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Abstract
Precise wind speed prediction is crucial for the management of the wind power generation systems. However, the stochastic
nature of the wind speed makes optimal interval prediction very complicated. In this paper, a hybrid approach consisting
of improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), temporal convolutional
network with attention mechanism (ATCN), and bidirectional long short-term memory network (Bi-LSTM) is proposed
for wind speed interval prediction (WSIP). First, ICEEMDAN is used to pre-process the raw data by decomposing the
wind signal to several intrinsic mode functions. ATCN is used to reduce the uncertainty from the denoised data and extract
the important temporal and spatial characteristics. Then, Bi-LSTM is used to forecast the high-quality intervals for the
wind speed. Existing approaches observe a decline in the forecasting performance when the time ahead increases. As a
result, the hybrid approach is evaluated using 5-min, 10-min, and 30-min ahead WSIP. To evaluate the novelty of the
proposed approach, an experiment is conducted utilising wind speed data from the Garden City, Manhattan wind farm.
The experimental results demonstrate that the proposed framework outperformed the comparison models with percentage
improvements of 36%, 47%, and 17% for 5-min, 10-min, and 30-min ahead WSIP.
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Introduction

Background

Fossil fuel exhaustion is causing severe climate change due
to the fast expansion of many sectors throughout the world.
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Climate change is affecting many people around the world.
In Awosusi et al. (2022), the authors looked at how carbon
emissions are affected by globalisation of trade, rents on
natural resources, economic expansion, and financial sector
development. The impact of the climatology parameters on
the COVID-19 is explained in Ahmadi et al. (2020). The
authors of Habeşoğlu et al. (2022) discussed the oil price’s
impact on the amount of carbon emission levels in Turkey
through financial regulation, energy use, and economic
expansion. This gains the attention of the world to clean
and endless resources such as solar energy, hydro energy,
and wind energy, tidal energy (Council 2020). Especially,
wind energy is the most popular renewable energy source
with rapid development all over the globe. With 93.6
GW of new global wind installations in 2021, brings the
total installed wind capacity to 837 GW. Wind turbine
regulations control and wind power system dispatch are
based on the dynamic wind speed. According to the cubic
relation among wind power and speed, even a little change
in wind speed causes a noticeable rise in wind power.
Therefore, wind speed is essential for producing wind
energy. Wind speed forecasting is challenging, nevertheless,
due to the intrinsically nonlinear characteristics of wind
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speed fluctuations, such as intermittency. In order to
increase the usage of wind energy sources, it is crucial and
essential to improve the precision of wind speed forecasts.
The point forecasting in which the difference between
predicted and actual are calculate is focused more in the
current literature. Most of the researchers emphases on point
forecasting methods. But these point forecasting models
possess demerits such as inadequate accuracy problems due
to uncertainty in the forecasts and low reliability. However,
as the data becomes more complicated, the performance
declines. Also, point forecasting approaches, on the other
hand, fail to account for uncertainties and do not produce the
needed accuracy. To overcome the above demerits of point
forecasting, interval prediction is employed, which gives
intervals instead of point values.

Literature review

The models utilised for interval prediction in the litera-
ture are broadly classified as statistical models and machine
learning (ML) models. The statistical models can predict the
parameters of error distribution to calculate the upper and
lower bounds of a certain confidence interval. The mean
and variance of the response variable are predicted using
the interval forecasting model in Nix and Weigend (1994)
but the coverage of prediction intervals (PI) is quite low
for this implemented model. In Khosravi et al. (2011a), the
traditional Bayesian approach is developed for interval pre-
diction, but this approach has the demerit of huge com-
putational complexity. In Pullanagari et al. (2018), the inter-
val forecasting approach is implemented using quantile reg-
ression. For linear sequences, conventional statistical mo-
dels perform excellently, but they come up short when
applied to non-linear data as they cannot estimate distribu-
tion function with a hypothesis, and also have computational
complexity problems. Both linear and non-linear data can
be handled by artificial intelligence-based machine learn-
ing and deep learning algorithms (Ahmadi et al. 2022). The
support vector machine is one of the machine learning mod-
els that are most frequently employed in this sector. These
models are more widely used as a result of the develop-
ment of AI into time series applications. The performance
of AI-based techniques to prediction is nevertheless con-
strained by the quasi nature of the wind speed. The lower
upper bound evaluation (LUBE)-based ML model was
developed for the interval prediction. By using optimisation
techniques, different variants such as single-objective opti-
misation (SOO)-based LUBE model (Hu et al. 2017) and
multiple objective optimisation (MOO)-based LUBE mod-
els (Shrivastava et al. 2016) are implemented. Shallow ML
networks in combination with the LUBE framework are also
developed for interval prediction. The computational time
is unacceptable with the tuning of more hyperparameters

