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Abstract
“Green development” has become the way for countries around the world to strengthen industries, and it is an important 
part of China’s high-quality economic development. The key for China to strike a balance between economic growth and 
environmental management is to optimize green total factor productivity (GTFP). This paper measures the GTFP of industry 
in 30 provinces of China from 2003 to 2019, based on the perspective of energy and carbon emission constraints. It empiri-
cally examines the spatial disequilibrium and dynamic evolution of industrial GTFP in China using Dagum Gini coefficients, 
Kernel density estimation, and Markov chain analysis. The study finds that, (1) although China’s industrial GTFP is not 
high, it shows an increasing trend. The industrial GTFP in the southern region is higher than that in the northern region. 
(2) Technical efficiency is the shortcoming of China’s industrial GTFP improvement. Technological progress is the main 
driving force of China’s industrial GTFP improvement. (3) The relative and absolute differences in China'’ industrial GTFP, 
technical efficiency, and technological progress have all shown a widening trend. Regional differences between the southern 
and northern regions are the main source of relative differences in industrial GTFP, technical efficiency, and technological 
progress. (4) China’s industrial GTFP shows a clear “club convergence” phenomenon and the “Matthew effect.” However, 
after the introduction of the spatial factor, the “club convergence” phenomenon and the “Matthew effect” have weakened. The 
driving effect of industrial GTFP on neighboring provinces is stronger in the south than in the north. This paper enriches the 
analysis of industrial GTFP and provides an important basis for the coordinated regional development of Chinese industry.

Keywords  Green total factor productivity · Regional differences · Dynamic evolution · Kernel density estimation · Dagum 
Gini coefficient · Markov chain

Introduction

In 2018, global carbon emissions reached 34.05 billion tons, 
three times higher than in 1965. Global per capita carbon 
emissions grew to 4.42 tons per person in 2018, an increase 
of 20% compared to 1971. Economic growth in countries 
such as China and Japan has contributed to the rapid increase 
in carbon emissions in Asia, which is gradually becoming 
the world’s largest carbon emitting region. By 2020, China 
will account for 30.7% of the global carbon emissions, 
becoming the world’s largest carbon emitter. Therefore, it is 
of profound significance to study China’s industrial GTFP.

From the beginning time of reform and open, China’s 
economy is growing at a high speed. But it is more diffi-
cult to maintain economic growth than to start economic 
growth. However, the rapid economic growth over the 
past four decades has also brought serious environmental 
problems, and the problem of unbalanced and insufficient 
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development is more prominent, hindering further economic 
growth. The 14th Five-Year Plan for National Economic and 
Social Development of the People’s Republic of China and 
the Outline of Vision 2035 state that China has shifted to 
a high-quality development stage, with significant insti-
tutional advantages and strong development resilience. In 
September 2020, China clearly set out the targets for “car-
bon peaking” by 2030 and “carbon neutral” by 2060. Under 
the new situation, the essence of promoting high-quality 
economic development is to improve energy efficiency and 
reduce environmental pollution in parallel with economic 
development, that is, to improve GTFP. Therefore, China’s 
economic development has put forward higher requirements 
for industrial GTFP.

The report of the 20th National Congress of the Com-
munist Party of China stated that accelerating the construc-
tion of a new development pattern and making efforts to 
promote high-quality development to improve total factor 
productivity. The report also emphasized accelerating the 
green transformation of development methods, implement-
ing comprehensive conservation strategies, developing green 
and low-carbon industries, advocating green consumption, 
and promoting the formation of green and low-carbon modes 
of production and lifestyles. Combined with China’s actual 
national conditions, in the context of global sustainable 
development, China needs to rely on the green develop-
ment system to integrate into the global sustainable devel-
opment trend. In the face of the severe ecological crisis, 
a green economy oriented towards quality and efficiency 
is the strategic choice to seize the economic high ground. 
A green economy requires economies to adhere to green 
development, use green technologies, build green develop-
ment systems, emphasize high quality and green supply in 
the production chain, and increase the country’s economic 
adaptive capacity.

President Xi pointed out that China’s regional development 
is in a good situation. The regional economic development 
divergence trend is obvious; the Yangtze River Delta, the Pearl 
River Delta, and other regions have initially embarked on the 
track of high-quality development. The growth of some north-
ern provinces slowed down, and the national economic center 
shifted to the south. Since the reform and opening up, the gap 
between the north and the south has further widened to a large 
extent, with the total economic output of the north accounting 
for about 46% in 1978 and the total economic output of the 
northern regions accounting for about 35% in 2020. Due to 
different asset endowments and development characteristics, 
regional economic development is also different. Industrializa-
tion took place first in the north, with economic development 
ahead of the south. But since China began to reform and open 
up in 1978, China has put forward the policy of establishing a 
socialist market economy so that the market plays a fundamen-
tal role in the allocation of resources. Fujian and Guangdong 

provinces became the first pilot provinces and carried out mar-
ket-oriented economic reforms. Six special economic zones, 
including Shenzhen, Zhuhai, Xiamen, Shantou, and Hainan 
Island, were established to actively explore and promote mar-
ket-oriented reforms around the socialist market economy. As 
industry in the north is mainly “heavy industry,” in the south is 
mainly “light industry.” The north is heavily affected by eco-
nomic fluctuations and external shocks, making transformation 
and upgrading more difficult. Environmental pollution is more 
serious in heavy industry in the north, and green development is 
difficult and tortuous. In contrast, the southern region is closer 
to the market demand, the level of technological innovation is 
relatively high, and the effect of environmental management is 
relatively good. China’s economic center has shifted southward, 
widening the gap between north and south.

The promotion of China’s industrial GTFP requires not only 
theoretical research, but also quantitative analysis. Existing 
research on industrial GTFP measurement and analysis has been 
relatively rich, but there are still some aspects that need to be 
expanded. The main contributions of this paper are as follows: 
Firstly, by constructing a scientific measure of industrial GTFP 
for China’s sub-provinces and north–south regions with indus-
trial value added as the desired output, sulfur dioxide and carbon 
emissions as non-desired outputs, and capital, labor, and energy 
as production inputs, which more closely match the real situa-
tion of China’s industrial efficiency. Secondly, the Dagum Gini 
coefficient decomposition method is used to explore the spatial 
differences and sources of China’s industrial GTFP. This method 
can identify the GTFP improvement potential of 30 provinces in 
China and the sources of north–south differences. Thirdly, the 
Kernel density estimation method is applied to characterize the 
dynamics of the distribution of industrial GTFP in China and its 
evolutionary trends and to understand the spatial and temporal 
dynamics of absolute differences in industrial GTFP in China. 
Fourthly, the spatial Markov chain is used to examine the spe-
cific patterns of the dynamic evolution of industrial GTFP. This 
study provides a reference for enhancing industrial GTFP, pro-
moting regional coordinated development of industrial GTFP, 
and formulating policies related to achieving green low-carbon 
development, and provides a theoretical basis for formulating 
targeted environmental regulation policy intensity in the process 
of ecological civilization construction.

Literature review

In 2021, the Ministry of Industry and Information Technol-
ogy of China formulated the Notice on the “14th Five-Year” 
Industrial Green Development Plan, which clearly pointed 
out the need to create a green and low-carbon system with 
low energy resource consumption, low environmental pollu-
tion, and high economic growth quality. In the past 10 years, 
the Chinese government has formulated a large number 
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of environmental regulations and policies, such as reduc-
ing sulfur dioxide and nitrogen oxides (NOx) and carbon 
dioxide emissions. But China’s energy consumption per 
unit of GDP and emission pressure are still relatively high 
(Xu et al. 2014; Wang et al. 2013; Hang et al. 2021). In the 
context, measuring and analyzing energy and environmen-
tal efficiency is of great significance for studying the status 
quo and trends of energy consumption, pollution emissions, 
and economic growth in China’s industrial sector (Wang 
and Wei 2016). Total factor productivity is usually used to 
measure the quality of economic growth. It can evaluate eco-
nomic efficiency from the perspective of factor input and 
economic output and decompose the sources of economic 
efficiency growth (Krugman 1994). However, the process of 
economic growth is usually accompanied by the consump-
tion of resources, which will cause damage to the natural 
environment to a certain extent. The damage is difficult to 
be accurately evaluated (Ma and Hong 2004). The research 
shows that green dynamic capability and environmental 
protection strategy play an indispensable role in promoting 
green vision and environmental performance, addressing 
climate change, preventing environmental pollution, and 
alleviating energy constraints (Yu et al. 2022; Latif et al. 
2022). Advocating environmental awareness, green entrepre-
neurship orientation, sustainable investment concepts, and 
dynamic management decisions are crucial to promote green 
industrial development (San et al.2022; Zhu et al. 2020; Al 
2021; Gebauer 2011; Tunio et al. 2021). Therefore, GTFP 
includes energy and environmental constraints, one of the 
important indicators to consider environmental protection, 
energy consumption, and the quality of economic growth 
(Chen and Golley, 2014; Mahlberg and Luptacik, 2014; 
Wang and Feng, 2015; Yin et al. 2019).

