 
as well as their neighboring cities, and should accelerate the advancement of green transportation.

Keywords Transportation infrastructure · Economic agglomeration · Carbon emission · Spatial Durbin model
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Introduction

Over the past 40 years of reform and opening up, China’s 
rapid economic growth has attracted global attention. Cur-
rently, China’s economy continues to grow at astonishing 
rates, and its GDP is the second largest in the world. How-
ever, high economic growth has resulted in resource deple-
tion and environmental pollution, thereby limiting China’s 
regional coordination and sustainable development. In par-
ticular, greenhouse gas emissions have resulted in global 
warming (Tang et al. 2019; Tang and Hailu 2020; Tang et al. 
2022). Figure 1 illustrates that besides economic growth, 
carbon emission (hereafter, the “CE”) has been increasing 

year by year. Currently, the world is faced with a challenging 
situation of reducing carbon  (CO2), the main greenhouse gas. 
As the largest  CO2 emitter, China has been facing increas-
ing pressure and challenges (Chen and Santos 2013; Tang 
et al. 2022). As a responsible developing country, China has 
been making constant efforts to reduce CE intensity (Wang 
et al. 2020). At the United Nations General Assembly held 
on September 2020, China proposed to “strive to reach the 
peak of CE before 2030 and to achieve carbon neutrality by 
2060” (hereafter, the “dual carbon goals”). However, achiev-
ing “dual carbon goals” is difficult for China, as the coun-
try is undergoing a rapid urbanization and industrialization 
process characterized by high energy consumption (Miao 
et al. 2019). This implies that China needs to do everything 
in its power to reduce CE while maintaining a steady rate of 
economic growth (Shi et al. 2018).

With the rapid development of China’s economy, urban 
transportation infrastructure has expanded rapidly (Li et al. 
2019). China’s highway mileage increased from 1.15 mil-
lion kilometers to 5.01 million kilometers from 1995 to 
2019. The positive effect of transportation infrastructure 
on economic growth is irrefutable. Modern transportation 
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infrastructure can shorten travel distances and times, save 
transportation costs, and promote business exchanges 
between regions, thereby achieving economic growth (Lin 
and Chen 2020). Notably, transportation infrastructure is 
closely related to the environment. However, no consist-
ent response exists concerning the effects of transporta-
tion infrastructure on CE. Some scholars have opined that 
transportation infrastructure increases CE (Akerman 2011; 
Jiang et al. 2017; Fan et al. 2018). Others have claimed that 
advanced transportation infrastructure can effectively miti-
gate CE (Jia et al. 2021). Thus, the exact role of transporta-
tion infrastructure in increasing CE and how transportation 
infrastructure affects CE remain unclear. Accordingly, con-
ducting an empirical study on the effects of transportation 
infrastructure on CE would help understand the relation 
between the two, thereby helping formulate effective poli-
cies aimed at energy saving and emission reduction goals.

The environmental effects of transportation infrastruc-
ture have gradually received considerable emphasis with the 
increasing prominence of the economic benefits of trans-
portation infrastructure. Transportation infrastructure affects 
CE in two main ways: On the one hand, the construction 
and operation of transportation infrastructure directly result 
in  CO2 emission. Raw materials such as steel and cement 
used in the construction of transportation infrastructure may 
increase energy consumption and CE (Lin and Chen 2020). 
On the other hand, transportation infrastructure affects eco-
nomic activities, thus indirectly affecting CE. Related stud-
ies are usually based on an empirical analysis to determine 
the factors affecting CE, thus exploring the overall effect of 
transportation (Dietz and Rosa 1997; Wang et al. 2019). Spe-
cifically, transportation infrastructure can promote techno-
logical progress, facilitate economic agglomeration, reduce 
costs, and improve energy efficiency (Achtymichuk and 
Checkel 2010). Furthermore, transportation infrastructure 
may affect CE by restructuring industries (Jia et al. 2021).

A few scholars have begun to focus on the association 
between transportation infrastructure and CE. However, 

there still exists room for improvement in existing research. 
Numerous existing studies have used the ordinary panel 
model for discussion, largely overlooking the externali-
zation of local transportation infrastructure in the neigh-
boring regions. Moreover, some studies have indicated a 
significant spatial correlation in CE between countries or 
regions (Rios and Gianmoena 2018; You and Lv 2018; Lv 
and Li 2021). In other words, neighboring countries can 
affect a country’s CE. Likewise, CE between provinces 
and cities within a country should also be inter-connected 
(Kang et al. 2016). Furthermore, researchers have demon-
strated a positive spatial correlation of CE across Chinese 
cities (Tang et al. 2021b). Getis (2007) documented that a 
conventional OLS regression could not overcome the prob-
lem of correlation between individuals through the fixed 
effect model approach on account of a spatial dependence 
between regions. Accordingly, spatial econometric mod-
els should be used to avoid biased estimated results. With 
regard to the transmission mechanism issue, some studies 
have mentioned that transportation infrastructure may affect 
CE through economic agglomeration (Wu et al. 2021a, b). 
More importantly, few scholars have considered whether the 
effect of transportation infrastructure on CE differs based 
on different levels of economic development.

Accordingly, in this study, 281 prefecture-level cities in 
China during the period 2003–17 were considered to analyze 
the effects of urban transportation infrastructure on CE. A 
spatial Durbin model (SDM) was used to examine the local 
and neighboring effects of transportation infrastructure on CE. 
Furthermore, economic agglomeration was used as an inter-
mediate transmission mechanism to effectively understand the 
effects of transportation infrastructure on CE. The potential 
contributions of this paper include the following aspects: (1) 
An analytical framework has been constructed concerning 
the effects of transportation infrastructure on CE. The “local 
effect” and “spillover effect” of transportation infrastructure 
on CE have been comprehensively explored using the SDM. 
(2) Considering economic agglomeration as a breakthrough, 

Fig. 1  Per capita real GDP 
and CE in China, 2003–2017.  
Source: World Bank Database 
and China Statistical Yearbook
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the mechanism of the role of transportation infrastructure in 
CE has been examined from a new perspective. (3) The het-
erogeneous effect of transportation infrastructure on CE has 
been further explained by differentiating the samples based on 
the levels of economic agglomeration.