for shallow ML network-based LUBE models. They also
fail to provide the necessary information for the proper and
efficient decision-making in the power system applications
such as load management, spot pricing, and trading. Predic-
tion interval forecasting techniques are used to address these
issues since they reduce uncertainty and offer an indicator
of accuracy. In comparison with shallow ML models, deep
learning methods were given better performance for inter-
val prediction (Khodayar et al. 2018). In Naik et al. (2019),
multi-kernel robust ridge regression is used for interval
forecasting of wind speed and wind power. The authors,
in (Khosravi et al. 2011b; Quan et al. 2014), proposed a
technique for constructing prediction intervals in neural net-
work (NN) predictions that is both fast and trustworthy. The
authors proposed a lower upper bound estimation (LUBE)
method in which a NN with two outputs is built to estimate
the prediction interval bounds. For nonparametric predic-
tion intervals of wind power generation, the authors built
a novel adaptive bilevel programming (ABP) model using
extreme learning machine-based quantile regression in Zhao
et al. (2020). The proposed ABP approach tries to reduce the
mean interval width when good calibration is used. In He
and Zhang (2020), authors used parallel quantile regression
neural network wind power probability density forecast-
ing model. This algorithm can improve the efficiency of
quantile regression neural network. Results are evaluated
by metrics of speed up and parallel efficiency. The authors
in Pinson and Kariniotakis (2010) used a fuzzy inference
model which allows integrating expertise on the properties
of prediction errors for providing conditional interval fore-
casts. To improve the probabilistic forecast of wind farm
levels and regional wind farms, a novel method based on
Gaussian processes is developed (Xue et al. 2020). For wind
speed interval prediction, a novel hybrid model depend-
ing on gated recurrent unit (GRU) with variational mode
decomposition (VMD) was developed in Tang et al. (2019).
For the forecast interval of wind power, a beta distribution-
dependent long short-term memory (LSTM) neural network
model has been proposed in Yuan et al. (2019). In the
LSTM neural network model, a variation activation function
is used, and the Beta distribution parameters are optimised
using the PSO method. For wind power forecasting, Niu
et al. (2022) use a data-driven strategy based on numerous
factors and interval forecasting is done using kernel density
estimation using a Gaussian functions. A BiLSTM model
that is optimised via an attention mechanism is employed in
this paper to increase point predicting accuracy. The authors
of Zhang et al. (2020) offer a new interval model which
depends on the fast correlation-based filter (FCBF) method,
the optimised radial basis function (RBF) model, and the
Fourier distribution for wind speed, which blends artifi-
cial intelligence techniques with statistical information. An
interval prediction model was constructed in Zhang et al.
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(2022) using an improved whale optimisation algorithm
(IWOA) and a fast learning network (FLN). Adjusting the
nonlinear convergence factor, as well as incorporating adap-
tive inertia weights and a chaos search technique, improved
the IWOA’s convergence speed and accuracy. The authors
of Zhang et al. (2019) employed a multi-objective inter-
val methods that rely on the conditional copula function, in
which they completely exploited the correlations between
variables to increase prediction accuracy without relying
on an assumed probability distribution function. In Heydari
et al. (2021), a wind power producer (WPP) in a competi-
tive power market is given an interval prediction algorithm
based on a new bidding technique based on optimal scenario
making. Based on 39 years of data, the authors of Narayanan
Natarajan (2021) check the effectiveness of nine prominent
probability distribution methods for an evaluation of wind
speed distribution (WSD) at ten sites in Tamil Nadu, India.

In order to improve accuracy and better account for
the non-stationary characteristics of wind variables, hybrid
models (Ahmadi et al. 2022; Ghoushchi et al. 2017) for
such WSF have been developed. Intelligent models and sig-
nal decomposition techniques are some of the ways utilised
to generate hybrid models (Cui et al. 2020; Sun and Xiaox-
uan Wang 2022; Zhang and Pan 2020; Gupta et al. 2021).
The ensemble empirical mode decomposition was used to
pre-process the data (Artin et al. 2021; Cui et al. 2020). The
bat algorithm was then used to optimise the back propaga-
tion neural network’s connection weights and thresholds for
forecasting. In Sun and Xiaoxuan Wang (2022), the wind
speed sequence is decomposed using the wavelet transform,
and the resulting detailed coefficients are further decom-
posed by using symplectic geometry mode decomposition.
BPNN is optimised by using the marine predator’s algo-
rithm is then applied for WSF. To produce a decomposition
result, variational mode decomposition (VMD) is applied
to the original wind speed data in Zhang and Pan (2020),
and the combined prediction approach using elman radial
basis function is employed for prediction. In Zhang and
Wang (2022), instead of initialising the parameters, an opti-
misation algorithm is used. In this paper, an improved PSO
algorithm is used. And a rolling training prediction me-
thod is employed for wind speed prediction (WSP). In
Barenya et al. (2022), authors utilised an hourly wind speed
data for WSP and WSP is carried out by using wavelet
kernel-based least square twin support vector regression.
In Chen (2022), CEEMDAN is used in combination of
singular value decomposition (SVD) to deconstruct and
denoise the actual data, after which optimised Elman and
ARIMA models are employed to forecast the wind speed
components.

