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Abstract
Previous studies point to the impact of energy market on carbon market under normal market conditions, but little is known 
about the impact under extreme market conditions. Motivated by these concerns, we aim to investigate the extreme risk spillo-
vers to carbon markets from traditional fossil energy and new energy markets in China. After using copula model to obtain 
nonlinear tail dependence structure between carbon and energy markets, we compute conditional Value-at-Risk (CoVaR) to 
quantify extreme risk spillovers. The results indicate that (i) the risk spillovers from both traditional fossil energy and new 
energy markets to carbon markets are obviously larger when extreme events cause large shocks to energy markets; (ii) there 
are risks in the opposite direction in carbon markets when carbon-intensive energy markets are under extreme market condi-
tions, but the direction of risks in carbon markets is uncertain when low-carbon energy markets are under extreme market 
conditions; (iii) the extreme risk spillovers to carbon markets from energy markets are regionally heterogeneous not only in 
magnitude but also in direction; (iv) energy markets prefer to transmit extreme risks to more liquid carbon markets. These 
new findings have valuable implications for both policymakers and participating enterprises in carbon markets.

Keywords  Extreme risk spillovers · China’s regional carbon markets · Traditional fossil energy markets · New energy 
markets · Copula model · Conditional Value-at-Risk (CoVaR)

Introduction

Climate change that resulted from the emissions of green-
house gases, mainly CO2, has received a widespread concern 
(Jian et al. 2019). The carbon market is considered to be a 
vital instrument to reduce CO2 emissions (Li et al. 2021; 
Wang and Yan 2022). Compared with other CO2 emission 
reduction measures, the carbon market has advantages of 
high efficiency and low social cost (Zhu et al. 2021). As a 
policy-oriented market, the carbon market is a special energy 
commodity market (Tan et al. 2020). Theoretically, both tra-
ditional fossil and new energy markets have an impact on 

carbon markets. Carbon market is naturally affected by tradi-
tional fossil energy markets, since CO2 emissions are largely 
attributed to fossil energy consumption (Zhang et al. 2019; 
Yang et al. 2020). More precisely, rising fossil energy prices 
decrease the demand for fossil energy and CO2 emissions, 
leading to the decline in the demand for carbon allowances 
and carbon price (Wu et al. 2022a). Carbon market is also 
affected by new energy market. New energy including wind 
energy, solar energy, hydroelectricity, and biomass energy is 
an alternative to traditional fossil energy and plays an impor-
tant role in reducing CO2 emissions (Adebayo et al. 2022). 
Higher new energy price increases the cost of new energy 
consumption, which causes enterprises to purchase more 
carbon allowances to complete emission reduction tasks 
and thus drives higher carbon price (Lin and Chen 2019).

According to the International Carbon Action Partnership 
(ICAP), carbon markets had been established in 25 jurisdic-
tions and had covered 17% of global greenhouse gas emis-
sions by the end of 2021 (ICAP 2022). As the world’s largest 
carbon emitter, China has also established eight regional car-
bon markets as the major means of reducing CO2 emissions 
and achieving carbon neutrality targets (Wu et al. 2022b; 
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Zhu et al. 2022). Until the end of 2020, China’s regional 
carbon markets had accumulated a turnover of 10.431 billion 
CNY by covering 445 million tons of CO2 emissions.1 With 
the development of China’s regional carbon markets, the 
increasing traditional fossil energy and new energy compa-
nies are participating in carbon trading. Specially, traditional 
fossil energy has occupied a dominant position in China’s 
energy consumption. In 2020, the proportions of coal, oil, 
and natural gas consumption were 56.8%, 18.9%, and 8.4%, 
respectively.2 China is also a major consumer of new energy. 
For instance, China contributes around half of the global 
growth in wind energy and solar energy (Jiang and Chen 
2022). Thus, understanding the impact of traditional fossil 
energy and new energy markets on carbon market is particu-
larly relevant for China.

In recent years, some extreme events such as trade dis-
putes between China and the United States have increased 
uncertainty and caused frequent large fluctuations in energy 
markets, resulting in extreme market conditions. Unlike nor-
mal market conditions, the risk transmission between mar-
kets under extreme market conditions is more disruptive 
and can cause unexpected losses, as in the case of the 2008 
global financial crises (Uddin et al. 2020). Thus, the rela-
tionship between energy and carbon markets under extreme 
market conditions may be more complicated than under 
normal market conditions. Moreover, fluctuations in energy 
markets under extreme market conditions can lead to signifi-
cant volatility in carbon market, which discourages partici-
pants in carbon market and thus weakens the effectiveness 
of carbon market in reducing emissions. In this context, it is 
meaningful to investigate how carbon market behaves when 
energy markets are under extreme market conditions. As 
extreme risk spillover can directly characterize the relation-
ship between markets under extreme market conditions, this 
work aims to explore the extreme risk spillovers to carbon 
markets from energy markets.

In term of methods, existing literature focusing on the 
relationship between carbon and energy markets have some 
limitations. First, multivariate GARCH models (e.g., Zhang 
and Sun 2016; Chang et al. 2019), Diebold-Yilmaz spillover 
index (e.g., Dutta et al. 2018; Tan et al. 2020), and time-
varying VAR model with stochastic volatility (e.g., Gong 
et al. 2021; Zhao et al. 2021) have been mainly employed 
to analyze time-varying spillovers. Although these methods 
are renowned for their meticulousness and practicality, they 
are based on conditional mean estimators, focus on normal 
market conditions, and assume that average shocks affect the 
relationship between markets. Actual shocks can be much 
larger than average shocks, especially under extreme market 

conditions, and can cause severe risk contagion, showing 
the necessity of exploring large shocks under extreme mar-
ket conditions. Second, linear methods are frequently used, 
mainly including ordinary least squares regression model 
(e.g., Alberola et al. 2008; Fan and Todorova 2017), vector 
autoregressive model (e.g., Kumar et al. 2012; Zeng et al. 
2017), and quantile regression model (e.g., Hammoudeh 
et al. 2014; Ren et al. 2022). However, financial time series 
typically present volatility clustering and nonnormality 
under extreme market conditions, resulting in a complex 
nonlinear relationship between financial markets.

Existing literature has also discussed the extreme risk in 
carbon market by using Value-at-Risk (VaR). On this sub-
ject, extreme value theory (EVT) is often used to estimate 
marginal distribution to further compute VaR (Mi and Zhang 
2011; Wang and Yan 2022). EVT assumes that samples are 
independent and identically distributed. However, many 
financial time series have autocorrelated and heteroscedastic 
characteristics and therefore cannot meet this assumption. 
Furthermore, VaR can only measure the isolated extreme 
risk in individual financial market, but cannot measure the 
extreme risk spillovers between multiple markets.

In light of the above, the methods used in this work are 
as follows. First, this work uses the autoregressive moving 
average (ARMA)-generalized autoregressive conditional 
heteroskedasticity (GARCH) model with Student-t innova-
tions to estimate marginal distributions. This model can well 
capture characteristics of autocorrelation, heteroscedasticity, 
and fat-tail. Then, this work applies copula model based on 
marginal distributions to identify nonlinear tail dependence 
structure between carbon and energy markets. Finally, this 
work computes CoVaR to quantify the extreme risk spillo-
vers to carbon markets from energy markets.

