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Abstract
The presence of antibiotic resistance genes (ARGs) and heavy metal resistance genes (MRGs) in extracellular and intracel-
lular DNA (eDNA and iDNA) has received considerable attention in recent years owing to the potential threat to human 
health and the ecosystem. As a result, we investigated six ARGs, three MRGs, and two mobile genetic elements (MGEs) 
in the municipal wastewater treatment plant (MWWTP) and its adjacent environments. Results revealed that the absolute 
abundances of eARGs and eMRGs were lower than iARGs and iMRGs in MWWTP. By contrast, eARGs and eMRGs were 
higher in river sediments. Among ARGs, aminoglycoside resistance genes (aadA) was the most abundant gene (3.13 × 102 
to 2.31 × 106 copies/mL in iDNA; 1.27 × 103 to 7.23 × 105 copies/mL in eDNA) in MWWTP, while zntA gene (9.4 × 102 to 
3.97 × 106 copies/mL in iDNA; 3.2 × 103 to 6 × 105 copies/mL in eDNA) was amongst the MRGs. Notably, intI1 was enriched 
and positively correlated with iDNA (tetA, sul1, blaCTX-M, ermB, and merA) and eDNA (blaCTX-M, ermB, and merA), 
demonstrating its function in the proliferation of resistance genes. This widespread distribution of ARGs, MRGs, and MGEs 
in MWWTP and its adjacent river sediments will help clarify the transmission routes within these environments and provide 
a theoretical basis for better monitoring and mitigation of such dissemination.
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Introduction

In recent years, antimicrobial agents have been widely 
used in human medicine and veterinary practices, result-
ing in the evolution of antibiotic-resistant bacteria (ARB) 
and corresponding ARGs (Kumar et al. 2019). As a conse-
quence, xenogenic pollution has evolved into a worldwide 
ecological and public health issue. Examining the risks 
associated with the transmission and growth of pathogens, 
ARGs, and MGEs across waterways and ecosystems under 
is ongoing. According to reports, infection-related deaths are 
more than 700,000 each year worldwide, and the predicted 
antimicrobial-resistant infection numbers could reach 10 
million by 2050 (O’Neill 2016). Therefore, the increasing 
prevalence of antibiotic resistance has been considered as 
a major global challenge and threat to human health (Mat-
thiessen et al. 2016). The World Health Organization (WHO) 
Global Action Plan has emphasized the urgency to monitor 
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the prevalence and spread of antibiotic resistance in various 
settings (Yin et al. 2021).

Several research have looked into ARGs in MWWTP that 
confer resistance to a broad range of antibiotics, including 
β-lactam, fluoroquinolones, macrolides, sulfonamides, and 
tetracyclines, but few have looked into their persistence and 
distribution in iDNA and eDNA. Municipal wastewater 
treatment plants (MWWTP) are considered as the dominant 
reservoirs of ARB and ARGs and play an important role 
in altering the magnitude and distribution of ARGs in the 
receiving environments (Di Cesare et al. 2016; Mokracka 
et al. 2012; Qiao et al. 2018). Previous studies have also 
demonstrated that the suitable biotic (enzymatic degrada-
tion, microbial community structure, nutrients, etc.) and 
abiotic (temperature, pH, water content, adsorbent, etc.) 
conditions in MWWTP contribute to the prevalence and 
persistence of iARGs and eARGs (Barnes et al. 2014; Hao 
et al. 2019; Zhang et al. 2013). Municipal wastewater treat-
ment plants have the ability to eliminate ARBs; nonetheless, 
the residual intact DNA may persist even after ARBs are 
entirely deactivated by the process of disinfection. Previ-
ously, intI1 gene concentrations in eDNA tend to range from 
1.74 × 109 to 2.59 × 109 copies/g dw in sludge samples and 
6.34 × 106 copies/g dw in lake sediment samples, respec-
tively, whereas in iDNA, concentration levels varied from 
3.0 × 108 to 1.22 × 1011 copies/g dw in sludge samples and 
7.37 × 107 copies/g dw in lake sediment samples, respec-
tively (Dong et al. 2019). Furthermore, it was observed that 
the abundance of ermB in sediment samples was consist-
ent in iDNA and eDNA (Dong et al. 2019). Similarly, the 
occurrence of sulfonamides and tetracyclines resistance 
genes were reported in sludge samples as reported by Li 
et al. (2021). The prevalence of eARGs and integrons, com-
bined with concentrations of antibiotics and bacteria in envi-
ronmental settings, may encourage the spread of resistance, 
posing health concerns to people through numerous routes.