To analyze input–output efficiency that includes 
unfavorable factors, scholars commonly use the direc-
tional distance function (DDF) and Malmquist Luen-
berger (ML) index to measure the total factor productiv-
ity including expected output and non-expected output 
(Chung et  al. 1997; Färe et  al. 2001; He et  al. 2013; 
Arabi et al. 2014). However, the method is limited to the 
solvability of linear function. On this basis, Oh (2010) 
applied the GML index containing global ideas to the 
measurement of environmental non-expected input–out-
put models, taking the sum of input and output of each 
period as a common reference set, which can measure 
the efficiency of production technology with cyclic accu-
mulation characteristics. Referring to previous studies, 
in order to more realistically assess the changes in the 
quality of economic growth in China’s industrial sector, 
we add industrial energy consumption and non-expected 
output that have adverse effects on the environment 
on the basis of the traditional total factor productivity 
input–output index. The GTFP systematically evaluates 

the actual efficiency of input and output of China’s indus-
trial sector under energy and environmental constraints.

There are significant regional differences in China’s eco-
nomic growth (Golley 2002; Liu et al. 2016; Hu et al. 2005). 
Studies have found that there are multiple difficulties in China, 
such as resource depletion, environmental degradation, and 
lack of advanced technology. The higher the dependence on 
traditional energy, the lower the energy efficiency (Dan 2007). 
In China, economically developed cities have higher energy 
and emission efficiency. There is still a significant imbalance 
in industrial development across the country (Wang and Wei 
2014), and the imbalance is also reflected in the industrial 
water efficiency (Shi et al. 2021). In addition, the inefficient 
use of foreign resources (Wang et al. 2016), low industrial con-
centration, imperfect financing systems, and advanced technol-
ogy gaps further restrict the growth of industrial efficiency in 
the central and western inland regions of China (Tian and Lin 
2018).

In recent years, China’s economic center has been mov-
ing southward and the development gap between the north 
and the south has been widening, which has become a new 
feature of China’s regional development (Huang et al. 2021). 
China’s industrial layout has long exhibited the charac-
teristics of southern light and north heavy, the industrial 
layout in the north is dominated by heavy industry (Xue 
et al. 2018), while the south is more focused on the devel-
opment of light industry. The main reason is that natural 
resources such as coal, iron ore, and oil are mainly located 
in northern of China. The southern region has better labor, 
transportation, and trade conditions, so it is more inclined 
to develop light industries that are less dependent on natural 
resources. Affected by factors such as politics, economic 
system reform, technology introduction, and industrial struc-
ture, after the reform and opening up, the level of economic 
development in the north and south of China has gradually 
differentiated (Wu 2001; Barbieri et al. 2012). Especially 
since the twenty-first century, the focus of China’s indus-
trial energy consumption has gradually shifted from coastal 
areas to inland areas (Zhou et al. 2016), the carbon emission 
reduction potential and new energy development also have 
significant regional differentiation (Pan and Dong 2022; 
Cui et al. 2021). With the exposure of energy consumption, 
environmental pollution, lagging industrial upgrading, and 
overcapacity issues, resource-based cities in northern China 
are facing a more severe transformation dilemma (Chen et al. 
2017). Some scholars have done a lot of quantitative analy-
sis on the input–output efficiency of China’s sub-regions 
and industries (Liang et al. 2007; Chen et al. 2020a, b; Xu 
and Lin 2016; Jiang et al. 2019; Wei et al. 2019; Li et al. 
2022), but few articles have conducted in-depth analysis of 
the internal mechanism of the formation of regional differ-
ences in China’s industrial efficiency. Therefore, based on 
previous studies, this paper re-measures industrial GTFP and 
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decomposes its regional differences to clarify the sources 
of regional differences as well as their dynamic evolution.

Research methods and data

Research methods

GML index

In order to estimate the growth of environmentally sensitive indus-
trial production efficiency, the production efficiency including both 
expected and unexpected outputs to evaluate the industrial GTFP 
should be defined (Chen and Golley 2014; Oh and Heshmati 2010; 
Tao et al. 2017). With reference to previous studies (Chung et al. 
1997; Oh 2010), defining k = 1,… ,K decision-making units 
(DMUs), s = 1, ...t...T time periods. Each DMUs use N types of 
inputs x(x ∈ R+

N
) to obtain M types of expected output y(y ∈ R+

M
) 

and I type of non-expected output b(b ∈ R+
I
) . The production pos-

sibility set (PPS) under environmental constraints can be defined as 
P(x) = {(y, b)|x → (production)(y, b)} . The directivity distance 
function DDF is introduced, which represents the distance from each 
unit to the front surface:

In the formula, � is the expansion ratio of the expected output 
and the contraction ratio of the non-expected output and g is the 
direction vector, which represents the direction of the increase 
or decrease in expected and non-expected output. The environ-
mental production technology set of the same period is defined 
as Pt(xt) = {(yt, bt)|xt → (production)(yt, bt)} , so the global 
green production technology for the inter-period construction of 
the technological frontier is defined as PG = P1 ∪ P2 ∪⋯ ∪ PT , 
and the distance between the decision-making units in different 
periods and the common frontier can be calculated. The DDF 
( DG = max{� ∶ (y + �y, b − �b)| ∈ P|(x)} ) is defined on the 
global technology set PG . The GML of the decision-making 
unit in period t to t + 1, as shown in Eq. (2).

(1)��⃗D0(x, y, b, g) = 𝑚𝑎𝑥{𝛽 ∶ (y, b) + 𝛽g ∈ P(x)}

(2)

GMLt,t+1(xt, yt, bt, xt+1, yt+1, bt+1) =
1 + DG(xt, yt, bt)

1 + DG
(
xt+1, yt+1, bt+1

)

Furthermore, the GML index can be decomposed into 
the form of a product of EC and TC, which are used 
to evaluate the position change (EC) of each decision-
making unit to the production boundary and production 
efficiency to changes in production technology bounda-
ries (TC) (Pastor and Lovell, 2005; Oh, 2010; Fan et al. 
2015).

When the obtained GMLt,t+1 > 1, it means the GTFP 
growth; when the ECt,t+1 > 1, it means technical efficiency is 
improved; when the TCt,t+1 > 1, it means technological pro-
gress, and equal to 1 means that the index has not changed, 
and vice versa, since the GML index reflects changes in 
the growth of GTFP. This article draws on related research 
(Lin and Chen 2018) and uses the cumulative multiplication 
method to calculate the final GTFP.

Dagum Gini coefficient

We use the Dagum Gini coefficient decomposition method to 
analyze the regional differences in China’s industrial GTFP, and 
decompose the regional differences into three parts: intra-regional 
differences, inter-regional differences, and ultra-variable density 
contributions. First, calculate the Gini coefficient; the formula is1:

Then, we measure the overall difference, intra-regional 
difference, inter-regional difference, and hypervariable den-
sity of China’s industrial GTFP.