The contributions of this work mainly have three aspects. 
First, to the authors’ best knowledge, this work is the first to 
measure the extreme risk spillovers to carbon markets from 
energy markets. Contrary to the previous research concen-
trating on normal market conditions, this work clarifies the 
risk transmission to carbon markets from energy markets 
under bullish and bearish market conditions, i.e., upward 
and downward risk spillovers, by computing CoVaR at the 
95% and 5% confidence levels. It is beneficial for policy-
makers and participating enterprises in carbon markets that 
are mostly interested in tail risk management. Second, this 
work sheds light on the impact of traditional fossil energy 
and new energy markets on carbon markets, extending the 
widely examined impact of traditional fossil energy markets 
on carbon markets (e.g., Kim and Koo 2010; Marimoutou 
and Soury 2015; Duan et al. 2021). This research topic is 
of great importance, since traditional fossil energy and new 
energy markets have distinctive characteristics that may 
influence carbon markets in unique manners. Third, this 
work defines the relative extreme risk spillovers (%CoVaR) 

1  Data comes from the China Emissions Trading website.
2  Data comes from the National Bureau of Statistics of China.
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to compare the extreme risk spillovers from the same energy 
market to different carbon markets. Since there are price dif-
ferences among regional carbon markets, the introduction 
of %CoVaR is helpful to eliminate the influence of differ-
ent carbon market dimensions and further obtain in-depth 
enlightenment for the stable development of carbon markets.

The structure of the rest of the work is summarized as 
follows. “Literature review” surveys the relevant literature 
on carbon markets. “Methodology” introduces marginal 
distribution and copula models as well as VaR and CoVaR 
measures. The data and descriptive statistics analysis are 
provided in “Data and descriptions”. “Results and discus-
sion” presents and analyzes the results. Finally, “Conclu-
sions” provides the conclusions and policy implications.

Literature review

Carbon markets established in Europe (EU), China, and else-
where have made a great contribution in response to climate 
change. Extensive literature has therefore identified the char-
acteristics of carbon market. Our research mainly relates to 
three strands of literature on (i) the impact of energy prices 
on carbon price, (ii) the measures of time-varying spillovers 
between carbon and energy markets, and (iii) the extreme 
risk of carbon market.

The impact of energy prices on carbon price

Existing literature has pointed out that the carbon price can 
be driven by traditional fossil energy and new energy prices. 
More focus has been paid to the impact of traditional fos-
sil energy prices on carbon price. For example, Kim and 
Koo (2010) found that EU carbon price was only affected 
by coal price in the long term, but by coal, crude oil, and 
natural gas prices in the short term. Tan and Wang (2017) 
studied evolution of influence paths of fossil energy prices 
on EU carbon price, which showed that coal and gas prices 
generated the higher production restrain effect on carbon 
price in Phase I and presented the greater demand effect 
in Phase II. Zeng et al. (2017) considered Beijing carbon 
pilot and proved that its price was positively related to coal, 
crude oil, and natural gas prices. Meanwhile, some stud-
ies also confirmed that traditional fossil energy prices were 
the drivers of carbon price (e.g., Hammoudeh et al. 2014; 
Marimoutou and Soury 2015; Guo 2015; Duan et al. 2021). 
Research into the relationship between new energy price 
and carbon price is scarce. Several studies showed that the 
linkage between clean energy stock price and EU carbon 
price was not evident (Kumar et al. 2012; Dutta et al. 2018), 
while Alkathery and Chaudhuri (2021) argued that there was 
a correlation between EU carbon price and Global Clean 
Energy Index. Hanif et al. (2021) also found that there was 

a stronger connectedness between EU carbon price and S&P 
clean energy index in the short run. By taking China as a 
case study, Tu and Mo (2017) and Mu et al. (2018) found 
that new energy price was related to carbon price. Some 
research further focused on specific industries of the new 
energy market in China. The results proved that there was 
an equilibrium relationship between carbon and renewable 
electricity certificates markets (Wang et al. 2021) or between 
carbon and new energy vehicle market (Nie et al. 2022). 
However, rare studies have simultaneously examined or 
compared the relationship between carbon and traditional 
fossil energy markets as well as between carbon and new 
energy markets.

The measures of time‑varying spillovers 
between carbon and energy markets

The dynamic extreme risk spillover method employed in 
our research is related to a strand of literature on measuring 
time-varying spillovers between carbon and energy markets. 
With regard to the research methods, multivariate GARCH 
models have been most used due to the characteristics of 
capturing volatility correlation for mass data, including 
dynamic conditional correlation (DCC) GARCH model 
(Chang et al. 2019; Balclar et al. 2016; Lin and Chen 2019) 
and full Baba, Engle, Kraft, and Kroner (BEKK) GARCH 
model (Zhang and Sun 2016). Since multivariate GARCH 
models fail to measure the direction of time-varying spillo-
vers, several studies have investigated the directional time-
varying spillovers between carbon and fossil energy markets 
by employing Diebold-Yilmaz spillover index (Diebold and 
Yilmaz 2012, 2014). On this subject, Wang and Guo (2018) 
found that EU carbon market was a net receiver to fossil 
energy markets. For further details, Tan et al. (2020) exam-
ined and explored the structural breaks of spillovers. The 
results indicated that spillovers have three significant struc-
tural breaks and are most sensitive to the structural break 
in 2010. By taking China’s regional carbon markets as a 
case study, Cui et al. (2020) showed that most regional car-
bon markets acted as information receivers. However, these 
methods have been limited to the analysis of time-varying 
spillovers under normal market conditions.

The extreme risk in carbon market

The extreme risk in carbon market has attracted increasing 
attention since actual carbon market has frequently experi-
enced large negative or positive shocks under extreme mar-
ket conditions. In terms of measuring extreme risk, VaR 
has been widely used. For instance, Mi and Zhang (2011) 
adopted the EVT to compute VaR to explore the extreme 
risk in EU carbon market. This study was extended by Zhang 
et al. (2020) to further investigate factors affecting VaR for 
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carbon market, including exchange rate and interest rate. 
Fang and Cao (2021) computed VaR for both carbon markets 
in EU and China. Their findings showed that the extreme 
risk in EU carbon market had two breaks, while there was 
no break in China’s carbon market. VaR could only meas-
ure the isolated extreme risk in individual financial mar-
ket and ignores the interaction of multiple markets. As a 
result, Adrian and Brunnermeier (2016) proposed CoVaR 
to measure extreme risk spillovers across financial markets. 
There are two methods to compute CoVaR, one is quantile 
regression method. For example, Zhu et al. (2020) used this 
method to take into account extreme risk spillovers between 
EU carbon and electricity markets. Another method is cop-
ula model, which can capture nonlinear relationship between 
markets compared to quantile regression method. Yuan and 
Yang (2020) applied this method to demonstrate that there 
were significant extreme risk spillovers from financial mar-
ket uncertainty to EU carbon market. Xu (2021) extended 
this work by focusing on China’s regional carbon markets. 
However, previous research has not revealed the extreme 
risk spillovers between carbon and energy markets through 
nonlinear method such as copula model.

Gap in the review

This work differs from the above research in various aspects. 
First, contrary to existing studies that have mainly explored 
the relationship between carbon and traditional fossil energy 
markets, we are particularly interested in the relationship 
between carbon markets and multiple types of energy mar-
kets (traditional fossil energy and new energy). Second, in 
contrast to previous works concentrating on the time-varying 
spillovers between carbon and energy markets under normal 
market conditions, we focus on the time-varying spillovers 
between carbon and energy markets under extreme market 
conditions, i.e., extreme risk spillovers.

Methodology

In this work, the copula model is used to compute CoVaR 
to quantify extreme risk spillovers, since it has an excellent 
property of describing nonlinear tail dependence compared 
to traditional quantile regression method (Reboredo et al. 
2016; Uddin et al. 2020; Sun et al. 2020). Before construct-
ing joint distribution between two markets by copula model, 
the marginal distribution model of each market should be 
obtained. Thus, in “Marginal distribution model and copula 
model”, we first introduce the ARMA-GARCH models with 
Student-t innovations, which is used to obtain marginal dis-
tribution of each market. Then, we introduce copula model 
to construct bivariate distribution. In “Downside and upside 

VaR and CoVaR”, we present VaR and CoVaR to measure 
extreme risk and extreme risk spillover, respectively.

