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Abstract
The goals of carbon peak and carbon neutrality have put forward higher requirements for the low-carbon development of 
power supply. This paper discusses the impacts of multi-energy power generation on carbon emissions for 30 regions in China 
and proposes low-carbon development suggestions for the electric power industry. The research found that firstly there is a 
significant strong positive correlation between thermal power and carbon emissions in most regions of China, so the carbon 
emission reduction of power supply should still focus on thermal power. Secondly, wind power and photovoltaic power have 
positive effects or negative effects on carbon emissions in different regions. But combined with the analysis results in regions 
with the rapid development of wind power or photovoltaic power, it could be found that wind power and photovoltaic power 
contributed to reducing carbon emissions when they developed to a certain scale. It is proposed to speed up the construc-
tion of wind power and photovoltaic power in regions with rich wind resources or solar resources such as Inner Mongolia, 
Xinjiang, Liaoning, and Gansu. Thirdly, hydropower and nuclear power both have negative effects on carbon emissions. 
Considering the large demand for electricity in coastal regions where nuclear power is located, it is suggested that coastal 
regions should gradually promote the construction and application of nuclear power on the basis of safety.

Keywords Multi-energy power generation · Carbon emissions of production and supply of electric power, steam and hot 
water · Heterogeneous impacts · Panel data analysis

Introduction

Carbon emissions have caused climate warming on a global 
scale, which is closely related to energy consumption 
(Chishti et al. 2022; Murshed et al. 2021). How to coordi-
nate energy consumption and environmental sustainability 

has become an important issue worldwide (Ahmed et al. 
2022; Khan et al. 2022; Murshed, 2020). As one of the main 
carbon emission countries, China has made great efforts in 
carbon emission reduction. To further respond to global 
climate change, the Chinese government has proposed the 
carbon peak and carbon neutrality goals which require reach-
ing the peak of carbon emissions by 2030 and achieving 
carbon neutrality by 2060. The electric power industry is the 
main source of carbon emissions in China, accounting for 
more than 40% of the total carbon emissions (Wen and Yan, 
2017; Zhang et al. 2019). Under the carbon peak and car-
bon neutrality goals, the electric power industry is stressed 
out in carbon emission reduction (Yu et al. 2020b). To fur-
ther reduce the carbon emissions from the electric power 
industry, in June 2022, the goal of building a new power 
system with a gradually increasing proportion of new energy 
sources was proposed, which puts forward new requirements 
for the low-carbon adjustment of the power supply.

In recent years, according to the resource endowment, the 
Chinese government has actively promoted the low-carbon 
adjustment of the electric power supply in different regions. 
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In the southwestern regions with rich water resources, such 
as Yunnan and Sichuan, hydropower has developed speed-
ily; in the southeastern coastal regions, such as Zhejiang and 
Jiangsu, nuclear power has fast growth; and in the northern 
regions, such as Hebei and Inner Mongolia, wind power 
and photovoltaic power have rapid expansion. Different 
power generation forms and supply structures have formed 
in regions of China (Liu and Niu 2021; Yao et al. 2021). It 
is necessary to research the impacts of multiple energy on 
carbon emissions and further formulate the carbon emis-
sion reduction measures for the power industry based on the 
diverse development of regions.

China and the world have been striving to develop 
renewable energy power (Muntasir 2021; Murshed and 
Tanha 2021; Li et al. 2021a), but the impacts of renewable 
energy power generation on carbon emissions are not unified 
(Zheng et al. 2021). There are three views on the connec-
tion between renewable energy power generation and carbon 
emissions. The first view is that the development of renew-
able energy contributes to reducing carbon emissions (Aslan 
et al. 2021); the second opinion is that the effect of renew-
able energy on carbon emission reduction is not significant 
(Nathaniel et al. 2021), even the development of renewable 
energy increases carbon emissions (Magazzino et al. 2021); 
and the third view, comprehensively considering the above 
two views, is that the development of renewable energy 
needs to cross a certain threshold to inhibit carbon emissions 
(Nguyen and Kakinaka 2019). Based on the different power 
generation situations in regions of China, this paper dis-
cusses the nexus between wind power, photovoltaics, hydro-
power, and carbon emissions, which is helpful to clarify the 
impacts of renewable energy on carbon emissions and has 
strong practical significance.

Although the electric power industry is the main source 
of carbon emissions in China, the transportation industry, 
construction industry, and other industries also emit carbon 
emissions (Du et al. 2018; Liu et al. 2022; Song et al. 2021), 
which increases the error in the analysis of the relationship 
between electric power generation and the regional total 
carbon emissions. The carbon emissions of production and 
supply of electric power, steam, and hot water are the total 
carbon emissions from electricity production and supply, 
and heat production and supply. This paper uses the carbon 
emissions of production and supply of electric power, steam, 
and hot water replacing the regional total carbon emissions 
to analysis, which is effective to avoid the impacts of carbon 
emissions from other industries. In addition, carbon emis-
sion accounting in China is based on the volume of produc-
tion in a region during a period. But the region of electricity 
production and the region of electricity consumption are 
often separated (Wang et al. 2021). In power consumption 
centers, such as Beijing and Shanghai, a large amount of 
power is supplied by other provinces. The transfer of electric 

power between regions that has caused the consumption of 
electricity, which is often used in the previous study, can-
not reflect the connection between the power supply and 
carbon emissions. Therefore, this paper according to the 
power generation forms classifies the 30 regions in China, 
and using the power generation and the carbon emissions 
of production and supply of electric power, steam, and hot 
water researches the impacts of multi-energy power genera-
tion on carbon emissions. In general, this paper proposes a 
method to overcome the influences of carbon emissions from 
other factors and the spatial difference in power production 
and consumption in the relationship analysis of multi-energy 
power generation between carbon emissions. The research 
idea of this paper is shown in Fig. 1.

The remainder of the paper is organized as follows: the 
“Literature review” section reviews the views about power 
generation and carbon emissions and points out the sig-
nificance of this study. The “Materials and methods” sec-
tion presents the model construction and data sources. 
The “Results and discussions” section analyzes the nexus 
between multi-energy power generation and carbon emis-
sions in different regions and proposes development strate-
gies for the electric power industry. The “Conclusion” sec-
tion is the conclusion of this paper.

Literature review

To alleviate climate warming, numerous studies focused 
on carbon emission-related issues in recent years (Sharma 
et al. 2021; Wang and Zheng 2021). The identification of 
carbon emission-related factors is one of the hotspots for 
carbon emission issues (Du et al. 2018; Liu et al. 2022; 
Song et al. 2021). Previous studies have found that energy 
intensity (Zheng et al. 2019) and electric power generation 
forms (Chen et al. 2018; Li et al. 2021b; Wen et al. 2018) 
are important factors affecting carbon emissions. After 
clarifying the factors related to carbon emissions, the effect 
intensity of economic growth (Khan 2021; Xie et al. 2020), 
urbanization level (Ali and Yi 2022; Siqin et al. 2022), 
foreign direct investment (Balsalobre-Lorente et al. 2021; 
Ghazouani 2021), financial development (Amin et al. 2022; 
Liu and Gong 2022), natural resources (Yu-Ke et al. 2021), 
and solar energy technology (Zhang et al. 2020) on carbon 
emissions have been explored.

