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Abstract
Bangladesh is a deltaic country in Asia, and its riverine systems ultimately drain into the Bay of Bengal. Plastic is a severe 
environmental issue for coastal-marine ecosystems due to the indiscriminate usage and discarding of plastic items in the 
upstream river that eventually find their route into the Bay of Bengal. Microplastics (MPs) are widespread pollutants in 
almost all environmental compartments, including aquatic environments. This study aimed to quantify and understand the 
distribution of microplastics in surface water and sediments of the river Karnaphuli, a tidal confluence river adjacent to the 
Chattogram seaport city of Bangladesh, a highly inhabited and industrial area on the southeast coast of the Bay of Bengal. A 
manta trawl net (300-µm mesh size) was used to collect surface water samples, while an Ekman dredge was used to collect 
sediment samples. The concentrations of microplastics in the surface water of the river Karnaphuli during late monsoon, 
winter, and early summer were recorded to be 120,111.11, 152,222.22, and 164,444.44 items/km2, respectively, while in 
sediments, those were recorded to be 103.83, 137.50, and 103.67 items/kg, respectively. A higher abundance of microplastics 
was observed in downstream surface water (228,888.88 items/km2) and sediments (164.17 items/kg). Smaller sizes (0.3 to 
0.5 mm) of microplastics were predominant, fibers or threads were the frequent types, and black was the most common color 
in the river Karnaphuli. The Fourier transform infrared analysis revealed that polyethylene terephthalate (surface water: 22%, 
sediments: 19%), polyamide (surface water: 15%, sediments: 13%), polyethylene (surface water: 12%, sediments: 18%), poly-
styrene (surface water: 13%, sediments: 11%), and alkyd resin (surface water: 13%, sediments: 10%) were the most prevalent 
polymers in the river Karnaphuli. Moreover, there was a moderate positive correlation between MPs abundance in surface 
water and sediments. Therefore, improved long-term research (in different seasons with horizontal and vertical monitor-
ing) is necessary in order to accurately determine the flux of microplastics from the river Karnaphuli to the Bay of Bengal.
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Introduction

Plastic production and consumption have expanded signifi-
cantly from the initial commercial manufacture of plastics 
in the 1940s (Cole et al. 2011), with around 368 million 
tonnes of plastic manufactured in 2019 (Plastics Europe 
2020). Plastic debris can be dispersed over large distances 

by oceanic currents, tides, winds, river discharge, and drift 
(Ng and Obbard 2006; Barnes et al. 2009; Martinez et al. 
2009), including islands of the mid-ocean (Ivar do Sul et al. 
2009; Rey et al. 2021), the sea around Antarctica (Barnes 
et al. 2010; Leistenschneider et al. 2021), and the deeper 
Atlantic region (Lozano and Mouat 2009; Reineccius and 
Waniek 2022). As a consequence, one of the most prominent 
types of anthropogenic litter found in the marine ecosystem 
is plastic debris (Gregory and Ryan 1997; Barnes et al. 2009; 
Thushari and Senevirathna 2020).

Microplastics (MPs), typically described as bits of plastic 
in the dimensional range of 1 µm and 5 mm, are one sub-
class of plastic that has sparked significant concern (Arthur 
et al. 2009; Fendall and Sewell 2009; Napper et al. 2021). 
MPs are classed as either primary (directly released from the 
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source, e.g., resin pellets, cosmetic scrubbers) or secondary 
(produced by the breakdown of larger plastic products, e.g., 
plastic bottles, toys) and can come from a variety of sources 
such as household waste and industrial waste (Andrady 
2011; Cole et al. 2011; Hidalgo-Ruz et al. 2012). Addition-
ally, various chemicals are utilized as plasticizers and flame 
retardants to improve the performance of plastic objects. 
These chemicals may be released into the environment by 
MPs, raising several environmental issues (e.g., causing 
toxicity to aquatic biota) (Liu et al. 2019). Furthermore, 
MPs adsorb hydrophobic pollutants such as polychlorin-
ated biphenyls (PCBs), dichlorodiphenyldichloroethylene 
(DDE), and dichlorodiphenyltrichloroethane (DDT) (Laist 
1997; Teuten et al. 2009), impacting aquatic habitats and the 
organisms within them.