Antibiotic resistance genes (ARGs) may be present in the 
natural environment as intracellular (iARGs) or extracellu-
lar (eARGs) that participate in the horizontal gene transfer 
(HGT) process (Mao et al. 2014). The horizontal gene trans-
fer of ARGs facilitates the spread of ARBs through mobile 
genetic elements (MGEs) such as transposons, integrons, 
plasmids, and bacteriophages (Mao et al. 2014). Intracellular 
ARGs (iARGs) may accelerate the prevalence of antibiotic 
resistance via conjugation (cell–cell contact) or transduc-
tion (phage infection). On the other hand, eDNA originating 
from cell auto-secretion, death, lysis, predation, phage infec-
tion, etc. represents a significant proportion of the total DNA 
(Hao et al. 2019; Vlassov et al. 2007) and are assimilated by 
bacteria through transformation (Guo et al. 2018; Liu et al. 
2018; Zarei-Baygi & Smith 2021).

Previous studies have demonstrated that eDNAs in sedi-
ments are generally more persistent and easier to propagate 

than in water, which might be attributed to the adsorption of 
clay particles, sand, and organic matter by eDNA (Mao et al. 
2014; Zhao et al. 2020). The adsorption concentration of 
eDNA was up to 103 µg/g in the soil colloids and particles, 
and eDNA could persist in the sediment for months and even 
years (Dong et al. 2019; Poly et al. 2000), thereby acceler-
ating the dissemination and proliferation of ARGs in these 
environments. Therefore, differential separation and thor-
ough analysis of iDNA and eDNA are required to explain 
the processes behind the transmission of these replicating 
mobile DNA pollutants and their distribution in different 
environments.

However, little information is available on the distribution 
of iARGs and eARGs in MWWTP and its receiving environ-
ments. A recent study has also shown that chlorine disinfec-
tion could increase both iARGs and eARGs in MWWTP 
(Liu et al. 2018). Generally, the processes of disinfection in 
MWWTP could kill ARB, and iARGs associated with iDNA 
could be released into water and adsorbed by the competent 
non-resistant bacteria, resulting in the dissemination of anti-
biotic resistance (Liu et al. 2018). Therefore, it is crucial to 
investigate the prevalence of ARGs in MWWTP and the fate 
of ARGs in the receiving environments directly or indirectly 
associated with the dissemination and proliferation of ARGs.

Recently, the extraction of DNA (iDNA, eDNA) and 
the occurrence of ARGs (iARGs, eARGs) have become 
the research hotspots (Mao et al. 2014; Zarei-Baygi and 
Smith 2021; Zhang et al. 2017), because the knowledge of 
the abundance and distribution of heavy metal resistance 
genes (iMRGs, eMRGs) in MWWTP and its adjacent river 
is still lacking. Therefore, the objective of this study is as 
follows: (1) to verify the occurrence of ARGs and MRGs 
in MWWTP and their receiving environments (river sedi-
ments); (2) to quantify the concentration of eDNA and iDNA 
and their corresponding ARGs and MRGs; (3) to investi-
gate the correlation between ARGs, MRGs, and MGEs. The 
study results will provide new insights into the diversity and 
abundance of ARGs and MRGs in MWWTP and its receiv-
ing environments.

Materials and methods

Sample collection

Samples (i.e., the raw influent, final effluent, and activated 
sludge in the aeration tank) were collected from one ter-
tiary MWWTP located in Zhengzhou City, Henan Province, 
China, which has a total treatment capacity of 6 × 105 m3/
day. Treatment processes in MWWTP consists of grit cham-
ber, primary settlement, anaerobic-anoxic-aerobic (A/A/O) 
process, secondary settlement, coagulation, settlement, sand 
filtration, and disinfection by NaClO. The average flow rate 
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of treated wastewater is 350,000 m3/day. In the receiving 
river, the top ~ 20 cm of the sediment samples were obtained 
from approximately 600 m upstream (UM) and downstream 
(DM) of the MWWTP discharge points.