The rest of this paper is organized as follows. The “Lit-
erature review and research hypotheses” section reviews 
the literature and elaborates the hypotheses. The “Model, 
variables, and data” section presents the model and data. 
The “Empirical results” section presents and discusses the 
empirical results. The last section concludes with some 
policy recommendations.

Literature review and research hypotheses

Transportation infrastructure and CE

In the past few decades, although transportation infrastruc-
ture has been the main determinant of economic growth, it 
has considerably affected the natural environment with the 
rising CE (Li and Tang 2017). A large amount of asphalt is 
consumed during the construction of transportation infra-
structure. Road maintenance during operation also consumes 
energy (Lee et al. 2013). More importantly, the improve-
ment of transportation infrastructure may result in vehicle 
operation, thereby increasing air pollution. In addition to 
the direct effects of transportation activities on CE, the 
interaction between transportation infrastructure and other 
economic factors may affect CE in the local and neighbor-
ing areas (Xie et al. 2019). For instance, urban transpor-
tation infrastructure can reduce population movement and 
cargo transportation costs. With low transportation costs, 
people and firms may be concentrated to meet the needs of 
urban development. Finally, citizens may be concentrated 
in urban centers (Fujita and Thisse 2003), leading to the so-
called scale effect of population on CE (Zhu and Peng 2012; 
Wang et al. 2014). In addition, transportation infrastructure 
improves accessibility between regions, strengthens trade 
exchanges and cooperation between regions, and contributes 
to market expansion (Xie et al. 2017). Notably, the emission 
of pollutants will also be affected by the increases in the 
scale of production (Liu et al. 2017). However, the expan-
sion of economic scale will inevitably increase CE. Based on 
this discussion, the first hypothesis is proposed as follows:

H1: A positive correlation exists between transportation 
infrastructure and CE.

Transportation infrastructure, economic 
agglomeration, and CE

Transportation infrastructure may directly and indirectly 
aggravate CE through intermediate effects. According to 

the theory of agglomeration and economic development, 
although the importance of nearby natural resources may 
decline over time, firms and households can make opti-
mal decisions to locate in their preferred cities owing to 
the development of transportation infrastructure (Fujita 
and Thisse 2003). In particular, advanced transportation 
infrastructure can shorten the travel time between regions, 
reduce the cost of cross-regional communication, and help 
attract business investment and population clustering (Ahl-
feldt and Feddersen 2015). First, advanced transportation 
infrastructure enables search for suppliers and customers at 
a lower cost and helps enterprises and employees in making 
two-way choices in a larger spatial area, thereby helping 
them search for a more suitable workforce and enjoy higher 
knowledge spillover effects. This benefit increases produc-
tivity, and cities with good transportation infrastructure 
become the optimal choice for some enterprises to locate 
(Holl 2004). Second, the externality of transportation infra-
structure is mainly reflected in the construction system of 
transportation infrastructure. In addition to affecting the 
local economy, the externality can affect the economic 
development of the surrounding areas, reflecting a spatial 
spillover effect. The spatial spillover effect of transportation 
infrastructure will attract more resources to the areas with 
better transportation infrastructure and enhance economic 
agglomeration. Empirical findings suggest that expressways 
affect the spatial distribution of economic activities, and the 
construction of local intercontinental highways promotes 
the flow of economic activities from adjacent areas to the 
areas of concern (Thompson 2000). Firms are more will-
ing to build manufacturing sites in areas adjacent to the 
newly built highways, thereby positively affecting economic 
gatherings in other neighboring areas (Holl 2004). The lack 
of transportation barriers help workers more freely choose 
their employment areas as well as living locations (Meijers 
et al. 2012). Moreover, Shao et al. (2017) confirmed that the 
higher the service intensity of transportation infrastructure, 
the greater is its effect on urban agglomeration. Overall, a 
well-developed transportation infrastructure can increase 
the degree of local economic agglomeration.

Several studies have indicated a significant association 
between economic agglomeration and CE. On the one hand, 
economic agglomeration has positive externalities on CE. 
Economic agglomeration reduces the distance between ele-
ments and enhances resource sharing, resulting in technology 
spillover effects (Duranton and Puga 2004) and thereby reduc-
ing CE. On the other hand, economic agglomeration may 
have negative externalities on CE. Furthermore, the “conges-
tion effect” caused by excessive agglomeration may lead to 
population and production expansion, resulting in increased 
energy consumption and CE (Cheng 2016; Wang et al. 2018). 
In addition, claims regarding the effects of economic agglom-
eration on CE are mixed. Agglomeration can affect carbon 
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emissions through scale effect, technology effect, and struc-
tural effect, but the strength of these three effects varies in 
different regions (Wu et al. 2021a, b). In general, the effect of 
economic agglomeration on CE depends on the strength of its 
technical effect, as well as its scale effect.

However, some scholars have observed that the technol-
ogy spillover effect of economic agglomeration is more 
likely to appear in the more developed cities. Cities with 
high levels of economic development are more likely to con-
tribute to low carbon development (Jia et al. 2018). Most 
companies focus more on economic efficiency than on envi-
ronmental protection in cities with poorer economic devel-
opment. Furthermore, the level of technology and the level 
of human capital are also not high at that point. Accord-
ingly, the effect of economic agglomeration on knowledge 
spillover may be minimal. In highly developed cities, the 
specialized division of labor and the “learning effect” are 
more conducive to the proliferation of environmental pro-
tection and energy-saving technologies, thereby resulting in 
energy saving and reduction of CE (Glaeser et al. 1992). In 
addition to this, factors such as environmental conditions, 
regional development policies, city size, and city-level envi-
ronmental policies can contribute to city-level heterogeneity 
(Wu et al. 2019; Wu et al. 2021a, b). In other words, cities 
may experience varying effects of economic agglomeration 
on CE. Thus, the second hypothesis is proposed as follows:

H2: Economic agglomeration mediates the effect of trans-
portation infrastructure on CE, and different levels of eco-
nomic agglomeration may differently affect CE.

Combined with the above discussion, a theoretical frame-
work based on the two hypotheses is presented in Fig. 2.