The electric power generation form is an important factor 
affecting carbon emissions, and its influence on carbon emis-
sions has been widely discussed (Wen and Yan 2017; Yu 
et al. 2020b). Renewable energy is an important part of elec-
tric power generation, but its impact on carbon emissions is 
still inconclusive. Some researchers hold the view that the 
development of renewable energy contributes to reducing 
carbon emissions (Aslan et al. 2021; Guney and Ustundag 
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2022). From location attribute, the relationship between car-
bon emissions and renewable energy power generation is 
discussed in Africa (Djellouli et al. 2022; Namahoro et al. 
2021), Ethiopia (Usama et al. 2020), and Argentina (Yuping 
et al. 2021), and in these countries renewable energy power 
generation helps to reduce carbon emissions. In addition, 
some studies have focused on countries with outstanding 
characteristics, such as energy-consuming countries (Huang 
et al. 2021), highest-emitting countries (Usman et al. 2021b), 
and emerging economies (Appiah et al. 2019), and also 
found that the application of renewable energy decreases 
carbon emissions.

Some researchers hold the opinion that the influence 
of renewable energy on carbon emissions is insignificant, 
and even stimulative. Nathaniel et al. (2021) explored the 
connection between nuclear power, renewable energy, and 

carbon emissions in G7 countries, and the impact of renew-
able energy on carbon emissions was found to be insignifi-
cant. Similarly, based on the data from 15 African countries, 
Nathaniel and Iheonu (2019) also pointed out that renewable 
energy has little effect on carbon emissions. And Magazzino 
et al. (2021) considered that in India from 1986 to 2017 wind 
power and photovoltaic power generation increased carbon 
emissions.

Based on the above two different views, the point that 
in the long run, the development of renewable energy will 
inhibit carbon emissions when its development crosses a 
certain threshold, has been proposed (Udeagha and Nge-
pah 2021; Usman et al. 2021a). As early as 2009, from the 
data of 30 member countries of the OECD from 1996 to 
2005, Chiu and Chang (2009) discovered that renewable 
energy will decrease carbon emissions when the proportion 

Fig. 1  Research idea
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of renewable energy supply exceeded 8.3889% of the total 
energy supply. Considering that the application of renewable 
energy in developed countries is earlier than in developing 
countries, the nexus between renewable energy and carbon 
emissions in countries with different economic levels have 
been compared. It is found that in developed countries and 
high-income countries, the application of renewable energy 
has inhibited effect on carbon emissions; in developing coun-
tries and low-income countries, the application of renewable 
energy has promoted effect on carbon emissions (Khan and 
Ahmad 2021; Nguyen and Kakinaka 2019). In general, the 
relationship between renewable energy power generation and 
carbon emissions varies in regions. And analyzing the influ-
ence of power generation on carbon emissions in China has 
strong practical significance to the low-carbon development.

China is one of the main carbon emitters, for which the 
impact of the electric power industry on carbon emissions 
has attracted the attention of many scholars (Liu et al. 2021; 
Li et al. 2021c). From the national level, Yu et al. (2020a) 
and Zheng et al. (2021) discussed the connection between 
renewable energy and regional total carbon emissions, 
respectively, based on the data for 30 Chinese provinces 
from 2005 to 2016 and the data for 30 Chinese provinces 
from 2008 to 2017. And they both discovered that at the 
national level, improving the development of renewable 
energy is conducive to carbon emission reductions. But they 
did not further analyze the relationship in different regions in 
China. In addition, the above studies using renewable energy 
represent wind power, photovoltaic power, and hydropower 
and did not specifically analyze the impacts of wind power, 
photovoltaic power, and hydropower on carbon emissions.

Some researchers explored the effects of renewable 
energy and non-renewable energy on carbon emissions at 
the regional levels in China. According to the location of 
regions, Chen et al. (2019) divided 30 regions in China 
into the eastern region, western region, and central region, 
and found that in the eastern and western regions renew-
able energy had a negative impact on regional total car-
bon emissions, while in the central region the impact was 
statistically insignificant. Ma et al. (2021) further divided 
the 30 regions into 5 categories based on the regional 
distributions, and pointed out that renewable energy con-
sumption had an inhibiting effect on regional total carbon 
emissions between 1995 and 2019. But it is limited to 
classify the regions according to the location before ana-
lyzing the nexus between renewable energy consumption, 
non-renewable energy consumption, and carbon emissions. 
The power generation forms of renewable energy in the 
provinces of China are significant differences (Zhu et al. 
2019). For example, Shanghai and Fujian both belong to 
the eastern region in the above research (Chen et al. 2019; 
Ma et al. 2021), but Shanghai does not have hydropower 
and nuclear power, and the thermal power generation 

accounts for 97% of the total electric power generation; 
while Fujian both has hydropower and nuclear power, and 
the thermal power generation only accounts for 57% of 
the total electric power generation. Therefore, this paper 
proposes a new classification method of regions based on 
the forms of power generation.

In summary, previous studies mostly use the regional total 
carbon emissions and power consumption to analyze. But 
economic development, industrial structure, urbanization, 
and other factors all affect the regional total carbon emis-
sions (Du et al. 2018; Liu et al. 2022; Song et al. 2021). 
This makes the regional total carbon emissions unable to 
precisely reflect the effect of multiple-energy power gen-
eration on carbon emissions. To remove the impact of other 
factors, the carbon emissions of production and supply of 
electric power, steam, and hot water are used to replace the 
regional total carbon emissions. In addition, carbon emis-
sions accounting for the electric power industry are based 
on the volume of production in the region. Electric power 
transmission makes power consumption and carbon emis-
sions inconsistent in statistical regions (Wang et al. 2021). 
So, the regional power generation data are used to explore 
the impacts of multi-energy on carbon emissions for the 
electric power industry. Therefore, the main contributions 
are as follow:

1) The carbon emissions of the electric power industry are 
focused on. Previous studies mostly research the con-
nection between multi-energy and carbon emissions by 
the regional total carbon emissions which are affected 
by many factors. In this paper, the regional total carbon 
emissions are replaced by the carbon emissions of pro-
duction and supply of electric power, steam, and hot 
water, which can effectively eliminate the influence of 
other factors.

2) This paper uses the power production of multi-energy 
instead the power consumption to study the relation-
ship between multi-energy and carbon emissions in 
regions. In China, the carbon emissions of the electric 
power industry are accounted for the volume of electric 
power production in regions. Previous studies explored 
the nexus between multi-energy and carbon emissions 
based on power consumption ignoring the carbon emis-
sions transfer caused by power transmission. Therefore, 
it is more reasonable to research the connection between 
carbon emissions and multi-energy power generation.