A hybrid framework is proposed in this paper for wind
speed interval prediction to address the following challen-
ges. The present literature focuses on point forecasting,

in which the difference between anticipated and actual
values is computed. However, as the data becomes more
complicated, the performance declines. Also, point fore-
casting approaches, on the other hand, fail to account
for uncertainties and do not produce the needed accuracy.
They also fail to provide the necessary information for the
proper and efficient decision-making in the power system
applications such as load management, spot pricing, and
trading. Prediction interval forecasting techniques are used
to address these issues since they reduce uncertainty and
offer an indicator of accuracy. A hybrid framework is propo-
sed in this paper for wind speed interval prediction (WSIP)
to address these challenges. The primary contributions of
this study are as follows: (1) A novel hybrid ICEEMDAN-
ATCN-BiLSTM approach is proposed by integrating the
neural network architecture in the LUBE framework. (2) An
efficient data preprocessing ICEEMDAN algorithm reduces
noise in the input data and enhances the signal-to-noise
ratio. ATCN extracts the important and dominating spa-
tial and temporal features from the denoised wind speed.
Bi-LSTM model interprets the important features bidirec-
tionally to forecast the high-quality prediction intervals
(PIs). (3) The integration of attention mechanism to the
TCN layers enhanced feature extraction.

The rest of the manuscript is organised as follows:
The proposed approach methodology and working are
presented in Section “Proposed hybrid approach for wind
speed interval prediction”. Section “Experimental results”
discusses the experimental results as well as a comparison
to other methodologies. Section “Conclusions” outlines the
conclusions.

Proposed hybrid approach for wind speed
interval prediction

A novel hybrid framework using ICEEMDAN, TCN with
attention (ATCN), and BiLSTM approach is proposed to
enhance the quality of the WSIP. This section demonstrates
the architecture of the proposed hybrid approach. The pro-
posed hybrid approach is mainly divided into three sections:
presupposition and noise elimination using ICEEMDAN,
feature extraction using ATCN, and BiLSTM for WSIP. The
proposed approach is illustrated in Fig. 1.

Presupposition and data decomposition

Prediction interval forecasting differs from deterministic
forecasting. As a result, there is no way to train forecasting
networks directly. To address this problem, the boundaries
of the input wind speed data must be presupposed for the
training to develop a framework for the WSIP using a
construction interval strategy. Ui and Li are the upper and
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Fig. 1 Complete framework of the proposed approach for WSIP

lower bound of the wind speed data, formulated using Eqs. 1
and 2.

Ui = x + Rc (1)

Li = x − Rc (2)

where x is the wind speed point, and Rc is the bound coef-
ficient which is calculated by Eq. 3. α is the width coeffi-
cient pertaining to [0, 1].
Rc = α ∗ (max(x) − min(x)) (3)

However, the upper and lower bounds formed are highly
complex and non-linear making the WSIP more difficult.
Thus, the ICEEMDAN decomposition method is used to
decompose the signals to produce the denoised upper and
lower bounds of the wind speed data for WSIP.

The ensemble empirical mode decomposition (EEMD)
has been developed to solve the mode mixing problem

occurred in the empirical mode decomposition (EMD).
However, the presence of the residual noise in the
EEMD affects the performance. Hence, complete ensem-
ble empirical mode decomposition with adaptive noise
(CEEMDAN) is developed. But, intrinsic mode func-
tions (IMFs) produced consist of the residual noise
and spurious modes. Thus, improved CEEMDAN is imple-
mented to address the disadvantages of the CEEMDAN
approach. Figure 2 shows the flowchart for ICEEMDAN
approach (Bouhalais and Nouioua 2021). By lowering the
number of trials, this ICEEMDAN overcomes the following
issues:

a) mode mixing problem,
b) frequency aliasing problem,
c) residual noise problem.

