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Abstract
Improving carbon emission efficiency (CEE) has emerged as a critical way for Regional Comprehensive Economic Partnership 
(RCEP) members to promote carbon reduction in the context of climate change mitigation and carbon neutrality. The super-
efficiency slacks-based measure (SBM) model, which considers non-desired outputs, is adopted to comprehensively assess the 
current state and trend of CEE in 15 RCEP countries from a spatio-temporal dynamic perspective, and the global Malmquist-
Luenberger (GML) index is coupled to quantify the spatial and temporal differences and dynamic changes. Following that, taking 
into account the spatial characteristics of CEE, the extended STIRPAT model and the spatial Durbin model are combined to further 
investigate the primary influencing factors of CEE. It is found that (1) the CEE of RCEP members is generally poor and unevenly 
distributed in temporal and spatial dimensions, with significant room for improvement and an overall positive spatial autocor-
relation; (2) CEE varies considerably among RCEP members, with developed countries far outstripping developing countries in 
terms of both the current status and trend of CEE; (3) on a dynamic level, the GML index exhibits W-shaped fluctuations, with 
technological progress acting as the dominant force; and (4) in terms of spillover effects, affluence and economic agglomeration 
inhibit CEE enhancement, whereas technology level and investment capacity facilitate it. The findings will be useful in developing 
carbon–neutral plans for various countries as well as coordinated sustainable development for RCEP regions.

Keywords Carbon emission efficiency · RCEP countries · Super-efficiency SBM model · Global Malmquist-Luenberger 
index · STIRPAT · Spatial Durbin model

Introduction

Global warming-related issues, such as ecosystem destruction, 
biodiversity loss, natural disasters, and glacier melting, have 
severely hampered human survival and development (Filho 
et al. 2019; Bandh et al. 2021). Climate change has emerged 
as one of the most pressing challenges to global environmental 
issues today, fueled predominantly by  CO2 and other green-
house gases emitted due to human activity (Feng et al. 2021; 
Kazancoglu et al. 2021). In this context, carbon emission reduc-
tion is emerging as a critical initiative to address climate change 
(Feng and Wu 2022). The improvement of carbon emission 
efficiency (CEE) is regarded as a critical way to promote carbon 
emission reduction as a proxy for carbon–neutral performance 
(Zhang and Deng 2022). However, the interaction mechanism 
between CEE and its driving factors has yet to be fully explored 
(Gao et al. 2022). Therefore, it is vital to develop an accurate 
CEE identification and assessment model.

There is already agreement reached on reducing  CO2 emis-
sions and implementing a low-carbon economy, followed by 
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concrete actions. Several agreements, such as the Kyoto Protocol 
(Nematchoua et al. 2021), the Copenhagen Accord (Lau et al. 
2012), the 2030 Agenda for Sustainable Development (Miola and 
Schiltz 2019), and the Paris Agreement (Lu et al. 2022), have been 
formulated over the years, demonstrating the firm belief of coun-
tries worldwide in promoting carbon emission reductions (Zhang 
et al. 2022a). As of May 2022, 127 countries had proposed or 
were planning to propose carbon neutrality targets covering 90% 
of the global GDP, 85% of the total population, and 88% of carbon 
emissions (Zhao et al. 2022b). As the largest free trade agreement 
in the world, 13 of the 15 Regional Comprehensive Economic 
Partnership (RCEP) members have announced carbon neutral-
ity goals. During the General Debate of the 75th Session of the 
United Nations General Assembly, China, for example, articulated 
ambitious goals for carbon peaking and carbon neutrality, which 
corresponds to a 60 to 65% reduction in  CO2 emissions per unit 
of GDP in 2030 compared to 2005 (Zhang and Deng 2022). As a 
result, it is critical to investigate the carbon neutrality performance 
of RCEP members to meet the global carbon neutrality target.

The RCEP agreement, which covers China, Japan, South 
Korea, Australia, New Zealand, and ten ASEAN countries, 
was developed by 15 members and comes into effect on 
January 1, 2022 (Rahman and Ara 2015; Zhang and Wang 
2022a, b). In 2019, the RCEP countries accounted for 30% 
of the total population and 31.3% of GDP, while accounting 
for 36.8% and 42.1% of total energy consumption and car-
bon emissions globally, respectively (Qian et al. 2022; Lin 
et al. 2022; Zhang and Chen 2022). The tariff decrease will 
significantly increase the short-term pressure on members to 
reduce their carbon emissions along with the official certi-
fication of RCEP. It will also exacerbate the carbon leakage 
between developed and developing countries. As a result, 
the RCEP members must now seriously address the rapidly 
growing carbon emissions (Lin et al. 2022). The fundamen-
tal issue regarding low-carbon economic development in 
RCEP countries at the moment is how to reduce resource 
consumption and  CO2 emissions while enhancing CEE.

If CEE is enhanced, the RCEP region can undoubtedly ben-
efit from low-carbon development; however, there are several 
fundamental issues with CEE. Examples include how the 
CEE of RCEP countries may be measured scientifically, how 
it has changed over time, and how it varies throughout regions 
(Zhou and Xu 2022). What causes these temporal and spatial 
variations? Reliable responses to these questions will not only 
offer policy suggestions for the carbon–neutral goals of various 
countries but also offer insightful information on the coordi-
nated and sustainable development of the RCEP region in the 
current open economy environment (Meng and Qu 2022).

Therefore, the objective of this study is to evaluate the CEE 
of RCEP members while examining the spatial and temporal 
characteristics, regional disparities, spatial spillover effects, 
and driving mechanisms of CEE in the context of carbon 
neutrality. First, from the standpoint of spatial and temporal 

dynamics, the current state and trend of CEE in RCEP mem-
bers are thoroughly evaluated; and to offer a thorough exami-
nation of the regional variations and development trends, the 
CEE of each nation is compared from a geospatial perspective. 
Second, from a broad green economy viewpoint, the STIR-
PAT model incorporates investment capacity and economic 
agglomeration in light of the significant contribution of the 
RCEP region to the post-pandemic global economic recovery 
(Zhang et al. 2023). Finally, to complement the existing studies 
and provide a theoretical foundation for increasing regional 
resource use efficiency and achieving carbon neutrality goals, 
the spatial Durbin model (SDM) and the spatial effect decom-
position are applied to explore the key influencing factors of 
CEE, taking into account the spatial spillover effects.

This essay has the following format. In “Literature 
review” section, the literature is reviewed. The methodologi-
cal framework for examining the spatiotemporal dynamics, 
spatial spillover, and affecting factors of CEE is presented 
systematically in “Methodology” section. “Variables and 
data” section describes the study area, variables, and data. 
In “Empirical results and discussion” section, the results of 
the empirical analysis are discussed. Research conclusions 
and policy suggestions round out the part.