Many pieces of evidence indicate that MPs are ubiqui-
tous, and their long-term existence may pose a substantial 
threat to the health of aquatic ecosystems (Murray and 
Cowie 2011; Farrell and Nelson 2013; Setälä et al. 2014; 
Kühn et al. 2015; Gall and Thompson 2015; Biginagwa et al. 
2016). MPs have been reported to affect aquatic creatures 
through toxicological effects, tissue inflammation, physical 
blockages, digestive impairment, and functioning as a poten-
tial affluent for the transfer of other hazardous components 
(Rosenkranz et al. 2009; Moos et al. 2012; Besseling et al. 
2013; Lambert and Wagner 2018). MPs have been found 
in a variety of marine environments, including beach sedi-
ments (Costa et al. 2010; Martins and Sobral 2011; Jayasiri 
et al. 2013; Lee et al. 2013; Besley et al. 2017; Karthik et al. 
2018), estuaries (Leslie et al. 2013), in surface, shallow, and 
deep water (Collignon et al. 2012; Hidalgo-Ruz et al. 2012; 
Ivar do Sul et al. 2013; Cutroneo et al. 2022). MPs have also 
been found in the sediments and surface water of various 
rivers throughout the world (Wang et al. 2017a, b; Ta et al. 
2020; Wu et al. 2020; Chauhan et al. 2021; He et al. 2021; 
Napper et al. 2021).

Bangladesh is a deltaic country in Asia with 257 active 
rivers that eventually drain into the Bay of Bengal. Besides, 
oceanic currents also contribute to the relocation of MPs 
from other portions of the ocean. MPs are assumed to have 
entered the Bay of Bengal by draining water and sediments 
from various sources (Hossain et al. 2021). As a result, con-
sidering the indiscriminate usage and dumping of plastic 
items in aquatic surroundings that finally find their way into 
the Bay of Bengal, plastic is a serious environmental issue 
for coastal-marine ecosystems. Moreover, the widespread 
incidence of MPs in the world’s oceans (which also serve 
as a sink for other harmful chemicals) can cause adverse 
ecological effects.

Variations in spatial–temporal patterns may significantly 
influence the incidence and distribution of MPs in tidal 
confluence rivers. Furthermore, temporal changes owing to 
precipitation may have a significant effect on the abundance 

of MPs in the aquatic environment (Lima et al. 2014, 2015). 
As a result, combining the study of MPs’ spatial and tem-
poral distributions would be beneficial in obtaining full 
information on MPs’ sources and transit patterns (Lebreton 
et al. 2017). There have been a few studies in Bangladesh 
on MPs contamination for fish (Hossain et al. 2019; Ghosh 
et al. 2021), penaeid shrimp (Hossain et al. 2020), and sandy 
beaches (Hossain et al. 2021). However, to the best of our 
knowledge, no study has evaluated the abundance and dis-
tribution of MPs in the tidal confluence river of Bangladesh. 
Thus, we examined the spatial and temporal distribution of 
MPs in Karnaphuli river, a major tidal river system in the 
southeast coast of the Bay of Bengal, Bangladesh.

Materials and methods

Study area

Chattogram is a coastal seaport city and is known as 
Bangladesh’s industrial capital, located in the southeast coast 
of the Bay of Bengal. The Karnaphuli is a transboundary 
river basin distributed between India and Bangladesh. This 
river was chosen due to its exposure to intense industrial 
contaminants and anthropogenic pressures, such as 
proximity to harbors, fishing ports, and large cities. This 
study focused on a 9-km stretch of the river Karnaphuli in 
Chattogram, Bangladesh (Fig. 1).

Surface water sample collection

Triplicate samples were taken from five sampling stations 
(S1, S2, S3, S4, and S5) during September 2019 (late 
monsoon in Bangladesh), January 2020 (winter), and 
March 2020 (early summer) (Table  S1). Surface water 
samples (water depth 16 cm) were collected using a manta 
net (300-µm mesh, 60-cm opening width). MPs sampling 
from surface water was performed according to Kovač 
Viršek et al. (2016) with slight modifications. In brief, the 
manta net was launched from the port and starboard side 
of the research vessel, approximately 3–4 m away from the 
vessel. The action started to move in one straight direction 
with a ~ 2 knots speed for 15 min. Then, the research vessel 
was stopped, and the manta net was taken out of the water. 
The net was rinsed thoroughly from the outer side of the 
net with clean water from the vessel water reservoir. The 
manta net was rinsed in the mouth to the cod-end direction 
to concentrate all particles adhered to the net into the cod-
end. After that, the cod-end was removed carefully, and the 
sample in the cod-end was sieved through a 300-μm mesh 
sieve. The cod-end was rinsed thoroughly from the outer 
side, and the rest of the sample was poured through the sieve. 
With the use of a funnel, the sieve was rinsed into a glass jar 
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using 70% ethanol. The use of 70% ethanol is important to 
preserve the sample. Besides, in the step of visual inspection 
of the sample, ethanol helps to discolor the organisms; 
hence, colorful plastics become easier to find (Kovač 
Viršek et al. 2016). Then, the samples were processed in the 
laboratory of the Interdisciplinary Institute for Food Security 
(IIFS), Bangladesh Agricultural University, Bangladesh.