The wastewater and solid samples were collected inde-
pendently, and the sampling campaigns were conducted 
on three different days (between March and July 2020). 
Composite samples of influent wastewater were collected. 
Approximately 1 L of wastewater was collected every 3 h 
for a period of 15 h, and the hydraulic retention time (HRT) 
of the MWWTP was taken into account to eliminate the 
impact of hydraulic loading changes throughout sample 
periods. Similarly, a total of 5 L flow-proportionate efflu-
ent samples were collected as wastewater samples every 3 h 
to avoid the effect of hydraulic loading fluctuations during 
the sampling periods. Bacteria have a high rate of survival 
in natural environments, and they cannot withstand various 
treatment process. In this study, bacteria were more preva-
lent in the influent; however, it is likely that some bacteria 
will survive after passing through various processes of ter-
tiary municipal wastewater treatment plant (MWWTP), and 
they may be discharged into the effluents. In order to extract 
sufficient quantity and quality of DNA for the analysis, we 
took a larger amount of effluents sample, i.e., a total of 5 L 
for the extraction of DNA compared to influents. Approxi-
mately 500 g of solid subsamples were collected from the 
river sediment samples. All the samples were collected in 
sterile containers, chilled in the icebox, and transported to 
the laboratory for immediate processing.

Extraction of iDNA and eDNA

iDNA and eDNA were extracted from the wastewater and 
sludge samples according to the previously reported method 
(Dong et al. 2019; Mao et al. 2014) with minor modifications 
(data provided in supplementary information). In general, 
20 mL of influent (Inf), 200 mL of effluent (Eff), 10 mL of 
the activated sludge in the aeration tank (Aet), and 2.5 g 
(dry weight, calculated by water content) of the river sedi-
ment were used for DNA extraction. The sample was added 
to 4–15 mL of NaH2PO4 (0.12 M, pH 8.0) and 0.2–1 g of 
polyvinylpolypyrrolidone (PVPP), and then the mixture was 
shaken at 250 rpm for 10 min and centrifuged at 10,000 g, 
4 °C for 10 min. The resulting solution was filtered through 
a sterile filtration membrane of 0.22-µm pore size (PVDF, 
Millipore, USA). The membrane and the above residues on 
filter were combined and used for the extraction of iDNA, 
while the filtrate was used for the extraction of eDNA. The 
iDNA was extracted using the FastDNA® SPIN Kit Soil (MP 
Biomedicals, USA), and the eDNA was extracted using the 
TIANamp Bacteria DNA Kit (TIANGEN, China) according 
to the manufacturer’s instructions. The extraction of eDNA 
and iDNA from the same sample was replicated multiple 

times, and the extracted DNA was combined for further 
analysis. The quality and quantity of the extracted DNA 
were evaluated using 1% agarose gel electrophoresis and 
NanoDrop OneC (Thermo Scientific, USA). All the DNA 
samples were stored at − 20 °C until analysis.

Quantification of ARGs and MGEs

The resistance genes considered in this study were fre-
quently detected as antibiotic resistance genes (tetA, sul1, 
aadA, blaCTX-M, ermB, qnrA), heavy metal resistance genes 
(zntA, merA, czcA), the integrase genes (intI1 and intI2), and 
the 16S rRNA genes. The primers and amplification reac-
tions of the determined genes are listed in Table S1. The 
reactions were conducted by an Accurate96 qPCR System 
(Drawell, China) using the AceQ® qPCR SYBR Green Mas-
ter Mix (Vazyme, Nanjing, China). Plasmids (E. coli DH5a) 
containing the target gene fragments were constructed with 
the pMD™19-T vector (Takara, Japan) and used as controls 
for qPCR standard curves. The detailed procedure used for 
DNA extraction, qPCR conditions, and ARGs quantifica-
tion was adopted from previous study (Wang et al. 2019). 
Briefly, the qPCR was performed in 20-μL reaction mix-
tures, which contained 10 µL of AceQ SYBR® Green Master 
Mix, 0.2 mM each primer, and 2 µL of DNA template. The 
amplification reaction was as follows: initial denaturation at 
95 °C for 5 min and 40 cycles consisting of 95 °C for 10 s, 
the annealing temperature for 15 s, and 72 °C for 15 s.  The 
standard curves for the qPCR primer sets covered at least 
five orders of magnitude in concentration (R2 ≥ 0.99) (Wang 
et al. 2019).