3) Compared with the previous studies that classified 
regions according to their geographical location, the 
classification method of regions in this paper is differ-
ent. According to the power generation forms, the 30 
regions in China are divided into six categories, and the 
relationship between multi-energy power generation and 
carbon emissions in those regions is discussed.
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Materials and methods

This paper aims to analyze the nexus between multi-energy 
power generation and carbon emissions and put forward 
suggestions for low-carbon development of the electric 
power industry in different regions of China. Therefore, 
firstly, the data of multiple-energy power generation and 
the carbon emissions of production and supply of electric 
power, steam, and hot water for 30 regions in China are 
collected; secondly, the 30 regions are classified based on 
the power generation forms; and finally, the appropriate 
modeling methods are selected according to the charac-
teristics of the region classification, and the relationship 
between carbon emissions and thermal power generation, 
wind power generation, photovoltaic power generation, 
hydropower generation, and nuclear power generation are 
analyzed.

Data collection and classification of regions

Data collection and descriptive statistics

In China, the carbon emissions from the electric power 
industry account for more than 40% of total carbon emis-
sions, but about 60% of carbon emissions come from other 
industries. To exclude the impact of carbon emissions 
from other industries, this paper uses the carbon emissions 
of production and supply of electric power, steam, and hot 
water for 30 regions from the China Emission Accounts 
& Dataset. “Industrial classification for national economic 
activities (GB/T 4754–2017)” stipulates that the sector of 
production and supply of electric power, steam, and hot 
water mainly includes electricity production and supply, 
and heat production and supply. As the supply of electric-
ity and heat is mainly through the grid and heating pipe 
network, its carbon emissions are extremely small. There-
fore, the carbon emissions of the production and supply 
of electric power, steam, and hot water mainly come from 
the carbon emissions from electricity production, and the 
carbon emissions from heat production.

There are five main forms of electricity production in 
China, thermal power (TG), photovoltaic power (PG), 
wind power (WG), hydropower (HG), and nuclear power 
(NG). Taking the carbon emission regional production 
accounting methods and the electric power transmission 
between regions into account, this paper selects the elec-
tric power production of the five forms as the explanatory 
variables for carbon emissions of the production and sup-
ply of electric power, steam, and hot water. The annual 
power generation of the five forms of 30 regions in China 
is obtained from the China Electricity Council. The data 

shows that since 2010, wind power and photovoltaic power 
have rapidly developed; hence, the power generation data 
from 2010 to 2019 can be used.

The carbon emissions from heating also are the compo-
nent of the carbon emissions of the production and supply 
of electric power, steam, and hot water. In northern China, 
such as Heilongjiang, Liaoning, and Jilin, heating is required 
for about half of 1 year, which generated a large amount of 
carbon emissions. Therefore, for heating regions, the amount 
of heating is an explanatory variable for carbon emissions 
that cannot be ignored. There are 15 provinces and cities that 
are heating in winter in China, which are shown in Fig. 2. 
But it should be noted that not all cities in Henan Province 
are heated in winter. The amount of heating is closely related 
to the number of heating days and the heating area (Mi et al. 
2021), so this paper uses the product of the number of heat-
ing days and the heating area to reflect the heating situation 
(H). The number of heating days and heating areas from 
2010 to 2019 in 15 regions are collected. The number of 
heating days comes from local government websites, and the 
heating areas come from the National Bureau of Statistics. 
The data sources are shown in Table 1.

The statistical results of the carbon emissions of pro-
duction and supply of electric power, steam and hot water, 
thermal power generation, wind power generation, pho-
tovoltaic power generation, hydropower generation, and 
nuclear power generation for 30 regions from 2010 to 2019 
in China are shown in Table 2. The lowest carbon emissions 
of production and supply of electric power, steam, and hot 
water are 9.970 tons in Qinghai in 2010, and the largest are 
604.180 tons in Inner Mongolia in 2019, which indicated 
that there are significant differences in carbon emissions 
for different regions. The maximum production of thermal 
power is 482.4 billion kWh in Shandong in 2019, and the 
minimum production is 10.4 billion kWh in Qinghai in 2010. 
The maximum production of thermal power generation is 48 
times of the minimum. The maximum production of wind 
power, photovoltaic power, hydropower, and nuclear power, 
respectively, are 666, 176, 3316, and 110.6 billion kWh, 
and the minimum production all is 0. Some regions do not 
have wind power and photovoltaic power in 2010, and some 
regions do not have hydropower and nuclear power, which 
resulted in their minimum production being 0. The statisti-
cal results show that the differences in the power generation 
forms for different regions are significant. Therefore, it is 
scientific and reasonable to divide regions according to the 
form of power generation.

Classification of regions based on the forms of power 
generation and heating characteristics

Affected by resource endowment, the forms of power gen-
eration in regions are quite different in China. For example, 
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nuclear power is mainly located in coastal provinces, such 
as Fujian and Guangdong, while in other inland provinces, 
they do not have nuclear power generation. The distribution 

of nuclear power in China is shown in Fig. 3. The water 
resources are enriched in the southwestern region, such 
as Sichuan, Yunnan, Guizhou, and Qinghai, which have 

Fig. 2  The distribution of heat-
ing regions in winter for China

Table 1  Data sources Variable Time Data sources

The carbon emissions of production and supply 
of electric power, steam, and hot water

2010–2019 China Emission Accounts & Dataset

The production of thermal power 2010–2019 China Electricity Council
The production of hydropower 2010–2019 China Electricity Council
The production of wind power 2010–2019 China Electricity Council
The production of photovoltaic power 2010–2019 China Electricity Council
The production of nuclear power 2010–2019 China Electricity Council
The number of heating days 2010–2019 The local government websites
The heating areas 2010–2019 National Bureau of Statistics

Table 2  The statistical results

CE (ton) TG (billion kWh) WG (billion kWh) PG (billion kWh) HG (billion kWh) NG (billion kWh)

Mean 162.370 1416.300 67.455 21.874 338.865 59.168
Maximum 604.180 4824.000 666.000 176.000 3316.000 1106.000
Minimum 9.970 104.000 0.000 0.000 0.000 0.000
Standard deviation 124.658 1119.131 98.813 38.101 600.519 160.516
Skewness 1.176 1.128 2.874 2.047 3.008 3.336
Probability 0.000 0.000 0.000 0.000 0.000 0.000
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achieved remarkable results in hydropower generation. But 
in Shanghai, they do not have hydropower generation. In 
Tianjin, the hydropower generation is too small, and from 
2012 to 2015 the production of hydropower is 0, so Tianjin 
is considered to be the region without hydropower genera-
tion. Wind resources, solar resources, and coal resources are 
easily obtained; therefore, there are wind power generation, 
photovoltaic power generation, and thermal power genera-
tion in 30 regions.