Separation of MPs from water samples

Separation of MPs (< 5 mm) from water samples was done 
according to Masura et al. (2015) with slight modifications. 
Briefly, water samples were filtered with a sieve (0.3 mm). 
Sieved samples were taken in 500-mL beakers and dried in 
an oven (Genlab OV/200/F/DI, England) at 90 °C for 24 h. 
Then 20 mL of 0.05 M ferrous sulfate (FeSO4) solution 
was poured into each beaker. Afterward, 20 mL of 30% 
hydrogen peroxide (H2O2) was mixed and kept mixtures at 
room temperature for about 5 min. Then the mixtures were 
heated at 75 °C on a hotplate (AM4, Velp Scientifica, Italy) 
until gas bubbles appeared. Six grams of salt (NaCl) was 
added per 20 mL of the sample during heating to enhance 
the density of the wet peroxide oxidation (WPO) solution 
(~ 5 M). Afterward, the WPO solution was carefully poured 

into the density separator with 700 mL of filtered ZnCl2 
(1.5 g cm−3) solution (Coppock et al. 2017), covered with 
aluminum foil, and kept overnight to settle down. We use the 
ZnCl2 solution because ZnCl2 was estimated as an effective 
and comparatively inexpensive floatation media, enabling the 
floatation of dense polymers (Coppock et al. 2017). With 
the help of a vacuum pump, the solution obtained from the 
density separator was filtered with cellulose nitrate filter 
paper (47 mm diameter and 5 μm pore size) (Prata et al. 
2019). Then the filtrate was examined under the microscope 
(Olympus CX41 with camera DP22, Japan) to identify 
potential MPs. The main result of MPs samples is calculated 
as the number of MPs particles per sample (Kovač Viršek 
et al. 2016). These data were further normalized as per km2. 
The formula for normalization is MPs particles per sample 
divided by the sampling area, where the sampling area is 
determined by multiplying the sampling distance (1 km) by 
the width of the manta net opening (60 cm).

Sediment sample collection and separation of MPs 
from sediment samples

Sediment samples were collected by an Ekman dredge 
with three replicates per station during September 2019 

Fig. 1   Study area, sampling stations, and location
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(late monsoon in Bangladesh), January 2020 (winter), and 
March 2020 (early summer) (Table S1) and stored in glass 
jars. The separation of MPs from sediment samples was 
performed according to Masura et al. (2015). In brief, wet 
sediment samples (400 g) were taken in a 1-L beaker and 
oven-dried (Genlab OV/200/F/DI, England) at 90 °C for 
24 h. Afterward, 300 mL of filtered ZnCl2 (1.5 g cm−3) 
solution (Coppock et al. 2017) was added and stirred for 
10 min. Then all the floating particles were filtered with a 
0.3-mm sieve and collected into a beaker (500 mL). After 
that, 20 mL of 0.05 M ferrous sulfate (FeSO4) solution was 
poured into each beaker. Then 20 mL of 30% H2O2 was 
added and mixed for 5 min. The mixtures were heated at 
75 °C on a hotplate (AM4, Velp Scientifica, Italy) until 
gas bubbles were observed. In this stage, to enhance the 
density of the WPO solution (~ 5 M), 6 g of salt (NaCl) 
was added per 20 mL of the sample. Then the WPO solu-
tion was carefully poured into the density separator with 
700 mL of filtered ZnCl2 (1.5 g cm−3) solution (Coppock 
et al. 2017), covered with aluminum foil, and left overnight 
to settle down. With the help of a vacuum pump, the solu-
tion from the density separator was filtered with cellulose 
nitrate filter paper (47 mm diameter and 5 μm pore size) 
(Prata et al. 2019). Afterward, potential MPs in the filters 
were categorized under the microscope (Olympus CX41 
with camera DP22, Japan).

Identification and categorization of MPs

The definition of a plastic item was based on the criteria 
put forth by Norén (2007): (i) no cellular or organic struc-
tural features should be visible within the plastic particle 
or fiber; (ii) if the particle is a fiber, it should be similarly 
thick, not taper toward the ends, and have a three-dimen-
sional bend (not entirely straight fibers which direct a bio-
logically derived particle); (iii) clear and homogeneously 
colored particles; and (iv) if it is not clear that the particle 
or fiber is colored, for example, if it is whitish or translucent, 
it should be carefully inspected under a microscope at high 
magnification and with fluorescence microscopy to rule out 
an organic origin. Only particles that met the aforementioned 
requirements were classified as plastic particles after careful 
examination of the particles. Other items like algae frag-
ments, animal shells, or other parts found on the filters were 
ignored throughout the detection period.