Data analysis

Statistical analyses were performed using the Statistical 
Package for Social Sciences (SPSS), the IBM version 22 
software, and the GraphPad Prism software 6.01 (La Jolla, 
CA, USA). Network analysis based on Spearman analysis 
between ARGs and MRGs as well as MGEs was determined 
using Gephi (version 0.9.2). The paired sample t-test was 
used to assess the significance of the differences between 
different samples based on the p-values.

Results and discussion

Concentrations of eDNA and iDNA

The average concentrations of the detected iDNA and eDNA 
in the samples are depicted in Fig. 1 and Table S2. The con-
centration of iDNA in the influents, aeration tank, and efflu-
ents of MWWTP was 274.11 ± 18.38, 1471.93 ± 193.28, 
and 4.34 ± 0.31 ng/mL, respectively, whereas the eDNA 
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content was 2.98 ± 0.62, 9.05 ± 1.03, and 5.56 ± 0.83 ng/
mL. Although the ratios of eDNA to the total DNA in the 
effluents of MWWTP (56.57%) was higher than the influ-
ents (1.08%) and aeration tank (0.61%), the concentration 
of the total DNA in the effluents was reduced by 96.4% and 
99.32%. The sharp decreased of iDNA and eDNA in the 
effluents indicated that MWWTP had a good cell and DNA 
removal efficiency. However, the extracted iDNA from the 
effluent indicated that a small number of microorganisms 
remained in the effluent, which was consistent with the pre-
vious study results (Yang et al. 2014). The eDNA yields 
from the effluents were higher than the influent and aeration 
tank of MWWTP, which might be due to microbial death 
by MWWTP disinfection, resulting in the release of DNA 
molecules and resisting the effluents. Therefore, MWWTP 
was considered as a dominant reservoir of eDNA, and the 
effluents were directly discharged into the receiving rivers, 
affecting the river sediments.

The amount of iDNA in the sediments collected from 
the downstream of MWWTP (929.33 ± 62.41 ng/g dried 
sediment) was approximately 1.3-folds higher than that 
in the sediments from the downstream of MWWTP 
(725.91 ± 45.46 ng/g). Additionally, the eDNA content in the 
sediments from upstream (1035.79 ± 83.84 ng/g) and down-
stream (1413.27 ± 104.19 ng/g) of MWWTP was higher 
than iDNA, confirming that the sediments could serve as a 
dominant reservoir for eDNA. This result was consistent with 
the previous study results (Mao et al. 2014). This might be 
attributed to the fact that the majority of the eDNA in aquatic 
sediments is bound and absorbed by complex organic mol-
ecules, large particles, and clay, decreasing the susceptibility 

to nuclease attack (Nielsen et al. 2007). Apparently, the persis-
tence of large amounts of eDNA in the sediments is a source 
of nutrients and gene pools for bacteria, which might pro-
vide a source of nitrogen and phosphorous and/or exogenous 
genetic material and contribute to DNA repair and the hori-
zontal gene transfer through natural transformation, protecting 
against nuclease degradation (Tani and Nasu 2010; Vlassov 
et al. 2007).