The heating regions have been identified in data collec-
tion. Based on the forms of power generation and heating 
characteristics, the 30 regions are divided into 6 classes. 
And the regions included in each class are shown in Fig. 4.

The Class I mainly includes Shandong and Liaoning, 
which has thermal power generation, photovoltaic power 
generation, wind power generation, hydropower generation, 
nuclear power generation, and heating in winter.

The Class II is the regions that have thermal power gen-
eration, photovoltaic power generation, wind power genera-
tion, hydropower generation, and heating in winter. They are 
Jilin, Heilongjiang, Inner Mongolia, Beijing, Hebei, Henan, 
Shanxi, Shaanxi, Ningxia, Qinghai, Gansu, and Xinjiang.

The Class III only contains Tianjin, which has thermal 
power generation, photovoltaic power generation, wind 
power generation, and heating in winter.

The Class IV is the regions that have thermal power 
generation, photovoltaic power generation, wind power 

generation, hydropower generation, nuclear power genera-
tion, and does not have heating in winter. They are Jiangsu, 
Zhejiang, Fujian, Guangdong, Guanxi, and Hainan.

The Class V is the regions that have thermal power gen-
eration, photovoltaic power generation, wind power gen-
eration, hydropower generation, and do not have heating in 
winter. They are Sichuan, Yunnan, Guizhou, Chongqing, 
Hubei, Hunan, Jiangxi, and Anhui.

The Class VI only includes Shanghai, which has ther-
mal power generation, photovoltaic power generation, wind 
power generation, and does not have heating in winter.

Model construction

This paper applies the transformed Cobb–Douglas function 
to explore the nexus between multi-energy power generation 
and carbon emissions. To eliminate the influence of hetero-
scedasticity, the logarithm of variables is used. Due to the 
different forms of power generation in regions, this paper 
conducts models for the 6 classes of regions, respectively. 
Taking the Class I regions as an example, the equation of 
carbon emissions and multiple energy is shown in formula 
(1).

(1)
log

(

CE
it

)

= c
it
+ �1it log

(

TG
it

)

+ �2it log
(

HG
it

)

+ �3it log
(

WG
it

)

+ �4it log
(

PG
it

)

+�5it log
(

NG
it

)

+ �6it log
(

H
it

)

+ �
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Fig. 3  The distribution of 
nuclear power in China
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Based on formula (1), combining the forms of power 
generation and heating situation for each class of region, 
the explanatory variables should be adjusted, respectively. 
For Class II regions, which are without nuclear power gen-
eration compared to Class I regions, the explanatory vari-
able of nuclear power production should be excluded. And 
for Class IV regions, which are without heating compared 
to Class I regions, the explanatory variable of heating 
should be excluded. Due to the strong similarity of the for-
mula for each class, the introduction will not be repeated.

It should be noted that the provinces and cities in Class 
II regions, Class IV regions, and Class V regions are more 
than 3. So the basic data in the three classes fulfill the 
requirements of panel data that multi-dimensional time-
series data for cross-sectional individuals at continuous 
times. Compared with the pooled time-series and cross-
section data, panel data carry more information, which 
can reflect the change rules in time series and cross sec-
tion at the same time. Based on the assumption of the 
Cobb–Douglas function, the panel data modeling method 
can be used in the three classes.

There are Liaoning and Shandong in Class I regions, 
Tianjin in Class III regions, and Shanghai in Class VI 
regions. The number of individuals in the above three cat-
egories is not more than two, which does not fulfill the panel 
data requirements. Therefore, for the above regions, this 
paper uses regression analysis to research the connection 
between multiple-energy power generation and carbon emis-
sions. The regression analysis process is simple and will not 
be introduced in detail. The following process for panel data 
analysis does not apply to the above 4 regions.

Cross‑sectional dependence test

The cross-sectional dependence test is one of the important 
processes for panel data analysis. Cross-sectional correlation 
of panel data can lead to biased, inconsistent, and inefficient 
results in the estimated coefficients. Hence, it is necessary to 
test whether the cross-sectional is dependent. The method for 
the cross-sectional dependence test mainly contains the Pesa-
ran test (Pesaran et al. 2004) and the Breusch and Pagan test 
(Breusch and Pagan 1980). In the cross-sectional dependence 
test, the null hypothesis is that there is no cross-sectional corre-
lation in panel data. When the null hypothesis is accepted, the 
panel data does not have cross-sectional correlation. Since the 
Pesaran test is more suitable for panel data with relatively large 
individuals and short time, this paper uses the Pesaran test to 
explore cross-sectional correlation. The calculation formula of 
the Pesaran test is shown in formula (2).

where N is the number of individuals, i, j ∈ N ; T  is the time 
period; and �̂ij is the correlation coefficient, which calcula-
tion formula is as follows:

where �̂it and �̂jt are the residuals of i and j.

(2)CD =

√

2T

N(N − 1)

(

N−1
∑

i=1

N
∑

j=i+1

�̂ij

)

(3)�̂ij =

(

T
∑

t=1

�̂2

it

)−1∕2( T
∑

t=1

�̂2

jt

)−1∕2 T
∑

t=1
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Fig. 4  The classification of 30 
regions
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Panel unit root test

The aim of the panel unit root test is to ensure the stability of 
the panel data. The non-stationary series may result in false 
regression. To protect the credibility of the estimation, it is 
necessary to do the panel unit root test. The methods for the 
panel unit root test mainly contain Levin, Lin, and Chut test 
(LLC) (Levin et al. 2002); Im Pesaran and Shin test (IPS) (Im 
et al. 2003); and augmented Dickey-Fuller test (ADF-Fisher) 
(Maddala and Wu 1999). The null hypothesis of these tests is 
the panel data series have a unit root, and the data is unstable. 
When the unit root test rejects the null hypothesis, the data is 
stationary.

It should be noted that the alternative hypothesis of the LLC 
test is different from other tests. The null hypothesis and the 
alternative hypothesis of the LCC test are as follow. H0 repre-
sents that the panel data contains the unit root; H1 represents 
that the panel data is stationary, and the autoregressive coef-
ficient for each individual is the same. To ensure the reliability 
of the test, the LLC test and the ADF-Fisher test are both used.

The LCC test method is as follows:

where � is the autoregressive coefficient, pi is the lag order 
for individual i , x′

it
 are the exogenous variables including 

individual fixed effects and time, and uit is the random error.
The alternative hypothesis of the ADF-Fisher test also is the 

panel data is stationary, but the autoregressive coefficient for 
each individual is different, which is different from the LLC 
test. The null hypothesis and the alternative hypothesis of the 
ADF-Fisher test are as follow:

The ADF-Fisher test method is as follows:

where �i is the p statistic of the unit root test for individual 
i , which obeys the chi-square distribution with 2 N degrees 
of freedom.