A fluorescence microscope (Olympus CX41 with cam-
era DP22, Japan) at 4 × to 100 × magnification was used to 
identify potential MPs and measured digitally with cellS-
ens imaging software. The MPs were identified visually 
(Hidalgo-Ruz et  al. 2012) and analyzed based on their 
length, shape, and color (Lusher et al. 2013). Besides, the 
MPs were characterized into fragments, films, fibers, foams, 
pellets, and microbeads (Kovač Viršek et al. 2016; Murphy 

et al. 2016; CLEAR 2017; Calcutt et al. 2018). MPs were 
also categorized into different colors, such as red, white, 
blue, black, pink, green, orange, and translucent (Bellas 
et al. 2016; Murphy et al. 2016; Naji et al. 2019). By merely 
touching suspected plastic particles with a hot needle, the 
hot point melting test was made to confirm that the particles 
were plastic (De Witte et al. 2014; Devriese et al. 2015; 
Vandermeersch et al. 2015; Bellas et al. 2016).

Moreover, MPs were further analyzed (about 20% of 
the candidate MPs were selected randomly) to determine 
their chemical composition with a Fourier transform infra-
red (FTIR) spectrophotometer. FTIR spectrophotometer 
(Shimadzu IR Prestige 21™, Japan) was used to investi-
gate the chemical composition of different particles. The 
particles were randomly selected and distributed on a KBr 
crystal (Parvin et al. 2021). The spectral range was set 
at 4000–400 cm−1, using the IR solution Agent software 
with a match threshold > 70% (Tanaka and Takada 2016; 
Blettler et al. 2017). A SpectraBase™ database from John 
Wiley & Sons, Inc. has been used to detect the absorp-
tion bands of polymers. Additionally, the spectra were 
compared with the existing literature (Noda et al. 2007; 
Murphy et al. 2016; Jung et al. 2018).

Quality assurance and quality control

Several control measures were employed strictly during 
the study. Laboratory coats made of natural fibers, nitrile 
gloves, and face masks were worn to prevent plastic con-
tamination during sample collection and processing. All 
the glassware, containers, filtration units, and other nec-
essary instruments were rinsed three times with filtered 
(45 μm) clean water before use. Samples were wrapped 
with aluminum foil to prevent air-borne contamination. 
Procedural blank tests with three replicates (per season) 
were performed at the same time without any dried sedi-
ments or water samples to cross-check the air-borne con-
tamination in the research laboratory (Wu et al. 2020). In 
brief, 20 mL of 0.05 M ferrous sulfate (FeSO4) solution 
and 20 mL of 30% hydrogen peroxide (H2O2) were poured 
into a 500-mL glass beaker. Then 6 g of salt (NaCl) was 
added, and the solution was poured into the density separa-
tor with 700 mL of filtered ZnCl2 (1.5 g cm−3) solution and 
kept overnight without any covering/foil paper. Afterward, 
the solution in the density separator was filtered through 
a 5-μm cellulose nitrate filter. This filter was examined 
under the microscope, and any particles identified were 
tested using FTIR. We did not find any potential candidate 
MPs in the filter, except for a few fibers. We could fairly 
exclude laboratory contamination because FTIR confirmed 
that the detected fibers were rayon fibers from clothing, not 
fishing gear (Nakano et al. 2021).
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Statistical analysis

In this study, a descriptive analysis was performed to get 
mean ± standard deviation (SD), maximum and minimum 
values. Two-way ANOVA was executed to determine the 
mean differences among the tested samples in different 
sampling time points and sampling locations, followed by 
Tukey’s HSD post hoc comparisons. Before the analyses, 
research data were further verified for normality and homo-
scedasticity assumptions employing Shapiro–Wilk’s test and 
Levene’s test, respectively, without any transformation. The 
type, shape, size, and color of MPs throughout the study 
period were determined in frequency percentage (%). Sta-
tistical analyses were performed using the SPSS software 
(version 22, IBM, USA), and variations between the mean 
values at p < 0.05 were considered significant.

Results

MPs in surface water

The mean concentrations of MPs in surface water of the 
river Karnaphuli during September 2019, January 2020, and 
March 2020 were found to be 120,111.11, 152,222.22, and 
164,444.44 items/km2, respectively, and varied significantly 
(p < 0.001) among the three sampling time points (Table 1, 
Fig. 2a). Besides, the mean MPs concentrations in surface 
water of S1, S2, S3, S4, and S5 were measured as 65,740.74, 
102,222.22, 148,888.89, 182,222.22, and 228,888.88 items/
km2, respectively. The MPs values among the sampling 
stations varied significantly (p < 0.001) (Table 1, Fig. 2b). 
However, significant differences were not observed in the 
abundance of MPs in the months and sampling stations 
(Months*Stations; p > 0.05) (Table  1). Throughout the 
investigation, MPs from surface water varied from 30,000 
to 270,000, with a mean value of 145,592.59 ± 63,739.88 
items/km2 (Table S1).