Marginal distribution model and copula model

Financial market returns usually have the features of auto-
correlation, heteroscedasticity, and fat-tail. The ARMA(p, q ) 
model is used to fit returns with autocorrelation. The 
GARCH(1,1) model has been proved to be suitable for fit-
ting most of time series with heteroscedasticity, and it pro-
vides a simple and parsimonious description of time series 
properties (Bollerslev 1987). Student-t innovations can 
capture characteristics of fat-tail. Thus, the ARMA(p, q)-
GARCH(1,1) models with Student-t innovations are used in 
this work, which are often directly used to obtain marginal 
distributions of financial markets, such as electricity mar-
kets (Apergis et al. 2020) and stock markets (Reboredo et al. 
2016). This model is defined as

where the return yt is the logarithmic difference of market 
price with time-varying mean �t and residual �t . In Eq. (2), 
�0 , �p , and �q represent the constant term, autoregressive 
(AR) coefficients, and moving average (MA) coefficients, 
respectively, whereas p and q are the corresponding orders. 
In Eq. (4), � , � , and � are the constant term, autoregres-
sive conditional heteroskedasticity (ARCH) coefficient, and 
GARCH coefficient, respectively, and �t is the conditional 
standard deviation. The sum of � and � is high, indicating 
the existence of persistent clustering in time series. And zt of 
Eq. (3) obeys Student-t distribution with zero mean and unit 
variance, which implies that its probability density functions 
is denoted as

where � represents the degree-of-freedom parameter 
( 𝜈 > 2 ), and when � → ∞ , it converges to the Gaussian 
density distribution.

Next, the copula model proposed by Sklar (1959) is used 
to connect marginal distributions of two random variables 
X and Y  to a multivariate distribution function, which is 
defined as

(1)yt = �t + �t,

(2)�t = �0 +
∑n

p=1
�py

t−p
+
∑m

q=1
�q�t−q,

(3)�t = zt�t,
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t
= � + ��2

t−1
+ ��2

t−1
,

(5)

f
�
zt;�

�
= Γ(
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2
)∕
√
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2
)
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1 +
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,
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where C(., .) is the copula function and FX(x) and FY (y) 
obey the uniform distributions u1 and u2 . Thus, we have 
C
(
FX(x),FY (y)

)
= C(u1, u2). Accordingly, the joint prob-

ability density function is given as

where c
(
u1, u2

)
= �2C(u1, u2)∕�u1�u2 and fX(x) and 

fY (y) represent the probability density functions of X and 
Y  , respectively.

In order to find the best-fit copula to describe the best 
dependence structure, this work uses seven typical copula 
specifications. Specifically, there are two elliptic copulas in 
this work, including Gaussian and Student-t copulas. Both 
copulas capture symmetric linear tail dependence character-
istics, but Student-t copula can capture a thicker tail. Sine 
many financial time series are nonlinearly correlated, this 
work selects five Archimedes copulas to effectively capture 
nonlinear relationship, including Clayton, Gumbel, Frank, 
180-degree rotated Clayton, and 180-degree rotated Gumbel 
copulas. Clayton and 180-degree rotated Gumbel copulas 
are suitable for modeling structures with lower tail depend-
ence characteristics, while Gumbel and 180-degree rotated 
Clayton copulas are suitable for depicting upper tail depend-
ence characteristics. Frank copula has a “U”-shaped density 
distribution, which is used to describe relationships with 
symmetric thick-tailed characteristics. Thus, these various 
copula specifications offer a great modeling flexibility, and 
their functions are presented in Table 1.

Downside and upside VaR and CoVaR

VaR is a common and effective method to quantify extreme 
risks in financial markets. It can represent the maximum loss 
over a given confidence level and time horizon . Specifically, 
downside risk brings losses to investors for long position 

(6)FXY (x, y) = C
(
FX(x),FY (y)

)
,

(7)fXY (x, y) = c
(
u1, u2

)
fX(x)fY (y),

and upside risk brings losses to investors for short position. 
Downside risk VaRy,D

�,t  and upside risk VaRy,U

�,t  for return yt 
at 1 − � confidence level are given as P(yt ≤ VaR

y,D

�,t ) = � 
andP(yt ≥ VaR

y,U

�,t ) = � , respectively. VaR can be computed 
from the estimated marginal distribution model in “Marginal 
distribution model and copula model”.

However, VaR can only measure the isolated extreme 
risk in an individual market, instead of measuring the co-
movements and extreme risk contagion across multiple 
markets. As a result, Adrian and Brunnermeier (2016) pro-
posed CoVaR to measure extreme risk spillovers between 
markets. Further, some co-movements in financial markets 
are in same directions, while others are in opposite direc-
tions. With this in mind, we introduce downside and upside 
CoVaR following Liu et al. (2017), which enables us to 
measure extreme risk spillovers based on positive or nega-
tive relationships between markets. Specifically, if return xt 
and return yt show positive tail dependence, downside and 
upside CoVaR ( CoVaRy|x,D

�,t  , CoVaRy|x,U
�,t  ) for yt at 1 − � confi-

dence level conditional xt at 1 − � confidence level are meas-
ured by lower-lower and upper-upper tail and are defined as

If xt and yt show negative tail dependence, CoVaRy|x,D
�,t  and 

CoVaR
y|x,U
�,t  are measured by lower–upper and upper-lower 

tail and are defined as

Let Fyt
 and Fxt

 be marginal distributions of yt and xt , 
respectively, and Fytxt

 is the joint distributions of yt and xt . 

(8)P(yt ≤ CoVaR
y|x,D
�,t

|||xt ≤ VaRx,D

�,t

)
= �,

(9)P(yt ≥ CoVaR
y|x,U
�,t

|||xt ≥ VaRx,U

�,t

)
= �.

(10)P(yt ≤ CoVaR
y|x,D
�,t

|||xt ≥ VaRx,U

�,t

)
= �,

(11)P(yt ≥ CoVaR
y|x,U
�,t

|||xt ≤ VaRx,D

�,t

)
= �.

Table 1   The functions of copula 
specifications in this work

Φ� , T�,f  , and Tf  are the bivariate standard normal, bivariate t  , and univariate t  cumulative distribution func-
tions, respectively

Copula Distribution function Parameter

Gaussian CN

(
u1, u2;�

)
= Φ�[Φ

−1
(
u1
)
,Φ−1(u2)] � ∈ (−1, 1)

Student-t CT

(
u1, u2;�, f

)
= T�,f [Tf

−1
(
u1
)
,Tf

−1(u2)] � ∈ (−1, 1)

f ∈ (2,∞)

Clayton CC

(
u1, u2;�

)
= (u1

−� + u2
−� − 1)

−1∕� � ∈ (0,∞)

Gumbel
CG

(
u1, u2;�

)
= exp[−{(−lnu1)

� + (−lnu2)
�}

1

� ]
� ∈ [1,∞)

Frank CF

(
u1, u2;�

)
= −

1

�
ln(1 −

(1−e−�u1 )(1−e−�u2 )

1−e−�
) � ∈ ℝ{0}

180-degree rotated Clayton CRC

(
u1, u2;�

)
= ((1 − u1)

−� + (1 − u2)
−� − 1)

−1∕� � ∈ (0,∞)

180-degree rotated Gumbel CRG

(
u1, u2;�

)
= CG

(
1 − u1, 1 − u2;�

)
+ u1 + u2 − 1 � ∈ [1,∞)
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Then, Eq. (8) is equivalent to 
Fytxt

(
CoVaR

y|x,D
�,t ,VaRx,D

�,t

)

Fxt

(
VaRx,D

�,t

) = � . Since 

Eq. (6) in “Marginal distribution model and copula model” 
is formulated as

and Fxt

(
VaRx,D

�,t

)
= � , Eq. (8) is rewritten as.