Model, variables, and data

Model

According to the Stochastic Impacts by Regression on 
Population, Affluence, and Technology (STIRPAT) model 

developed by Dietz and Rosa (1997), the present study con-
siders the traditional demographic variables, level of eco-
nomic development, and technological progress as the basic 
explanatory variables for CE. Furthermore, urban transpor-
tation infrastructure is considered as the main explanatory 
variable. The basic empirical model is defined in Eq. (1) as 
follows:

where i and t denote the city and year, respectively; α0 
denotes the constant term; ui and vt denote the city and time 
fixed effects, respectively; ɛit is an error term; Iit denotes the 
amount of CE; P denotes population; A denotes the level of 
economic development; T denotes the technological level; 
and TI denotes transportation infrastructure. Although the 
model considers the effects of population, the level of eco-
nomic development, and the technological change on the 
environment, it may overlook other relevant variables. More-
over, the environmental Kuznets curve (EKC) hypothesis 
mentions a functional relation of environmental quality with 
GDP and its squared term. Considering the aforementioned 
issues, the improved STIRPAT model is redefined in Eq. (2).

where Y denotes per capita GDP measuring the level of 
economic development, PD denotes population density, T 
denotes technological progress, IS denotes industrial struc-
ture, ER denotes environmental regulations, and U denotes 
the level of urbanization.

Urban transportation infrastructure and CE may have 
economic externalities, which are referred to as the spa-
tial spillover effect (Xie et al. 2019). The positive exter-
nalities of transportation infrastructure and the negative 
externalities of CE may lead to an “infrastructure race” 
or even a “CE race” between neighboring cities. More 
importantly, existing studies have revealed a spatial cor-
relation between urban transportation infrastructure and 
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Fig. 2  A logical framework of 
the relation among transporta-
tion infrastructure, economic 
agglomeration, and carbon 
emissions
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CE. Getis (2007) revealed that the conventional OLS 
regression could not overcome the correlation prob-
lem between individuals through the fixed effect model 
when regions were spatially dependent on others. Con-
sequently, spatial econometric models would be more 
appropriate to avoid spurious regression results.

Examining whether the variables have spatial depend-
ence and correlation is crucial before determining the 
spatial measurement method to be used. Several methods 
have been used for testing spatial autocorrelation, includ-
ing the Moran’s I, the Geary, and the Getis-Ord indexes. 
The Geary index is not influenced by sample size and 
spatial weights. The Getis-Ord index requires that the 
statistical sample I should not equal to sample j. Moran’s 
I index is more robust than the Geary index. Further-
more, compared with the Getis-Ord index, Moran’s I 
index is highly applicable (Moran 1950; Getis and Ord 
1992; Anselin 1995). Accordingly, the present study uses 
Moran’s I index to assess the spatial correlation of vari-
ables. Before calculating the Moran’s I value, a spatial 
weight matrix needs to be constructed. The geographical 
adjacency weight matrix is used to determine the matrix 
elements: geographical adjacency spatial weight matrix 
Wij; if cities i and j are geographically adjacent, Wij = 1, 
and Wij = 0 otherwise. The Moran’s I index is defined as 
follows:

where lnYi denotes CE or transportation infrastructure of the 
ith city, n denotes the number of cities, and wij denotes the 
spatial weight matrix. The value of Moran’s I is between − 1 
and 1. If I > 0, a positive spatial correlation exists; if I < 0, 
a negative spatial correlation exists; and if I = 0, no spatial 
correlation exists.

The spatial autocorrelation model (SLM), spatial error 
model (SEM), and SDM are the commonly used spatial 
measurement models. The SLM assumes that all the explan-
atory variables in the model have a spatial transmission 
mechanism. The SEM assumes that only the error term has 
the spatial interaction effect, and the spatial spillover effect 
between regions is caused by random shocks (Anselin 1988). 
The SDM simultaneously includes both the assumptions, 
more comprehensively reflecting the effects of transportation 
infrastructure on CE. Thus, the SDM is used in this study. 
Combined with Eq. (2) with reference to some existent stud-
ies (Zhao et al. 2014), Eq. (5) is defined to include the spatial 
spillover effect, as follows:

(3)I =

∑n

i=1

∑n

j=1
wij(lnYi − lnY)(lnYj − lnY)

S2
∑n

i=1

∑n

j=1
wij

(4)S2 =
1

n

∑n

i=1

(

lnYi − lnY
)2

where ρ denotes the spatial autocorrelation coefficient of the 
explained variable, wij denotes the spatial weight matrix, and 
β denotes the spatial lag coefficient. The other variables have 
been defined previously.

Based on H2, transportation infrastructure may affect CE 
through economic agglomeration. A standardized mediating 
effect model is adopted, and further empirical investigations 
are conducted based on the spatial measurement methods to 
assess whether economic agglomeration acts as a mediat-
ing variable. The stepwise method proposed by Baron and 
Kenny (1986) is widely used to assess the mediation effect 
(Zhou et al. 2020; Tang et al. 2021a). The test process is 
mainly based on whether the following two conditions are 
met: (1) if the explanatory variable significantly affects 
the explained variable and for any variable in the causal 
chain, after controlling the previous variables (including 

the explained variables), it will significantly affect its sub-
sequent variables; (2) if the aforementioned conditions are 
true, it means that the mediation effect is significant. The 
mediation effect corresponds to the partial mediation effect 
and the complete mediation effect according to the signifi-
cant/insignificant coefficients of the explanatory variables 
after the mediation variable is added. To test H2, CE is 
treated as the explained variable Y, economic agglomera-
tion as the mediating variable M, and transportation infra-
structure as the explanatory variable X, controlling for all 
the other variables.

The specific mediating effect test model is set out as fol-
lows. First, it evaluates whether transportation infrastructure 
significantly affects CE by estimating Eq. (5). Equation (6) 
is used to assess whether transportation infrastructure affects 
economic agglomeration.
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bly, due to limited data updates for some sample cit-
ies, we could only calculate as far back as 2017. If 
the update time is extended, more samples would be 
missed.