Literature review

Measurement of CEE

Efficiency in the context of economics is understood as 
the ratio of output produced by a given work to input 
under specific circumstances (Levihn 2016). Similar to 
how economic efficiency is defined, CEE can be identi-
fied as having a higher economic output while using fewer 
resources and emitting less  CO2. The measures of CEE are 
divided into two categories, single factor carbon emission 
efficiency (SFCEE) and total factor carbon emission effi-
ciency, depending on how production efficiency is meas-
ured (TFCEE) (Zhang and Liu 2022).

SFCEE often refers to the relationship between carbon 
emissions and resource consumption or economic output, 
such as carbon emission intensity and carbon emission per 
capita. Carbon intensity, which measures carbon emissions as 
a percentage of GDP, accounts for both economic progress and 
carbon emission levels. To investigate the evolving trends of 
carbon emission intensity and its drivers in China throughout 
the three 5-year plans at the national, regional, and industry 
levels, along with projections of the future trends, an inte-
grated decomposition framework based on the IDA model 
and the PDA model was created (Chen et al. 2022a). Liu et al. 
(2022) investigated the dynamic spatio-temporal evolution 
characteristics of carbon emission intensity in 41 counties of 
Qinghai Province, China, combining nonparametric kernel 
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density estimation, spatial Markov chain, and spatial variance 
function models to offer a reliable benchmark for sustainable 
development. Spatio-temporal heterogeneity and convergence 
of carbon emissions per capita in the plantation industry, tak-
ing into account the carbon sink effect and its affecting factors, 
were examined using panel data from 31 Chinese provinces 
from 1997 to 2017 (Cui et al. 2022). SFCEE has the drawback 
of being incomplete and misrepresenting the true production 
connection, although being simple to compute and compare 
(Li et al. 2022c). Next, the TFCEE is derived.

TFCEE offers improved persuasion by accounting for the 
connections between various inputs and outputs (Li et al. 
2022c). It establishes a full-factor measurement model to 
assess CEE from several aspects and integrates several var-
iables, including those related to energy, labor, economic 
output, and  CO2 emissions. Comparatively to the SFCEE, 
the TFCEE seems to have a more robust comprehensive 
evaluation capability, which can successfully prevent bias 
(Proskuryakova and Kovalev 2015). A dynamic slacks-based 
measure (SBM) model was implemented to find changes in 
CEE for China, using total year-end population and energy 
consumption as inputs, GDP as the desirable output, and 
 CO2 emissions as the undesired output (Teng et al. 2021). 
Yu and Zhang (2021) examined a generalized nonconvex 
meta-frontal DEA model to assess the effects of low-carbon 
municipal pilot measures on CEE. Zhang et al. (2022c), 
using the Yangtze River Economic Belt as an example, 
clarified the formation mechanism of the CEE network and 
looked into its structural entropy, hierarchical structure, and 
transmission characteristics, all of which serve as helpful 
guidance for local carbon reduction efforts.

Various factors influencing the CEE

A systematic and comprehensive index system has not been 
developed for the study of the factors affecting CEE, and the 
majority of the literature only looks at a small number of the 
multiple variables that affect CEE (Zhang and Liu 2022; Li 
et al. 2022b). The exponential decomposition method, which 
consists of two general models, is currently what the major-
ity of academics think about when investigating the elements 
systematically determining CEE.

The first is based on the Kaya identity, which breaks down the 
components that affect carbon emissions into carbon emissions 
per unit of energy consumption, energy consumption per unit of 
GDP, GDP per capita, and population size (Kaya and Yokobori 
1997). Carbon emission changes are further decomposed into 9 
driving factors using a joint approach based on the Kaya identity 
exponential decomposition analysis (IDA) and production 
theory decomposition analysis (PDA) based on a met frontier 
model (Liu et al. 2019), with a detailed examination of the 
impact of the 9 factors on national, regional, and provincial 

carbon emission changes in China from 2007 to 2016. To 
measure the impact of changes in each influencing factor on 
CEE, the Kaya identity is frequently used in conjunction with 
the log mean Divisia index (LMDI). An extended Kaya-LMDI 
model is applied to quantitatively analyze how different factors, 
such as income, population, energy intensity, energy mix, and 
economic structure, which affect changes in the CEE of three 
industrial land spaces (agriculture, production and living, and 
transportation spaces), providing insight into strategies for 
reducing carbon emissions and land use (Wu et al. 2021b).

The second one is the STIRPAT model, which York et al. 
(2003) improved from the IPAT model to be a stochastic scal-
able environmental impact decomposition model. According to 
the IPAT model, total environmental impact (I) is a function of 
population (P), affluence (A), and technology (T) (Dietz and 
Rosa 1997). Whereas, the STIRPAT model adds other variables 
to investigate the determinants influencing CEE. In contrast 
to the Kaya equation and the IPAT model which presuppose 
that all factors affect carbon emissions in the same proportion, 
the STIRPAT model addresses this flaw and has been broadly 
applied in research in the field of environmental economics (Zhu 
et al. 2022). Liu et al. (2021) surveyed the regional variations 
and influencing factors of carbon emissions in the transporta-
tion sector among 30 provinces and added variables including 
urbanization rate, industrial structure, and energy consumption 
structure to the STIRPAT model. To investigate the factors 
influencing CEE in developed and non-high-income countries, 
respectively, Lin et al. (2017) and Wu et al. (2021a, b) built the 
extended STIRPAT model based on panel data derived from 
various types of countries. They quantified the actual contribu-
tion of each driver for understanding the emission characteristics 
and key drivers.

It has been established that there is a connection between 
the economy and carbon emissions (Lin and Teng 2022), and 
the efficiency of economic growth and the efficiency of carbon 
emission reduction is correlated (Sheng et al. 2020). While Yan 
et al. (2022) employ spatial econometrics and an extended STIR-
PAT model to investigate the effects of FDI and agglomeration 
levels on pollution emissions, Lu et al. (2021) build a model to 
examine how two economic indicators, financial spatial structure 
and economic agglomeration, affect carbon emission intensity. 
In order to assess the influencing factors of CEE, the STIRPAT 
model, which is expanded by integrating more economic indica-
tors based on the three initial influencing variables of affluence, 
population size, and technological level, is a good choice.

Summary of literature and research gap

A great deal of insight and research ideas has been incor-
porated into the field of CEE, laying the groundwork for 
further investigations. However, there is still a lot to explore, 
particularly in the following areas.
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1. The majority of current studies have focused on the spa-
tial–temporal evolution and motivating factors of CEE 
at the industry, enterprise, and provincial levels; in con-
trast, there are comparatively few studies on the inter-
national or regional level, particularly for RCEP, a new 
international organization that has only been operational 
for a brief period. Identifying and scientifically evaluat-
ing CEE in RCEP countries contributes to grasping the 
spatial and temporal evolutionary trends of CEE and 
bridges the understanding of CEE in the RCEP region.