In the present study, identified MPs were categorized into 
three sizes, including 0.3 to 0.5 mm, 0.5 to 1 mm, and 1 to 
5 mm. The largest proportion of the MPs recorded in surface 
water was 0.3 to 0.5 mm in size, followed by 0.5 to 1 mm 
and 1 to 5 mm (Fig. 3). In temporal occurrence, the largest 
proportion of MPs (52%) was 0.3 to 0.5 mm recorded in 
March 2020 (Fig. 3a). In the case of spatial occurrence, the 
largest proportion of MPs (50%) was 0.3 to 0.5 mm observed 
in S4 (Fig. 3b). Furthermore, six different types of MPs (fib-
ers, fragments, foams, films, pellets, and microbeads) were 
found in the studied samples. Fibers (55%) were the preva-
lent type of MPs detected in surface water in March 2020. 
The least number of microbeads (1%) was noted in March 
2020, whereas the least number of pellets (1%) was recorded 
in both January and March 2020 (Table 2). In spatial occur-
rence, fibers (54%) were prevalent in S3, where pellets (0%) 
were not found (Table 3).

In the current study, different colored MPs were recorded 
from the river Karnaphuli, such as black, purple, white, blue, 
green, translucent, red, pink, and brown. In the case of tem-
poral occurrence, the predominant color of MPs in surface 
water was black (32%), as found in September 2019. The 
least number of pink (3%) colored MPs was detected in Jan-
uary 2020, while the least number of brown (3%) colored 
MPs was detected in both September 2019 and March 2020 
(Table 2). In the case of station-wise distribution, black 
(30%) colored MPs were prevalent in S5, whereas brown 
(2%) were the least dominant in S1 (Table 3).

MPs in sediments

Mean MPs concentrations in sediments of the river Kar-
naphuli were recorded to be 103.83, 137.50, and 103.67 
items/kg in September 2019, January 2020, and March 
2020, respectively, and varied significantly (p < 0.05) 
(Table 1, Fig. 2c). Mean MPs concentrations in sediments 
at S1, S2, S3, S4, and S5 were 59.44, 75.83, 135.28, 140.28, 
and 164.17 items/kg, respectively, and differed significantly 
among the sampling stations (p < 0.001) (Table 1, Fig. 2d). 
In addition, significant variations were also found in MPs 
abundance at different months and sampling stations 
(Months*Stations; p < 0.05) (Table 1). The range of MPs 
recorded from sediments throughout the investigation was 
10 to 255 items/kg, with a mean value of 115.00 ± 60.68 
items/kg (Table S1).

In the current investigation, smaller sizes of MPs (0.3 to 
0.5 mm) were found in large numbers in sediments as com-
pared to the other size categories. The highest proportion 
of a small-sized category (47%) was found in January 2020 
(Fig. 3a). In spatial occurrence, the highest proportion of a 
small-sized category (48%) was reported for S1 (Fig. 3b). 
Furthermore, fibers (86%) were the dominant type of MPs 
detected in sediments in March 2020. However, foams (0%) 

Table 1   Two-way ANOVA test results of analyzed data at different 
seasons, locations, and interactions in surface water and sediments of 
the river Karnaphuli

df, degree of freedom; *p values in bold indicate significant differ-
ences

Parameter Source df F p value*

Surface water Seasons 2 24.18  < 0.001
Stations 4 114.48  < 0.001
Seasons*Stations 8 1.67 0.147

Sediments Seasons 2 3.94  < 0.05
Stations 4 12.60  < 0.001
Seasons*Stations 8 2.99  < 0.05
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were not found in January 2020, whereas pellets (0%) were 
not reported in September 2019 and March 2020 (Table 2). 
In spatial occurrence, fibers were dominant in S5 (78%) 
(Table 3). In the case of temporal events, the prevalent color 
of MPs in surface water was black (32%), found in January 
2020, while the least dominant color, brown (2%), was also 
recorded in January 2020 (Table 2). In the case of station-
wise distribution, black (44%) was dominant in S1, whereas 
green (0%) was not found (Table 3). The types of MPs 
detected in the river Karnaphuli have been shown in Fig. 4.

Polymer composition of separated MPs

There were 4010 items and 2070 items found for the MPs in 
the collected surface water and sediment samples, respec-
tively, of which 802 items of surface water and 414 items 
of sediment samples (> 300 µm) were analyzed with FTIR. 
Polyethylene terephthalate was the predominant polymer 
in both sediments (19%) and surface water (22%) sam-
ples (Fig. 5). Polyamide (15%), alkyd resin (13%), poly-
styrene (13%), polyethylene (12%), urethane alkyd (10%), 

cellophane (5%), polyvinylidene fluoride (3%), and poly-
ether urethane (3%) were also observed in water samples. 
However, 2% were non-plastics in water samples, and the 
remaining 2% belonged to unidentified material (Fig. 5a). In 
the case of sediment samples, polyethylene (18%), polyam-
ide (13%), polystyrene (11%), alkyd resin (10%), urethane 
alkyd (9%), polyvinylidene fluoride (8%), polyether urethane 
(5%), and cellophane (4%) were also found. Around 2% were 
non-plastics, and the remaining 1% belonged to unidentified 
material in sediment samples (Fig. 5b).