(3)

GMLt,t+1
�
xt , yt , bt , xt+1, yt+1, bt+1

�
=

1+Dt (xt ,yt ,bt )

1+Dt+1(xt+1 ,yt+1 ,bt+1)
×

⎡⎢⎢⎣

1+DG(xt ,yt ,bt )
1+Dt (xt ,yt ,bt )

1+DG(xt+1 ,yt+1 ,bt+1)
1+Dt+1(xt+1 ,yt+1 ,bt+1)

⎤⎥⎥⎦
= ECt,t+1 × TCt,t+1

(4)G =
1

2n2�

∑K

i=1

∑K

j=1

∑ni

h=1

∑nj

r=1

|||yih − yjr
|||

(5)�i ≤ ...�j ≤ ...�K

(6)Gii =
1

2ni
2�i

∑ni

h=1

∑ni

r=1
||yih − yir

||

(7)Gw =
∑K

i=1
�isiGii

(8)Gij =
1

ninj(�i + �j)

∑ni

h=1

∑nj

r=1

|||yih − yjr
|||

(9)Gnb =
∑K

i=2

∑i−1

j=1
(�jsi + �isj)GijDij

(10)Gt =
∑K

i=2

∑i−1

j=1
(�jsi + �isj)Gij(1 − Dij)

(11)dij = ∫
∞

0
∫

y

0

(y − x)fj(x)dxfi(y)dy

(12)pij = ∫
∞

0
∫

y

0

(y − x)fi(x)dxfj(y)dy

1  See Dagum (1997) for a detailed explanation of the formula.
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Kernel density estimation

Kernel density estimation uses continuous density curves 
to estimate the probability density of random variables 
(Zeng et al. 2022). Compared with other estimations, 
its model dependence is weaker and its robustness is 
stronger. Assuming f (x) is the density function of random 
variable x , the formula is as follows:

N is the total number of observations; Xi represents the 
observations with independent and identical distribution 
characteristics; x represents the mean of all observations; 
K(x) is the kernel density function, as in Formula (14); and 
h is the broadband; if the broadband is larger, it means that 
the smoother the density function image, the lower the accu-
racy of the estimation. On the contrary, if the bandwidth is 
smaller, the density function is less smooth and its accuracy 
is higher. The Gaussian check used in this paper estimates 
the dynamic evolution of industrial GTFP across the country 
and the two major regions.

Spatial Markov chain

The traditional Markov chain discretizes continuous data 
into K types. Under the condition that both time and state 
are discrete, we calculate the probability distribution and 
evolution trend of each type, and obtain a K × K probabil-
ity transfer matrix to reveal the laws of the development 
level of GTFP of different industries in different regions 
over time. pij represents the probability that a region will 
change from type i at time t to type j at t + 1, which can 
be estimated according to pij = nij

/
nij

 . nij represents the 
sum of the number of provinces transferred from type i 
at time t to type j at time t + 1. ni is the sum of the number 
of zones of type i for all time periods. The spatial Markov 
chain introduces the “spatial lag” into the traditional 
Markov chain. We analyze the influence of the develop-
ment level of the industrial GTFP in the neighborhood 
on the transfer probability of the industrial GTFP in the 
region. We construct the economic distance matrix 
W = W1 ∗ E , where W1 represents the geographic weight 
matrix, E is the economic difference matrix, and d is the 
spherical distance between the two provincial capitals. 
ym, yn represent the per capita GDP of m and n provinces 
in the sample period (Chen et al. 2020a, b).

(13)f (x) =
1

Nh

∑N

i=1
K(

Xi − x

h
)

(14)K(x) =
1√
2�

���(−
x2

2
)

Indicators and data processing

We measure the industrial GML index, EC index, and TC index 
based on the industrial input–output data of various provinces 
and cities in China from 2003 to 2019, and consider the labor 
and capital input of each province while also considering the 
“expected” output and “non-expected” output of the industry.

Input indicators  With reference to the research design of Xiao 
et al. (2022), we use the perpetual inventory method to estimate 
the total value of fixed assets in the industrial sector as the total 
capital stock, as the GTFP capital investment for the industrial 
sector. As for labor input, this article uses the average number 
of workers used by Chinese industrial enterprises above des-
ignated size as the proxy variable of labor input. In addition, 
energy consumption is also included in the input index. As part 
of the energy statistics data is missing, the energy consumption 
data of this article mainly adopts industrial energy consumption 
accounted for most of the former three kinds of the total energy 
consumption (coal, oil, natural gas). According to the various 
energy on the China national energy bureau disclosure of stand-
ard coal reference coefficient method, the equivalent industry 
terminal energy consumption of industrial energy of standard 
coal, and carry on the summary, to estimate the total energy 
consumption of China's industrial sector.

Output indicators  We choose industrial added value as a meas-
ure of the expected output in the industrial production process 
and use 2002 as the base period for deflation. At the level of 
industrial non-expected output indicators, a large amount of 
industrial waste is produced in the industrial production process, 
which wwill pollute the environment. Among them, sulfur diox-
ide is one of the most important causes of air pollution (Li et al. 
2018). At the same time, the large amount of carbon dioxide 
produced by the industrial production department will also have 
an adverse effect on the atmospheric environment; excess carbon 

(15)P =

⎛
⎜⎜⎝

⎛
⎜⎜⎝

p11 ⋯ p1k
⋮ ⋱ ⋮

pk1 ⋯ pkk

⎞
⎟⎟⎠

⎞
⎟⎟⎠

(16)W = W1 ∗ E

(17)W1 =

{
1
/
d2 ,m ≠ n

0,m = n

(18)E =

{
1

/
|ym−yn| ,m ≠ n

0,m = n
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emissions pose a serious challenge to global warming and envi-
ronmental governance (Cui et al. 2021). Therefore, we choose 
industrial sulfur dioxide emissions and carbon emissions as bad 
output, with reference to related studies (Fan et al. 2015). We 
choose the measured carbon emission factors in the production 
process as a proxy variable for carbon emissions, as provided by 
the official Chinese database (CEADs), according to the IPCC 
subsector emission calculation method.

Indicators and data sources

The data is selected from the National Bureau of Statistics 
of China, China Statistical Yearbook, China Industrial Eco-
nomic Statistical Yearbook, China City (Town) Life and 
Price Yearbook, and EPS database.

Regional differences and sources 
of industrial GTFP in the north and south 
regions

The overall difference of China’s industrial GTFP

The overall difference  Figure 1 reveals the size and trend 
of changes in China’s industrial GTFP, technical efficiency, 
and overall differences in technological progress. Figure 1 
describes that (1) from the perspective of changing trends, 
the Gini coefficient of China’s industrial GTFP shows an 
increasing trend in fluctuations. In 2003, the Gini coeffi-
cient of industrial GTFP was 0.063, which has been on the 
rise since then. It reached the maximum value of 0.1336 in 
2019, with an average annual growth rate of 7.00%, indicat-
ing that the regional difference in industrial GTFP has fur-
ther expanded; the technical efficiency Gini coefficient was 
0.0726 in 2003, and it has shown steady growth since then. 
In 2012, the Gini coefficient reached the maximum value 
of 0.146, and the overall difference in technical efficiency 
expanded. After 2012, the Gini coefficient declined in fluctu-
ations, and fell to 0.139 in 2019. The Gini coefficient of tech-
nical progress shows an upward trend throughout the sample 

period, from 0.077 in 2003 to 0.116 in 2019, with an average 
annual growth rate of 3.129%. Therefore, during the 2003–
2019 observation period, China’s industrial GTFP, technical 
efficiency, and regional differences in technological progress 
showed an expanding trend. Among them, the regional dif-
ferences in industrial GTFP expanded the most, followed by 
technical efficiency and technological progress. The widen-
ing of the difference is the smallest. (2) From the perspective 
of numerical value, the Gini coefficient of China’s industrial 
GTFP is relatively small, between 0.063 and 0.1336, with 
an average value of 0.104; the Gini coefficient of technical 
efficiency is relatively large, between 0.073 and 0.146, with 
an average value 0.126; the Gini coefficient of technological 
progress is between the total factor productivity of industrial 
green and the Gini coefficient of technical efficiency, with an 
average value of 0.113. It can be seen that among the three, 
the regional difference in technical efficiency is the largest, 
followed by technological progress, and industrial green. 
The regional differences in factor productivity are the small-
est. (3) From the perspective of fluctuations, the dynamics of 
the Gini coefficient of industrial GTFP, technical efficiency 
and technological progress are similar. However, the relative 
position changed in 2015. Before 2015, the regional differ-
ence in technological progress was always higher than the 
regional difference in industrial GTFP, but after 2015, the 
regional difference in industrial GTFP has expanded and is 
higher than the regional difference in technological progress. 
The possible reasons are energy-saving and emission reduc-
tion policies in 2015 and special green development activi-
ties; in 2017, China proposed a “high-quality development” 
strategy to establish a sound, green, and low-carbon circular 
economy system, so it has a certain impact on regions where 
industries rely on high energy consumption and high pollu-
tion to develop, forming regional differences (Table 1).