2. Studies on regional differences in RCEP organizations 
are relatively under-reported. Due to various historical 
and natural reasons, RCEP countries differ greatly in 
terms of geographical location, resource endowment, 
and market environment, and the CEE is also regionally 
heterogeneous. Under the goal of carbon neutrality, it is 
crucial to compare the CEE of various countries and to 
analyze in depth the regional differences and their evolu-
tion patterns of CEE, in order to achieve a coordinated 
and balanced development among regions.

3. As the largest free trade agreement organization in the 
world, the RCEP organization is considered to play a 
non-negligible role in the post-pandemic recovery of the 
world economy. From a broad green economy perspec-
tive, the factors affecting the CEE of the RCEP organi-
zation are comprehensively examined by incorporating 
investment capacity and economic agglomeration into 
the STIRPAT model, to enrich existing research.

4. Instead of considering spatial spillover effects and radia-
tive effects, there is a tendency for most works regarding 
RCEP region to treat the research units as independent and 
homogeneous individuals, ignoring spatial linkages and 
correlations as well as focusing only on the direct effects 
of driving factors. In order to complement the existing 
studies and provide a theoretical foundation for increasing 
regional resource use efficiency and achieving carbon neu-
trality goals, the SDM and the spatial effect decomposition 
are applied to explore the key influencing factors of CEE, 
taking into account the spatial spillover effects.

Methodology

Static measurement of CEE: super‑efficiency SBM 
model

Data envelopment analysis (DEA) is a relatively objective and 
accurate method from a total factor perspective for measur-
ing CEE because it better fits the comprehensive evaluation 
model with various inputs and outputs (Pishgar-Komleh et al. 
2020). The super-efficient SBM model taking into account 
non-desired outputs is able to solve the issue in the presence 

of non-desired outputs in comparison to the basic DEA (Tone 
2001), while also offering a framework for rating various effi-
cient decision-making units. It also directly includes slack 
variables in the objective function, making it an excellent 
choice for CEE measurement (Pishgar-Komleh et al. 2020).

where X, Y, and B denote the matrices of inputs, desired 
outputs, and undesired outputs, respectively; si

—, sr
+, and 

st
b— represent the slack variables for inputs, desired outputs, 

and undesired outputs; m, q1, and q2 refer to the number 
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not. And the larger the value of ρ, the higher the efficiency.

Dynamic measurement of CEE: GML index

The super-efficient SBM model falls short of accurately 
capturing the dynamic changing characteristics based on 
the cross-sectional measurement of static CEE for a sin-
gle year. To reflect the dynamic changes in the CEE of 
RCEP members from 2010 to 2019, the global Malmquist-
Luenberger (GML) index is used (Malmquist 1953; Fare 
et al. 1994; Chung et al. 1997). The GML index can be 
further broken down into technical efficiency  (GMLeffch) 
and technical progress  (GMLtech) indices, allowing analy-
sis of the key driving elements, rather than just looking at 
the change in CEE over time.
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Identification of the driving factors: STIRPAT model

Ehrlich and Holdren first proposed the IPAT model in 
1971, which resulted in an equation between carbon emis-
sions and population, per capita income, and technological 
level (Dietz and Rosa 1997; Ma et al. 2022), as shown 
in Eq. (6). Building on the IPAT equation, the stochas-
tic impacts by regression on population, affluence, and 
technology (STIRPAT) was proposed (York et al. 2003) 
and is represented in Eq. (7). The STIRPAT model has 
been widely applied to various environmental economics 
research because it can quantify the impact of factors on 
environmental loads. Additionally, it can be stochastically 
expanded by including other influencing factors in accord-
ance with the actual situations (Zhang et al. 2022b).

where I denotes the environmental load; P, B, and T char-
acterize the population, affluence, and technology level, 
respectively, and b, c, and d are the corresponding index 
terms; a is the constant term and e is the error term.

Modeling of the driving factors: spatial regression 
model

Continuous trade globalization has resulted in a strength-
ening of international economic and trade relations as 
well as an increase in the frequency of industrial trans-
fers and a corresponding large-scale movement of car-
bon emissions (Dong et al. 2022). Spatial econometric 
models have proven to be the best option for handling 
such spatial effects. The selection of spatial econometric 
models is critical because the model setup significantly 
affects the validity of the model estimates. The spatial 
Durbin model (SDM), spatial error model (SEM), and 
spatial lag model (SAR) are some of the well-known 
spatial econometric models (Chen et al. 2022b). SEM 
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(6)I = P × B × T

(7)I = a × Pb × Bc × Td × e

explores the interaction between the spatial error terms, 
whereas SAR assesses spatial dependence by taking into 
account the endogenous interaction of the explanatory 
variables. The spatial correlation of the explained vari-
ables and the spatial correlation of the explanatory vari-
ables are both taken into consideration by SDM, which 
is a combined extended form of the models mentioned 
above (Feng and Wang 2020).

where δ is the spatial autoregressive coefficient; ui, λt, and εit 
denote the individual effect, time effect, and random error, 
respectively; and νit denotes the spatial autocorrelation error 
term.

Variables and data

Study area

The RCEP agreement was first introduced by ASEAN in 
2012 to encourage regional economic integration and free 
trade. The 15-member RCEP agreement, which covers 
China, Japan, South Korea, Australia, New Zealand, and 
10 ASEAN nations (Brunei, Cambodia, Indonesia, Laos, 
Malaysia, Myanmar, Philippines, Singapore, Thailand, and 
Vietnam) entered into force on January 1, 2022 (Li and 
Moon 2018). The RCEP is the largest free trade agreement, 
including 30.0% of the world’s population and 31.3% of 
GDP in 2019. However, energy consumption and carbon 
emissions account for 36.8% and 42.1% of the global totals, 
respectively, and the CEE urgently needs to be improved 
(Zhang and Chen 2022).

Abundant energy and mineral reserves and high exploitation 
serve as essential foundations for the decarbonization transition 
in the RCEP region (Zhang and Chen 2022). Australia ranks 
second globally as an exporter of liquefied natural gas and coal, 
while Indonesia, Malaysia, and New Zealand are rich in oil, gas, 
timber, and coal reserves. Besides, the advanced technology 
in Japan and South Korea, powerful production capacity and 
mega market size in China, and relative labor cost advantage 
in most ASEAN countries are evident (Lin et al. 2022). Under 
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favorable measures such as significant reduction of tariff bar-
riers, adoption of cumulative rules of origin, and negative list 
investment access (Ding et al. 2022), it is possible for RCEP 
to give full play to the comparative advantages of countries, 
accelerate the flow and effective allocation of technology and 
resources, and promote the process of regional integration and 
sustainable development (Zhou and Xu 2022). Studying the 
carbon–neutral performance of RCEP members bears vital sig-
nificance for fulfilling the carbon neutrality target worldwide.

Variable selection

Input and output variables

To calculate the CEE in the RCEP region, the super-efficiency 
SBM model mentioned in “Static measurement of CEE: super-
efficiency SBM model” section was used. According to earlier 
studies (Zhao et al. 2022a; Zhang and Liu 2022), GDP and  CO2 
emissions are chosen as outputs. GDP and  CO2 emissions are 
chosen as outputs, while capital stock, labor force, and total 
energy consumption are chosen as inputs (Table 1).