Similarly, Eqs. (9)–(11) are re-expressed as Eqs. 
(14)–(16)

The two-step procedure of Reboredo and Ugolini (2015) 
is used to compute CoVaR. First, once copula function C(., .) 
as well as � and � are given, we can solve the estimated 
values of Fyt

(
CoVaR

y|x,D
�,t

)
 and Fyt

(
CoVaR

y|x,U
�,t

)
 as 

F̂yt

(
CoVaR

y|x,D
�,t

)
 and F̂yt

(
CoVaR

y|x,U
�,t

)
 . Next, CoVaRy|x,D

�,t  and 

CoVaR
y|x,U
�,t  are computed as F−1

yt

(
F̂yt

(
CoVaR

y|x,D
�,t

))
 and 

F−1
yt

(
F̂yt

(
CoVaR

y|x,U
�,t

))
.

We can now examine asymmetry of downside and upside 
r isk spi l lovers  with  nul l  hypothesis  as  H0: 
CoVaR

y|x,D
�,t

VaR
y,D

�,t

=
CoVaR

y|x,U
�,t

VaR
y,U

�,t

 referring to Reboredo et al. (2016). To 

test this hypothesis, we use the bootstrapped two-sample 
Kolmogorov–Smirnov (KS) test proposed by Abadie (2002). 
The KS test does not consider any underlying distribution 
function and is defined as

where m and n are sizes of two samples and Fm(x) and 
Gn(x) are cumulative distribution functions of left and right 
side variables of null hypothesis, respectively.

In the empirical analysis, due to the price gap among 
different regional carbon markets, this work selects three 
carbon markets with relatively high transaction days. To 
compare the degree of extreme risk spillovers to different 
carbon markets from energy market, we introduce %CoVaR, 
which reflects the relative extreme risk spillovers from 
energy markets to carbon markets after eliminating the 
dimensional impact of different carbon markets. Downside 

(12)
C

(
Fyt

(
CoVaR

y|x,D
�,t

)
,Fxt

(
VaRx,D

�,t

))
= Fytxt

(
CoVaR

y|x,D
�,t ,VaRx,D

�,t

)

(13)C

(
Fyt

(
CoVaR

y|x,D
�,t

)
, �
)
= ��.

(14)
Fyt

(
CoVaR

y|x,U
�,t

)
− C

(
Fyt

(
CoVaR

y|x,U
�,t

)
, 1 − �

)
= (1 − �)�,

(15)
Fyt

(
CoVaR

y|x,D
�,t

)
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and upside %CoVaR ( %CoVaRy|x,D
�,t  , %CoVaRy|x,U

�,t  ) for yt at 
1 − � confidence level conditional xt at 1 − � confidence level 
are defined as

Data and descriptions

Data sources

This work uses daily data from April 23, 2014, to December 
31, 2020. The detailed description of data is as follows.

1.	 Carbon markets: this work chooses Guangdong (GD), 
Hubei (HB), and Shenzhen (SZ) pilots to represent Chi-
na’s regional carbon markets, as they are more active 
than other carbon pilots. The portion of days without 
zero trading volume in carbon pilots is shown in Table 2.

	   We only make reports on the pilots established before 
the beginning of the sample.

2.	 Traditional fossil energy markets: this work selects 
coal (COAL), crude oil (OIL), and natural gas (GAS) 
markets to stand for traditional fossil energy markets. 
Specifically, the coal market is represented by the ther-
mal coal futures of Zhengzhou Commodity Exchange, 
as thermal coal is the main raw material for thermal 
power generation (Lin and Chen 2019). The crude oil 
market is represented by China South Sea crude oil as 
Chang et al. (2019). Compared with the price trend of 
Daqing and Shengli crude oil, the price trend of China 
South Sea crude oil is closer to that of international 
crude oil. Meanwhile, the market price is transformed 
with the exchange rate of USD to RMB because it is 

(18)
%CoVaR

y|x,D
�,t = 100 ×

(
CoVaR

y|x,D
�,t − VaR

y,D

�,t

)
∕VaR

y,D

�,t
,

(19)
%CoVaR

y|x,U
�,t = 100 ×

(
CoVaR

y|x,U
�,t − VaR

y,U

�,t

)
∕VaR

y,U

�,t
.

Table 2   The trading days in sample period

Market The observations of day 
without zero trading 
volume

The proportion of days 
without zero trading 
volume

Hubei 1585 90.68%
Shenzhen 1483 84.84%
Guangdong 1400 80.09%
Beijing 1022 58.47%
Shanghai 983 56.24%
Tianjin 569 32.55%
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priced in dollars. The market price of liquefied natural 
gas is the indicator of natural gas price. Since this price 
is affected by domestic offshore, imports, and uncon-
ventional sources together, it shows better marketization 
than the price of natural gas dominated by the govern-
ment (Chang et al. 2019).

3.	 New energy market (NEW): this work selects CNI new 
energy index as the indicator of new energy market as 
Wen et al. (2014) and Zeng et al. (2018). This index 
consists of 70 enterprises of Shanghai and Shenzhen 
stock exchanges, far exceeding those of CSI new energy 
index. Moreover, it includes a wide range of fields like 
new energy (such as wind energy, solar energy, nuclear 
energy, and biomass energy), new energy vehicle, and 
cleaner energy technologies.

Additionally, the data of energy markets and exchange 
rate are derived from the WIND database. The data of car-
bon markets are from the China Emissions Trading website 
(http://​www.​tanpa​ifang.​com).

Descriptive statistical analysis

Table 3 presents the descriptive statistics of daily returns 
for carbon and energy markets in China. It can be seen from 
the results of standard deviations that crude oil and three 
carbon markets are more volatile than other financial mar-
kets. We also can see that the values of skewness are nega-
tive and kurtosis are greater than three, which implies that 
all series exhibit the characteristics of left-skewed, sharp-
peak, and fat-tail. According to the Jarque–Bera (JB) test, 
each series is not normally distributed at 1% significance 
level. Phillips and Perron (PP) and augmented Dickey-Fuller 
(ADF) unit root tests show that all series are stationary at 

1% significance level. The results of the Q(20) and Q2(20) 
show that all series have autocorrelation. Finally, ARCH 
tests indicate that each series has heteroscedasticity.

Results and discussion

In our empirical analysis, we first exhibit estimates for the 
marginal distribution of each market in “Empirical esti-
mates for marginal distribution models”. To obtain the best 
dependence structure between carbon and energy markets, 
we estimate copula models to construct joint distribution 
between two markets in “Empirical results for copula mod-
els”. In “Downside and upside VaR and CoVaR results”, we 
further compute downside and upside VaR and CoVaR to 
analyze the extreme (downside and upside) risk spillovers 
to carbon markets from energy markets and perform asym-
metry and robust tests of downside and upside risk spillo-
vers. Finally, we compute %CoVaR to compare the degree 
of extreme risk spillovers to different carbon markets from 
energy markets in “Downside and upside %CoVaR results”.