Regional differences

Figure 2 further reveals the size and evolution of regional 
differences in China’s industrial GTFP, technical efficiency, 
and technological progress. China’s industrial GTFP dif-
fers from region to region. During the sample period, the 
Gini coefficient in the industrial GTFP region of the north-
ern region showed an upward trend. The Gini coefficient 
increased from 0.404 in 2003 to 0.135 in 2019, with an 
average annual growth rate of 14.625%, indicating that the 
industrial rate in the northern region is full of factors. The 
regional difference in productivity has shown an expanding 
trend; the Gini coefficient in the southern industrial GTFP 
region has shown an upward trend. The Gini coefficient has 
risen from 0.0830 in 2003 to 0.1056 in 2019, roughly show-
ing a trend of “rising-falling-rising.” From 2003 to 2009, 
the Gini coefficient rose in volatility, reaching its maximum 
value in 2009, and then slowly declining from 2009 to 2016. 

0

0.05

0.1

0.15

0.2

20032004200520062007200820092010201120122013201420152016201720182019

GTFP EC TC

Fig. 1   The evolution trend of the overall difference in industrial 
GTFP, technical efficiency, and technological progress
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It began to rise from 2001 to 2019, with an overall average 
annual growth rate of 1.703%. In terms of numerical value, 
the Gini coefficient in the northern region (0.101) is slightly 
larger than that in the southern region (0.099), indicating 
that the regional difference in GTFP of the northern industry 
is larger than that in the southern region.

Technical efficiency varies from region to region. Dur-
ing the observation period, the Gini coefficient in both 
the northern and southern regions of technical efficiency 
shows an increasing trend. The Gini coefficient in the tech-
nical efficiency region of the northern region increased 
from 0.1026 in 2003 to 0.1872 in 2019, with an average 
annual growth rate of 5.155%, indicating that the techni-
cal efficiency gap between provinces in the northern region 
has further widened. The Gini coefficient in the technical 
efficiency region of the southern region increased from 
0.0352 in 2003 to 0.0725 in 2019, with an average annual 
growth rate of 6.606%. The fluctuations showed a trend of 
“rising-falling-rising.” It rose in fluctuations from 2003 to 
2009, and in 2009 the Gini coefficient was 0.0896. The Gini 
coefficient declined in fluctuations from 2009 to 2014. In 
2014, the Gini coefficient was 0.0496, and the Gini coeffi-
cient for 2014–2019 decreased. In 2019, the Gini coefficient 
was 0.0725. In terms of the value of the Gini coefficient, 
the Gini coefficient in the technical efficiency region of the 
northern region is higher than that of the southern region, 

indicating that the difference in technical efficiency between 
provinces in the northern region (0.166) is higher than that 
in the southern region (0.166).

During the observation period, the Gini coefficient 
in both the northern and southern regions of technologi-
cal advancement shows a significant growth trend. The 

Table 1   Overall differences 
in industrial GTFP, technical 
efficiency and technological 
progress

Year GTFP EC TC

2003 0.063 0.073 0.077
2004 0.066 0.087 0.073
2005 0.067 0.098 0.081
2006 0.073 0.105 0.094
2007 0.104 0.116 0.120
2008 0.086 0.125 0.118
2009 0.110 0.137 0.119
2010 0.104 0.138 0.118
2011 0.116 0.145 0.132
2012 0.116 0.146 0.131
2013 0.120 0.139 0.130
2014 0.121 0.135 0.126
2015 0.123 0.143 0.129
2016 0.124 0.136 0.115
2017 0.120 0.140 0.121
2018 0.129 0.140 0.119
2019 0.134 0.139 0.116

Fig. 2   The evolution trend 
of Gini coefficient in China’s 
GTFP, technical efficiency, and 
technological progress index 
region
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EC TC
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Gini coefficient in the technological advancement area 
of the northern region shows a trend of “rising-falling-
rising,” and the corresponding regional differences have 
undergone a process of “expanding-shrinking-expand-
ing,” increasing from 0.0739 in 2003 to 0.110 in 2011 
and dropping to 2016. The annual growth rate of 0.115 
increased to 0.133 in 2017, and decreased to 0.118 in 
2019, with an average annual growth rate of 2.326%. 
The Gini coefficient in the technological progress area 
of the southern region shows a trend of “rising-falling-
rising,” rising from 0.0768 in 2003 to 0.119 in 2017, 
falling to 0.098 in 2010, and rising to 0.105 in 2019, 
with an average annual growth rate of 2.326%. From the 
perspective of the Gini coefficient in the technological 
advancement area, the Gini coefficient in the technologi-
cal advancement area in the north (0.116) is higher than 
the Gini coefficient of the technological advancement in 
the south (0.100), indicating that the regional difference 
in technological advancement in the north is higher than 
that in the south. In summary, the regional differences in 
industrial GTFP, technical efficiency, and technological 
progress in the northern region are higher than those in 
the southern region, and they are all showing an expand-
ing trend (Table 2).

Differences between regions

From the perspective of the size of the Gini coefficient 
between regions, as of 2019, the regional difference in 
technical efficiency is the largest (0.136), followed by 

the regional difference in industrial GTFP (0.109), and 
the regional difference in technological progress is the 
smallest (0.117). It shows that the main reason for the 
difference in total factor productivity between north 
and south industries is the large difference in technical 
efficiency. From the perspective of the change trend of 
the Gini coefficient between regions, industrial GTFP, 
technical efficiency, and technological progress all show 
different degrees of growth. The inter-regional Gini coef-
ficient of industrial GTFP increased from 0.064 in 2003 
to 0.148 in 2019, with an average annual growth rate of 
8.059%; the inter-regional Gini coefficient of technical 
efficiency increased from 0.076 in 2003 to 0.152 in 2019, 
with an annual average. The growth rate was 6.246%; 
the Gini coefficient between regions of technological 
progress increased from 0.079 in 2003 to 0.120 in 2019, 
with an average annual growth rate of 3.244%. There-
fore, regardless of the size of the Gini coefficient or the 
growth rate between regions, technical efficiency is the 
main source of regional differences in industrial GTFP 
(Fig. 3) and (Table 3).

Sources of regional differences and contribution 
rate

The source of difference in industrial GTFP  The inter-
regional differences include the contribution rate of the net 
difference between the far and near super-variables and the 
contribution rate of the inter-regional super-variable den-
sity. According to Table 4, regional differences are the main 
source of unbalanced industrial GTFP distribution, with an 

Table 2   China’s GTFP, 
technical efficiency, and 
technological progress index 
regional Gini coefficient

Index GTFP EC TC

Year North South North South North South

2003 0.0404 0.0830 0.1026 0.0352 0.0739 0.0768
2004 0.0399 0.0877 0.1068 0.0600 0.0758 0.0676
2005 0.0474 0.0826 0.1140 0.0668 0.0785 0.0787
2006 0.0534 0.0899 0.1242 0.0704 0.0883 0.0936
2007 0.1021 0.0999 0.1488 0.0626 0.1129 0.1186
2008 0.0742 0.0955 0.1583 0.0713 0.1184 0.1064
2009 0.1005 0.1161 0.1678 0.0896 0.1245 0.1027
2010 0.0904 0.1147 0.1742 0.0791 0.1264 0.0982
2011 0.1165 0.1117 0.1889 0.0732 0.1396 0.1163
2012 0.1216 0.1042 0.1904 0.0754 0.1393 0.1114
2013 0.1262 0.1027 0.1891 0.0559 0.1383 0.1069
2014 0.1329 0.0959 0.1913 0.0496 0.1305 0.1057
2015 0.1401 0.0932 0.1995 0.0554 0.1344 0.1117
2016 0.1382 0.0918 0.1893 0.0610 0.1151 0.1064
2017 0.1245 0.0995 0.1932 0.0667 0.1335 0.1005
2018 0.1255 0.1059 0.1899 0.0688 0.1258 0.1019
2019 0.1349 0.1056 0.1872 0.0725 0.1176 0.1053
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average contribution rate of 52.169%. In the inter-regional 
contribution, the inter-regional ultra-variable net value 
shows an increasing trend in fluctuations, with a contribu-
tion rate ranging from 0.560 to 23.934%, and an average 
contribution rate of 10.103%, indicating that the net differ-
ence between different regions is becoming more and more 
serious. An important reason for the imbalance of industrial 
GTFP. The contribution rate of inter-regional hypervariable 
density is between 27.415 and 52.933%, and the average 
contribution rate is 42.066%. It shows a downward trend 
during the observation period, which means that the overlap 
between different regions has improved, but for industrial 
GTFP, the impact of differential production is still great. 
The contribution rate of the regional difference in indus-
trial GTFP is between 44.581 and 49.179%, and the average 
contribution rate is 47.831%. It shows a downward trend 
during the observation period, indicating that the regional 
difference has a weak impact on the difference in industrial 
GTFP. Among the regional differences, the contribution rate 
of the regional difference in the southern region was higher 
than that in the northern region before 2011. After 2011, the 
contribution rate of the regional difference in the northern 
region was greater than the regional difference in the south-
ern region. There is a large difference in industrial green 
total factor productivity, and there is a significant difference 
among provinces in the northern region.