Correlation of MPs abundance between surface 
water and sediments

There was a moderate positive correlation of MPs abundance 
between surface water and sediments of the Karnaphuli river 
(r: 0.639, p < 0.001) (Fig. 6). The linear regression equation 
was y = 0.0006x + 26.469 and the coefficient of determina-
tion (R2) value was 0.408, according to the regression analy-
sis. Therefore, the number of MPs was high in sediments, 
while MPs were prevalent in surface water.
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Discussion

Because there is no established standard for measuring MPs, 
the concentration unit has not been defined in published lit-
erature (Jiang et al. 2019). Some researchers used items/kg 
for sediments and items/km2 for waterways, while others 
used items/m2 for both sediments and waters. In addition, 
some researchers employed items/L or items/m3 for water. 
As concentration levels in different units cannot be com-
pared (Jiang et al. 2019), we found it difficult to compare 
the research results to other published data. However, the 
amounts of MPs contamination in the current investigation 

were compared to studies mentioning similar concentration 
units. In the present study, MPs recorded from the surface 
water of the river Karnaphuli were 30,000 to 270,000 items/
km2, with an average value of 145,592.59 items/km2, com-
parable to other reported studies.

MPs in the backwater area of Xiangxi river, China (55,000 
to 34,200,000 items/km2), and the surface water of the Yang-
tze river (162,000 to 4,250,000 items/km2, with an aver-
age abundance of 2,800,000 items/km2) were observed to 
be higher, as reported by Zhang et al. (2017) and He et al. 
(2021), respectively, than the current measured abundance. 
Furthermore, Eriksen et al. (2013) recorded 43,000 to 466,000 

Fig. 3   a Temporal and b spatial 
occurrence (%) of MPs size 
range found in surface water 
and sediments of the river 
Karnaphuli
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particles/km2 with an average of 43,000 particles/km2 in the 
surface water samples from the Laurentian Great Lakes, which 
is also greater than the current study. According to published 
reports, the abundance of MPs is related to geographical loca-
tion, population density, and urbanization (Wang et al. 2017a, 
b; Wen et al. 2018; Nakano et al. 2021). A higher abundance 
of MPs was observed in downstream surface water (station 
5) of the Karnaphuli river. This may be due to waste materi-
als coming from upstream, adjacent channels (Boalkhali and 
Murai Channels), power stations, and other industries mixed 
with the river. Besides, a larger number of MPs in surface 
water were found in early summer (March 2020) than in 
late monsoon and winter. Reasons for these variations in the 

abundance of MPs include loadings from the sources such as 
household waste, garments washing, agricultural and indus-
trial waste, tourist activity, fishing, navigation, and transporta-
tion at bridges on the river Karnaphuli; geographic features 
including Bangladesh is a low lying country, and monsoon 
brings heavy rainfall here; and hydrodynamic circumstances 
including the velocities of the emitted particles due to water 
level rise and fall (Peng et al. 2017; Gray et al. 2018; Bordós 
et al. 2019; Kataoka et al. 2019).

In the current investigation, MPs recorded in the sedi-
ments of the river Karnaphuli were 10 to 255 items/kg, 
with an average value of 115.00 items/kg. According to 
Jiang et al. (2019), MPs recorded from the Tibet Plateau 

Table 2   Temporal occurrence 
(%) of different types and 
colors of MPs in surface water 
and sediments of the river 
Karnaphuli

Category of micro-
plastics

Surface water Sediments

Late monsoon Winter Early summer Late monsoon Winter Early summer

Type (%) Fiber 49 50 55 56 76 86
Fragment 25 28 28 27 17 9
Foam 9 8 4 2 0 1
Film 12 11 11 12 1 2
Pellet 2 1 1 0 1 0
Microbead 3 2 1 3 5 2

Color (%) Black 32 27 26 23 32 26
Purple 14 18 17 15 16 15
White 12 12 13 10 11 9
Blue 11 14 14 14 12 11
Green 7 6 6 8 6 7
Translucent 11 11 12 11 10 14
Red 6 5 5 9 6 8
Pink 4 3 4 6 5 5
Brown 3 4 3 4 2 5

Table 3   Spatial occurrence 
(%) of different types and 
colors of MPs in surface water 
and sediments of the river 
Karnaphuli