Empirical estimates for marginal distribution 
models

Here, we employ ARMA(p, q)-GARCH(1,1) models 
with Student-t innovations to estimate the marginal dis-
tribution of each market. The modeling process of this 
model is strictly divided into two steps. p and q are firstly 
selected according to Akaike information criterion (AIC) 
( 0 ≤ p, q ≤ 2 ), which are shown in Table  9. Then, the 
ARMA(p, q)-GARCH(1,1) model with Student-t innova-
tion is estimated in Table 4. As can be seen from Table 4, 
although some coefficients in the mean equation are not 
significant, all coefficients in the variance equation are 

Table 3   Descriptive statistics of market returns

The Q(20) and Q2(20) are the Ljung-Box statistics in the residuals and squared residuals with 20 lags, respectively. The ARCH(20) is the LM 
test of Engle (1982) for testing the presence of the ARCH effect (conditional heteroscedasticity) in the residuals up to 20th order
***, **, * Null hypothesis is rejected at 1%, 5%, and 10% significance levels, respectively

GD HB SZ COAL OIL GAS NEW

Mean  − 0.0004 0.0001  − 0.001 0.0001  − 0.0005  − 0.0003  − 0.0004
Std. Dev 0.0456 0.0308 0.0383 0.0118 0.0307 0.0119 0.0456
Skewness  − 0.025  − 0.326  − 0.0799  − 1.9799  − 1.0646  − 1.4417  − 0.0250
Kurtosis 11.0076 32.1797 5.2139 36.5941 36.445 18.5951 11.0076
JB 4665.0629*** 61,974.1497*** 358.4261*** 83,243.7624*** 81,705.6017*** 18,298.1553*** 1241.3189***
PP  − 46.9510***  − 54.0700***  − 46.8530***  − 36.8124***  − 40.7299***  − 25.2203***  − 39.4878***
ADF  − 44.2434***  − 51.8089***  − 46.8530***  − 30.3226***  − 15.6236***  − 18.9553***  − 39.2428***
Q(20) 33.4091* 116.7705*** 65.3106*** 90.1875*** 151.2347*** 633.9774*** 29.4522*
Q2(20) 279.8830** 392.5678** 724.7439** 645.2966*** 1438.0534*** 271.6295*** 1397.1583***
ARCH 224.1596*** 248.1821*** 253.3065*** 210.19*** 522.7401*** 173.0419*** 361.8608***
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statistically significant. As for the mean equation, there are 
some significant coefficients on either AR or MA for all 
markets except GD pilot, indicating the serial dependence 
in all markets except GD pilot. With regard to the variance 
equation, both � and � are significant at 1% level, and the 
sum of � and � is high for each series, showing the persis-
tent volatility clustering. The degree-of-freedom param-
eter � is significant at 1% level for each series. It implies 
that Student-t distribution can well fit the disturbance of 
the ARMA(p, q)-GARCH(1,1) models and confirms that 
all series have the characteristics of fat-tail. In terms of 
residual tests, the results of Q(20) and Q2(20) represent 
that there are no autocorrelations on the residuals and 
squared residuals, respectively. The results of ARCH(20) 
reveal no ARCH effects on the residuals. These residual 
tests mean that the ARMA(p, q)-GARCH(1,1) model with 

Student-t innovations is suitable for estimating the mar-
ginal distribution of each market.

Empirical results for copula models

Next, we apply copula model to connect marginal distri-
butions obtained in “Empirical estimates for marginal dis-
tribution models”. To ensure that the standardized residual 
of each marginal distribution is uniformly distributed, we 
convert them to pseudo-sample observations in advance 
by probability integral transformation. Then, we employ 
Gaussian, Student-t, Clayton, Gumbel, Frank, 180-degree 
rotated Clayton, and 180-degree rotated Gumbel copulas to 
identify the best dependence structure between carbon and 
energy markets. According to the minimum of AIC values 
for each pair in Table 5, the optimal bivariate copula model 

Table 4   The estimates of 
ARMA-GARCH-Student-t 
model

Values in parentheses and brackets denote t-statistics and p values, respectively. In addition, *, **, and *** 
represent p < 0.1 , p < 0.05 , and p < 0.01 , respectively. LogLike is the log-likelihood value. The Q(20) and 
Q2(20) are the Ljung-Box statistics in the residuals and squared residuals with 20 lags, respectively. The 
ARCH(20) is the LM test of Engle (1982) for testing the presence of the ARCH effect (conditional hetero-
scedasticity) in the residuals up to 20th order

GD HB SZ COAL OIL GAS NEW

Mean
�0 0.001* 0.000 0.000 0.000 0.000 0.000* 0.004*

(1.852) (0.000) (0.037) (− 0.962) (0.072) (1.768) (2.691)
�1  − 0.238 0.644** 1.453***  − 0.304*** 0.121 0.999***

(− 1.515) (2.031) (5.517) (7.224) (0.535) (2.083e + 03)
�2 0.113  − 0.651**  − 0.936*** 0.222**

(1.426) (− 2.148) (− 22.459) (2.021)
�1 0.086  − 0.879***  − 1.459*** 0.173***  − 0.294*** 0.351  − 0.996***

(0.521) (− 2.759) (− 5.574) (7.114) (− 5.837) (1.551) (− 3.873e + 04)
�2 0.064 0.697**  − 0.002 0.914***

(0.596) (2.413) (− 0.081) (18.788)
Variance
� 0.000*** 0.000 0.000 0.000 0.000*** 0.000*** 0.000

(4.792) (0.000) (1.299) (0.663) (2.929) (4.250) (0.623)
� 0.509*** 0.342*** 0.239*** 0.163*** 0.157*** 0.306*** 0.081***

(12.117) (8.877) (3.176) (3.677) (5.361) (14.996) (2.375)
� 0.490*** 0.656** 0.760*** 0.830*** 0.832*** 0.693*** 0.915***

(14.523) (22.211) (9.034) (12.486) (44.854) (11.978) (25.461)
� 3.189*** 3.227*** 4.526*** 3.284*** 6.730*** 2.581*** 4.454***

(24.006) (30.988) (7.871) (6.339) (6.098) (25.981) (7.186)
Residual test
LogLike 3590 4337 3507 5749 4282 6021 4832
Q(20) 17.367 0.719 8.983 21.749 29.894 25.995 16.744

[0.629] [0.999] [0.641] [0.297] [0.072] [0.166] [0.770]
Q2(20) 22.274 0.112 20.251 2.216 3.520 16.904 9.439

[0.326] [0.999] [0.443] [0.999] [0.999] [0.659] [0.977]
ARCH(20) 22.877 0.012 16.918 2.479 3.458 20.824 9.843

[0.249] [0.999] [0.658] [0.999] [0.999] [0.408] [0.977]
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specification is selected. The corresponding parameter esti-
mates are presented in Table 6. This evidence reveals that 
HB-GAS, SZ-GAS, and SZ-NEW pairs have positive tail 
dependence, while other carbon-energy pairs show nega-
tive tail dependence. In addition, we can find that Gaussian, 
Student-t, and Frank bivariate copulas are the best copula 
specifications for carbon-energy pairs in addition to SZ-
NEW pair. It indicates that there is the symmetric depend-
ence structure between carbon and energy markets. This 
finding is similar to Liu and Chen (2013) and Wang and 
Guo (2018) who stress the symmetric relationship between 
carbon and energy markets.

However, the best fit for SZ-NEW pair is 180-degree 
rotated Clayton copula, which depicts the upper tail depend-
ence between Shenzhen pilot and new energy market. That 
is, the interdependence between Shenzhen pilot and new 
energy market is greater when positive information comes. 
This phenomenon is not difficult to explain. First, Shenz-
hen pilot plays a vital role in promoting the development 
of new energy industry since it covers a large number of 
tertiary industry enterprises based on the local economic 
development structure (Wu and Qin 2021). Second, since 
both markets are significantly influenced by national policy, 
investors will be willing to take full advantage of the market 
mechanism of Shenzhen pilot to invest new energy indus-
try if policymakers release favorable news to further reduce 
CO2 emissions and support new energy industry (Xiao 
et al. 2022). This ultimately causes an obvious increase in 
the interdependence between two markets. Therefore, an 
in-depth understanding in tail dependence structure sug-
gests that policymakers should focus on the price discovery 
function of Shenzhen pilot, in order to effectively guide the 
investment behavior of new energy industry and thus achieve 
the goals of emission reduction.