Sources of differences in technical efficiency  Regional dif-
ferences are the main source of differences in technical 
efficiency, with a contribution rate ranging from 51.749 
to 55.970%, with an average contribution rate of 53.978%. 
Among the regional differences, the contribution rate of 
ultra-variable density is far greater than the contribution rate 
of ultra-variable net value, ranging from 28.017 to 55.431%, 
with an average contribution rate of 43.014%, indicating 
that the overlap between different regions is an important 
source of differences in technical efficiency. However, the 
contribution rate of hypervariable density shows a downward 
trend during the observation period, which means that the 
overlap between different regions has improved. The contri-
bution rate of hypervariable net value ranges from 0.5393 
to 25.339%, with an average contribution rate of 10.964%, 

and it shows an upward trend during the observation period, 
indicating that the problem of net differences in different 
regions is becoming more and more serious. The contribu-
tion rate of the regional difference in technical efficiency is 
between 44.03 and 48.251%, and the average contribution 
rate is 46.022%. It shows a downward trend during the obser-
vation period, indicating that the influence of the regional 
difference on the difference in technical efficiency has been 
weakened. Among the intra-regional differences, the contri-
bution rate of the intra-regional differences in the northern 
region is far greater than the intra-regional differences in the 
southern region.

Sources of differences in technological progress  The main sources 
of differences in technological progress are regional differences, 
with a contribution rate ranging from 50.991 to 52.866%, with an 
average contribution rate of 51.884%. Among the contribution rates 
of regional differences, the contribution rate of super-variable den-
sity is far greater than the contribution rate of super-variable net 

Fig. 3   The evolution trend of 
the inter-regional Gini coeffi-
cient of industrial GTFP, techni-
cal efficiency, and technological 
progress index
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Table 3   Inter-regional Gini coefficient of industrial GTFP, technical 
efficiency, and technical progress index

Gini coefficient between 
regions

GTFP EC TC

2003 0.06 0.076 0.08
2004 0.07 0.09 0.07
2005 0.07 0.105 0.08
2006 0.08 0.111 0.1
2007 0.11 0.125 0.12
2008 0.09 0.133 0.12
2009 0.11 0.144 0.12
2010 0.11 0.147 0.12
2011 0.12 0.158 0.14
2012 0.12 0.158 0.14
2013 0.12 0.156 0.14
2014 0.13 0.151 0.13
2015 0.13 0.159 0.13
2016 0.13 0.148 0.12
2017 0.13 0.152 0.13
2018 0.14 0.153 0.12
2019 0.15 0.152 0.12
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value, the contribution rate is between 31.455 and 50.311%, and 
the average contribution rate is 41.129, indicating that the overlap 
between different regions is the problem of technological progress.

The main source of difference  The contribution rate of hypervari-
able net value ranges from 0.728 to 21.411%, with an average con-
tribution rate of 10.755%, and it shows an increasing trend during 
the observation period, indicating that the net difference between 
different regions is becoming more and more serious. The con-
tribution rate of regional differences in technological progress is 
slowly declining, with the contribution rate ranging from 47.134 
to 49.009%, with an average contribution rate of 48.116%. In the 
contribution rate of intra-regional differences, the contribution rate 
in the northern region is greater than that in the southern region 
and has become the main source of the total contribution rate of 
intra-regional differences.

The dynamic evolution of China’s industrial 
GTFP

In order to analyze the absolute difference characteristics 
of GTFP in the country and the two regions in more depth, 
we use nuclear density to analyze the absolute difference in 
industrial GTFP in China and the north and south regions 
through the three-dimensional distribution map of industrial 
GTFP, variation trends, ductility, and polarization trends.

The dynamic distribution of the national overall 
industrial GTFP

According to the results of nuclear density estimation, 
Table 5 reveals the evolution characteristics of the distri-
bution dynamics of industrial GTFP, technical efficiency, 
and technological progress in the north and south of China. 
Figure 4, Fig. 5, and Fig. 6 describe the dynamic evolution 
of the distribution of GTFP, technical efficiency, and tech-
nological progress in the country’s overall industrial green, 
northern region and southern region. From the perspective 
of the evolution of the distribution position, the industrial 
GTFP exhibits “shift right-shift left-shift right,” correspond-
ing to the ups and downs of industrial GTFP during the sam-
ple period, which shows that in the sample period the GTFP 
of the domestic industry continues to increase. From the 
perspective of the evolution of the main peak distribution, 
during the observation period, the height of the main peak 
of industrial GTFP decreased, the width expanded, from “tip 
and narrow” to “flat and flat,” indicating the absolute differ-
ence in industrial GTFP expand. From the perspective of 
the extension of the distribution, there is a long tail on the 
right side of the industrial GTFP distribution map, indicat-
ing that there are provinces with higher industrial GTFP. In 
addition, the ductility of the industrial GTFP distribution 
has shown a broadening trend, indicating that provinces with 
higher industrial GTFP have achieved further development, 

Table 4   Difference sources and contribution rates of industrial GTFP, technical efficiency, and technological progress index

Index GTFP EC TC

Contribution rate Contribution rate 
within the region

Inter-regional 
contribution 
rate

Contribution rate 
within the region

Inter-regional 
contribution 
rate

Contribution rate 
within the region

Inter-
regional 
contribution 
rate

Year north south Total G
nb
∕G G

t
∕G north south Total G

nb
∕G G

t
∕G north south Total G

nb
∕G G

t
∕G

2003 0.161 0.327 0.489 0.044 0.467 0.358 0.120 0.478 0.101 0.421 0.240 0.248 0.488 0.009 0.503
2004 0.153 0.329 0.483 0.099 0.419 0.315 0.168 0.483 0.151 0.366 0.259 0.231 0.490 0.007 0.503
2005 0.180 0.305 0.485 0.096 0.419 0.305 0.162 0.466 0.253 0.280 0.235 0.248 0.483 0.161 0.356
2006 0.186 0.299 0.485 0.158 0.357 0.310 0.159 0.470 0.234 0.296 0.232 0.253 0.485 0.070 0.446
2007 0.258 0.228 0.487 0.239 0.274 0.330 0.131 0.461 0.123 0.415 0.242 0.239 0.482 0.128 0.390
2008 0.222 0.268 0.490 0.177 0.333 0.329 0.137 0.466 0.156 0.377 0.255 0.223 0.477 0.054 0.468
2009 0.235 0.257 0.492 0.128 0.380 0.316 0.158 0.474 0.113 0.413 0.267 0.213 0.480 0.076 0.444
2010 0.220 0.271 0.491 0.077 0.431 0.326 0.139 0.465 0.111 0.423 0.270 0.205 0.475 0.048 0.477
2011 0.253 0.238 0.491 0.048 0.461 0.329 0.126 0.455 0.022 0.523 0.273 0.214 0.486 0.114 0.400
2012 0.265 0.221 0.486 0.051 0.463 0.326 0.130 0.456 0.008 0.536 0.276 0.205 0.481 0.147 0.373
2013 0.268 0.211 0.479 0.070 0.451 0.340 0.100 0.440 0.005 0.554 0.277 0.197 0.474 0.158 0.369
2014 0.280 0.195 0.475 0.068 0.457 0.348 0.093 0.442 0.056 0.503 0.273 0.198 0.471 0.214 0.315
2015 0.288 0.186 0.475 0.059 0.466 0.345 0.099 0.444 0.051 0.505 0.274 0.205 0.479 0.200 0.321
2016 0.279 0.186 0.465 0.006 0.529 0.341 0.115 0.456 0.086 0.459 0.260 0.223 0.484 0.163 0.353
2017 0.255 0.211 0.466 0.080 0.454 0.337 0.121 0.459 0.074 0.467 0.282 0.202 0.483 0.105 0.412
2018 0.233 0.213 0.446 0.153 0.401 0.326 0.128 0.454 0.147 0.399 0.270 0.209 0.479 0.093 0.428
2019 0.241 0.206 0.448 0.164 0.388 0.320 0.136 0.456 0.170 0.373 0.259 0.223 0.482 0.083 0.436
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showing the phenomenon of “the strong are stronger.” From 
the perspective of polarization, the overall national indus-
trial GTFP is in a state of polarization, which further shows 
that China’s industrial GTFP is characterized by significant 
spatial imbalance.