Occurrence of ARGs in eDNA and iDNA

The absolute abundances of six ARGs, including one tetra-
cycline resistance gene (tetA), one sulfonamide resistance 
gene (sul1), one aminoglycoside resistance gene (aadA), 
one β-lactam resistance gene (blaCTX-M), two integrase 
genes (intI1, intI2), and 16S rRNA gene, were quantified by 
qPCR. All the six target ARGs were detected in eDNA and 
iDNA in the MWWTP, while intI2 and blaCTX-M were absent 
in the effluents of MWWTP (Fig. 2). The aminoglycoside 
resistance genes (aadA) were the most abundant ARGs in 
MWWTP, with the concentrations ranging from 3.13 × 102 
to 2.31 × 106 copies/mL in iDNA and 1.27 × 103 to 7.23 × 105 
copies/mL in eDNA, which were closely associated with 
integrons, promoting horizontal ARG gene transfers (Laro-
che et al. 2009). The above results were consistent with the 
previous study results (Zhao et al. 2020).

The absolute abundances of eARGs were usually 1–2 
orders of magnitude lower than that of iARGs in the 
influent and aeration tank samples, while eARGs in the 
effluent of MWWTP were higher than iARGs. The abun-
dance of most of the eARGs was significantly increased 
in the effluent of MWWTP, which might be attributed to 
the disinfection process by NaClO that killed many bac-
teria in MWWTP and allowed the release of free DNA 
into the environment from the dead and lysed bacteria 
(Liu et al. 2018; Zhang et al. 2017). It is worth noting 
that MWWTP had better removal efficiency for blaCTX-M 
(4.54-log), tetA (4.47-log), sul1 (4.07-log), aadA (4.02-
log), and ermB (3.64-log). The results suggested that 
the incomplete removal efficiency from MWWTP could 
increase the abundance of ARGs in MWWTP effluent 
(Jelic et al. 2011; Mao et al. 2015) and further affect the 
receiving river. Notably, most ARGs, including iARGs and 
eARGs, showed higher abundance in the sediment sam-
ples collected from the downstream of MWWTP than in 
the upstream sediments. The results further indicated that 
MWWTP could significantly increase the prevalence and 
abundance of ARGs and the potential risks to the effluent 
receiving environments (Zhang et al. 2017). Furthermore, 
the absolute abundance of eARGs in the sediments was 
higher than that of iARGs, indicating slower degradations 
rates and higher persistence of eARGs in the plasmid than 
in the chromosomal (Dong et al. 2019; Zhao et al. 2020). 

Fig. 1   The concentration of iDNA (intracellular DNA) and eDNA 
(extracellular DNA) in municipal wastewater treatment plants (the 
mean ± SD of three independent replicates of experiments). *Inf = 
Influent; Aet = Aeration Tank;  Eff = Effluent; UM = Upstream; DM 
=  Downstream
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Previous studies have indicated that eARGs could exist in 
the sediment for a long time, proliferate and disseminate 
among different bacteria through lateral gene transfer, and 
could be a potential threat to human health (Mao et al. 
2014; Zhao et al. 2020).

Occurrence of MRGs in eDNA and iDNA

The occurrence of three common MRGs in the form of 
eDNA and iDNA was detected at a higher abundance 
(Fig. 2). The absolute abundance of iMRGs ranged from 

Fig. 2   Absolute abundance of ARGs, MRGs and MGEs (copies/mL and copies/g) in iDNA and eDNA in a) influent of MWWTP; b) aeration 
tank of MWWTP; c) effluent of MWWTP; d) upstream of MWWTP; and e) downstream of MWWTP samples
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8.57 × 101 to 3.97 × 106 copies/mL, and those of eMRGs 
ranged from 2.36 × 102 to 6.00 × 105 copies/mL in MWWTP. 
Notably, the zntA genes were the most abundant MRGs in 
MWWTP, with the concentrations ranging from 9.4 × 102 
to 3.97 × 106 copies/mL in iDNA and 3.2 × 103 to 6 × 105 
copies/mL in eDNA, which were 1–4 orders of magnitude 
higher than merA and czcA in iDNA and 1–2 orders of mag-
nitude in eDNA. In the present study, the absolute abun-
dance of most eMRGs were higher than iMRGs in the sedi-
ment samples collected from the downstream of MWWTP, 
while MRGs showed a higher abundance in the sediment 
samples collected from the downstream of MWWTP than 
in the upstream sediments. The results were consistent with 
ARGs, suggesting that MRGs and ARGs persisted in the 
effluent of MWWTP with a relative content after the whole 
treatment processes. A higher proportion of MRGs and 
ARGs in the final effluent posed a potential risk to the preva-
lence of antibiotic resistance in their receiving environments.