Fig. 3  Freight volumes of the 
sample cities in China (100 
million tons).  Source: China 
Statistical Yearbook
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Second, transportation infrastructure and economic 
agglomeration are included in the spatial measurement 
model as in Eq. (7) to assess whether the mediating effect 
of economic agglomeration is upheld.
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Specifically, Eq. (6) does not include the squared term of 
economic growth as in Eq. (5), although all the other control 
variables remain constant. The control variables in Eqs. (5) 
and (7) are exactly the same. If α1 in Eq. (5) is significantly 
positive, it implies that transportation infrastructure will 
significantly increase CE. If α1 in Eq. (6) is significantly 
positive, it implies that the transportation infrastructure 
will promote economic agglomeration. If both α1 and α2 are 
significant in Eq. (7), it implies a partial mediating role of 
economic agglomeration in the relation between transpor-
tation infrastructure and CE. If α1 in Eq. (7) is significant 
but α2 is not, it implies a fully mediating role of economic 
agglomeration in the relation between transportation infra-
structure and CE.

Definitions of variables

(1) Per capita CE. The data are obtained from the CEADs 
database, which uses the particle swarm optimization-
backpropagation algorithm to unify the scale of DMSP/
OLS and NPP/VIIRS satellite images to estimate CE 
from 2735 counties in China from 1997 to 2017. Nota-

(2) Urban Transportation Infrastructure (TI). China’s 
transportation infrastructure mainly includes railways, 
roads, waterways, and airports. Among these, railways, 
waterways, and airports are mainly planned by the cen-
tral government. It is difficult for local governments to 
participate in the decision-making of the central gov-
ernment. This study examines the effect of infrastruc-
ture on urban CE. Airports, railways, and waterways 
are intercity transportation facilities, the CE of which 
is difficult to define within any city boundary (Huang 
et al. 2020). Figure 3 presents the freight volumes by 
rail, road, water, and air of the sample cities in China 
during 2003–2017. As far as the absolute freight vol-
umes are concerned without considering travel dis-
tances, road transportation is the most important form 
of transport at the city level, constituting approximately 
80% of the total freight volumes. Accordingly, this 
study mainly discusses the effects of urban roads on 
CE, excluding the CE caused by air, rail, and water 
transport. Currently, no unified standard is available 
to measure urban transportation infrastructure. The 
present study uses the method proposed by Xie et al. 
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(2017) to represent TI based on the road surface area 
per capita. Following Huang et al. (2020), this study 
uses road density (TII), defined as road surface area per 
square kilometer of land area, as an alternative meas-
urement for transportation infrastructure to assess the 
robustness of regression results.

(3) Economic agglomeration (EA). The measurement 
methods of economic agglomeration mainly consider 
employment density and economic density as indica-
tors. Ciccone and Hall (1995) suggested that economic 
density could effectively reflect the degree of economic 
agglomeration. Following their suggestion, the GDP/
area ratio is used to denote economic agglomeration in 
this study. Urban output mainly depends on secondary 
and tertiary industries rather than the primary industry. 
Therefore, the ratio of the total value added of the sec-
ondary and tertiary industries to the urban construction 
area is used as an alternative measurement to reflect 
economic agglomeration for the robustness test.

(4) Control variables. The level of economic develop-
ment (Y) is defined as real per capita GDP. Population 
density (PD) is defined as the number of permanent 
residents per square kilometer. Population density may 
affect CE through the scale and agglomeration effects 
(Jia et al. 2021). The increase in population density 
may increase the size of the economy and thereby CE. 
The agglomeration of the population may also lead to 
cost savings and technology spillovers, consequently 
reducing CE. Technological progress (T) is defined as 
the number of patents per 10,000 people. Industrial 
structure (IS) is defined as the manufacturing industry’s 
value added as a proportion of GDP. Several indus-
tries with high energy consumption and high pollution 
exist in the manufacturing sector. Numerous studies 
have suggested that the manufacturing industry causes 
more pollution than the other industries in the national 
economy (Hao and Liu 2016). Environmental regula-
tion (ER) is defined as the utilization rate of industrial 
solid waste to measure the intensity of environmental 

regulations as suggested by Jia et al. (2021). Strict envi-
ronmental regulations may reduce energy consumption 
and CE. Urbanization (U) is defined as a proportion of 
the total population in a particular city to indicate the 
level of urbanization. Some studies have indicated that 
urbanization may increase energy demand and thereby 
CE (York et al. 2003). Other studies have suggested that 
urbanization increases resource utilization and reduces 
CE (Cairnes and Lorraine 1996; Burton 2000). The 
positive or negative effects of the level of urbanization 
on CE will depend on the relative strengths of the two 
counteractive forces.

Data

After excluding cities with missing data, a total of 281 pre-
fecture-level cities in China during 2003–2017 are selected. 
Relevant data are collected from China Statistical Yearbook, 
China City Yearbook, China Energy Statistical Yearbook, 
and China Environmental Statistical Yearbook. For consist-
ency, the values of all the economic variables are calculated 
using the constant prices in 2003 and expressed in natu-
ral logarithms. Table 1 presents the basic statistics of the 
variables.

Empirical results

Spatial autocorrelation test

Table 2 presents the test results of the Moran’s I index. The 
index measures CE and transportation infrastructure during 
2003–2017. All the values are significantly greater than 0 
and appear to have risen over time. This suggests that CE 
and transportation infrastructure of the sample cities have a 
positive and rising spatial relevance with clear characteris-
tics of spatial agglomeration.

Two representative years, 2003 and 2017, are selected to 
produce the Moran’s I index scatter plots (Fig. 4) in the forms 

Table 1  Descriptive statistics of 
variables

Variables Definitions N Mean Std. dev Min Max

lnCE ln (CE per capita) 4215 1.642 0.712 0.162 3.357
lnTI ln (road area per capita) 4215 3.166 0.548 1.940 4.319
lnTII ln (road density) 4215 0.899 0.919  − 1.049 2.906
lnEA ln (economic agglomeration) 4215 6.441 1.349 0.338 12.305
lnY ln (GDP per capita) 4215 9.935 0.741 8.345 11.396
lnPD ln (population density) 4215 5.729 0.854 3.439 6.992
lnT ln (patents/10,000 people) 4215  − 2.156 1.767  − 5.437 1.920
lnIS ln (manufacturing value added/GDP) 4215 3.853 0.236 3.156 4.273
lnER ln (solid waste utilization rate) 4215 4.296 0.415 2.827 4.605
lnU ln (urbanized population) 4215 3.340 0.669 1.958 4.605
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of lnTI and lnCE, to effectively reflect the spatial characteris-
tics of transportation infrastructure and CE. The abscissa of 
the Moran’s I index scatter plot is z, indicating the observa-
tion value of the space unit after standardization. The ordi-
nate is Wz, denoting the average value of the average obser-
vation value of the adjacent unit after standardization. The 
results suggest that most cities are located in the first quadrant 
(high–high) and third quadrant (low–low), and only a few cit-
ies have points in the second quadrant (low–high) and fourth 
quadrant (high–low). Additionally, cities with high CE (or 
transportation infrastructure) are surrounded by the cities with 
high CE (or transportation infrastructure). Furthermore, cities 
with low CE (or transportation infrastructure) are surrounded 
by the cities with low CE (or transportation infrastructure).