The dynamic evolution of the national overall technical 
efficiency distribution. From the perspective of the evolu-
tion of the distribution position, the technical efficiency 
presents “right shift-left shift-right shift,” and the over-
all performance is left shift, indicating that the technical 
efficiency has a downward trend during the observation 
period. It is different from the descriptive statistical analy-
sis, mainly because: the descriptive statistical analysis of 
the technical efficiency of the southern region uses the 
mean value of all southern provinces, while the nuclear 
density distribution map is measured by the absolute value 
of each southern province. From the perspective of the 
evolution of the distribution of the main peak, during the 
observation period the height of the main peak of technical 
efficiency decreases, the width expands, from “pointy and 
narrow” to “flat and flat,” indicating that the absolute dif-
ference in technical efficiency has further expanded. From 
the point of view of the ductility of the distribution, the 
technical efficiency distribution map has the phenomenon 
of right tailing and narrowing of the extension, indicat-
ing that the overall technical efficiency of the country has 
higher technical efficiency provinces. From the perspective 
of polarization, the country’s overall technical efficiency 
has a less obvious “polarization” situation, which shows 
that China’s technical efficiency has significant spatial 
imbalance characteristics.

The distribution of overall technological progress in the 
country is dynamically evolving. From the perspective of 
the evolution of the distribution position, the technological 
progress showed “left shift-right shift-left shift-right shift,” 
and finally the overall appearance “right shift,” indicating 
that the level of technological progress has further improved 
during the observation period. From the perspective of the 
evolution of the distribution of the main peaks, during the 
observation period, the height of the main peak of techno-
logical progress has decreased, the width has expanded, 
from narrow to flat, indicating that the absolute difference 
in the level of technological progress has further expanded. 
From the perspective of the ductility of the distribution, 
technological progress has a right tail and extension, and 
the number of provinces with higher technological progress 
has increased. There is no obvious polarization phenomenon 
in the distribution map of technological progress.

The dynamic distribution of industrial GTFP 
in the north and south regions

Northern region  From the perspective of the evolution of 
the distribution position, the industrial GTFP in the northern 
region shows a “right shift-left shift-right shift” trend, indi-
cating that the northern industrial GTFP has experienced an 
“increase–decrease-increase” trend, and the overall perfor-
mance of industrial GTFP is increased. The technical effi-
ciency distribution map in the northern region shows “shift 
right-shift left-shift right-shift left,” and the overall shift is 
left. Correspondingly, the technical efficiency has experi-
enced a change trend of “growth-decline-growth-decrease.” 

Table 5   The evolution characteristics of the distribution dynamics of industrial GTFP, technical efficiency, and technological progress in the 
north–south economic zone

Region Index Distribution location Main peak distribution Distribution ductility Polarization trend

Nationwide GTFP Shift right The peak value is reduced and the 
width is enlarged

Tail right, extend and widen Polarization

EC Shift left The peak value is reduced and the 
width is enlarged

Tail right, stretch and narrow Polarization

TC Shift right The peak value is reduced and the 
width is enlarged

Tail right, extend and widen No obvious polarization

Northern region GTFP Shift right The peak value is reduced and the 
width is enlarged

Tail right, extend and widen Polarization

EC Shift left The peak value is reduced and the 
width is enlarged

Tail right, stretch and narrow Polarization

TC Shift right The peak value is reduced and the 
width is enlarged

Tail right, extend and widen Polarization

Southern region GML Shift right The peak value is reduced and the 
width is enlarged

Tail right, extend and widen Polarization

EC Shift right The peak value is reduced and the 
width is enlarged

Tail right, stretch and narrow No obvious polarization

TC Shift right The peak value is reduced and the 
width is enlarged

Tail right, extend and widen Polarization

37716 Environmental Science and Pollution Research  (2023) 30:37706–37725

1 3



The technological progress distribution map presents a “shift 
left-shift right-shift left” change trend, and the overall perfor-
mance is shifted right, indicating that the level of technological 
progress has further improved during the observation period.

From the perspective of the evolution of the distribution 
of the main peaks, the GTFP, technical efficiency, and tech-
nological progress of the north industries during the obser-
vation period decreased in the height of the main peaks, 

Fig. 4   The dynamic evolution 
of the distribution of GTFP, 
technical efficiency, and techno-
logical progress in the country’s 
overall industrial green
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expanded in width, and changed from “sharp and narrow” 
to “flat and flat,” indicating the three factors. The absolute 
difference widens. From the perspective of the scalability 
of the distribution, the distribution maps of industrial GTFP 

and technological progress both show a tailing and exten-
sion and widening phenomenon, indicating that there are 
provinces with higher levels of industrial GTFP and techno-
logical progress, and has increased in number. Although the 

Fig. 5   The dynamic evolution 
of the distribution of industrial 
GTFP, technical efficiency, and 
technological progress in the 
northern region
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technical efficiency distribution map is trailing to the right, 
the extension is narrowed, indicating that there are provinces 
with higher levels of technical efficiency, but the number 
is decreasing. From the perspective of polarization, during 
the sample period, the northern industrial GTFP, technical 

efficiency, and technological progress have all turned into 
obvious polarization phenomena, indicating the imbalance 
of industrial GTFP, technical efficiency and technological 
progress in the northern region.

Fig. 6   The dynamic evolution 
of the distribution of industrial 
GTFP, technical efficiency, and 
technological progress in the 
southern region
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Southern region  From the perspective of the evolution 
of the distribution position, the distribution map of indus-
trial GTFP in the southern region shows “shift right-shift 
left-shift right,” which corresponds to the change trend of 
“increase–decrease-decrease” in industrial GTFP, and finally 
realized to improve the total factor productivity of the indus-
trial rate. The technical efficiency distribution map presents 
a “shift left-shift right-shift left-shift right” situation, and the 
overall performance is shifted right, indicating that the tech-
nical efficiency has improved during the observation period. 
The distribution map of technological progress roughly pre-
sents a “shift left-shift right” trend, indicating that techno-
logical progress has experienced a decline-rise trend, and the 
overall performance is an increase in technological progress.

From the perspective of the evolution of the distribution 
of the main peak, similar to the performance in the north, the 
southern industrial GTFP, technical efficiency, and techno-
logical progress during the observation period decreased in 
the height of the main peak, expanded in width, and changed 
from “sharp and narrow” to “flat and flat,” indicating that 
the absolute difference between the three has widened. From 
the perspective of the extension of the distribution, there 
is a long tail on the right side of the industrial GTFP and 
technological progress distribution map, indicating that there 
are provinces with higher industrial GTFP and technological 
progress in the southern region. The ductility of the distri-
bution of both shows a broadening trend, indicating that the 
level of provinces with relatively high levels of industrial 
GTFP and technological progress has increased, and the 
level has improved. The technical efficiency distribution map 
shows a tail to the right but the extension narrows, indicat-
ing that there are provinces with a higher level of technical 
efficiency, but the number of provinces is decreasing. From 
the perspective of polarization, during the sample period, 
industrial GTFP and technological progress showed obvious 

polarization, and the characteristics of uneven development 
level were obvious. There is no obvious polarization in the 
technical efficiency distribution map.