Downside and upside VaR and CoVaR results

This work computes downside and upside VaR and CoVaR 
(VaR(D), VaR(U), CoVaR(D), and CoVaR(U)) at the 5% 
and 95% confidence levels as Sun et al. (2020). This differ-
ence between confidence levels allows us to differentiate 
between bearish and bullish market conditions. Figure 1 
displays dynamic downside and upside VaR and CoVaR 
for carbon markets conditional on energy markets. It can 
be found that the values of CoVaR(U) for carbon mar-
kets conditional on various types of energy markets are 

Table 5   The AIC values for 
each pair

The minimum AIC values are shown in bold

Pair Gaussian Student-t Clayton Gumbel Frank 180-degree 
rotated Clayton

180-degree 
rotated 
Gumbel

GD-COAL 1.41  − 0.26 0.03 1.37 1.32 1.82  − 0.05
GD-OIL 2 0.43 2 1 2 1.49 2
GD-GAS 1.94 5.56 2 2.01 0.67 2 2.02
GD-NEW 0.8  − 5.7 2 1.98  − 0.22 2.01 1.68
HB-COAL 0.76  − 3.68 2.02 0.41  − 0.26 1.56 2.02
HB-OIL 0.51 9.25 2.01 2.04 1.87 2.01 2.02
HB-GAS 0.45  − 6.74 0.95  − 3.69 0.37  − 1.85 0.25
HB-NEW  − 0.15  − 0.43 2.02 2  − 2.25 2 2.03
SZ-COAL 0.94 3.12 2.01 2.02 1.7 2.01 2.03
SZ-OIL  − 0.84 2.43 2.02 2.05 0.12 2.02 2.03
SZ-GAS 0.17  − 0.06 2.01 2.02 0.65 2.01 2.01
SZ-NEW 2.92 5.1 2.01 1.67 2.43 1.11 2.01

Table 6   Parameter estimates of optimal bivariate copula model for 
each pair

Student-t copula has two parameters, while other copulas have one 
parameter, as shown in Table 1

Pair Optimal copula Tail dependence 
parameter

Degree-of-freedom 
parameter

GD-COAL Student-t  − 0.026 15.31
GD-OIL Student-t  − 0.005 13.728
GD-GAS Frank  − 0.141
GD-NEW Student-t  − 0.018 14.705
HB-COAL Student-t  − 0.033 16.243
HB-OIL Gaussian  − 0.026
HB-GAS Student-t 0.043 10.821
HB-NEW Frank  − 0.17
SZ-COAL Gaussian  − 0.021
SZ-OIL Gaussian  − 0.016
SZ-GAS Student-t 0.02 30.538
SZ-NEW 180-degree 

rotated Clayton
0.037
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systematically above the values of unconditional VaR(U) 
for carbon markets. And the values of CoVaR(D) for carbon 
markets conditional on various types of energy markets are 
systematically below the values of unconditional VaR(D) 
for carbon markets. It proves that there are the upside and 
downside risk spillovers from both traditional fossil energy 
and new energy markets to carbon markets. This finding 
can be also confirmed by the statistics in Table 10. Nota-
bly, the risk spillovers are obviously larger when extreme 
events cause large shocks to energy markets. For instance, 
we can see that downside and upside CoVaR for carbon 
markets exhibited a jump in 2016. In this stage, dramatic 
changes were taking place in energy markets due to a series 
of supply-side reforms, such as resolving excess capacity 
in the coal industry, reforming the oil and gas regime, and 
improving the development of new energy. CoVaR for 

carbon markets also showed great changes from the second 
half of 2018 to the first half of 2019. This may be attrib-
uted to the intensified trade disputes between China and the 
United States, which led to significant volatility in energy 
markets. Specifically, in this period, international oil price 
experienced severe volatility, and domestic coal export, 
new energy export, and liquefied gas import substantially 
declined. Large shocks in energy markets significantly 
alter energy price, energy consumption, and CO2 emis-
sions, which in turn greatly affect carbon price and eventu-
ally cause higher risk spillovers. This concords with Wu 
et al. (2022a), Jiang and Chen (2022), and Ji et al. (2020) 
who point out the impact of large shocks on risk spillovers 
between financial markets.

According to the results in “Empirical results for cop-
ula models”, HB-GAS, SZ-GAS, and SZ-NEW pairs have 

Fig. 1   Downside and upside VaR and CoVaR for carbon markets 
conditional on energy markets. Downside and upside CoVaRHB|GAS 
(y = HB, x = GAS), CoVaRSZ|GAS(y = SZ, x = GAS), and CoVaRSZ|NEW

(y = SZ, x = NEW) are computed based on Eqs. (8) and (9), while oth-
ers are computed based on Eqs. (10) and (11). The gray shadows are 
the periods when extreme events occur
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positive tail dependence and other pairs have negative tail 
dependence. Thus, we compute CoVaR(D) and CoVaR(U) 
for Hubei pilot conditional natural gas market, Shenzhen 
pilot conditional natural gas market, and Shenzhen pilot con-
ditional new energy market based on Eqs. (10) and (11). In 
this case, CoVaR(D) measures the downside risk in carbon 
market when energy market is under bullish market condi-
tions. CoVaR(U) measures the upside risk in carbon market 
when energy market is under bearish market conditions. And 
we compute CoVaR(D) and CoVaR(U) for other pairs based 
on Eqs. (8) and (9). In this case, CoVaR(D) measures the 
downside risk in carbon market when energy market is under 
bearish market conditions. CoVaR(U) measures the upside 
risk in carbon market when energy market is under bullish 
market conditions. In other words, there are upside risks in 
all carbon markets when coal or crude oil markets are under 
bullish market conditions, while there are upside or down-
side risks in carbon markets when natural gas or new energy 

markets are under bullish market conditions and vice-versa. 
From the above analyses, it is not difficult to find that there 
are risks in the opposite direction in carbon markets when 
carbon-intensive energy markets (coal and crude oil) are 
under extreme market conditions, but the direction of risks 
in carbon markets is uncertain when low-carbon energy mar-
kets (natural gas and new energy) are under extreme market 
conditions.

The above findings are worthy of in-depth discussion. 
Since the risk transmission mechanisms from energy mar-
kets to carbon markets under bullish and bearish market 
conditions are exactly reversed, we only discuss bullish 
market conditions as follows. A key concept is that energy 
prices are largely upward when energy markets are under 
bullish market conditions. Coal and crude oil are both car-
bon-intensive fossil energy. These largely upward prices 
greatly reduce the consumption of coal and crude oil as 
well as CO2 emissions. This further lowers the demand 

Fig. 1   (continued)
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for carbon allowances and carbon prices and thus drives 
up the downside risks in carbon markets. This finding 
is somewhat consistent with previous research showing 
that coal and crude oil prices have a positive impact on 
carbon price (Guo et al. 2022; Zeng et al. 2017). Natu-
ral gas is low-carbon fossil energy and its consumption 
helps reduce CO2 emissions. On the one hand, the largely 
upward natural gas price decreases natural gas consump-
tion. On the other hand, since the largely upward natural 
gas price increases the consumption cost of natural gas, 
the government increases fiscal subsidies and reduces tax 
to promote natural gas consumption (Lin and Xu 2021). 
Thus, changes in natural gas consumption and CO2 emis-
sions are uncertain, resulting in that changes in carbon 
prices and the direction of risks in carbon markets are also 
uncertain. New energy index is a vital indicator to reflect 
investor expectations of the new energy market. The largely 
upward new energy price represents the boom development 

prospect of new energy industry, promoting enterprises to 
expand new energy consumption to decrease CO2 emis-
sions. Besides, the largely upward new energy price is 
always accompanied by the growth of low-carbon willing-
ness. This enhanced environmental willingness is related 
to higher CO2 emissions in the environment (Lin and Chen 
2019). Accordingly, changes in CO2 emissions and carbon 
prices are unclear. Hence, the direction of risks in carbon 
markets are also uncertain when new energy markets is 
under bullish market conditions.