Driving factors

When studying CEE using the STIRPAT model, an extended 
STIRPAT model can be created by including additional compo-
nents that have an impact on CEE in accordance with real-world 
settings. It has been proven that there is a link between the econ-
omy and carbon emissions (Lin and Teng 2022) and that there is 
a direct correlation between economic growth efficiency and the 
efficiency of carbon emission reduction (Sheng et al. 2020). The 
RCEP agreement, which was formalized in September 2020 and 
is seen as playing a significant part in the post-pandemic recov-
ery of the global economy, is the largest free trade agreement 
organization in the world (Zhang et al. 2023). There will be more 
engagement between participating nations in the actual economy 
and capital markets as a result of tariff reductions and negative 
listings (Li et al. 2022a). In light of the three basic influencing 
elements of affluence, population size, and technology level, the 
STIRPAT model is extended by choosing two economic factors, 
namely investment capacity and economic agglomeration, as 

independent variables (Lu et al. 2021; Yan et al. 2022). Affluence 
(AFF) and investment capacity (ATI) are two of them, and they 
are quantified, respectively, by gross fixed capital creation and 
GDP (constant 2010 US$) (Wang et al. 2017; Ma et al. 2022). 
The population density indicator and the labor density indicator, 
which measure the number of people and employees per unit of 
land area, respectively, are applied to describe population (POP) 
and economic agglomeration (EAL) (Gani 2021; Xu et al. 2022). 
The energy intensity, specifically represented as energy consump-
tion per unit of GDP, often captures the technology level (ENR), 
since a decline in energy intensity typically reflects a rise in tech-
nical innovation and advancement (Zhu et al. 2022).

Data source

The data on the CEE of the 15 RCEP members were chosen 
as completely as possible, taking into account the availability. 
Table 2 contains a list of the assessment samples chosen for 
RCEP participants. The United States (US) Energy Information 
Administration (https:// www. eia. gov/ inter natio nal/ data/ world) 
and the World Bank database (https:// data. world bank. org/) both 
provided the data, and the sample period included 2010 to 2019. 
MATLAB 2016 software was utilized to perform interpolation 
for a few missing data points. Additionally, MATLAB 2016 soft-
ware was used to implement the super-efficiency SBM model 
taking into account undesirable outputs and the decomposition 
of the GML index. GeoDa software was employed to create the 
spatial weight matrix, and Stata 16.0 was used to establish the 
SDM. The drivers are taken as logarithms to address the het-
eroskedasticity and lessen the instability of panel data. Table 3 
displays the statistical summaries of each variable.

Empirical results and discussion

Spatio‑temporal evolution of CEE for 15 RCEP 
members

Spatial feature analysis

The panel data of 15 RCEP members from 2010 to 2019 are 
estimated based on the super-efficiency SBM model and the 

Table 1  Explanations for the input and output variables

Variable Indicator Source Definition

Input variables Capital WDI The capital stock is calculated using the perpetual inventory method 
(current US$)

Labor WDI The number of employees
Energy EIA Total energy consumption (terajoules)

Desirable output GDP WDI The gross domestic product (current US$)
Undesirable output CO2 emissions EIA Carbon dioxide emissions from the consumption of energy (MMtons)
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input–output variables shown in Table 1, and the CEE of 
each country is measured, as outlined in Table 4. The aver-
age value of CEE in RCEP members from 2010 to 2019 was 
determined to be 0.714, which is considered to be low and 
gives significant room for future improvement.

The CEE of 15 RCEP countries was visualized via Arc-
GIS software, and a map of the spatial distribution of four-
time nodes was generated to intuitively depict the spatial 
characteristics (Fig. 1). Overall, the CEE features spatial 
non-equilibrium and variable spatial patterns, gradually 
shifting from high in the center and low at both ends to low 
in the middle and high at both ends from south to north.

More specifically, at the country level, more than half 
of the nations, including Australia, Singapore, Korea, 

Malaysia, Indonesia, Philippines, Vietnam, and China, have 
seen an increase in CEE. It demonstrates that countries are 
attempting to strike a balance between the economy, soci-
ety, and environment by implementing greener transforma-
tions of economic conceptions and development patterns 
and paying closer attention to carbon emissions. The CEE 
of China has increased more rapidly since 2010, going from 
0.499 in 2010 to 1.030 in 2019 at an average annual growth 
rate of 10.64%. Laos and Myanmar, on the other hand, show 
a more pronounced reduction in CEE, with a loss of over 
50%. It demonstrates the growing incompatibility between 
population, resources, and the environment as well as the 
mounting pressure for sustainable development. An area 
of great concern is Myanmar. The CEE index of Myan-
mar in 2012 suddenly changed dramatically, which may 
be related to the ongoing military conflict. The region has 
been in upheaval since the riots in Rakhine State in May 
2012. Studies have revealed that protracted conflict not only 
hinders economic growth but also significantly increases 
greenhouse gas emissions and air pollution, with wartime 
carbon emissions being the most intensive and concentrated 
of all human activities.

Temporal evolution pattern

The trend of the average CEE is displayed in Fig. 2 in 
terms of the temporal dimension. In general, the CEE of 
RCEP countries went through two stages of declining and 
then increasing over the 10 years, demonstrating U-shaped 
change characteristics. The average efficiency fell from 
0.755 in 2010 to 0.692 in 2016, which is the changing 
decrease stage (2010–2016). The second phase, gradual 
growth (2017–2019), sees an increase in average efficiency 
from 0.692 in 2016 to 0.695 in 2019.

Table 2  Selection of assessment samples in RCEP members

Region Country

ASEAN (10) Brunei, Cambodia, Indonesia, Laos, Malaysia, 
Myanmar, Philippines, Singapore, Thailand, 
Vietnam

Non-ASEAN (5) China, Japan, Korea, Australia, New Zealand

Table 3  Descriptive statistics for all variables

Variables Obs Mean Std. dev Min Max

CEE 150 0.7137 0.2703 0.2840 1.0420
lnAFF 150 26.358 1.9451 23.017 30.291
lnPOP 150 17.309 1.8821 12.870 21.065
lnENR 150  − 11.618 0.4555  − 12.360  − 10.416
lnATI 150 3.3219 0.2104 2.8390 3.8429
lnEAL 150 4.1823 1.7090 0.4176 8.5155