The spatial and temporal laws of China’s 
industrial GTFP level transfer

We use Kernel density estimation to describe the dynamic 
distribution of China’s industrial GTFP and show the unbal-
anced characteristics and evolution trend of industrial GTFP. 
However, the disadvantage of the method is that it cannot 
reveal the specific transfer law of regional industrial GTFP 
level, nor can it explain the probability and direction of 
transfer of China’s industrial GTFP level between regions. 
We use the Markov chain method to explore the specific 
transfer law of China’s industrial GTFP level from two per-
spectives of time and space. We divide the differences in the 
level of industrial GTFP of the three provinces from 2003 to 
2019 into four levels: low, medium low, medium high, and 
high (expressed as L, ML, MH and H respectively), set the 
time span as 1 year (t = 1), and solve the traditional Markov 
transfer matrix (as shown in Table 6).

As a whole, (1) the industrial GTFP shows an obvious 
phenomenon of “club convergence.” In the transfer matrix, 
the probability value on the main diagonal is significantly 
higher than that on the non-diagonal. The mean value of 
diagonal probability value is 0.8445, which indicates that 
it is more likely that China’s industrial GTFP will remain 
stable. In the transition matrix, the probabilities of LL and 
HH are relatively large. In the initial stage, the probability of 
the low level of industrial GTFP remaining in the initial state 
is 0.96, and the probability of transferring to the high level is 
0.04, indicating that the low level of industrial GTFP cannot 
break the path dependence of the original development mode 
due to the constraints of resource endowment and economic 
stock. The probability of maintaining the high level of indus-
trial GTFP in the initial state is 0.9043, but there is also a 
probability of 0.0957 transferring to the low level. (2) Most 
of the transfer probabilities on both sides of the diagonal of 
the matrix are not 0, which indicates that the development 
level of industrial GTFP in the city is more likely to shift 
upward or downward within a year, while the possibility 
of jump transfer is small, which indicates that it is difficult 
for industrial GTFP to make a large leap. (3) The upward 
transition probability (0.2898) of the transition matrix is 
slightly larger than the downward transition probability 
(0.2159), indicating that there are relatively more provinces 
with higher industrial GTFP. In terms of different regions, 
the average probability of the transition matrix diagonal in 
the northern region is 0.8776; the upward transition prob-
ability of the transition matrix (0.2272) is slightly smaller 

Table 6   The traditional Markov transition matrix of China’s indus-
trial GTFP development

Level L ML MH H

Entire Country L 0.9600 0.0400 0.0000 0.0000
ML 0.0048 0.8502 0.1449 0.0000
MH 0.0192 0.0962 0.6635 0.2212
H 0.0000 0.0000 0.0957 0.9043

North L 1.0000 0.0000 0.0000 0.0000
ML 0.0067 0.8993 0.0872 0.0067
MH 0.0000 0.2000 0.6667 0.1333
H 0.0000 0.0000 0.0556 0.9444

South L 0.9400 0.0600 0.0000 0.0000
ML 0.0000 0.7656 0.2344 0.0000
MH 0.0370 0.0556 0.6111 0.2963
H 0.0000 0.0000 0.0694 0.9306
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Table 7   China’s industrial 
GTFP space Markov transition 
matrix

Level t/t + 1 n L ML MH H

Entire Country L L 17 0.9412 0.0588 0.0000 0.0000
ML 60 0.0000 0.9167 0.0833 0.0000
MH 17 0.1176 0.1176 0.6471 0.1176
H 2 0.0000 0.0000 0.5000 0.5000

ML L 9 1.0000 0.0000 0.0000 0.0000
ML 46 0.0217 0.8913 0.0870 0.0000
MH 6 0.0000 0.1667 0.5000 0.3333
H 3 0.0000 0.0000 0.3333 0.6667

MH L 49 0.9592 0.0408 0.0000 0.0000
ML 59 0.0000 0.8136 0.1864 0.0000
MH 45 0.0000 0.1111 0.7111 0.1778
H 39 0.0000 0.0000 0.1026 0.8974

H L 0 0.0000 0.0000 0.0000 0.0000
ML 42 0.0000 0.7619 0.2381 0.0000
MH 36 0.0000 0.0556 0.6389 0.3056
H 50 0.0000 0.0000 0.0600 0.9400

North L L 0 0.0000 0.0000 0.0000 0.0000
ML 55 0.0000 0.9091 0.0909 0.0000
MH 9 0.0000 0.3333 0.6667 0.0000
H 0 0.0000 0.0000 0.0000 0.0000

ML L 0 0.0000 0.0000 0.0000 0.0000
ML 16 0.0000 1.0000 0.0000 0.0000
MH 0 0.0000 0.0000 0.0000 0.0000
H 0 0.0000 0.0000 0.0000 0.0000

MH L 9 1.0000 0.0000 0.0000 0.0000
ML 42 0.0238 0.9048 0.0476 0.0238
MH 2 0.0000 0.5000 0.0000 0.5000
H 11 0.0000 0.0000 0.0909 0.9091

H L 16 1.0000 0.0000 0.0000 0.0000
ML 36 0.0000 0.8333 0.1667 0.0000
MH 19 0.0000 0.1053 0.7368 0.1579
H 25 0.0000 0.0000 0.0400 0.9600

South L L 17 0.9412 0.0588 0.0000 0.0000
ML 8 0.0000 0.7500 0.2500 0.0000
MH 5 0.4000 0.0000 0.2000 0.4000
H 2 0.0000 0.0000 0.5000 0.5000

ML L 0 0.0000 0.0000 0.0000 0.0000
ML 9 0.0000 0.7778 0.2222 0.0000
MH 12 0.0000 0.5833 0.4167 0.0000
H 27 0.0000 0.0000 0.1111 0.8889

MH L 33 0.9394 0.0606 0.0000 0.0000
ML 39 0.0000 0.7436 0.2564 0.0000
MH 35 0.0000 0.0857 0.6857 0.2286
H 37 0.0000 0.0000 0.0270 0.9730

H L 0 0.0000 0.0000 0.0000 0.0000
ML 8 0.0000 0.8750 0.1250 0.0000
MH 2 0.0000 0.0000 0.5000 0.5000
H 6 0.0000 0.0000 0.0000 1.0000
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than the downward transition probability (0.2623), indicat-
ing that relatively few provinces in the northern region have 
improved industrial GTFP. The average probability of the 
transition matrix diagonal in the southern region is 0.8118; 
the upward transition probability of the transition matrix 
(0.5907) is greater than the downward transition probability 
(0.162), indicating that there are relatively more provinces in 
the southern region with higher industrial GTFP. Compared 
with the northern region, the industrial GTFP level in the 
southern region is higher.

The traditional Markov chain describes the transi-
tion characteristics of industrial GTFP level over time. 
However, under the market economy system, its state 
transfer is not independent in space, and there are spatial 
interaction and spatial spillover effects in the industrial 
development of various regions. Therefore, we intro-
duce spatial factors, construct spatial Markov chains, 
and further analyze the spatial transfer law of industrial 
GTFP (see Table 7). When the industrial GTFP level of 
neighboring provinces is at a low level, the probability 
of upward transfer of low-level provinces is 0.0588, the 
probability of upward transfer of medium and low-level 
provinces is 0.0833, and the probability of upward trans-
fer of medium and high-level provinces is 0.1176. When 
the industrial GTFP level of the neighboring provinces 
is at the middle and low level, there is no low-level prov-
ince, the probability of upward transfer of the middle 
and low-level provinces is 0.0870, and the probability of 
upward transfer of the middle and high-level provinces 
is 0.3333. When the neighboring provinces are in the 
middle and high level, the probability of upward transfer 
of the low-level provinces is 0.0408, the probability of 
upward transfer of the middle- and low-level provinces 
is 0.0408, and the probability of upward transfer of the 
middle and high-level provinces is 0.1778. When the 
neighboring provinces are high-level, the low-level prov-
inces do not transfer, the probability of the middle and 
low-level provinces transferring upward is 0.2381, and 
the probability of the middle and high-level provinces 
transferring upward is 0.3056. The above results show 
that the driving effect of neighbors at different levels is 
different. It generally shows that the higher the neighbor 
level, the stronger the driving force. Take the medium 
and high level as an example, the upward transfer prob-
ability driven by the low level, the medium and low level, 
the medium and high level, and the high level neighbor is 
0.0833, 0.0870, 0.1864, and 0.2381 in turn.