Panel co‑integration test

The co-integration test is used to test the long-term relation-
ship among the variables. If the explanatory variable and 

(4)
H0 ∶ 𝜂1 = 𝜂2 = 𝜂3 = ⋯ 𝜂

n
= 0, fori = 1, 2, 3⋯N

H1 ∶ 𝜂1 = 𝜂2 = 𝜂3 = ⋯ 𝜂
n
< 0, fori = 1, 2, 3⋯N

(5)Δyit = �yit−1 +

pi
∑

j=1

�ijΔyit−1 + x
�

it
+ uit

(6)

H0 ∶ 𝜂1 = 𝜂2 = 𝜂3 = ⋯ 𝜂n = 0, fori = 1, 2, 3⋯N

H1 ∶ 𝜂1 = 0, fori = 1, 2, 3⋯N1and𝜂i < 0, fori = N1 + 1,N1 + 2,⋯N

(7)−2

N
∑

i=1

log
(

�i
)

→ �2(2N)

explained variable are co-integrated, there is a long-term 
stable relationship between the variables. The method for 
the panel co-integration test mainly uses the Kao test (Kao 
1999). The null hypothesis of the co-integration test is that 
there is no long-term co-integration relationship between 
the variables. When the co-integration test rejects the null 
hypothesis, it means that there is a long-term co-integration 
relationship between the variables. The Kao test includes 
two stages. In the first stage, it is assumed that each indi-
vidual has different intercept terms and the same coefficient, 
and the corresponding regression equation in the Kao test 
is as follows:

where, according to the assumption for different individual 
i , the �i is different and the � is the same. And the �i is the 
estimated error term and represents deviances from the long-
term relationship, which is set to be equal to zero according 
to the assumption.

In the second stage, conducts the unit root test of uit in 
the first stage, and the ADF statistic of uit for the Kao test 
is as follows:

where tp̃ is the t-statistic in ADF regression for co-integra-
tion, �̂2

v
= Σ̂yy − Σ̂yxΣ̂

−1
xx

 , and �̂2

0v
= Ω̂yy − Ω̂yxΩ̂

−1
xx

.

Model specification test

After the unit root test and the co-integration test, the model 
form for panel data should be tested. Model specification test 
can improve the validity of the model. The models for panel 
data mainly include three types: variable coefficient model, 
variable intercept model, and constant coefficient model. 
Usually, the F test is used to determine the model specifica-
tion. Based on formula (1), the hypothesis is as follows.

The hypothesis of H2 means that for each individual, the 
constant and coefficient are the same. When the hypothesis 
H2 is accepted, the constant coefficient model should be estab-
lished. The hypothesis of H1 means that for each individual, the 
coefficient is the same, but the constant is different. When the 
hypothesis H1 is accepted, the variable intercept model should 
be established. When the hypotheses H1 and H2 are both 
rejected, the variable coefficient model should be established, 

(8)yit = �i + �it + x
�

it
� + uit

(9)
ADF =

tp̃ +
√

6N�̂v∕2�̂0v
�

�̂2

0v

2�̂2
v

+
3�̂2

v

10�̂2

0v

(10)H1 ∶ �1 = �2 = �3 = ⋯ �n

(11)
H2 ∶ C1 = C2 = C3 = ⋯CN , and�1 = �2 = �3 = ⋯ = �N
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which means that for each individual, the constant and coef-
ficient is different.

Firstly, based on the F test, hypothesis H2 is tested. The 
formula for the F statistic of H2 is as follows:

where S1 is the residual sum of squares for the variable coef-
ficient model, S3 is the residual sum of squares for the con-
stant coefficient model, N  is the number of cross-section 
individual, K is the number of indicators, and T  is the length 
of time.

Compare F2 with the critical value F� in a given significant 
level, which usually is 5%. The formula for F� is as in formula 
(13). If F2 < F𝛼 , the hypothesis H2 should be accepted, and 
the constant coefficient model be constructed. If F2 > F𝛼 , the 
hypothesis H2 should be rejected, and it is necessary to con-
tinue to test hypothesis H1.

Secondly, testing the hypothesis H1 , the formula for the F 
statistic of H1 is as follows:

where S2 is the residual sum of squares for the variable inter-
cept model. Compare F1 with the critical value F1� in 5% 
significant level. The formula for F1� is as follows.

(12)F2 =

(

S3 − S1
)

∕[(N − 1)(K + 1)]

S1∕[N(T − K − 1)]

(13)F� = F0.05[(N − 1)(K + 1),N(T − K − 1)]

(14)F1 =

(

S2 − S1
)

∕[(N − 1)K]

S1∕[N(T − K − 1)]

If F1 < F1𝛼 , the hypothesis H1 should be accepted, and 
the variable intercept model be constructed. If F1 > F1𝛼 , 
the hypothesis H1 should be rejected, and the variable coef-
ficient model be constructed.

And it should be noted that the variable coefficient 
model and the variable intercept model can be divided 
into fixed effect or random effect, which are different in 
the correlation between individual and explanatory vari-
ables. The Hausman test is the common method for testing 
the fixed effect or the random effect of models. The null 
hypothesis of the Hausman test is that the random effect 
is irrelevant to explanatory variables. The statistics of the 
Hausman test is as follows:

where b̂CV is the estimated parameters of the fixed-effect 
model and b̂GLS are the estimated parameters of the random-
effect model. W  obeys the �2 distribution with degree of 
freedom K , which is the number of explanatory variables, 
and χ2

�
(k) is the critical value at a given significant level. 

If W  > �2
�
(k) , the null hypothesis should be rejected, and 

the fixed-effect model is constructed. Otherwise, the null 
hypothesis should be accepted, and the random-effect model 
is constructed. The modeling process is shown in Fig. 5.

(15)F1� = F0.05[(N − 1)K,N(T − K − 1)]

(16)
W =

(

b̂CV − b̂GLS

)�[

var
(

b̂CV

)

− var
(

b̂CV

)]−1

(b̂CV − b̂GLS)

Fig. 5  The modeling process
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Results and discussions

Under the carbon peak and carbon neutrality goals, the 
electric power industry, which is the main source of car-
bon emissions, is under enormous pressure. To promote the 
low-carbon development of the electric power industry, this 
paper analyzes the influences of multi-energy power genera-
tion on carbon emissions in different regions in China and 
proposes the low-carbon development advices for different 
regions.

Results of cross‑sectional dependence test

For the three classes of regions, which contain 26 provinces, 
the cross-sectional correlation test is carried out. Consider-
ing the data characteristic of the three classes of regions, this 
paper uses the Pesaran test to research the cross-sectional 
correlation, which result is shown in Table 3. The statistical 
results show that the p values of Class II regions, Class IV 
regions, and Class V regions are 0.166, 0.133, and 0.060, 
respectively, which all accept the null hypothesis with no 
cross-sectional dependence at the 5% significant level.