Table 4  The CEE of the RCEP 
countries, 2010–2019

Country 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Mean

Australia 1.010 0.969 0.951 0.921 0.949 0.955 0.955 0.952 0.988 1.011 0.966
New Zealand 1.011 1.002 1.002 0.987 0.961 1.000 0.991 0.981 1.009 0.983 0.993
Laos 1.000 1.000 0.874 0.785 0.782 0.558 0.434 0.405 0.366 0.326 0.653
Brunei 1.000 1.000 1.000 1.000 0.854 0.786 0.747 0.744 0.696 0.712 0.854
Singapore 0.584 0.592 0.595 0.603 0.605 0.602 0.599 0.612 0.627 0.619 0.604
Cambodia 1.000 1.008 1.002 1.008 0.977 0.891 0.764 0.746 0.670 0.623 0.869
Myanmar 1.010 1.009 0.684 0.612 0.550 0.538 0.556 0.467 0.462 0.504 0.639
Japan 1.019 0.951 0.917 0.930 0.930 0.971 0.967 1.004 1.001 1.013 0.970
Korea 1.002 1.005 0.922 1.003 1.003 1.000 1.001 1.007 1.001 1.042 0.999
Malaysia 0.382 0.387 0.391 0.386 0.391 0.407 0.418 0.427 0.426 0.434 0.405
Indonesia 0.334 0.348 0.354 0.362 0.367 0.379 0.390 0.396 0.389 0.390 0.371
Philippines 0.793 0.801 0.894 0.934 1.016 1.001 1.006 1.003 1.003 1.004 0.945
Thailand 0.385 0.369 0.377 0.369 0.361 0.365 0.370 0.377 0.383 0.384 0.374
Vietnam 0.289 0.284 0.291 0.308 0.306 0.308 0.310 0.322 0.327 0.345 0.309
China 0.499 0.543 0.578 0.621 0.673 0.740 0.865 1.002 1.001 1.030 0.755

36491Environmental Science and Pollution Research (2023) 30:36485–36501



1 3

To further analyze the regional variations in CEE, the 
15 RCEP nations are split into two groups based on the 
economic development level, from highest to lowest. Five 
nations—Japan, South Korea, Australia, New Zealand, and 
Singapore—are included in the first tier of developed coun-
tries; the remaining nations are included in the second tier 
of developing countries. As can be seen from Fig. 2, from 
2010 to 2019, the CEE of the first-tier countries likewise 
had two stages of declining and then growing, following 
the general trend and hitting a low of 0.877 in 2012. This is 
known as a U-shaped fluctuation. The second-tier nations, 
however, displayed a varying declining tendency, ranging 
from 0.669 to 0.575.

The CEE of the first tier is significantly higher than the 
second tier in terms of regional differences. This result 
shows how the RCEP countries are currently doing with 
regard to sustainable development. With advantages in 
economy, science, and technology, the first-tier countries, 
represented by developed nations, have closely linked envi-
ronmental issues with economic development and developed 
long-term policies to balance economic growth, rational 

Fig. 1  Spatial distribution pat-
tern of CEE in RCEP countries 
in major years

Fig. 2  Trends in the average CEE of the RCEP countries, 2010–2019
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resource exploitation, and environmental protection. The 
second tier, on the other hand, is made up of all developing 
nations that, during the study period, were at the height of 
their development, prioritizing economic development and 
accelerating industrialization and urbanization while paying 
insufficient attention to the adverse effects on the environ-
ment. A downward trend has been caused by the large uti-
lization of fossil fuels, relatively antiquated technologies, 
and ineffective managerial capabilities. In light of this, as 
the RCEP agreement develops, developing countries in the 
RCEP members should focus on ecological and environ-
mental protection, make wise use of the benefits of regional 
cooperation and knowledge and technology spillover effects, 
facilitate the implementation of regional sustainable con-
struction and policy, and further promote the RCEP region 
as a new force in the development of low-carbon technologi-
cal innovation.

The dynamics of CEE for 15 RCEP members

The static efficiency was obtained in “Spatio-temporal 
evolution of CEE for 15 RCEP members” section through 
the super-efficient SBM model. This section will assess 
the dynamic CEE for RCEP members using the non-para-
metric GML index based on DEA. The GML index and its 
decompositions into the index of technical efficiency change 
 (GMLeffch) and the index of technical progress  (GMLtech) are 
depicted in Figs. 3 and 4.

The GML index has a W-shaped fluctuation that 
decreases, then increases, then decreases, then climbs once 
more from 2010 to 2019. The GML index has a value of 
0.988, which is less than 1, and indicates that the RCEP 
members appear to be declining in CEE. The average change 
in the technical efficiency change index for RCEP mem-
bers is 0.996, showing negative average growth and a little 
reduction, while the average change in the technical progress 
is 1.011, suggesting stable growth, according to a further 
breakdown of the GML index.

It is clear that technological progress, particularly inno-
vation and advancement, is the primary force behind CEE 
improvement in RCEP countries. During the inspection 
period, the RCEP nations focused their efforts on the intro-
duction of efficient technologies, the substitution of new 
energy fuels, and the development of novel solutions for 
environmental protection and energy saving. Nevertheless, 
there are still issues in technology application and operation 
management. Poor diffusion, harsh operating conditions, and 
difficult management of energy-saving and emission reduc-
tion technologies are a few potential causes. Therefore, in 
order to improve CEE, it is necessary to place a greater 
emphasis on technical efficiency and continuously improve 
industrial structure and operation size.

From 2010 to 2019, eight of the 15 countries in the RCEP 
region have a CEE change index greater than 1, indicating 
positive CEE growth (Fig. 4). China, Australia, and Japan 
are the three countries with the highest cumulative increase 
in the GML index, with growth rates of 7.8%, 2.8%, and 
2.2%, respectively.

In terms of drivers, a combination of technical efficiency 
and technology advancement has led to improvements in 
CEE in Malaysia, China, and Australia. With rising envi-
ronmental technology development and utilization, these 
nations are in the process of transitioning and upgrading 
their industrial and energy structures. This serves as a model 
for other countries. While Laos, Cambodia, and Myanmar 
are three countries where technological advancement and 

Fig. 3  The GML index and decomposition index from 2010 to 2019

Fig. 4  The GML index and decomposition index for 15 RCEP coun-
tries
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efficiency still need to be enhanced. While speeding up the 
development of a high-quality economy during the research 
period, traditional industrial sectors in these countries 
increased in size, which raised the overall  CO2 emissions. 
At the same time, there are problems such as growing dif-
ficulty in emission management and low utilization of pro-
cess equipment, resulting in low technical efficiency. The 
improvement of technical efficiency has had a significant 
impact on CEE in Brunei, Korea, and Vietnam, indicating 
a gradual industrial upgrading and transition. Technical 
advancements help six nations—Indonesia, Philippines, 
Singapore, Thailand, Japan, and New Zealand—improve 
their CEE, but there is a pressing need to enhance technical 
efficiency.

Analysis of the driving factors on CEE

Spatial correlation test

Moran’S I index and scatter plots are chosen to observe 
the spatial autocorrelation and spatial aggregation of CEE 
globally and locally (Kashlak and Yuan 2022), resulting in 
Table 5 and Fig. 5, respectively. This is done in order to 
confirm the existence of spatial effects caused by significant 
shifts in carbon emission among RCEP countries. In the 
majority of the sample years, Moran’s I index is positive, 
passing the significance test. The CEE of the 15 RCEP coun-
tries shows positive spatial autocorrelation from smooth to 
enhanced, and there is a more pronounced regularity, which 
is primarily distributed in the first quadrant (high-high 
aggregation) and the third quadrant (low-low aggregation).