In this approach, the wind speed data bound is
decomposed into eight IMFs. As IMF1 is a very nonlinear
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Fig. 2 Flowchart of improved CEEMDAN (Bouhalais and Nouioua 2021)

signal, it is discarded, and the other IMFs are combined to
generate the wind speed data without any external noise.

Attention TCN-based Bi-LSTM approach
for enhanced prediction interval forecasting

The proposed forecasting network consists of two steps:
feature extraction using ATCN and PI forecasting using
BiLSTM. The two steps are discussed in the following
subsections.

Feature extraction using attention-based TCNmethod

For forecasting the prediction intervals, optimal feature
extraction is essential to decrease the uncertainty and
enhance the PI’s quality. For this reason, ATCN layers are
used for the feature extraction. The temporal convolutional
network (TCN) is derived from the base convolutional
neural network (CNN). The difference is the convolution
operation. They are causal in the TCN whereas non-
causal in the CNN model. TCNs use causal convolutions
on the sequential data for the feature extraction. In this
sequential method, the sequential inputs (X) are mapped
to the sequential outputs (Y ) through a non-linear mapping
function (f ). The main principle of the causal condition
is that the output prediction (yt ) is depended only on
the past data (x0, x1, ..., xt ) but not on the future data
(xt+1, xt+2, ..., xT ) at the instant t. In this study, the input of
the ATCN is the denoised data and the output represents the
features extracted from the denoised wind speed.

Ȳ0, Ȳ1, Ȳ2, ...., Ȳt = f (X0, X1, X2, ..., Xt ) (4)

The TCN is trained in the supervised manner for
decreasing the loss function L. There is no data leakage
from the future since the output length is equivalent to the
input length. Dilated convolutions are present in the TCN
to exponentially extend the receptive field, allowing for
more past data to be included when forecasting. There is
no data leakage from the future data. Equation 5 represents
the dilated convolution function. The representation of the
dilated convolution with k=2 and d=1,2,4,8 is shown in
Fig. 3.

(X∗
df )(s) =

i=1∑

j−1

f (i).Xs−d.i (5)

where x is the 1-dimensional sequence; k is the filter
size; ∗ is the convolution operator; and d is the dilation
factor.

Normally high dilation factor and filter size are used to
produce bigger receptive field to interpret more information
from the past useful in long predictions. The fully
connected 1D layer, and various residual blocks are present
sequentially in the TCN for training the network. The
dilated convolutions are performed using Eq. 5. For feature
extraction, a generic residual block made up of layers of
causal convolution is used for each layer. The output from
the last residual block are used as the input to the model’s
next layer. And the output from the last residual block
are fed to the fully connected (FC) layers present in the
TCN model. These FC layers convert the high-dimensional
features to lower dimensional features representing the
features. The ReLU activation function is used in the
residual blocks. Batch normalisation and spatial dropouts
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Fig. 3 Representation of dilated convolution with d=1,2,4,8 and filter
k= 2

are used for the regularisation. The output vector of the
FC layer is the OVec, in which each value representing
the feature from the denoised wind speed data. Enhancing
the spatial and temporal feature extraction property of the
TCN, this study used attention mechanism (AM) to amplify
the important features and suppress the irrelevant features
from the vector OVec. The primary principle of the AM is
to imitate the human brain’s ability to comprehend things
consciously. The implementation of the AM is represented
in Eqs. 6 to 8.

Vai = attten(OVeci ) (6)

Ei = softmax(Vai ) = exp(Vai )∑Q
i=q exp(Vai )

(7)

X = ET ∗ OVec (8)

The function atten() is used for obtaining the importance
of the individual element in the vector OVec. The
importance of the each element is denoted by the new
vector Vai , where i denotes the index value of the element
in the vector OVec. Then, the Vai is normalised using the
softmax function obtaining the attention weight vector E . Q

indicates the vector Va length. The weight vector consists of
the weights corresponding to the importance of the element
in the vector OVec. More important feature will have more
weight, and vice versa. Finally, the attention vector X is
produced by multiplication of E and OVec. Thus, this final
feature vector is fed to the Bi-LSTM that interprets the
features for WSIP.