Results of panel unit root test

To ensure the reliability of the unit root test, the LLC test 
and the ADF test are used to research the stability of the 
panel data for the three classes of regions. The statistical 
results and the p values of the LLC test and the ADF test 

for the three classes of regions are shown in Table 4. The 
smaller the p value is, the higher the reliability of the results 
is. For Class II regions, the p value indicates that all vari-
ables reject the null hypothesis with unit root in level at the 
10% significance level, so the panel data are stationary. For 
Class IVregions and Class V regions, all variables reject the 
null hypothesis with unit root in the first difference at the 5% 
significance level, so the panel data are stationary. Generally, 
the panel data of the three classes of regions are stationary.

Results of panel co‑integration test

To ensure the co-integration relationship among the varia-
bles, the Kao test is employed. The results of the Kao test for 
the three classes of regions are shown in Table 5. For Class 
II regions and Class IV regions, the null hypothesis of no 
co-integration can be rejected at the 1% significance level. 
For Class V regions, the null hypothesis of no co-integration 
is rejected at the 5% significance level. And the results of the 
panel co-integration test for the three classes of regions all 
support the conclusion that there is a co-integration relation-
ship among the variables.

Results of model specification test

To determine the model specification of the three classes of 
regions, the residuals are calculated. According to formulae 

Table 3  Pesaran cross-sectional dependence test results

Classification Pesaran’s test of cross-sectional 
independence

p value

Class II regions  − 1.386 0.166
Class IV regions  − 1.503 0.133
Class V regions 1.878 0.060

Table 4  Panel data unit root test results (p values in parentheses)

* denotes 10% level of significance, ** denotes 5% level of significance, and *** denotes 1% level of significance

Variables Class II regions (level) Class IV regions (first difference) Class V regions (first difference)

LLC ADF LLC ADF LLC ADF

Log CE  − 7.099 (0.000***) 31.832 (0.001***)  − 6.045 (0.000***) 41.652(0.004***)  − 10.914 (0.000***) 88.773 (0.000***)
Log TG  − 6.010 (0.000***) 27.116 (0.007***)  − 9.479 (0.000***) 58.786 (0.000***)  − 11.307 (0.000***) 72.291 (0.000***)
Log WG  − 4.383 (0.000***) 29.295 (0.004***)  − 19.986 (0.000***) 65.505 (0.000***)  − 16.833 (0.000***) 80.512 (0.000***)
Log PG  − 5.810 (0.000***) 19.225 (0.083*)  − 7.644 (0.000***) 37.380 (0.019**)  − 4.776 (0.000***) 81.648 (0.000***)
Log HG  − 4.217 (0.000***) 24.419 (0.019**)  − 7.799 (0.000***) 51.995 (0.000***)  − 10.764 (0.000***) 69.446 (0.000***)
Log NG  − 12.904 (0.000***) 44.675 (0.000***) – – – –
Log H – – – –  − 4.867 (0.000***) 45.969 (0.004***)

Table 5  The results of panel co-integration test (Kao panel co-inte-
gration test)

* denotes 10% level of significance, ** denotes 5% level of signifi-
cance, and *** denotes 1% level of significance

Classification Statistic p-value

Class II regions  − 6.896 0.000***
Class IV regions  − 4.809 0.000***
Class V regions  − 2.159 0.016**
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(12) and (14), the F statistic is calculated. The specific cal-
culation data is shown in Table 6.

Comparing the F statistic value with the critical values at 
5% significance level, it is found that for the three classes of 
regions, the F2 statistic and the F1 statistic are all greater than 
the critical values at the 5% significant level, which means 
that the variable coefficient model should be established. 
The results of the model specification test illustrate that 
even in provinces with the same power generation forms, 
the connection between carbon emissions and multiple 
energy power generation is significantly different between 
provinces.

In addition, the results of the Hausman test are shown 
in Table 7. For Class II regions and Class IV regions, the 
null hypothesis that the random-effect model should be 
constructed is rejected at the 1% significance level. And 
for Class V regions, the null hypothesis is rejected at the 
10% significance level. In summary, for the three classes 
of regions the model should be a fixed-effect variable coef-
ficient model. And the R-squared for the three classes of 
regions, respectively, are 0.998, 0.996, and 0.981, which 
means that the model has high goodness of fit.

Estimation results and development suggestions

According to the electric power generation forms and heat-
ing situation, the 30 regions in China are classified into 6 
classes. For the 26 provinces and cities in Class II regions, 
Class IV regions, and Class V regions, the variable coeffi-
cient model is established. And for the 4 provinces and cities 
in Class I regions, Class III regions, and Class VI regions, 
the regression analysis model is built. The estimated results 
of the relationship between carbon emissions and multi-
energy power generation for 30 regions in China are shown 
in Table 8.

To promote the low-carbon development of the power 
industry, according to the nexus between carbon emis-
sions and power generation, and the resource endowment 
in regions, the future development suggestions of the 
electric power industry are explored. To fully reflect the 
resource endowment in different regions, based on the data 
released by the China Meteorological Administration and 
the National Energy Administration, the distribution map of 
wind resources, water resources, solar resources, and coal 

resources have been drawn (Fig. 6). It can be found that in 
China, coal resources are mainly concentrated in Shanxi, 
Inner Mongolia, Shaanxi, and Xinjiang; wind resources and 
solar resources are mainly concentrated in Heilongjiang, 
Jilin, Liaoning, Hebei, Inner Mongolia, Gansu, Qinghai, 
Ningxia, and other places; and water resources are mainly 
concentrated in Sichuan, Guizhou, Yunnan, Hubei, and other 
places in the southwest region. Based on the resource dis-
tribution and the connection between power generation and 
carbon emissions, the development suggestions of different 
provinces in the electric power supply are discussed.

(1) The impact of thermal power generation on carbon 
emissions and the development suggestions

The result shows that thermal power significantly 
increases carbon emissions in China. But the effect intensity 
of thermal power generation on carbon emissions is various 
in regions. In Anhui, thermal power generation has the great-
est impact on carbon emissions, and a 1% increase in thermal 
power generation increases carbon emissions by 1.498%. In 
Beijing, thermal power generation has the least impact on 
carbon emissions, and a 1% increase in thermal power gen-
eration only increases carbon emissions by 0.282%.

Further analyzing the different effect intensities, it is 
found that in 2019, in Anhui the proportion of thermal power 
generation on total power generation is extremely high, the 
thermal power generation accounting for 92.26% of the total 
power generation. This reflects that in Anhui electric power 
production heavily relies on thermal power, which makes the 
great impact of thermal power generation on carbon emis-
sions. Although the proportion of thermal power generation 
in Beijing also is relatively high, Beijing has made great 
efforts to promote the turnoff of coal-fired power plants. The 

Table 6  The results of model 
specification test

Classification S1 S2 S3 N T K F2 F1 The critical 
values of F2 
(5%)

The critical 
values of F1 
(5%)

Class II regions 0.145 0.871 2.848 12 10 5 13.563 4.373 1.60 1.60
Class IV regions 0.003 0.014 0.139 6 10 5 34.876 3.450 2.25 2.25
Class V regions 0.207 0.499 0.927 8 10 4 3.969 2.017 1.84 1.84

Table 7  The results of Hausman test

* denotes 10% level of significance, ** denotes 5% level of signifi-
cance, and *** denotes 1% level of significance

Classification W K p-value

Class II regions 30.885 5 0.000***
Class IV regions 269.880 5 0.000***
Class V regions 8.449 4 0.094*
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thermal power generation in Beijing has changed the situa-
tion that coal-based power generation, which results in the 
impact of thermal power generation on carbon emissions in 
Beijing, is less than in other regions.