The aforementioned findings show that the spatial 
agglomeration effect and level of spatial autocorrelation are 
both rising with time. Due to the fact that CEE is influenced 
by industrial structure, production factor combinations, and 
technological level, there is some industrial structure uni-
formity among nearby nations with comparable resource 
endowments. Countries are becoming more mindful of low 
carbon emission reduction as the conflict between economic 
development and environmental pressure intensifies. As a 
result, they have been developing particular environmental 
protection regulations and low-carbon development plans. 
The production relationship between resource input and 
output is moving in the direction of convergence, which 
promotes the convergence of CEE among RCEP region 
neighbors.

Model identification test

It is advisable to use the spatial econometric analysis 
approach because it is known from the findings of the 
spatial correlation test that the CEE of RCEP nations is 

spatially associated. The LM test (Engle 1982), LR test, 
Wald test (Wang et al. 2019), and Hausman test (Zhao and 
Sun 2022) were carried out in order to further confirm 
the spatial correlation of CEE in the RCEP region and 
determine whether this correlation is related to the lag 
term or the error term. Prior to that, the multicollinearity 
test (Ariyajunya et al. 2021) and Pearson correlation test 
were also performed. The findings supported the claim 
that there is no multicollinearity concern in the regression 
analysis and that the explanatory variables were selected 
in a logical and meaningful manner by demonstrating that 
the variance inflation factor (VIF) for each variable was 
under 2.8 and the correlation coefficient between the vari-
ables was less than 0.85.

First, the LM test was performed to determine whether the 
spatial lagged dependent variable or the spatial autocorrela-
tion error term should be included in the model. The results 
disprove the original hypothesis and support the inclusion of 
spatial effects by showing that the LM lag and LM error are 
significant at the 10% and 5% levels, respectively. Second, to 
check whether SDM could be simplified to SAR and SEM, 
the Wald test and LR test were both employed. Additionally, 
at a 1% level of significance, the Ward lag, LR lag, Ward 
error, and LR error all refute the initial hypothesis, indicat-
ing that SDM is superior to SAR and SEM (Table 6).

The choice between the random-effect model and the 
fixed-effect model is a critical one for SDM as a type 
of panel data model. At a 1% level of significance, the 
Hausman test rejects the null hypothesis, indicating that 
fixed effects outperform random effects. Additionally, 
the various fixed-effect models must still be examined 
and chosen, which are realized by the LR test. There are 
three different categories of fixed-effect models: spatial 
fixed effect, time fixed effect, as well as both time and 
spatial fixed effects. The original hypotheses that the spa-
tial fixed effect and the time fixed effect are stronger than 
both the time and spatial fixed effects are both clearly 
rejected in Table 7, suggesting that the SDM containing 
both time and spatial fixed effects is the best choice.

Table 5  Spatial correlation test 
of CEE in 15 RCEP members, 
2010–2019

Year Moran’s I p value

2010  − 0.009 0.243
2011  − 0.018 0.273
2012 0.033 0.096
2013 0.024 0.120
2014 0.033 0.099
2015 0.071 0.045
2016 0.071 0.044
2017 0.056 0.074
2018 0.078 0.041
2019 0.063 0.064
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The direct and spatial spillover effects of driving factors

Due to the presence of spatial lags, the regression coef-
ficients of SDM are unable to accurately represent the 
impacts of explanatory variables on the explained vari-
ables. In order to parse the spatial spillover effects in three 
dimensions, the total, direct, and spillover effects were 
estimated and decomposed in accordance with the vari-
ance–covariance matrix of the SDM estimate results (Zhai 
et al. 2022), as shown in Table 8.

First, the coefficients of two variables, affluence, and eco-
nomic agglomeration, with respective values of − 1.0437 
and − 1.8317, pass the z test at the 1% and 10% significance 
levels. Affluence is particularly noteworthy for its simul-
taneously remarkable direct and spillover effects, demon-
strating that it is the primary factor affecting CEE in RCEP 
countries. With coefficients of 0.4053, 1.7763, − 0.8480, 
and − 0.2770, respectively, the four variables of wealth, pop-
ulation size, technology level, and investment capacity pass 
the z test for direct impacts at a 1% significance level. With 

values of − 1.4490 and 0.9321, the two variables of afflu-
ence and technology level pass the z test for spillover effects 
at a 1% significance level. Investment capacity and eco-
nomic agglomeration have regression coefficients of 0.4553 
and − 1.5628, with the former having a 5% significance level 
on CEE and the latter having a 10% one, respectively.

Fig. 5  Moran scatter plot of 
the CEE in 15 RCEP members, 
2010–2019

Table 6  Estimation results for the spatial panel regression model

Variables Coefficients p value

LM error 3.343 0.068
LM lag 4.692 0.030
Robust LM error 0.034 0.853
Robust LM lag 1.384 0.239
Ward spatial lag 30.87 0.000
LR spatial lag 27.75 0.000
Ward spatial error 40.31 0.000
LR spatial error 29.10 0.000
Hausman test 29.28 0.002
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Affluence (AFF). The positive regression coefficient of 
affluence shows that increasing GDP in RCEP countries has 
a definite beneficial impact on CEE. This is in line with the 
underlying theory. As the GDP of RCEP countries rises, 
economic quality is pursued along with rapid economic 
growth, and increased investments in science, technology, 
and improved infrastructure are prioritized, which improves 
resource use and CEE. Although affluence raises the CEE 
of RCEP countries obviously, the affluence of neighboring 
countries suppresses the CEE of the home country. This sug-
gests that whether or not the economic development struc-
ture of neighboring regions is rational affects the CEE of 
the home nation.

Population (POP). The direct and indirect effects of pop-
ulation on CEE are positive and negative, and the former 
satisfies the significance test at the 1% level. This shows 
that population density has a positive impact on the CEE of 
the home country and a negative but insignificant impact on 
the CEE of neighboring countries. Within a certain thresh-
old, densely populated places are more likely to experience 
agglomeration effects, which is favorable to the effective use 
of resources and infrastructure. Additionally, since develop-
ment concepts and practices have undergone a green meta-
morphosis, inhabitants’ consumption patterns have tended to 

be low carbon, which has a positive impact on CEE. On the 
other hand, population mobility is mostly responsible for the 
population’s impact on the CEE of neighboring countries. 
Cross-border and cross-country population migrations are 
unavoidable in an open economy. Due to their similar social 
structures and resource endowments, adjacent nations are 
preferable options for population migration. When there is 
an excessive concentration of people, pressure on the envi-
ronment and the resources increases, which leads to ineffec-
tive resource use and harms CEE.