Spatial characteristics of horizontal transfer of indus-
trial GTFP in northern China. (1) When the neighboring 
provinces are low-level and low-medium-level, there are 
no low-level and high-level provinces, and the probabili-
ties of the upward transition of the low-medium-level 
provinces are 0.0909 and 0, respectively. (2) When the 

neighbors are medium–high-level, the middle-low-level 
provinces are upwards. The probability of transfer is 
0.0714, of which there is a jump transfer with probability 
0.0238, which is transferred from low-medium level to 
high-level. (3) When the neighbor is high, the probability 
of the upward transfer of the middle and low provinces is 
0.1667, and the probability of the upward transfer of the 
middle and high provinces is 0.1579. Spatial characteris-
tics of horizontal transfer of industrial GTFP in southern 
China. (4) When the neighbor is low level, the probabili-
ties of upward transition of provinces at each level (L, 
ML, MH) are 0.0588, 0.2500, and 0.4000, respectively. 
(5) When the neighbor is medium and low level, the prob-
abilities of upward transition of provinces at each level 
(L, ML, MH) are 0, 0.2222, and 0, respectively. (6) When 
the neighbor is in the middle and high level, the prob-
abilities of upward transition of provinces at each level 
(L, ML, MH) are 0.0606, 0.2564, and 0.2286 respectively. 
(7) When the neighbor is at a high level, the probabili-
ties of the provinces at each level (L, ML, MH) shifting 
upward are 0, 0.1250, and 0.5000 in turn. The higher the 
level of industrial GTFP in the southern region, the greater 
the probability of upward transition and the greater the 
probability of diagonal versus off-diagonal, showing the 
phenomenon of obvious “Matthew effect” and “club con-
vergence.” It can be seen from the above that the industrial 
GTFP presents the phenomenon of club convergence and 
the “Matthew effect,” but after the introduction of spatial 
factors, the phenomenon of “club convergence” and the 
“Matthew effect” has weakened. Compared with the north-
ern regions, the industrial GTFP in the southern region 
has a stronger driving effect on the neighboring provinces.

Conclusions and policy recommendations

By taking the capital stock, labor, and energy consumption 
as production inputs, industrial added value as expected 
output, and industrial sulfur dioxide and production carbon 
emissions as unexpected output, we calculate the industrial 
GTFP of 30 provinces in China from 2003 to 2019, and 
decompose it into technical efficiency and technological 
progress index. Then, we empirically study the spatial 
imbalance and trend evolution of industrial GTFP level 
by using the Dagum Gini coefficient, kernel density esti-
mation and Markov chain analysis.

The research indicates that: (1) During the observation 
period from 2003 to 2019, the regional differences in total 
factor productivity, technical efficiency, and technological 
progress of China’s industrial green industry showed an 
expanding trend; the regional differences in total factor pro-
ductivity, technical efficiency, and technological progress of 
industry in the north were higher than those in the south; 
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the main source of differences in industrial total factor pro-
ductivity, technological efficiency, and technological pro-
gress. (2) The absolute difference in total factor productivity, 
technical efficiency, and technological progress of China’s 
overall industry is expanding, and similar changes also exist 
in the northern and southern regions. (3) Industrial GTFP 
presents “club convergence” phenomenon and “Matthew 
effect.” However, after introducing spatial factors, the phe-
nomenon of “club convergence” and “Matthew effect” have 
weakened. The driving effect of industrial GTFP in the south 
on neighboring provinces is stronger than that in the north.

The following recommendations are made based on the 
above findings in order to promote industrial GTFP and 
synergistic and balanced regional growth.

First, improving industrial GTFP requires accelerating 
the pace of emission reduction, guiding green technology 
innovation, and promoting the adjustment of industrial 
structure and energy structure. The government should 
vigorously develop renewable energy, balance economic 
development, and green transformation. (1) The govern-
ment should improve the intellectual property protection 
system to improve China’s innovation level. According to 
the 2018 International Intellectual Property Index Report, 
China’s intellectual property index in 2018 ranked only 
25th among 50 economies. Intellectual property is an 
important guarantee for innovation. (2) According to the 
data released by the National Bureau of Statistics, China’s 
GDP has reached 1,015,986.2 billion yuan in 2020, of 
which R&D expenditure has reached 2442.6 billion yuan, 
accounting for 2.4%. However, China’s overall ranking in 
the global innovation index in 2020 is 14 (National Inno-
vation Index Report 2020), and the contradiction between 
higher R&D investment and relatively low innovation 
level is more prominent. The investment structure of basic, 
application, and experimental research is seriously unbal-
anced. Only 6.03% of the capital is invested in core, high-
tech, and basic research and development, accounting for 
about 130 billion yuan, a very low proportion. The experi-
mental research accounts for more than 80%, the long-term 
investment in basic research is low, and the core technol-
ogy has bottlenecks. (3) Promote the deep integration of 
industry, education, and research. Innovation institutions 
are the pillar of innovation activities and need to be carried 
out on the platform. China is actively promoting the scien-
tific and technological innovation mode of integration of 
industry, university, and research. At present, it has entered 
the mode of deep integration of industry, university, and 
research. In China, it has gradually formed an innovation 
alliance with enterprises as the main body, market as the 
guidance, and deep integration of industry, university, and 
research. The purpose is to establish an innovation system 
with enterprises as the main body, market orientation, and 

deep integration of industry, university, and research, and 
improve innovation efficiency and quality.

Secondly, in view of the regional heterogeneity of indus-
trial GTFP level, we can correctly grasp the structural 
source and formation mechanism of industrial GTFP level 
differences between different regions, so as to quickly and 
effectively promote the coordinated development of indus-
trial GTFP according to local conditions. As industries in 
the north are mainly “heavy industries,” they are more 
affected by economic fluctuations and external shocks, and 
it is more difficult to transform and upgrade. Moreover, the 
heavy industries in the north are more serious about envi-
ronmental pollution, making green development difficult 
and tortuous. The southern region, on the other hand, is 
closer to market demand, with relatively easy industrial 
transformation, relatively high levels of technological inno-
vation, and relatively good environmental management. 
From the analysis results, it is also clear that the GTFP, 
technical efficiency and technological progress index of 
industry in the north are lower than those in the south. 
Therefore, on the one hand, China should focus on support-
ing the industrial development of the northern regions and 
speed up industrial restructuring. In order to give full play 
to the industrial demonstration role of the rich resources in 
the north and the advanced technology level and standards 
of state-owned enterprises, China should develop clean 
energy and renewable energy, improve resource utiliza-
tion efficiency, and stimulate new vitality and motivation 
of enterprises; On the other hand, China should increase 
green investment in the north, vigorously develop advanced 
manufacturing and new energy industries, reduce the nega-
tive impact of industrial capital upgrading on the environ-
ment through the development of advanced manufacturing, 
actively carry out environmental management, and compre-
hensively promote the improvement of GTFP in the north. 
Secondly, the southern region should give full play to its 
regional advantages, promote coordinated development 
among regions, optimize resource allocation, and form a 
core region driven by radiation. The southern region will 
play a good exemplary role, be a good leader, and stimu-
late and help the industrial transformation and develop-
ment of the northern region, so that advanced production 
technology and management experience can be spread to 
the northern region with low efficiency value.

Thirdly, green development should be included in the 
assessment of economic development, and an assessment sys-
tem that incorporates resource and environmental indicators 
and related elements into the assessment should be developed 
to further improve and perfect environmental regulations. The 
new development concept calls for “innovation, coordination, 
green, openness and sharing,” of which green development 
is an important part, and it is also a necessary way for China 

37723Environmental Science and Pollution Research  (2023) 30:37706–37725

1 3



to integrate into the global trend of sustainable development 
based on green development. Under the new development 
concept, green development has been emphasized, and green 
development has been made an important part of the economic 
development assessment, and enterprises and regions that have 
made outstanding contributions to green development have 
been given awards to encourage green development. At pre-
sent, China’s environmental regulation system is not perfect, 
the industry standards and norms are not clear, and the opera-
tion of the carbon trading market is not standardized. There-
fore, it is necessary to improve and perfect the environmental 
regulation system, promote the standardized operation of the 
trading market, and achieve the purpose of reducing emissions.
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