Wind speed interval prediction by Bi-LSTM

The features extracted with the ATCN model from the
denoised wind speed data are given as the input to the
bidirectional LSTM (Bi-LSTM) model for interpreting the
features and forecasting. The LSTM is a recurrent neural
network which is developed to work with the long-term
sequences by integrating gate mechanism and memory unit.
However, the LSTM transmits the information in only one
way, i.e. it interprets only the past information. Hence, a
derivative of LSTM, i.e. BiLSTM is developed to consider
both the future sequence and past sequence information, i.e.
it transmits the information bidirectionally. It is divided into
forward LSTM and backward LSTM to extract the features
and it concatenates the hidden features to achieve the
extraction bidirectionally. In one LSTM, the input sequence
is fed and to the other LSTM, the reverse sequence is fed.
The implementation process of the Bi-LSTM is shown in the
equations below, where Eq. 9 represents the implementation
for the forward LSTM, and Eq. 10 for the backward LSTM.
The structure of BiLSTM is represented in Fig. 4.

−→
it = σ(

−→
Wih

−−→
ht−1 + −→

Wix
−→
xt + −→

Wic
−−→
ct−1 + −→

bi )

−→
ot = σ(

−−→
Woh

−−→
ht−1 + −−→

Wox
−→
xt + −→

Woc
−−→
ct−1 + −→

bo )
−→
ft = σ(

−−→
Wf h

−−→
ht−1 + −−→

Wf x
−→
xt + −−→

Wf c
−−→
ct−1 + −→

bf )
−→̃
ct = tanh(

−−→
Wch

−−→
ht−1 + −−→

Wcx
−→
xt + −→

bc )

−→
ct = −→

ft ∗ −−→
ct−1 + −→

it ∗ −→̃
ct−→

ht = −→
ot ∗ tanh(

−→
ct ) (9)

←−
it = σ(

←−
Wih

←−−
ht+1 + ←−

Wix
←−
xt + ←−

Wic
←−−
ct+1 + ←−

bi )

←−
ot = σ(

←−−
Woh

←−−
ht+1 + ←−−

Wox
←−
xt + ←−

Woc
←−−
ct+1 + ←−

bo )
←−
ft = σ(

←−−
Wf h

←−−
ht+1 + ←−−

Wf x
←−
xt + ←−−

Wf c
←−−
ct+1 + ←−

bf )
←−̃
ct = tanh(

←−−
Wch

←−−
ht+1 + ←−−

Wcx
←−
xt + ←−

bc )

←−
ct = ←−

ft ∗ ←−−
ct+1 + ←−

it ∗ ←−̃
ct←−

ht = ←−
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where it and ht indicate the input and hidden layer vector
at the time t. Similarly, ht−1, ct−1 represents the hidden
layer and memory cell value at the time t−1. bi , bo,
bf , and bc represent the bias of the input, output, forget
gate, and memory cell respectively. W indicates the weight
matrices for the different gates such as input, cell state,
output, and forget gates. tanh and σ represent the activation
functions. The → and ← represent the forward and
backward propagations in the LSTM network. The output of
the ATCN is a feature set of optimal characteristics from the
input denoised data. Thus, to interpret the features for WSIP,
Bi-LSTM is adopted, because of its high performance in
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Fig. 4 Representation of
Bi-LSTM

time series forecasting applications. In the Bi-LSTM, the
hidden layer is formed by concatenating the forward and
backward propagation of LSTM as shown in Eq. 11.

βt = ←−
ht + −→

ht (11)

The features extracted by the ATCN are the inputs and
and the outputs are corresponding lower (Li) and upper (Ui)
bound of the data point, i.e. yi=[Li , Ui]. However, in point
or deterministic forecasting, the loss function of the network
used is mean squared error (MSE). However, the MSE
loss function is ineffective for predicting intervals. This
paper proposes a novel loss function technique to solve this
challenge, keeping the optimisation of PI as the criteria. Two
evaluation criteria, prediction interval coverage probability
(PICP) and coverage width (CW), are used to construct the
custom loss function. The loss function is formulated in
Eq. 12, where θ represents the parameters such as weights
and bias of the network.

Loss function = argmin

{
CW(θ)

1
PICP(θ)

(12)

The loss function is developed in such a way that the
proposed network can predict the optimal intervals while
taking into account both PICP and CW. When the PICP
is high and the CW is low, the PIs are regarded to be
ideal. As a result, the loss function is developed using these
two criteria. The weights are modified during the network’s
training to achieve the best result. A case study is performed
for evaluating the proposed approach.

Experimental results

A wind speed dataset of 2013 year from a wind farm located
in Garden City, Manhattan, is used in this study (NREL

2022). A map of the investigated area is shown in Fig. 5. The
wind speed is obtained in 5-min ahead samples. However,
to evaluate the novelty of the proposed approach for WSIP,
wind speed is re-sampled into 10-min and 30-min ahead
samples. The characteristics of the wind farm are shown in
Table 1. Literature demonstrated that the performance of the
forecasting models decreases with the increase in the ahead.
Hence, the proposed approach is tested with three different
time interval data. The original input data are divided into
testing, training data, where training data consists of the
first 80% data, and the rest data is 20% data is used as test
data.