Based on the results that thermal power has a signifi-
cantly strong positive effect on carbon emissions, at this 
stage, the carbon emission reduction in the electric power 
industry still needs to focus on thermal power. It cannot 
be ignored that the Chinese government has made a great 
effort to reduce the carbon emissions of thermal power, 
and the efficiency of thermal power has been greatly 
improved. The data from the China Electricity Council 
show that the consumption of coal to generate 1 kWh of 
electricity for thermal power dropped from 311 g in 2010 
to 289 g in 2019. But according to the significantly strong 
positive effect of thermal power on carbon emissions, the 
Chinese government should continue to promote the clean 

and efficient utilization of coal, such as energy-saving and 
carbon-reducing transformation, flexibility transformation, 
and explore measures to reduce the carbon emissions of 
thermal power further.

In addition, it should be noted that in China the elec-
tric power supply will be dominated by thermal power for a 
long time, which is highly dependent on coal-burning power 
plants. Taking the carbon emissions from production, trans-
portation, and use of coal into account, this paper suggests 
that the thermal power bases should construct in coal-rich 
regions to reduce the carbon emissions in coal transporta-
tion. The coal resources are mainly concentrated in Shanxi, 
Inner Mongolia, Shaanxi, and Xinjiang, so the thermal 
power development should also focus on those regions.

(2) The impact of wind power, photovoltaic power on car-
bon emissions, and the development suggestions

Table 8  The relationship between carbon emissions and multi-energy power generation for 30 regions in China

* denotes 10% level of significance, ** denotes 5% level of significance, and *** denotes 1% level of significance

Classification Regions Log TG Log WG Log PG Log HG Log NG Log H C

Class VI regions Shanghai 0.838***  − 0.005* 0.002 – – –  − 0.576
Class V regions Anhui 1.498** 0.001  − 0.063 0.265 – –  − 7.087

Jiangxi 0.653* 0.035  − 0.029  − 0.049* – – 0.181
Hubei 0.545**  − 0.021*** 0.028**  − 0.031* – – 1.383
Hunan 1.197***  − 0.016* 0.005  − 0.217* – –  − 5.684
Chongqing 0.526 0.031 0.025  − 0.194 – – 4.739
Sichuan 0.589***  − 0.037  − 0.034  − 0.508* – –  − 3.406
Guizhou 0.740*  − 0.002 0.039**  − 0.22* – – 7.219
Yunnan 1.064***  − 0.009  − 0.006  − 0.463* – –  − 2.725

Class IV regions Jiangsu 1.070**  − 0.118 0.011 0.083 0.085 –  − 1.353
Zhejiang 0.867** 0.163 0.080 0.041  − 0.194* –  − 0.979
Fujian 0.740*** 0.064 0.007  − 0.006*  − 0.110** –  − 0.304
Guangdong 1.134***  − 0.131 0.054  − 0.002* 0.471 –  − 0.297
Guangxi 0.650*** 0.023**  − 0.013  − 0.189** 0.001 – 0.569
Hainan 1.082**  − 0.019  − 0.024  − 0.025*  − 0.11* –  − 1.337

Class III regions Tianjin 0.782* 0.003  − 0.025 – – 0.177  − 0.841
Class II regions Beijing 0.282* 0.088  − 0.008  − 0.105 –  − 0.693* 6.486

Hebei 1.491***  − 0.135** 0.002  − 0.076 – 0.289*  − 6.824
Shanxi 0.976***  − 0.044 0.012 0.169 – 0.114*  − 2.517
Inner Meng 1.485***  − 0.059*  − 0.0003  − 0.022 –  − 0.240  − 3.942
Jilin 0.421*  − 0.254* 0.011 0.203 – 0.382 0.063
Heilongjiang 0.706*  − 0.232* 0.020  − 0.127 – 0.543* 2.959
Henan 1.432***  − 0.195 0.029 0.046 – 0.224  − 8.088
Shaanxi 0.430*  − 0.018 0.036  − 0.179 – 0.029* 2.792
Gansu 0.646*  − 0.130* 0.017  − 0.268* – 0.341**  − 0.703
Qinghai 0.691* 0.014  − 0.043**  − 0.371** – 0.051** 3.765
Ningxia 0.862***  − 0.106* 0.026 0.285 – 0.340**  − 3.408
Xinjiang 1.198***  − 0.151* 0.011  − 0.085* – 0.669  − 2.896

Class I regions Liaoning 1.106* 0.078 0.015 0.007  − 0.013 0.258  − 0.458
Shandong 0.711*  − 0.145 0.065 0.034 0.023  − 0.100 3.025
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The result shows that in the 30 regions, wind power gen-
eration both has positive effect and negative effect on carbon 
emissions. But the effect intensity of wind power on carbon 
emissions generally is small, and the absolute value of the 
coefficient does not exceed 0.254. In Hebei, Jilin, Heilongji-
ang, Gansu, and Ningxia, the production of wind power has 
a significant inhibitory effect on carbon emissions. In Jilin, a 
1% increase in wind power generation reduces carbon emis-
sions by 0.254%. While, in Guangxi, wind power has posi-
tive effects on carbon emissions, and a 1% increase in wind 
power generation increases carbon emissions by 0.023%.

The relationship between photovoltaic power and carbon 
emissions is similar to the connection between wind power 
and carbon emissions. Photovoltaic power both has posi-
tive impact and negative impact on carbon emissions, but 
the impact only in three regions has statistical significance. 
In Qinghai, photovoltaic power generation contributed to 
reducing carbon emissions, and a 1% increase in photovol-
taic power generation reduces carbon emissions by 0.043%. 
However, in Hubei and Guizhou, photovoltaic power genera-
tion increased carbon emissions.

Further exploring the relationship between wind power, 
photovoltaic power, and carbon emissions, it is found that 
in the regions where wind power or photovoltaic power has 
significant negative effects on carbon emissions, the pro-
duction of wind power or photovoltaic power has occupied 
an important proportion of the total electric power genera-
tion. For example, in Hebei, Jilin, Heilongjiang, Gansu, 

and Ningxia, in 2019, the proportion of wind power 
generation to the total electric power generation all has 
exceeded 10%. Similarly, in 2019, the proportion of pho-
tovoltaic power generation to the total power generation in 
Qinghai reached 17.89%. Therefore, this paper considers 
that the reason for the insignificant impact of wind power 
generation and photovoltaic power generation on carbon 
emissions in some regions is the low proportion of wind 
power generation or photovoltaic power generation on the 
total power generation. Combined with the research results 
in Hebei, Jilin, Qinghai, and other regions, it is reasonable 
to believe that wind power and photovoltaic power contrib-
uted to reducing carbon emissions when they develop to a 
certain scale (Nguyen and Kakinaka 2019).