Spatial spillover effect of transportation 
infrastructure on CE

Prior to a spatial econometric analysis, this study examines 
the association between transportation infrastructure and CE 
using the traditional panel data model. The LM (robust) test 
results (Table 3) reject the hypothesis that no spatial lag and 
spatial autocorrelation exist at 1% significance level. This 
finding implies that a SAR or SEM can be used to evaluate 
the spatial spillover effect of transportation infrastructure 
on CE. Based on the uniqueness principle of the model, the 
Wald and LR tests show that the SDM cannot be reduced 
to a spatial autocorrelation (SAR) model or a SEM. This 
implies that the use of the spatial autocorrelation or spa-
tial lag model may lead to biased results. The Hausman test 
result rejects the null hypothesis at 1% significance level. 

In short, for the most robust consideration, this study uses 
the SDM with time and city fixed effects to analyze the spa-
tial spillover effects of transportation infrastructure on CE. 
Table 3 presents the test results.

The estimated results of the OLS, SAR, SEM, and 
SDM models with time and city fixed effects are pre-
sented in Table 4. These results are used to compare and 
assess the robustness of the parameter estimation of each 
variable. The spatial autocorrelation coefficient (ρ) of the 
SDM model is positive at 1% significance level, verify-
ing the spatial correlation of CE. In addition, CE in the 
neighboring cities positively affects the level of CE in the 
city under concern. In the SDM model, the coefficient 
of urban transportation infrastructure and its spatial lag 
coefficient are significantly positive.

Lesage and Pace (2009) documented that analyzing the 
spillover effects in regions through simple point estimation 
may lead to inaccurate conclusions. They recommended 
using the partial differential method to calculate the direct, 
indirect, and total effects of the explanatory variables on 
the explained variables. This implies that the direct effect 
accounts for the effects of a regional independent variable on 
the dependent variable of the region, and the indirect effect 
accounts for the effects of a regional independent variable 
on the dependent variable of other regions. The total effect 
is the sum of the direct and indirect effects. Accordingly, the 
Lesage and Pace (2009) methods are used to further decom-
pose the direct and indirect effects of the SDM model under 
the geographic matrix to objectively and accurately explore 
the effects of transportation infrastructure on CE (Table 5).

With regard to the total effect, the effect of transporta-
tion infrastructure on CE is significantly positive. This result 

Table 2  Tests of spatial 
autocorrelation between 
transportation infrastructure and 
CE by Moran’s I 

***, **, and * imply 1%, 5%, and 10% levels of significance, respectively

Year lnTI lnCE

Moran’s I z P-value Moran’s I z P-value

2003 0.360*** 9.517 0.000 0.541*** 13.230 0.000
2004 0.395*** 9.682 0.000 0.557*** 13.630 0.000
2005 0.420*** 10.290 0.000 0.568*** 13.884 0.000
2006 0.385*** 9.413 0.000 0.576*** 14.086 0.000
2007 0.403*** 9.853 0.000 0.582*** 14.237 0.000
2008 0.396*** 9.682 0.000 0.586*** 14.338 0.000
2009 0.399*** 9.746 0.000 0.585*** 14.305 0.000
2010 0.385*** 9.430 0.000 0.586*** 14.325 0.000
2011 0.400*** 9.786 0.000 0.385*** 9.456 0.000
2012 0.411*** 10.053 0.000 0.590*** 14.432 0.000
2013 0.433*** 10.587 0.000 0.590*** 14.440 0.000
2014 0.422 *** 10.326 0.000 0.591*** 14.467 0.000
2015 0.423*** 10.357 0.000 0.591*** 14.461 0.000
2016 0.426*** 10.427 0.000 0.596*** 14.577 0.000
2017 0.429*** 10.517 0.000 0.593*** 14.505 0.000
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Fig. 4  Moran’s I index scatter plots of lnTI and lnCE
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implies that transportation infrastructure increases CE, thus 
verifying H1. The construction of transportation infra-
structure requires more energy and thereby produces more 
CE. The improvement of transportation infrastructure can 
increase car ownership, resulting in more energy consump-
tion. The significant direct effect indicates that for every 
1% increase in transportation infrastructure, CE increases 
by 0.059%. Furthermore, the significant spillover effect 
indicates that the increase in transportation infrastructure 
in the neighboring areas increases CE in the region under 
concern. This may be because an improvement of trans-
portation infrastructure in surrounding areas may promote 

business exchanges between regions, expand the market 
scale, increase population mobility, and thereby increase 
CE across regions. More importantly, the spillover effect 
of transportation infrastructure on CE exceeded the direct 
effect. This implies that the positive effect of transporta-
tion infrastructure on CE in the surrounding neighboring 
areas (“neighboring effect”) is greater than that of the local 
transportation infrastructure (“local effect”). This finding 
suggests that the effects of neighboring areas should be 
considered in addition to the effects of transportation infra-
structure in the region when examining the effects of urban 
transportation infrastructure on CE. It also highlights the 
importance of spatial measurement methods in assessing the 
effects of transportation infrastructure on CE.