Evaluation criteria for optimal PI

Evaluation criteria such as mean squared error (MSE), root
mean squared error (RMSE), mean absolute error (MAE),
and mean absolute percentage error (MAPE) are used in the
point forecasting. However, in the prediction interval fore-
casting applications, the performance cannot be evaluated
using conventional metrics. To deal with this, evaluation
indices such as prediction interval coverage probability
(PICP), PI normalised root-mean-square width (PINRW),
and mean prediction interval width (MPIW) are used to
evaluate the PI quality (Tang et al. 2019), (Khosravi et al.
2011a). PICP and PINRW represent the reliability and pre-
cision of PI. MPIW indicates the mean width of the PIs. The
evaluation indices are formulated in Eqs. 13 to 15.

PICP = 1

n

n∑

j=1

Cj , Cj =
{

1, yj ∈ [Lj , Uj ]
0, yj �∈ [Lj , Uj ]

(13)

PINRW = 1

R

√√√√1

n

n∑

j=1

(Uj − Lj )2 (14)
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Fig. 5 Map of the Garden city, Manhattan, USA

MPIW = 1

n

n∑

j=1

(Lj − Uj) (15)

where n is the number of samples and upper and lower
bounds of the j th prediction interval are denoted by Ui and
Li , respectively. R represents the range of the wind speed
data. Ci indicates whether the actual wind speed data at j th
point lies in the predicted interval [Lj , Uj ]. An optimal PI
should have higher PICP and lower PINRW (narrow PI).
Because of their inverse relationship, PICP and PINRW
cannot provide a perfect evaluation of PI quality. Thus, a
new criteria, coverage width criterion (CWC), is developed
by combining the PICP and PINRW as shown in Eq. 16.

CWC = (1 + η1PINRW)(1 + γ (PICP)e−η2(PICP−μ)) (16)

γ (PICP) =
{

0, PICP ≥ μ

1, PICP < μ
(17)

where η and μ are the crucial hyperparameters controls
the CWC index. η is used to magnify the variation of the
PICP with respect to μ, which is the confidence level of the
interval. Therefore, this hybrid index is used to evaluate the
quality of the PIs. Smaller the CWC, better the quality.

Table 1 Characteristics of Garden city, Manhattan wind farm

Time Median SD Mean Skewness Max Min Range

5 min 7.63 3.62 7.66 0.152 17.20 0.25 16.99

10 min 7.62 3.70 7.72 0.252 17.81 0.03 17.77

30 min 7.69 3.79 7.85 0.261 19.44 0.03 19.41

Results and discussions

To evaluate the performance of the proposed approach, in
this paper, two categories of approaches are compared. The
benchmark methods, such as ATCN-BiLSTM, MLP, LSTM,
and CNN, fall into the first group of models. All these mod-
els from the first category are hybridised using the ICEEM-
DAN algorithm for denoising. As a result, ICEEMDAN-
CNN, ICEEMDAN-LSTM, and ICEEMDAN-MLP fall into
the second hybrid category of models. The proposed app-
roach as well as the reference models are evaluated for
WSIP, and the results are given in Tables 2, 3, and 4.
Figure 6 illustrates the WSIP result by the proposed app-
roach. Figure 7 illustrates the comparison of WSIP by all
the hybrid approaches.

From Tables 2, 3, and 4 and Figs. 6 and 7, the hybrid
model ATCN-BiLSTM achieved the best results compared
to the first category models like CNN, MLP, and LSTM.
In the 5-min ahead WSIP, ATCN-BiLSTM has an MPIW

Table 2 Comparison of 5-min ahead WSIP statistical indices between
benchmark approaches and proposed hybrid framework

Model MPIW PINRW PICP CWC

ATCN-BiLSTM 1.9298 0.1355 0.9072 0.1398

CNN 1.9423 0.1427 0.8642 0.1535

LSTM 2.3403 0.1459 0.8235 0.4054

MLP 2.5208 0.1466 0.8176 0.4296

ICEEMDAN-CNN 1.8532 0.1335 0.9232 0.1366

ICEEMDAN-LSTM 1.9309 0.1365 0.8769 0.1423

ICEEMDAN-MLP 2.0204 0.1447 0.8444 0.3518

Proposed approach 1.3885 0.1021 0.9793 0.0880
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Table 3 Comparison of 10-min ahead WSIP statistical indices bet-
ween benchmark approaches and proposed hybrid framework