Network analysis between MGEs and ARGs

The integrase gene intI1 was detected in all eDNA and 
iDNA, which played an important role in the dissemina-
tion of antibiotic resistance through horizontal gene transfer 
of ARGs (Gaze et al. 2011). The enrichment of intI1 gene 
in eDNA was up to 1.85 × 105 copies/mL in the influent, 
1.58 × 104 copies/mL in the aeration tank, and 5.4 × 102 
copies/mL in the effluent samples, respectively. On the 
other hand, the concentrations of intI1 in iDNA were up to 

5.02 × 105 copies/mL, 3.6 × 105 copies/mL, and 1.25 × 102 
copies/mL, respectively, which were lower than the previous 
document (Sui et al. 2019).

There was a strong (r > 0.7) and positive correlation 
between ARGs and MGEs in the iDNA and eDNA, which 
was consistent with the previous study results (Lu et al. 
2015; Zhang et al. 2018) (Fig. 3). Notably, intI1 was more 
correlated with ARGs in iDNA (tetA, sul1, blaCTX-M, 
ermB, and merA) than in eDNA (blaCTX-M, ermB, and 
merA), suggesting that the ARGs located in MGEs might 
be degraded by nucleases when they release from bacteria. 
Furthermore, MGEs (intI1and intI2) carrying the ARGs 
could reduce the immediate degradation by nucleases by 
protecting the sediment particles (Demaneche et al. 2001). 
Additionally, intI2 was only correlated with ermB in iDNA 
and eDNA. Notably, zntA and merA were correlated with 
tetA, sul1, aadA, and blaCTX-M in iDNA, and czcA was 
correlated with aadA, qnrA, and zntA in eDNA, suggest-
ing the co-occurrence and co-transfer of ARGs and MRGs 
in iDNA and eDNA (Di Cesare et al. 2016). So far, little 
emphasis has been put on the occurrence of ARGs, MRGs, 
and MGEs in iDNA and eDNA collected from MWWTP 
and its receiving river sediments.

To the best of our knowledge, this is the first study 
to quantify the zntA, mer, and czcA genes and evaluate 
the abundance of eMRGs in MWWTP and its adjacent 
sediments through qPCR, providing the valuable data 
for assessing the contribution of ARGs and MRGs in 
MWWTP and its adjacent environments.

Fig. 3   Network analysis revealing the co-occurrence pattern of 
ARGs, MRGs and MGEs in iDNA (A) and eDNA (B). A node repre-
sents ARGs, MRGs or MGEs (the bigger size of each node, the more 

numbers of connections). The blue (iDNA) and green (eDNA) edges 
represents a strong (r > 0.75) and significantly positive correlation (p 
<0.05) based on Spearman correlation analysis
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Conclusions

Municipal wastewater treatment plant can play an impor-
tant role in altering the magnitude and distribution of 
ARGs in the receiving environments. In this study, the 
incomplete removal of ARGs, MRGs, and MGEs in 
MWWTP resulted in the persistence and their accumula-
tion in the receiving river. Although disinfection processes 
in MWWTP killed bacteria, they released substantial 
quantities of free DNA into the environment that promoted 
the propagation of resistance genes. The enrichment of 
intI1 gene in iDNA and eDNA might have also increased 
the dissemination of ARGs and MRGs in the environment 
through the lateral gene transfer process. This widespread 
distribution of contaminants in MWWTP and its adja-
cent river sediments will help clarify the transmission 
routes of antibiotics and heavy metal resistance within 
these environments. Although in the present study only 
one MWWTP and its receiving river was selected for the 
profiling of intracellular and extracellular antibiotic resist-
ance genes, but overall, the study will provide a theoretical 
basis for better monitoring and prevention of antibiotic 
resistance dissemination. Secondly, we suggest to detect 
the transfer ability of ARG and MRGs as well as to carry 
out metagenomics and metatranscriptomics to acquire a 
greater understanding of the resistance mechanism.
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