Category of microplastics Surface water Sediments

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

Type (%) Fiber 49 46 54 50 51 73 74 65 74 78
Fragment 24 28 27 28 28 16 14 22 16 19
Foam 9 7 8 8 6 3 3 0 1 0
Film 12 13 10 11 14 4 2 9 5 1
Pellet 2 2 0 1 0 0 1 1 0 0
Microbead 4 4 1 2 1 4 6 3 4 2

Color (%) Black 28 25 28 27 30 44 43 24 24 20
Purple 22 20 19 16 13 25 15 13 12 16
White 12 11 12 14 13 9 2 15 11 9
Blue 14 12 13 12 14 3 15 14 12 13
Green 7 8 5 6 5 0 6 6 8 10
Translucent 6 9 10 12 15 7 9 11 14 13
Red 5 7 5 6 4 6 3 8 9 8
Pink 4 5 4 4 3 3 4 5 6 7
Brown 2 3 4 3 3 3 3 4 4 4
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sediments fluctuated from 50 to 195 items/kg, which is 
more or less similar to the current study. Moreover, MPs 
were recorded as 0.9 to 298.1 items/kg in sediment samples 
in a coastal metropolis of Australia (Su et al. 2020), sup-
porting the present findings. MPs in the sediments of the 
Chao Phraya river, Bangkok (2290 items/kg), and Beijiang 
river, China (178 to 544 items/kg), were found to be higher 
than the current measured concentrations, as documented 
by Ta et al. (2020) and Wang et al. (2017a), respectively. 
Heavy rainfall during the monsoon might increase the river 
flow (Zhao et al. 2019) and dilute the MPs concentration 
in the waters (Yan et al. 2019). So, the amount of rainfall, 
currents, and anthropogenic events (release of industrial 

waste, fishing, etc.) in the research area may have caused 
temporal fluctuations in MPs abundance in surface water 
and sediments. However, at station 5 (near the Shah Amanat 
Bridge), all the waste materials from adjacent channels and 
industries are mixed with the river. So, it was obvious that 
it showed high MPs flux in that particular station’s surface 
water and sediments. Moreover, several aspects may pro-
mote the huge spatial variability of MPs contamination in 
the samples of this study, such as upstream input, fisheries, 
navigation, and agricultural and industrial activities in the 
river (Peng et al. 2018; Kiessling et al. 2019).

In comparison to the other groups, smaller sizes of MPs (0.3 
to 0.5 mm) were predominant in sediments and surface water 

Fig. 4   Examples of some MPs observed in the river Karnaphuli: fiber (a, b); film (c); fragment (d, h); foam (e, i); microbead (f); and pellet (g)
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in the current investigation. Wu et al. (2020) also found a large 
quantity of 0.1 to 1 mm-sized MPs in the Maozhou river’s 
sediments and surface water. The most common size of MPs 
reported in the Saigon river was less than 50–250 µm (Lahens 
et al. 2018), whereas Baldwin et al. (2016) recorded 72% of 
0.35 to 0.99 mm-sized MPs in 29 lakes globally. Further-
more, MPs of small sizes (< 1 mm) were found in both trawl-
ing and filtering water samples taken from the Yangtze river 
(He et al. 2021). However, MPs of a smaller size can readily 
penetrate the various food chains of an aquatic environment 
and, therefore, potentially influence it (Jeong et al. 2016). As 
we detected, MPs from surface water and sediments, pelagic 
and benthic fish, bivalves, crustaceans, etc., may be affected by 
MPs pollution. MPs may affect aquatic organisms by causing 

physiological injury, obstructing the digestive tract, disrupting 
eating and reproductive behavior, decreasing the offspring’s 
survival rate, and impairing immunological function (Jabeen 
et al. 2018; Prokić et al. 2019; Strungaru et al. 2019).

Fibers/threads were the most common MPs in the river Kar-
naphuli’s sediments and surface water, followed by fragments, 
films, foams, microbeads, and pellets. These types of MPs are 
suspected of having come from daily-used plastic items such 
as water bottles, containers, toys, food packaging, and cos-
metic scrubbers. In addition, thread MPs were also found in 
significant quantities in the inland freshwaters of Wuhan, China 
(Wang et al. 2017b) and two typical estuaries in Bohai Bay, 
China (Wu et al. 2019). Furthermore, Chauhan et al. (2021) dis-
covered fibers/threads as prevalent MPs in both the sediments 

Fig. 5   Percentage (%) of the 
composition of MPs in the river 
Karnaphuli: a surface water and 
b sediments
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and surface water of the Alaknanda river, whereas Napper et al. 
(2021) found fibers/threads to be the most common kind in the 
surface water of the Ganga. On the other hand, Wu et al. (2020) 
found fragment type to be prominent in both water and sedi-
ments from the river Maozhou and reported packing industry 
might be the critical source of this type of MPs. Domestic trash 
is a significant source of MPs fibers/threads, which are regu-
larly discharged during garment and other home items cleaning 
(Browne et al. 2011; Kalčíková et al. 2017). Discarding dam-
aged or unusable fishing nets and ropes were found along the 
Karnaphuli river, which might be another reason for the higher 
amount of fibers/threads. Furthermore, microbeads from cos-
metic items such as facial cleansers (Fendall and Sewell 2009) 
and pellets from personal care products and medications may 
be other sources of MPs in the riverine ecosystem (Kalčíková 
et al. 2017).