Model MPIW PINRW PICP CWC

ATCN-BiLSTM 2.3415 0.1437 0.8715 0.4388

CNN 2.7256 0.1533 0.8340 0.8954

LSTM 2.7074 0.1521 0.8478 0.8853

MLP 2.7769 0.1556 0.8280 1.0144

ICEEMDAN-CNN 2.6565 0.1496 0.8528 0.7005

ICEEMDAN-LSTM 2.5327 0.1482 0.8669 0.6706

ICEEMDAN-MLP 2.6311 0.1488 0.8635 0.6833

Proposed approach 1.8904 0.1107 0.9555 0.2306

value of 1.9298, which is the least in the indices of first
category models. Similarly, in PINRW, PICP, and CWC,
this hybrid model achieved the best results compared to
benchmark approaches. The CNN model occupies the sec-
ond spot with a PICP of 0.8642. The MLP occupies the
last spot with relatively higher CWC and PINRW indi-
ces. ATCN-BiLSTM approach, on the other hand, continues
to dominate throughout the 10-min and 30-min ahead WSIP.
LSTM and CNN approaches occupied the second spot
in 10-min and 30-min WSIP, respectively. Therefore, the
hybrid ATCN-BiLSTM’s dominant performance is confi-
ned to the first category models in the 5-min, 10-min,
and 30-min WSIP. However, in the 10-min and 30-min
WSIP, the hybrid ATCN-BiLSTM is having better perfor-
mance than the comparative hybrid models using ICEEM-
DAN. Category 2 models with data denoising technique
achieved better results than the category 1 models with-
out denoising technique. In the second category of mod-
els, the proposed approach achieved the best results. For
example, considering the 5-min ahead WSIP, the proposed
approach observed a very high PICP, i.e. 0.9793, which is
around 97%. The proposed approach achieved a lower CWC
value of 0.0880, which is 36% lesser than the second-best

Table 4 Comparison of 30-min ahead WSIP statistical indices
between benchmark approaches and proposed hybrid framework

Model MPIW PINRW PICP CWC

ATCN-BiLSTM 2.7503 0.1397 0.8229 0.7152

CNN 2.7748 0.1419 0.7898 0.9722

LSTM 2.7709 0.1416 0.7778 1.1797

MLP 2.7984 0.1441 0.6874 1.2411

ICEEMDAN-CNN 2.7511 0.1406 0.7994 0.9386

ICEEMDAN-LSTM 2.7416 0.1346 0.8568 0.5416

ICEEMDAN-MLP 2.7630 0.1425 0.7615 1.0331

Proposed approach 2.2097 0.1008 0.9141 0.4502

value. Similarly, in MPIW and PINRW, the proposed
approach observed best indices of 1.3885 and 0.1021,
respectively. 25% and 24% improvement is achieved by
the proposed approach in the MPIW and PINRW over the
second best model. ICEEMDAN-based CNN observed the
second-best results among the two categories of models.
ATCN-BiLSTM model at the third position followed them.
In 5-min interval, the improvement percentage of proposed
approach over ATCN-BiLSTM model is 28%, 25%, and
37% in terms of MPIW, PINRW, and CWC. Comparing
the 10-min ahead WSIP indices, the proposed approach
achieved the best values of indices. For example, the CWC
is 0.2306, which is 47% lesser compared to the second-best
approach available. The hybrid ATCN-BiLSTM approach
occupied the second spot, and MLP occupied the last rank
in the 10-min ahead WSIP. The improvement of 19% and
23% in the MPIW, and PINRW is achieved by the proposed
approach over the second best model in the 10-min ahead
WSIP. However, as the time ahead increased from 5-min to
10-min ahead, the performance of all the models declined.
On the other hand, the proposed approach observed better-
ment in the performance from 5-min to 10-min ahead WSIP.
Coming to the 30-min ahead WSIP, the proposed approach
maintained stable performance with a CWC of 0.4502. The
proposed approach achieved the highest improvement per-
centage in terms of the evaluation indices in the 30-min
ahead WSIP. For instance, the improvement percentages
are 19%, 25%, and 17% in the MPIW, PINRW, and CWC
respectively. MLP model ranked last in the indices of 30-
min ahead WSIP among all the comparative approaches. In
30-min interval, the improvement percentage of proposed
approach over ATCN-BiLSTM model is 20%, 28%, and
37% in terms of MPIW, PINRW, and CWC. The percentage
improvement of proposed model over all other individual
and hybrid models is shown in Table 5.