It should be noted that in some regions where wind 
resources or solar resources are rich, the effect of wind 
power or photovoltaic power on carbon emission is insig-
nificant, such as Inner Mongolia, Xinjiang, and Liaoning. 
Based on the effect of wind power on carbon emissions 
in Jilin, Heilongjiang, Hebei, Gansu, and Ningxia, it is 
recommended to speed up the construction of wind power 
in the regions with rich wind resources, such as Inner 
Mongolia, Xinjiang, and Liaoning. Based on the effect of 
photovoltaic power on carbon emissions in Qinghai, it is 
recommended to speed up the construction of photovoltaic 
power in the regions where photovoltaic resources are rich, 
such as Inner Mongolia, Xinjiang, and Gansu.

Fig. 6  The distribution of wind 
resources, water resources, solar 
resources, and coal resources 
in China
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(3) The impact of hydropower on carbon emissions and the 
development suggestions

The results show that hydropower both has positive 
effects and negative effects on carbon emissions, but there 
is statistically insignificant when hydropower generation 
increase carbon emissions. Therefore, there is a negative 
correlation between hydropower generation and carbon 
emissions in China. The effect intensity of hydropower 
generation on carbon emissions also is various in regions. 
In Sichuan, hydropower generation has the greatest impact 
on carbon emissions, and a 1% increase in hydropower 
generation reduces carbon emissions by 0.508%. In 
Guangdong, hydropower generation has the least impact 
on carbon emissions, and a 1% increase in hydropower 
generation only reduces carbon emissions by 0.002%.

Further analyzing the proportion of hydropower genera-
tion on the electric power supply in regions, it is found that 
in 2019 in Sichuan, the proportion of hydropower in total 
power generation is 84.96%, while in Guangdong, the pro-
portion of hydropower on total power generation only is 
8.06%, which leads to the different effects of hydropower. 
Compared with thermal power, the development of hydro-
power is significantly affected by resource endowments. 
Therefore, the effect intensity of hydropower generation 
on carbon emissions and the proportion of hydropower 
generation on total electric power are various in regions. 
It should be noted that even in regions with rich water 
resources, the effect intensity is also different. The distri-
bution of water resources shows that there are abundant 
water resources in Qinghai, Sichuan, Yunnan, and Hubei. 
However, the carbon emission reduction coefficient of 
hydropower in Hubei only is 0.031, which is significantly 
different from 0.508 in Sichuan. Therefore, the suggestion 
is the water resource-rich regions should focus on explor-
ing ways to improve the effect of hydropower, and achiev-
ing maximum utilization of water resources by means such 
as water resources cascade dispatch.

(4) The impact of nuclear power on carbon emissions and 
the development suggestions

In China, there are only 8 regions that have nuclear 
power. Nuclear power also has positive effects and nega-
tive effects on carbon emissions, but only when nuclear 
power generation reduces carbon emissions has statisti-
cal significance. Therefore, it is reasonable to believe that 
nuclear power has a significant negative effect on carbon 
emissions. In Zhejiang, a 1% increase in nuclear power 
generation reduces carbon emissions by 0.194%; in Fujian 
and Hainan, a 1% increase in nuclear power generation 
both reduces carbon emissions by 0.110%.

Generally, in China, nuclear power is mainly located in 
developed coastal regions, such as Zhejiang, Jiangsu, and 
Guangdong, which have the characteristics of large popula-
tion density, high-speed economic development, and large 
demand for electricity. Considering the characteristics of 
those regions, nuclear power should be avoided in a one-
size-fits-all abandon approach. It is suggested that those 
regions should gradually promote the construction and appli-
cation of nuclear power on the basis of safety.

(5) The impact of heating on carbon emissions and the 
development suggestions for other regions

Heating is an important source of the carbon emissions 
of production and supply of electric power, steam, and hot 
water in some regions; therefore, it is reasonable to use the 
heating situation as an explanatory variable in the model. 
There are 15 regions heating in winter in China. The result 
shows that in most regions, heating has a statistically sig-
nificant positive impact on carbon emissions. In Heilongji-
ang, a 1% increase in heating increases carbon emissions by 
0.543%. But only in Beijing, there is a significant negative 
correlation between heating and carbon emissions, which 
is closely related to the clean heating renovation in recent 
years, such as replacing coal heating with natural gas heating 
and electric heating. The results for Beijing prove the effect 
of clean heating implementation.

In China, some provinces and regions have prominent 
environmental and ecological development goals, such as 
Qinghai. Compared with other regions, Qinghai Province 
should pay more attention to the low-carbon development of 
electric power supply. Based on the research results, Qing-
hai should focus on the development of wind power, photo-
voltaics, and hydropower, which inhibit carbon emissions, 
and prohibit the construction of large-scale thermal power, 
which is positively correlated with carbon emissions.

Conclusion

As the main source of carbon emissions, the electric power 
industry has enormous pressure on carbon emission reduc-
tion under the carbon peak and carbon neutrality goals. 
Based on the significantly different forms of power gen-
eration, this paper discusses the influences of multi-energy 
power generation on carbon emissions in 30 regions of 
China. There are four important findings. Firstly, in China, 
thermal power has a significant positive impact on carbon 
emissions, which should shoulder the main task of carbon 
emission reduction in the electric power industry. Secondly, 
wind power and photovoltaic power contributed to reducing 
carbon emissions, if they are developed to a certain scale. 
And it is proposed to speed up the construction of wind 
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power and photovoltaic power in regions with rich wind 
resources and solar resources such as Inner Mongolia, Xin-
jiang, Liaoning, and Gansu. Thirdly, the inhibited effect of 
hydropower on carbon emissions varies in different regions. 
It is recommended to focus on improving the efficiency of 
hydropower in regions with rich water resources and to max-
imize the utilization of water resources by cascade dispatch 
of water resources. Fourth, nuclear power has a significant 
negative effect on carbon emissions. It is suggested that the 
coastal regions should gradually promote the construction 
and application of nuclear power on the basis of safety.

This paper using the panel data analysis method effec-
tively analyzed the heterogeneous impacts of multi-energy 
power generation on carbon emissions in different regions 
of China. However, the panel data analysis method has high 
requirements for data which should be a large number of 
continuous data with consistent statistical caliber. If the 
amount of data is small or the data is discontinuous, the 
panel data analysis method is not suitable. Therefore, this 
method is usually used in fields or industries with continu-
ous data, such as the electric power industry. However, the 
traditional panel data analysis method has limitations in 
studying issues with high spatial dependence. Therefore, 
future studies can collect the spatial data and discuss the 
joint prevention and treatment of carbon emissions.
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