Technology level (ENR). A negative direct effect of tech-
nology level implies that the higher the energy consumption 
per unit of GDP, the lower the CEE of RCEP members. The 
elasticity coefficient of the direct effect is − 0.8480, passing a 
1% level of significance testing. This indicates that, when all 
other variables are held constant, the CEE increases by 0.848% 
for every 1% decrease in energy consumption per unit of GDP. 
Energy is a necessary input for national production. Dropping 
energy intensity is a sign of technological advancement and 
improved production facilities, which enable higher outputs 
and benefits with less resource input. Continuously emerging 
energy-saving and consumption-reduction technologies assist 
in gradually offsetting the negative environmental externalities 
at the early stage of development and improving CEE. With an 

Table 7  Fixed-effect test based 
on the SDM

***, **, and * denote significance at 1%, 5%, and 10% levels, respectively, with the z statistics in parenthe-
ses

Variables Spatial fixed Time fixed Both time and spatial fixed

lnAFF 0.3302*** (5.35)  − 0.0151 (− 0.76) 0.2595*** (4.52)
lnPOP 1.4723*** (3.25)  − 0.0500*** (− 3.47) 1.6760*** (3.34)
lnENR  − 0.7089*** (− 19.64)  − 0.3669*** (− 5.91)  − 0.7577*** (− 20.88)
lnATI  − 0.2601*** (− 5.60) 0.0096 (0.10)  − 0.2294*** (− 4.84)
lnEAL  − 0.5484** (− 2.33) 0.0320** (2.54)  − 0.4182* (− 1.73)
Wx lnAFF  − 0.3008* (− 1.76)  − 0.1524 (− 1.25)  − 1.9448*** (− 4.44)
Wx lnPOP  − 0.1053 (− 0.10) 0.0335 (0.30)  − 0.5334 (− 0.38)
Wx lnENR 0.4376** (2.26)  − 0.4969 (− 1.20) 0.8876*** (2.87)
Wx lnATI  − 0.0548 (− 0.33)  − 2.0014*** (− 3.49) 0.5134** (1.99)
Wx lnEAL  − 1.0384 (− 1.09) 0.0444 (1.34)  − 2.5203** (− 2.06)
Rho / lambda  − 0.5905*** (− 3.30)  − 0.5915*** (− 2.59)  − 0.6064*** (− 3.00)
sigma2_e 0.0020*** 0.0226*** 0.0016***

Table 8  Direct effects, indirect 
effects, and total effects of the 
SDM

***, **, and * denote significance at 1%, 5%, and 10% levels, respectively, with the z statistics in parenthe-
ses

Variables Direct effect Indirect effect Total effect

lnREI 0.0390*** (3.42) 0.1000*** (3.77) 0.1390*** (4.74)
lnEAD  − 0.1790** (− 2.15)  − 2.3920** (− 2.43)  − 2.5720** (− 2.55)
lnGDP 0.3560*** (6.97)  − 1.2590** (− 2.44)  − 0.9030* (− 1.73)
lnCIF  − 0.1250*** (− 8.17) 0.3190* (1.70) 0.1940 (1.01)
lnATI  − 0.0910*** (− 3.61)  − 0.3810** (− 2.06)  − 0.4720** (− 2.49)
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indirect effect elasticity value of 0.9321, the spillover effect of 
the technology level is positive. To improve CEE, it is crucial 
to reduce energy consumption per unit of GDP; as a result, 
sophisticated low-carbon technologies should be introduced 
and investment in them should be encouraged.

Investment capacity (ATI). Investment intensity has a det-
rimental impact on the CEE of RCEP countries, most likely 
as a result of each nation’s current preference for investing in 
fixed assets related to energy infrastructures like steel, cement, 
and electricity. There are resource and environmental costs 
associated with the creation of this fixed capital. The acquisi-
tion of industrial production apparatus and equipment rises 
in response to the increase of fixed-asset investment, which 
directly drives the rapid expansion of energy carbon emissions. 
The indirect impact of investment intensity is favorable, never-
theless, meaning that the more fixed assets are invested in the 
neighboring nations, the greater the CEE of the home country. 
A reasonable explanation is that the beneficial spillover effects 
of technology and knowledge from fixed asset investments in 
nearby regions outweigh the negative effects of energy infra-
structure, improving CEE. Future infrastructure construction 
projects should address environmental considerations, and 
green investments with a focus on ecological preservation and 
environmental management should be given attention.

Economic agglomeration (EAL). The impact of economic 
agglomeration is dual. On the one hand, the growth in eco-
nomic agglomeration will concentrate assets, technology, 
and experts in a more concentrated location, which will 
help businesses specialize and centralize their production. 
It simultaneously minimizes the cost of product and raw 
material transportation while maximizing the effects of tech-
nological innovation and knowledge spillover, which will 
further improve production efficiency and CEE. However, 
excessive economic agglomeration also produces several 
unfavorable externalities, such as a lack of resources and 
hampered transportation. When the crowding effect out-
weighs the favorable benefit, CEE is negatively affected. 
According to the findings, both the direct and indirect effects 
of economic agglomeration behave negatively, demonstrat-
ing that the crowding effect has already manifested and dras-
tically inhibits production efficiency and CEE.

Robustness tests

The following two methods are used for robustness detec-
tion in order to guarantee the validity of the aforementioned 
empirical results.

1. Introduction of control variables. To avoid endogeneity 
issues due to possible omitted variables, additional control 
variables are further included in the regressions, including 
urbanization level (urban population share (URB)), foreign 

direct investment (percentage of foreign direct investment 
in GDP, FDI), and the combination of both. The results are 
summarized in models (1), (2), and (3) of Table 9, respec-
tively. The signs and significance levels of all explanatory 
variables remain consistent with the previous results, and 
there are still robust effects for CEE in RCEP countries, 
meaning a reliable and sound result.

2. Replace the explanatory variables. According to 
research, the development and utilization of renewable 
energy have become a key strategy for ensuring energy 
security, strengthening environmental protection, and 
addressing climate change. As a result, the technological 
development of renewable energy serves as an important 
gauge (Pham et al. 2020). Therefore, the GDP per capita 
(GDP) and the share of renewable energy consumption 
(RCP) are substituted for GDP and energy consump-
tion per unit of GDP to characterize the affluence (AFF) 
and technology level (ENR), respectively (Wang and Li 
2021; Wu et al. 2021a). The empirical results are still 
supported by the regression results, which are shown in 
models (4) and (5) in Table 9.

Conclusion and policy recommendations

Conclusions

Given the critical role of CEE in achieving carbon neu-
trality targets, the super-efficiency SBM model, which 
takes into account undesirable outputs, is employed 
to comprehensively assess the current state and trend 
of CEE in 15 RCEP countries from a spatio-temporal 
dynamic perspective, and the GML index is coupled to 
quantify the spatial and temporal differences and dynamic 
changes. The extended STIRPAT model and SDM are 
then integrated to further investigate the main influencing 
factors of CEE from a wide green economy perspective 
while taking into account the spatial characteristics of 
CEE. It is discovered that.