Based on the evaluation indices, it is evident that the
hybridisation of category 1 models with ICEEMDAN resul-
ted in the enhanced performance in WSIP. This is due to
the denoising of highly non-linear signals. From Fig. 6, the
actual wind speed lies precisely in the prediction interval
obtained by the proposed approach, respectively. However,
there is a slight decline in the quality of the prediction
interval from 5-min to 30-min ahead. But, from Fig. 7, it is
very apparent that the proposed model’s prediction interval
quality is quite optimal compared to the other reference
models, which are having an unstable performance for 5-,
10-, and 30-min ahead WSIP.

The proposed approach’s performance is also evaluated
in terms of testing and training time efficiency with
the comparative CNN and LSTM models. The proposed
framework’s training time is 820.52 s, while the testing
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Fig. 6 WSIP result of proposed approach using Garden city wind farm data

time is 0.041 s. When compared to the proposed approach,
the CNN model requires 778.21 s for training and 0.033
s for testing. Similarly, the LSTM model took 801.23 s
to train and 0.039 s to test. However, since the training is
done offline and just once, the quantity of training time
achieved is acceptable. The testing time is also significantly
fast, with predictions taking 0.3 ms. Furthermore, when

the evaluation indices are taken into account, the proposed
approach achieves the best WSIP performance indices
as already presented through Tables 2, 3, and 4. The
proposed approach predicts high-quality intervals because
it uses effective feature extraction, denoising, and feature
interpretation to forecast intervals. As a result, the proposed
approach meets the criterion for real-time WSIP.
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Fig. 7 Illustration of WSIP result of all models with ICEEMDAN algorithm for Garden city wind farm

The experimental findings from the WSIP results
of all available methods reveal the following critical
points.

(1) The approaches such as CNN, LSTM, and MLP failed
to maintain the consistency for the 5-, 10-, and 30-min
ahead WSIP.

(2) But, it is also observed that the proposed approach is
consistently leading in all the three forecasting results
with the best indices.

(3) The evaluation indices clearly show the efficiency
of hybridisation using the ICEEMDAN method.
Category 2 models are outperforming category 1
models in terms of prediction interval quality.
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Table 5 Percentage improvement of proposed approach over all other models

Model 5-min interval 10-min interval 30-min interval

MPIW PINRW CWC MPIW PINRW CWC MPIW PINRW CWC

Proposed vs ATCN-BiLSTM 28% 25% 37% 19% 23% 47% 20% 28% 37%

Proposed vs CNN 29% 28% 43% 31% 28% 74% 20% 29% 54%

Proposed vs LSTM 41% 30% 78% 30% 27% 74% 20% 29% 62%

Proposed vs MLP 45% 30% 80% 32% 29% 77% 21% 30% 64%

Proposed vs ICEEMDAN-CNN 25% 24% 36% 29% 26% 67% 20% 28% 52%

Proposed vs ICEEMDAN-LSTM 28% 25% 38% 25% 25% 66% 19% 25% 17%

Proposed vS ICEEMDAN-MLP 31% 29% 75% 28% 26% 66% 20% 29% 56%

(4) The quality of the prediction intervals of the
benchmark approaches hybridised with ICEEMDAN,
on the other hand, is not adequate.

(5) The proposed approach achieved an increase in the
improvement percentage from 5-min WSIP to 30-min
ahead WSIP.

Conclusions

The primary prerequisite for wind energy grid management
is accurate wind speed predictions. As noted in the liter-
ature, point forecasting fails to account for uncertainties
and does not produce needed information for power system
operations. As a result, in this paper, a novel approach con-
sisting of ICEEMDAN and TCN with attention mechanism
and Bi-LSTM is proposed for improved accuracy of WSIP.
Effective elimination of auxiliary noise, feature extraction
plays a crucial role in the forecasting performance. In the
proposed approach, ICEEMDAN is used for decomposing
the signal to eliminate the auxiliary noise, ATCN is used to
extract important features from the decomposed wind speed,
and Bi-LSTM forecasts the accurate prediction intervals.
Addressing the decline of performance of the models with
an increase in ahead values, the proposed approach is tested
using 5-min, 10-min, and 30-min ahead WSIP. A compar-
ative analysis is performed using two categories of models
to evaluate the proposed approach performance. The evalu-
ation indices from the experiment indicate that the proposed
approach’s performance is consistent for 5-min, 10-min, and
30-min WSIP. The feasibility and performance of the pro-
posed approach are investigated and confirmed during the
experiments. The experimental results indicate the domi-
nating performance of the proposed approach for 5-min,
10-min, and 30-min ahead WSIP. The proposed approach
offers an improvement of 36%, 47%, and 17% for three time
intervals WSIP.

The future work would demonstrate the application of the
optimisation techniques for enhancing the performance of
the proposed approach.
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