Color is often thought to be one of the significant crucial 
factors influencing MPs ingestion by aquatic organisms, as 
specific colors may attract predators whenever they resemble 
the color of their prey (Kühn et al. 2015; Abayomi et al. 2017). 
In this study, black and purple were the most abundant colors 
in sediments and surface water of the river Karnaphuli. Moreo-
ver, Hossain et al. (2021) speculated that colored MPs might be 
generated by synthetic and organic compounds, necessitating 
more extensive research. Colors might differ between regions 
due to their sources, such as discharge from the residents, 
industries, and adjacent channels.

Polyethylene terephthalate, polyamide, polyethylene, poly-
styrene, and alkyd resin were the major polymers in sediments 
and surface water of the river Karnaphuli, which is more or less 
similar to other reported findings (Jiang et al. 2019; Ta et al. 
2020). Besides, polyethylene and polypropylene were the signifi-
cant polymers in the identified MPs from the Yangtze river water 
(He et al. 2021), which does not support the present findings. 

Furthermore, polyamide and polyethylene terephthalate were 
revealed in the fish gut documented by Hossain et al. (2019) 
for the northern Bay of Bengal. However, polyethylene tere-
phthalate is the main component for garments, drinking water 
bottles, maximum colored fibers, as well as several transparent 
fragments (Wang et al. 2017a, b). A variety of disposable prod-
ucts, including disposable bags, kitchen utensils, and cutlery, 
are found in the study area; the majority of them are composed 
of inexpensive and low-weight polyethylene. Moreover, paint 
particles (mainly alkyd resin) were estimated as a significant 
contributor to MPs particles in the surface water of the Incheon/
Kyeonggi coastal region (Chae et al. 2015). The boats, ships, and 
trawlers may release paint particles in the river Karnaphuli. In 
addition, the discarding of damaged fishing gears, nets, ropes, 
floats, and fish baskets/bags may increase polyamide particles 
in the study area (Pruter 1987; Hossain et al. 2019).

In the current study, surface water and sediments had a 
moderately positive correlation in terms of MPs abundance. 
As a result, MPs were numerous in sediments, whereas they 
were common in surface water. According to Browne et al. 
(2007), high-density plastics typically sink, deposit in the 
sediments, and may be consumed by deposit feeders. In 
contrast, low-density plastics float at the surface and may 
be uptaken by filter feeders/planktivores. However, vertical 
transport may occur due to biofouling (the development of 
a biofilm on the MPs), turbulence, and freshwater inflow 
(Kooi et al. 2017; Melkebeke et al. 2020).

Conclusions

This research presented a preliminary investigation of 
MPs contamination in the river Karnaphuli of Bangla-
desh in Asia. MPs were identified in all the surface water 

Fig. 6   Significant correlation 
of MPs abundance between 
surface water and sediments of 
the river Karnaphuli
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and sediment samples at five sampling stations during 
late monsoon, winter, and early summer. Throughout the 
investigation, MPs from surface water varied from 30,000 
to 270,000 items/km2, with a mean value of 145,592.59 
items/km2. In the case of sediment samples, the range 
of MPs was 10 to 255 items/kg with a mean value of 
115.00 items/kg. Smaller sizes (0.3 to 0.5 mm) of MPs 
were predominant; fibers or threads were the frequent 
types, and black was the most common color in the river 
Karnaphuli. Besides, there was a moderate positive corre-
lation between MPs abundance in surface water and sedi-
ments of the Karnaphuli river. Polyethylene terephthalate 
(surface water: 22%; sediments: 19%), polyamide (sur-
face water: 15%; sediments: 13%), polyethylene (surface 
water: 12%; sediments: 18%), polystyrene (surface water: 
13%; sediments: 11%), and alkyd resin (surface water: 
13%; sediments: 10%) were the major types of polymers. 
In conclusion, it is essential to implement an effective 
management strategy for reducing, reusing, and recycling 
plastic materials in this region. Long-term research with 
a broad temporal and spatial distribution is necessary to 
determine the flux of MPs from the river Karnaphuli to 
the Bay of Bengal.
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