1. There is a tremendous opportunity for improvement in 
the CEE of RCEP members, which is generally poor and 
unevenly distributed in temporal and spatial dimensions. 
Meanwhile, the CEE of RCEP members exhibits posi-
tive spatial autocorrelation and the spatial association 
accumulates over time.

2. There are significant differences in CEE among RCEP 
members, with developed countries, who make up the 
first tier, significantly outpacing developing countries, 
who comprise the second tier. The latter should utilize 
the benefits of regional collaboration and knowledge 
and technological spillover effects suitably, facilitate 

36497Environmental Science and Pollution Research (2023) 30:36485–36501



1 3

regional sustainable development, and support policy 
execution.

3. The GML index displays W-shaped variations on a 
dynamic level. It is clear from the decomposition results 
that technological progress is the primary force driving 
CEE improvement in RCEP countries and that technical 
efficiency needs to be improved.

4. Although each of the five drivers has an impact on the 
CEE of RCEP members, the impact differs. Technology 
level and investment capacity have negative direct effects 
on national CEE, whereas affluence and population 
have favorable direct effects. Affluence and economic 
agglomeration hinder CEE enhancement, although the 
technological level and investment capacity favor it in 
terms of spillover effects.

Policy recommendations

The implementation of carbon neutrality plans and region-
ally coordinated sustainable development strategies by 
RCEP nations under the current free economic environment 
must take into account closing the inter-regional gap while 
enhancing the CEE of RCEP members.

1. To ensure regional low-carbon synergistic develop-
ment, countries should cooperate and exchange ideas 
more; there are significant differences among the 

nations in the RCEP region, and developed countries 
have a number of advantages in this area. As the RCEP 
agreement continues to advance, it is necessary to 
gradually build exchange platforms and promote the 
flow of capital, technology, management talent, and 
experience in the region through economic policies 
such as fiscal, financial, and investment policies. The 
RCEP region should be strengthened as a new force 
in the development of low-carbon technology innova-
tion by giving full play to the radiation-driven role and 
knowledge and technology spillover effects of highly 
efficient countries, promoting sustainable regional con-
struction and policy implementation, and narrowing 
internal efficiency differences.

2. Increase the emphasis on the efficiency of energy-
saving and emission reduction technologies. The cur-
rent low technical efficiency of RCEP members is the 
main barrier to CEE improvement. Energy-saving and 
emission reduction technologies face several issues, 
including poor diffusion, challenging management, and 
harsh working circumstances. As a result, while foster-
ing technological innovation for reducing carbon emis-
sions, greater focus should be placed on promoting and 
effectively using technology. One way is to strengthen 
managerial skills, scale up inputs, and leverage the scale 
effect to improve economic efficiency. On the other 
hand, efforts are made to remedy the decline in techni-

Table 9  Robustness test of the SDM containing both time and spatial fixed effects

***, **, and * denote significance at 1%, 5%, and 10% levels, respectively, with the z statistics in parentheses

Variables (1) (2) (3) (4) (5)

lnAFF 0.2071*** (2.60) 0.2610*** (4.52) 0.2108*** (2.60) - 0.2685** (2.42)
lnPOP 1.9407*** (3.42) 1.6814*** (3.34) 1.9422*** (3.42) 1.9355*** (3.92) 2.6069*** (2.75)
lnENR  − 0.7649*** (− 19.31)  − 0.7564*** (− 20.75)  − 0.7647*** (− 19.31)  − 0.7577*** (− 20.88)
lnATI  − 0.2267*** (− 4.58)  − 0.2275*** (− 4.71)  − 0.2270*** (− 4.55)  − 0.2294*** (− 4.84)  − 0.4541*** (− 4.99)
lnEAL  − 0.4449* (− 1.83)  − 0.4164* (− 1.72)  − 0.4445* (− 1.83)  − 0.4182* (− 1.73)  − 1.7364*** (− 3.68)
lnURB 0.3019 (0.92) - 0.2885 (0.85) - -
lnFDI -  − 0.002 (− 0.26)  − 0.0008 (− 0.10) - -
lnGDP - - - 0.2595*** (4.52) -
lnREI - - - - 0.1707*** (4.7)
Wx lnAFF  − 2.2041*** (− 3.21)  − 1.9639*** (− 4.29)  − 2.2213*** (− 3.10) - 0.4337 (0.81)
Wx lnPOP 0.3002 (0.18)  − 0.4401 (− 0.31) 0.3168 (0.19)  − 2.4782* (− 1.71) 6.2999** (2.34)
Wx lnENR 0.626 (1.36) 0.9079*** (2.88) 0.6319 (1.37) 0.8875*** (2.87) -
Wx lnATI 0.4851* (1.86) 0.5115* (1.9) 0.4739* (1.74) 0.5134** (1.99)  − 0.3424 (− 0.69)
Wx lnEAL  − 2.3716* (− 1.81)  − 2.5825** (− 2.08)  − 2.3823* (− 1.81)  − 2.5203** (− 2.06)  − 4.7241** (− 2.01)
Wx lnURB 1.9799 (0.77) - 2.0255 (0.79) - -
Wx lnFDI - 0.0052 (0.19) 0.0067 (0.24) - -
Wx lnGDP - - -  − 1.9448*** (− 4.44) -
Wx lnREI - - - -  − 0.4927** (− 2.14)
Rho/lambda  − 0.6294*** (− 3.05)  − 0.6078*** (− 3.01)  − 0.6314*** (− 3.05)  − 0.6064*** (− 3.00)  − 0.7779*** (− 3.66)
sigma2_e 0.0016*** 0.0016*** 0.0016*** 0.0016*** 0.0060***
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cal effectiveness to further encourage the force behind 
technological innovation. The existing scenario where 
technical efficiency and technological advancement are 
unable to coexist can be improved by creating a produc-
tive method of positive interaction between technology 
R&D and management services.

3. The secret to advancing CEE is controlling economic 
agglomeration levels and lowering investment in 
high-carbon industries. Economic agglomeration sig-
nificantly reduces emissions, but scale diseconomies 
brought by excessive agglomeration will cause a drop 
in regional CEE. Therefore, when establishing energy-
saving and emission reduction targets, on the one hand, 
green investments with the primary goal of ecological 
protection and environmental management should be 
highlighted, and investments in high-carbon industries 
such as electricity, iron, and steel, and cement should 
be reduced; on the other hand, the regional economic 
agglomeration level must be reasonably controlled 
to produce a favorable effect and a sizable amount of 
emissions.

It should be noted that although the super-efficiency 
SBM model and STIRPAT model, which consider undesir-
able outputs, is used to measure and diagnose CEE in RCEP 
members, driving variables and rational approaches are still 
worth examining. Additionally, this study experimentally 
investigates the impact of drivers on CEE; nevertheless, it 
is also necessary to consider the regional heterogeneity of 
the level of effect, as it could serve as a valuable guide for 
future global sustainability.
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