One striking result is that there is regional heterogeneity 
not only in magnitude but also in direction of the extreme 
risk spillovers to carbon markets from energy markets. In 
terms of the magnitude of extreme risk spillovers, as can 
be seen from Fig. 1 and Table 10, the absolute values of 
CoVaR for Guangdong pilot conditional on coal market are 
greater than other energy markets. The absolute values of 
CoVaR for Hubei pilot conditional on nature gas market 

Fig. 1   (continued)
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are higher, while the values of CoVaR(U) for Shenzhen 
pilot conditional on new energy market are larger. The 
result indicates that there is regional heterogeneity in the 
magnitude of extreme risk spillovers to carbon markets 
from energy markets. To investigate the direction of the 
extreme risk spillovers, we perform the KS tests to exam-
ine the asymmetry of downside and upside risk spillovers 
in Table 7. The results show that the null hypotheses are 
rejected at the 1% level in addition to Hubei pilot. This 
implies that there is no distinct difference between the 
upward and downward risk spillovers to Hubei pilot from 
energy markets. Conversely, with regard to Guangdong and 
Shenzhen pilots, there are asymmetric downside and upside 
risk spillovers from energy markets. Due to the difference of 
local economic development, energy consumption structure, 
and policy incentives, the operation mechanism of carbon 
markets in different regions is highly diverse, including 
allowance allocation mechanism and Monitoring Report-
ing Verification (MRV) supervision mechanism (Wu and 
Qin 2021). Owing to the above reasons, three carbon pilots 
analyzed in this work eventually exhibit different price char-
acteristics referring to Fig. 3. Therefore, both the magnitude 
and direction of the extreme risk spillovers to carbon mar-
kets from energy markets present regional heterogeneity. 
Our findings expand the relevant studies of Chang et al. 
(2019) and Cui et al. (2020) who prove the magnitude of 
heterogeneity in spillovers from energy markets to carbon 
markets in different regions.

Finally, to test the robustness of our results, we apply 
the KS tests following Abadie (2002) to access the signifi-
cance of downside and upside risk spillovers from energy 
markets to carbon markets in Table 8. The null hypotheses 
are CoVaR(D)y|x ≤ VaR(D)y and CoVaR(U)y|x ≥ VaR(U)y , 
respectively, which implies that there are no significant 
downside and upside risk spillovers. One can evidently find 
from Table 8 that all null hypotheses are rejected at the 1% 
significant level. It demonstrates that there exist significant 
downward and upward risk spillovers to three carbon pilots 
from different energy markets at the 1% significant level. 
Thus, our results about extreme risk spillovers from energy 
markets to carbon markets are robust.

Downside and upside %CoVaR results

In this section, we proceed to analyze %CoVaR for carbon mar-
kets conditional on energy markets, to compare the degrees of 
extreme risk spillovers to different carbon markets from energy 
markets. Figure 2 plots the networks about the mean values of 
downside (Panel (a)) and upside (Panel (b)) %CoVaR, which 
shows that both downside and upside risk spillovers to Guang-
dong and Hubei pilots are greater than those to Shenzhen pilot 
from energy markets. This may be attributed to the liquidity of 
three pilots. Guangdong pilot has always played a leading role 
in China’s efforts to tackle climate change, which results in this 
pilot having high market liquidity (Wen et al. 2022). By Decem-
ber 2020, the cumulative trading volume had reached 172 mil-
lion tons and the cumulative transaction values had reached 
3.561 billion Yuan, which account for 38% and 34% of the 
national, respectively, ranking first in China’ regional carbon 
markets.3 Similarly, Hubei pilot has great market liquidity along 
with excellent transaction continuity and active market partici-
pation (Fan et al. 2019). The proportion of days with trading in 
this pilot is 90.68% in our sample period, which is the highest 
among China’s regional carbon markets (see Table 2). While 
Shenzhen pilot is the first regional carbon market launched in 
China, its price fluctuates violently and frequently due to the 
decline in the trading volume and oversupply of carbon allow-
ances (see Fig. 3). This price phenomenon leads to the low 
liquidity of Shenzhen pilot (Guo and Feng 2021). An important 
concept is that low liquidity in one market can lead investors 
to move their funds to other more liquid markets in order to 
hedge their risk, resulting in a low level of financialization in 
this market. Hence, the extreme risk spillovers to Shenzhen 

Table 7   The asymmetric tests of downside and upside risk spillovers 
from energy markets to carbon markets

The tests are based on null hypotheses as H0: CoVaR(D)
y|x

VaR(D)y
=

CoVaR(U)y|x

VaR(U)y

*** p < 0.01

x

y

COAL OIL GAS NEW

GD 0.276*** 0.276*** 0.276*** 0.276***
HB 0.031 0.032 0.032 0.032
SZ 0.092*** 0.092*** 0.092*** 0.930***

Table 8   The robust tests of extreme risk spillovers from energy markets 
to carbon markets

*** p < 0.01

y x H0:CoVaR(D)y|x ≤ VaR(D)y H0:CoVaR(U)y|x ≥ VaR(U)y

GD COAL 0.432*** 0.432***
OIL 0.405*** 0.411***
GAS 0.275*** 0.282***
NEW 0.420*** 0.424***

HB COAL 0.302*** 0.310***
OIL 0.241*** 0.236***
GAS 0.387*** 0.392***
NEW 0.221*** 0.216***

SZ COAL 0.190*** 0.191***
OIL 0.169*** 0.170***
GAS 0.245*** 0.245***
NEW 0.229*** 0.270***

3  The data is from the China Emissions Trading website.
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pilot from energy markets are the least. This finding verifies 
that energy markets prefer to transmit extreme risks to more 
liquid carbon markets.

Conclusions

The carbon market is regarded as an efficient instrument to 
reduce CO2 emissions. However, under extreme market condi-
tions, large shocks from energy markets may affect the effec-
tiveness of carbon markets in reducing emissions. Thus, it is 
meaningful to investigate the extreme risk spillovers to carbon 
markets from energy markets. To our knowledge, this work is 
the first one to investigate the extreme risk spillovers to car-
bon markets (Guangdong, Hubei, and Shenzhen pilots) from 
energy markets (fossil energy and new energy). To achieve 
our objective, this work first combines the ARMA-GARCH 
model with copula models to select the best tail dependence 
structure between carbon and energy markets and then com-
pute the downside and upside CoVaR and %CoVaR for carbon 

markets conditional on energy markets to quantify extreme risk 
spillovers.

The main findings can be summarized as follows. First, Gauss-
ian, Student-t, and Frank bivariate copulas are the best copula 
specifications for most carbon-energy pairs, which indicates the 
predominantly symmetric dependence structure between carbon 
and energy markets. Second, there are the downside and upside 
risk spillovers from both traditional fossil energy and new energy 
markets to carbon markets. Notably, the risk spillovers are obvi-
ously larger when extreme events, such as trade disputes between 
China and the United States, cause large shocks to energy markets. 
Third, there are risks in the opposite direction in carbon markets 
when carbon-intensive energy markets (coal and crude oil) are 
under extreme market conditions, but the direction of risks in car-
bon markets is uncertain when low-carbon energy markets (natu-
ral gas and new energy) are under extreme market conditions. 
Fourth, the CoVaR values indicate that the extreme risk spillovers 
to carbon markets from energy markets are regionally heteroge-
neous in magnitude. And the asymmetry tests of downside and 
upside risk spillovers reveal that the extreme risk spillovers are 

Fig. 2   The %CoVaR networks 
for carbon markets conditional 
on energy markets. Note: blue, 
green, and gray nodes represent 
carbon, traditional fossil energy, 
and new energy markets, 
respectively. And black, red, 
and orange edges correspond 
to the large, medium, and small 
extreme risk spillovers to dif-
ferent carbon markets from the 
same energy market, respec-
tively
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also regionally heterogeneous in direction. Finally, both the upside 
and downside risk spillovers from the energy markets to Guang-
dong and Hubei pilots are greater than those to Shenzhen pilot, 
which reveals that energy markets prefer to transmit extreme risks 
to more liquid carbon markets due to the illiquidity of Shenzhen 
pilot.