The results for other control variables are also notewor-
thy. The coefficients of lnY and (lnY)2 are significantly posi-
tive and negative, respectively. This finding verifies the EKC 
hypothesis between economic development and CE based on 
the Chinese city-level panel data. Scholars have excessively 
discussed the EKC. Most countries such as the USA, Italy, 
and Turkey have been shown to have an inverted U-shaped 
relation between economic growth and environmental pol-
lution (Al-Rawashdeh et al. 2015; Mazzanti et al. 2007). 
Further, some developing countries have not yet witnessed 
the inflection point of the inverted U-shaped curve (Marzio 

Table 3  Test results of the ordinary panel model

***, **, and * imply 1%, 5%, and 10% levels of significance, respec-
tively

Test Statistics Test Statistics

LM (lag) test 2145.448*** Wald spatial lag test 12.63***
Robust LM (lag) test 137.865*** LR spatial lag test 60.70***
LM (error) test 2729.619*** Wald spatial error 

test
36.27***

Robust LM (error) 
test

722.036*** LR spatial error test 57.11***

Hausman test 39.64***

Table 4  Estimation results of 
transportation infrastructure and 
CE (carbon emissions, lnCE)

Numbers in parentheses represent standard errors, and ***, **, * imply 1%, 5%, and 10% significance lev-
els, respectively

Variables OLS SAR SEM SDM

lnTI 0.186 (0.012)*** 0.098 (0.011)*** 0.133 (0.014)*** 0.046 (0.016)***

lnY 0.993 (0.118)*** 0.717 (0.104)*** 1.013 (0.117)*** 0.709 (0.121)***

(lnY)2  − 0.034 (0.006)***  − 0.026 (0.005)***  − 0.035 (0.006)***  − 0.025 (0.006)***

lnPD 0.226 (0.068)***  − 0.044 (0.061)  − 0.004 (0.066)  − 0.191 (0.067)***

lnT 0.022 (0.004)*** 0.013 (0.004)*** 0.032 (0.004)*** 0.022 (0.005)***

lnIS 0.053 (0.026)** 0.054 (0.023)** 0.009 (0.026) 0.043 (0.028)
lnER 0.010 (0.011) 0.006 (0.010) 0.008 (0.010) 0.001 (0.010)
lnU  − 0.022 (0.018) 0.007 (0.016) 0.024(0.017) 0.022 (0.016)
_cons  − 6.875 (0.635)***

W*lnTI 0.088 (0.019)***

W*lnY  − 0.231 (0.176)
W*(lnY)2 0.011 (0.009)
W*lnPD 0.660 (0.103)***

W*lnT  − 0.022 (0.007)***

W*lnIS  − 0.018 (0.038)
W*lnER  − 0.014 (0.019)
W*lnU  − 0.134 (0.029)***

ρ 0.423 (0.016)*** 0.412 (0.017)***

City fe Yes Yes Yes Yes
Year fe Yes Yes Yes Yes
n 4215 4215 4215 4215
R2 0.678 0.685 0.674 0.694

40996 Environmental Science and Pollution Research (2023) 30:40987–41001



1 3

et al. 2006). In this study, the direct effect is significantly 
negative for population density. Its indirect and total effects 
are significantly positive. This finding implies that a high 
population density reduces CE; however, the rising popula-
tion density in the neighboring areas increases CE in the 
region under concern. When the total effect of population 
density is positive, population agglomeration may lead to 
cost-saving knowledge spillovers and may increase energy 
consumption in the surrounding areas. The direct effect of 
technological progress is significantly positive; however, the 
spillover effect and the total effect are insignificant. This 
finding indicates that technological progress increases CE 
but does not significantly affect the neighboring regions. 
The effect of technological progress on CE is two-fold. On 
the one hand, technological progress may lead to economic 
expansion, which may increase CE. On the other hand, 
technological progress may reduce energy consumption 
intensity, thereby improving energy efficiency and reducing 
CE (Yao and Zhang 2021). The net impact of technologi-
cal progress on CE depends on the combination of the two 
counteractive effects. The significant and positive direct 
effect of the industrial structure indicates the inclusion of 
more energy-intensive industries in the secondary industry. 
However, the nonsignificant indirect and total effects imply 
that industrial structure only affects CE of the local area. 
The nonsignificant direct, indirect, and total effects of envi-
ronmental regulations imply that environmental regulations 
do not affect CE in the sample. Only the spillover effect of 
urbanization is significantly negative, suggesting that urbani-
zation in the neighboring areas affects the level of CE in the 
region under concern. The overall effect of urbanization is 
nonsignificant possibly because the levels of urbanization in 
Chinese cities do not significantly differ as all the cities had 
experienced rapid expansion in the sample period.

Transportation infrastructure and CE: importance 
of economic agglomeration

Theoretical and empirical analyses have indicated that trans-
portation infrastructure significantly aggravates CE. How-
ever, the impact transmission path remains unknown. Thus, 
this study assesses the mediating effect of economic agglom-
eration on the relation between infrastructure development 
and CE to identify the transmission mechanism. At different 
levels of economic agglomeration, the effect of infrastruc-
ture development on CE may differ. Therefore, the rank-
ing of cities in terms of levels of economic agglomeration 
in 2017 is used as the benchmark to categorize the sample 
data into high-level and low-level groups based on economic 
agglomeration. The number of cities in the high-level and 
low-level groups is 140 and 141, respectively. Determining 
whether transportation infrastructure can affect economic 
agglomeration is essential for determining whether eco-
nomic agglomeration is a mediating variable. The test results 
are presented in Table 6.

Due to space limitation, this article reports only the 
results of the total effects. The results in columns (1) and 
(2) indicate a significant association between transporta-
tion infrastructure and economic agglomeration; however, 
the differences in coefficients imply that the transportation 
infrastructure differently affects economic agglomeration 
based on the levels of economic agglomeration. The pro-
motion effect of transportation infrastructure on high levels 
of economic agglomeration is lower than that on low lev-
els of economic agglomeration. This is because economic 
agglomeration depends on transportation infrastructure and 
the contribution of high-tech industries and talents. Under 
low levels of economic agglomeration, infrastructure can 
shorten the physical distance between elements, reduce 
transportation costs, and attract enterprises and talents, thus 
becoming the main determinant of economic agglomeration.

Further, transportation infrastructure, economic agglom-
eration, and CE are included in the same model to verify 

Table 5  Estimated results of direct, indirect, and total effects 
(DV = lnCE)

Numbers in parentheses represent standard errors, and ***, **, * 
imply 1%, 5%, and 10% significance levels, respectively

Variables Direct effects Indirect effects Total effects

lnTI 0.059 (0.015)*** 0.172 (0.023)*** 0.231 (0.023)***

lnY 0.711 (0.115)*** 0.103 (0.250) 0.815 (0.272)***

(lnY)2  − 0.025 
(0.006)***

0.001 (0.013)  − 0.024 (0.014)*

lnPD  − 0.123 (0.064)* 0.935 (0.161)*** 0.812 (0.174)***

lnT 0.021 (0.005)***  − 0.020 (0.019) 0.001 (0.009)
lnIS 0.044 (0.026)* 0.000 (0.054) 0.044 (0.055)
lnER  − 0.001 (0.011)  − 0.025 (0.029)  − 0.026 (0.034)
lnU 0.007 (0.016)  − 0.197 

(0.046)***
 − 0.189 (0.051)***

Table 6  Effects of transportation infrastructure on economic agglom-
eration (DV = lnEA)

Numbers in parentheses represent standard errors, and ***, **, * 
imply 1%, 5%, and 10% significance levels, respectively

Variables (1) DV = lnEA-high (2) DV = lnEA-low

lnTI 0.038 (0.012)*** 0.049 (0.017)***

lnY 0.820 (0.016)*** 0.961 (0.019)***

lnPD 1.679 (0.092)*** 0.704 (0.138)***

lnT 0.060 (0.005)*** 0.006 (0.007)
lnIS  − 0.201 (0.036)***  − 0.016 (0.035)
lnER 0.024 (0.021)  − 0.011 (0.022)
lnU  − 0.116 (0.028)***  − 0.058 (0.046)
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the mediating role of economic agglomeration. The results 
are presented in Table 7, showing that the total effects of 
transportation infrastructure and economic agglomeration 
on CE are significant at 1% level. This result indicates a 
significant mediating role of economic agglomeration in the 
relation between transportation infrastructure and CE. Fur-
thermore, it verifies that economic agglomeration is a valid 
transmission path between transportation infrastructure and 
CE, thereby verifying H2 put forward in this paper.

The mediating effect of economic agglomeration differs 
depending on the level of economic agglomeration. Cities 
with a relatively high level of economic agglomeration do 
not significantly directly affect CE; however, the indirect 
and total effects are significant and positive. The direct, indi-
rect, and total effects of cities with lower levels of economic 
agglomeration on CE are also significant and positive. A 
comparison of the two indicates that although their coeffi-
cients are positive, the impact coefficients of cities with low 

levels of economic agglomeration on CE exceed those of 
cities with high levels of economic agglomeration. Regard-
less of whether it is a high-level group or a low-level group, 
the economic agglomeration positively affects CE. This may 
be explained by the fact that the effect of economic agglom-
eration on the scale of output exceeds its cost-saving effect. 
The impact coefficient of the low-level group being higher 
than that of the high-level group may be explained by the 
fact that most cities with high levels of economic agglomera-
tion are developed areas with a higher level of urbanization, 
whereas most cities with lower levels of economic agglom-
eration are still at a relatively low level of industrialization. 
The latter cities are more likely to depend on labor-intensive 
and energy-intensive industries for economic development 
and/or be located at the lower end of the industrial value 
chains. The agglomeration of such enterprises will con-
sume high energy and produce a large amount of  CO2. In 
the urbanization process, cities with high levels of economic 

Table 7  Regression on the meditation effect: economic agglomeration (DV = lnCE)

Numbers in parentheses represent standard errors, and ***, **, * imply 1%, 5%, and 10% significance levels, respectively

Variables Direct effects Indirect effects Total effects

(3) (4) (5) (6) (7) (8)

lnTI 0.100 (0.025)*** 0.058 (0.017)*** 0.094 (0.031)*** 0.185 (0.029)*** 0.195 (0.027)*** 0.243 (0.031)***

lnEA-high 0.046 (0.051) 0.232 (0.077)*** 0.278 (0.085)***

lnEA-low 0.088 (0.022)*** 0.362 (0.058)*** 0.450 (0.069)***

lnY 0.552 (0.245)** 0.661 (0.138)*** 0.132 (0.370)  − 1.414 (0.319)*** 0.684 (0.402)*  − 0.753 (0.385)*

(lnY)2  − 0.018 (0.012)  − 0.027 (0.007)***  − 0.014 (0.018) 0.061 (0.016)***  − 0.032 (0.020) 0.034 (0.019)*

lnPD  − 0.030 (0.113)  − 0.265 (0.080)*** 0.537 (0.200)*** 0.801 (0.202)*** 0.507 (0.231)** 0.535 (0.240)**

lnT 0.034 (0.008)*** 0.005 (0.005)  − 0.034 (0.011)*** 0.011 (0.010) 0.000 (0.011) 0.015 (0.011)
lnIS 0.126 (0.060)** 0.030 (0.027) 0.046 (0.082) 0.068 (0.053) 0.172 (0.086)** 0.098 (0.059)*

lnER 0.003 (0.021)  − 0.002 (0.010)  − 0.005 (0.034)  − 0.023 (0.027)  − 0.001 (0.042)  − 0.025 (0.033)
lnU 0.023 (0.025)  − 0.025 (0.021)  − 0.063 (0.048)  − 0.305(0.059)***  − 0.040 (0.058)  − 0.330 (0.071)***

Table 8  Robustness test results replacing core explanatory variables (DV = lnCE)

Numbers in parentheses represent standard errors, and ***, **, * imply 1%, 5%, and 10% significance levels, respectively

Variables Direct effects Indirect effects Total effects

(9) (10) (11) (12) (13) (14)

lnTII 0.027 (0.022) 0.037 (0.016)** 0.123 (0.028)*** 0.206 (0.028)*** 0.150 (0.025)*** 0.243 (0.030)***