Further, some implications are proposed through the above 
findings. First, our findings can provide references for policy-
makers. (i) Not only traditional energy markets but also new 
energy market should be monitored to reduce the severe fluc-
tuations in carbon markets under extreme market conditions. 
(ii) On account of the differences in the extreme risk spillo-
vers from carbon-intensive and low-carbon energy markets to 
carbon markets, the impact of changes in energy structure on 
carbon markets should be valued. Furthermore, to stabilize the 
extreme risk spillovers from low-carbon energy markets to car-
bon markets, production and consumption of natural gas and 
new energy should be further encouraged. For instance, the 
government can strengthen the construction of natural gas stor-
age facilities and new energy power plants. (iii) As the liquid-
ity of carbon markets continues to increase, the relationship 
between carbon trading mechanisms and energy policy needs 
to be further coordinated to safeguard against the extreme risk 
spillovers to carbon markets from energy markets.

Second, our findings also have insights for enterprises 
involved in carbon markets. (i) In addition to the change in car-
bon price, the fluctuations in both traditional fossil energy and 
new energy markets under extreme market conditions should 
be taken seriously to improve risk management capabilities of 
carbon assets. (ii) Risk awareness of market participants should 
be raised, especially when extreme events cause large shocks 
to energy markets. (iii) Regional differences in both the magni-
tude and direction of extreme risk spillovers to carbon markets 
from energy markets should be fully comprehended to avoid 
designing identical carbon reduction strategies. In particular, it 
is recommended that enterprises involved in Guangdong and 
Shenzhen pilots need to focus on the asymmetry of downside 
and upside risk spillovers from energy markets.

Nevertheless, there are limitations to our study. One of the 
limitations is that the inferences from this study may not be 
applicable to other countries, as the data come from one country. 
Another limitation is that this study only explores the extreme 
risk spillovers to carbon markets from energy markets. Other 
nonenergy financial markets may also transmit risks to carbon 
markets. Therefore, future studies can focus on the extreme risk 
spillovers to carbon markets from nonenergy markets for a deeper 
analysis.

Appendix

Table 9
Table 10

Table 9   The AIC values of ARMA(p, q ) model

The minimum AIC values are shown in bold.

GD HB SZ COAL OIL GAS NEW

ARMA(0,0)  − 5823.36  − 7192.35  − 6431.72  − 10,545.28  − 7204.44  − 10,517.01  − 9018.47
ARMA(0,1)  − 5826.98  − 7268.56  − 6452.48  − 10,576.99  − 7204.68  − 10,820.13  − 9022.79
ARMA(0,2)  − 5824.98  − 7270.19  − 6453.25  − 10,584.08  − 7205.42  − 10,954.44  − 9022.05
ARMA(1,0)  − 5827.01  − 7271.07  − 6452.87  − 10,571.24  − 7204.49  − 10,951.58  − 9023.13
ARMA(1,1)  − 5841.03  − 7269.32  − 6452.94  − 10,581.42  − 7209.48  − 10,964.15  − 9024.44
ARMA(1,2)  − 5839.66  − 7270.33  − 6452.13  − 10,582.22  − 7207.96  − 10,979.81  − 9022.85
ARMA(2,0)  − 5825.02  − 7269.38  − 6454.18  − 10,582.96  − 7205.42 10,969.68  − 9022.28
ARMA(2,1)  − 5823.01  − 7267.48  − 6452.79  − 10,583.15  − 7207.97  − 10,982.93  − 9022.86
ARMA(2,2)  − 5840.92  − 7273.63  − 6456.80  − 10,581.68  − 7246.97  − 10,979.24  − 9020.65
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Table 10   Summary statistics of VaR and CoVaR for carbon markets conditional on energy markets

Mean Median Maximum Minimum Std. Dev Skewness Kurtosis

VaRGD(D)  − 0.0519  − 0.0373  − 0.0156  − 0.4366 0.0404  − 2.3860 15.0976
VaRGD(U) 0.0533 0.0384 0.4089 0.0168 0.0412 2.1717 11.5758
CoVaRGD|COAL(D)  − 0.1022  − 0.0732  − 0.0314  − 0.8053 0.0786  − 2.2591 13.4229
CoVaRGD|COAL(U) 0.1036 0.0752 0.7518 0.0326 0.0795 2.1492 11.6166
CoVaRGD|OIL(D)  − 0.0979  − 0.0702  − 0.0300  − 0.7732 0.0753  − 2.2640 13.4902
CoVaRGD|OIL(U) 0.0993 0.0719 0.7220 0.0312 0.0761 2.1493 11.6039
CoVaRGD|GAS(D)  − 0.0743  − 0.0533  − 0.0227  − 0.6009 0.0574  − 2.3033 14.0200
CoVaRGD|GAS(U) 0.0757 0.0546 0.5617 0.0238 0.0582 2.1528 11.5443
CoVaRGD|NEW(D)  − 0.1004  − 0.0719  − 0.0308  − 0.7918 0.0772  − 2.2611 13.4503
CoVaRGD|NEW(U) 0.1018 0.0738 0.7393 0.0320 0.0781 2.1492 11.6113
VaRHB(D)  − 0.0321  − 0.0252 0.0000  − 0.3939 0.0284  − 3.4413 28.5042
VaRHB(U) 0.0321 0.0245 0.4391 0.0000 0.0288 3.9011 36.1878
CoVaRHB|COAL(D)  − 0.0583  − 0.0461 0.0000  − 0.6448 0.0506  − 3.3775 26.9912
CoVaRHB|COAL(U) 0.0583 0.0453 0.7305 0.0000 0.0510 3.6542 31.7024
CoVaRHB|OIL(D)  − 0.0508  − 0.0400 0.0000  − 0.5726 0.0442  − 3.3821 27.1310
CoVaRHB|OIL(U) 0.0507 0.0393 0.6467 0.0000 0.0445 3.6959 32.4600
CoVaRHB|GAS(D)  − 0.0706  − 0.0560 0.0000  − 0.7627 0.0611  − 3.3766 26.9130
CoVaRHB|GAS(U) 0.0706 0.0549 0.8674 0.0000 0.0615 3.6080 30.8629
CoVaRHB|NEW(D)  − 0.0489  − 0.0384 0.0000  − 0.5544 0.0426  − 3.3841 27.1861
CoVaRHB|NEW(U) 0.0488 0.0378 0.6255 0.0000 0.0429 3.7088 32.6956
VaRSZ(D)  − 0.0567  − 0.0510  − 0.0200  − 0.1827 0.0265  − 0.9960 3.9753
VaRSZ(U) 0.0559 0.0506 0.1941 0.0191 0.0262 1.0355 4.3012
CoVaRSZ|COAL(D)  − 0.0725  − 0.0656  − 0.0257  − 0.2358 0.0338  − 0.9971 4.0063
CoVaRSZ|COAL(U) 0.0717 0.0652 0.2472 0.0247 0.0335 1.0286 4.2662
CoVaRSZ|OIL(D)  − 0.0705  − 0.0638  − 0.0250  − 0.2290 0.0329  − 0.9969 4.0030
CoVaRSZ|OIL(U) 0.0697 0.0633 0.2404 0.0240 0.0326 1.0293 4.2699
CoVaRSZ|GAS(D)  − 0.0783  − 0.0709  − 0.0277  − 0.2550 0.0365  − 0.9975 4.0148
CoVaRSZ|GAS(U) 0.0775 0.0705 0.2664 0.0267 0.0362 1.0268 4.2568
CoVaRSZ|NEW(D)  − 0.0763  − 0.0690  − 0.0270  − 0.2483 0.0356  − 0.9974 4.0120
CoVaRSZ|NEW(U) 0.0804 0.0732 0.2761 0.0277 0.0375 1.0261 4.2525

Fig. 3   The changes in daily 
prices for three carbon pilots 
(unit: Yuan)
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