(0.022) (0.016) (0.028) (0.028) (0.025) (0.030)
lnEA-high 0.051 (0.051) 0.260 (0.077)*** 0.311 (0.086)***

lnEA-low 0.086 (0.022)*** 0.353 (0.058)*** 0.439 (0.069)***

lnY 0.726 (0.244)*** 0.694 (0.137)*** 0.067 (0.372)  − 1.285 (0.311)*** 0.793 (0.410)*  − 0.591 (0.374)
(lnY)2  − 0.026 (0.012)**  − 0.029 (0.007)***  − 0.012 (0.018) 0.054 (0.016)***  − 0.038 (0.021)* 0.026 (0.019)
lnPD  − 0.106 (0.111)  − 0.320 (0.079)*** 0.508 (0.201)** 0.615 (0.197)*** 0.402 (0.234)* 0.294 (0.233)
lnT 0.036 (0.008)*** 0.005 (0.005)  − 0.040 (0.011)*** 0.010 (0.010)  − 0.004 (0.011) 0.015 (0.011)
lnIS 0.131 (0.060)** 0.029 (0.027) 0.044 (0.083) 0.067 (0.052) 0.174 (0.088)** 0.096 (0.058)*

lnER 0.003 (0.021)  − 0.002 (0.010)  − 0.002 (0.034)  − 0.023 (0.027) 0.000 (0.042)  − 0.026 (0.033)
lnU 0.024 (0.025)  − 0.022 (0.021)  − 0.058 (0.049)  − 0.291 (0.059)***  − 0.034 (0.059)  − 0.314 (0.071)***
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agglomeration may also bring about production-scale econo-
mies with more high-tech enterprises. Thus, the economic 
agglomeration of such enterprises may result in knowledge 
spillover, thereby alleviating the effect of economic agglom-
eration on CE.

Robustness test

Following Huang et al. (2020), road area per capita (lnTI) is 
replaced by the urban road density (lnTII), which is meas-
ured by the road surface area per square kilometer of the ter-
ritorial area. The estimation results are presented in Table 8.

High-speed rail is a new mode of modern transportation. 
Several studies have suggested that high-speed rail has a 
substitution effect on road transportation, with important 
implications on CE. Thus, a new dummy variable for high-
speed rail is added to the regression model. Its value is 1 
if the city is connected by a high-speed rail in a particular 
year and 0 otherwise. Table 9 presents the estimation results.

After replacing the core explanatory variables or control-
ling for other variables, the significance and direction of the 
main explanatory variables were similar to those from the 
basic regression model. This result suggests that conclusions 
drawn from the previous regressions remain unchanged and 
that the basic models are robust. The robustness test results 
reinforce that the transportation infrastructure aggravates CE 
and that the “neighboring effect” is greater than the “local 
effect” in the same direction. Furthermore, the results indi-
cate a partial mediating effect of economic agglomeration 
on the relation between transportation infrastructure and CE. 
This implies that economic agglomeration is a significant 
transmission channel through which transportation infra-
structure affects CE. However, its mediating effect differs at 
different levels of economic agglomeration between cities. 

Most interestingly, a low level of economic agglomeration 
has a greater mediating effect than a high level of economic 
agglomeration.

Conclusions and policy recommendations

This study considers 281 prefecture-level cities in China dur-
ing 2003–2017 as the research sample and uses the Moran’s 
I index to measure the spatial distribution of China’s trans-
portation infrastructure and CE. It further uses the SDM to 
explore the mechanism underlying the effect of transportation 
infrastructure on CE. The findings indicate a partial mediating 
role of economic agglomeration. The study also uses some 
robustness tests to reaffirm the basic regression results.

Based on the theoretical and empirical analyses, the 
following conclusions are derived. First, a positive spatial 
correlation exists between urban transportation infrastruc-
ture and CE. Second, transportation infrastructure aggra-
vates CE, and the “neighboring effect” is greater than the 
“local effect.” Third, The partial mediating effect of eco-
nomic agglomeration is greater in cities with low eco-
nomic agglomeration than in cities with high economic 
agglomeration.

The research findings and conclusions have important 
policy implications. First, policymakers should focus on 
the development of local transportation, as well as on their 
neighboring cities. The central/provincial governments 
should facilitate and strengthen the joint efforts of city gov-
ernments to plan for the development of local transportation 
infrastructure with respect to the overall CE reduction. Sec-
ond, the implementation of green transportation and smart 
transportation should be accelerated. Furthermore, greener 
energy should be used in transportation. Third, cities should 
introduce more low-carbon and environmentally friendly 

Table 9  Robustness test results after controlling for other variables (DV = lnCE)

Numbers in parentheses represent standard errors, and ***, **, * imply 1%, 5%, and 10% significance levels, respectively

Variables Direct effects Indirect effects Total effects

(15) (16) (17) (18) (19) (20)

lnTI 0.099 (0.025)*** 0.058 (0.017)*** 0.091 (0.028)*** 0.184 (0.026)*** 0.189 (0.027)*** 0.242 (0.030)***

lnEA-high 0.044 (0.051) 0.222 (0.083)*** 0.266 (0.090)***

lnEA-low 0.087 (0.022)*** 0.362 (0.061)*** 0.448 (0.071)***

lnY 0.539 (0.242)** 0.656 (0.132)*** 0.169 (0.373)  − 1.474 (0.294)*** 0.708 (0.363)*  − 0.818 (0.337)**

(lnY)2  − 0.017 (0.012)  − 0.027 (0.007)***  − 0.015 (0.019) 0.064 (0.016)***  − 0.032 (0.019)* 0.038 (0.018)**

lnPD  − 0.040 (0.114)  − 0.274 (0.080)*** 0.489 (0.199)** 0.745 (0.192)*** 0.448 (0.234)* 0.471 (0.230)**

lnT 0.035 (0.008)*** 0.004 (0.005)  − 0.032 (0.012)*** 0.009 (0.010) 0.003 (0.013) 0.013 (0.012)
lnIS 0.128 (0.060)** 0.033 (0.027) 0.050 (0.072) 0.078 (0.046)* 0.178 (0.078)** 0.111 (0.054)**

lnER 0.002 (0.021)  − 0.003 (0.010)  − 0.016 (0.036)  − 0.026 (0.028)  − 0.014 (0.043)  − 0.029 (0.034)
lnU 0.021 (0.025)  − 0.024 (0.021)  − 0.060 (0.048)  − 0.302 (0.059)***  − 0.039 (0.058)  − 0.326 (0.071)***

HSR 0.003 (0.012) 0.017 (0.009)* 0.035(0.019)* 0.017 (0.023) 0.038 (0.023)* 0.034 (0.027)
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enterprises, attract talents, and maximize the benefits of 
knowledge spillovers to effectively alleviate CE when cities 
attract companies to invest and move in.
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