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Abstract
This study evaluated the effect of biochar and compost on physiochemical properties, heavy metal content, microbial biomass, 
enzyme activities, and plant growth in Pb–Zn mine tailings. In this study, a pot experiment was conducted to evaluate the 
effects of biochar, compost, and their combination on the availability of heavy metals, physicochemical features, and enzyme 
activities in mining soil. Compared to separate addition, the combined application of biochar and compost was more effec-
tive to improve soil pH, soil organic carbon (SOC), total nitrogen (TN), available phosphorus (AP), and potassium (AK). 
All amendments significantly decreased CaCl2-extractable Pb, Zn, Cu, and Cd. Soil enzyme activities were activated by 
biochar and compost. Meanwhile, the addition of biochar and compost decreased heavy metal content in plant tissues and 
increased plant biomass. Pearson’s correlation analysis showed that plant biomass was positively correlated with nutrient 
levels, microbial biomass, and enzyme activities, whereas it was negatively correlated with CaCl2-extractable heavy metals. 
These results enhance our understanding of the ecological functions of biochar and compost on the restoration of mining 
soil and reveal the potential benefit of organic amendments on the improvement of mining soil quality.
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Introduction

Mine tailings are hazardous solid wastes produced during 
metalliferous ore mining and smelting activities. The major-
ity of tailings are mainly stored on land, occupying large 
areas (Karaca et al. 2018). In addition, mine tailing areas 

generally lack vegetation cover and thus are more vulnerable 
to wind and water erosion, causing pollution of surface soils 
and groundwater (Zerizghi et al. 2022). Ecological restora-
tion of mine tailings becomes the key to guaranteeing sus-
tainable development for the metalliferous metal industries.

Mine tailings commonly exhibit adverse properties such as 
extreme pH, high levels of heavy metals, and lack of organic 
matter and fertility (Wang et al. 2017). Reducing the toxicity of 
the heavy metals and improving the physicochemical and bio-
logical properties of mine tailings are critical to ecological res-
toration of mine tailings. Biochar and composts are widely used 
in the remediation of heavy metal-contaminated soils as they 
are cheap, effective, and easy to obtain (Tang et al. 2020; Liang 
et al. 2017). Biochar is an organic carbon-rich material produced 
from the pyrolysis of agricultural residues under anaerobic con-
ditions, which is characterized by high pH and cation exchange 
capacity, large specific surface area, and abundant functional 
groups (Panahi et al. 2020). Compost is produced by sponta-
neous microbial oxidation of straw wastes from agriculture, 
livestock manures, and other organic wastes, which contains 
large amounts of humic acid and is rich in organic carbon and 
nutrients (Cesaro et al. 2015). Based on these unique properties, 

Responsible Editor: Zhihong Xu

 *	 Pu Jia 
	 pjia@m.scnu.edu.cn

1	 School of Life Sciences, Sun Yat-sen University, 
Guangzhou 510275, People’s Republic of China

2	 Institute of Ecological Science, Guangzhou Key Laboratory 
of Subtropical Biodiversity and Biomonitoring, Guangdong 
Provincial Key Laboratory of Biotechnology for Plant 
Development, School of Life Sciences, South China Normal 
University, Guangzhou 510631, People’s Republic of China

3	 Hunan New World Science and Technology Company 
Limited, Zhuzhou 412000, People’s Republic of China

4	 College of Bioscience and Biotechnology, Hunan 
Agricultural University, Changsha 410000, 
People’s Republic of China

/ Published online: 3 December 2022

Environmental Science and Pollution Research (2023) 30:32337–32347

http://orcid.org/0000-0002-3451-2798
http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-022-24488-2&domain=pdf


1 3

biochar and compost both play a good performance in the reduc-
tion of the bioavailability and mobility of heavy metals in con-
taminated soils (Ji et al. 2022). For instance, Ahmad et al. (2012) 
indicated that the application of biochar derived from mussel 
shells and cow bones can reduce the bioavailable Pb by over 
70% in shooting range soil. Biochar derived from Miscanthus 
straw was reported to be effective in decreasing the available Cd, 
Zn, and Pb in contaminated soils (Houben et al. 2013). Similarly, 
Gusiatin and Kulikowska (2016) also found that sludge compost 
reduced the bioavailability of Cd, Ni, and Zn in contaminated 
soil. Furthermore, Chen et al. (2010) reported that the addition 
of a poultry manure compost decreased both water-soluble and 
exchangeable Cd in Cd-contaminated soil, thereby reducing the 
Cd uptake by pakchoi crop.

Microbial biomass carbon and nitrogen are active compo-
nents in the soil organic carbon and nitrogen pools, reflect-
ing the importance of their turnover (Singh and Gupta 2018). 
Soil enzymes are proteinaceous macromolecules with bio-
catalytic ability which play critical roles in biochemical pro-
cesses including organic matter mineralization and decom-
position, redox reactions, and nutrient cycling (Luo et al. 
2017). Enzyme activities are important biological indicators 
to evaluate the soil quality in heavy metal-contaminated soil 
(Tang et al. 2019). Biochar and compost have positive impacts 
on the activities of soil enzymes. For example, straw biochar 
increased urease and catalase activities in polymetallic-con-
taminated soil (Yang et al. 2016). Jia et al. (2017) found that 
the activities of urease and invertase in a Cd/Cu-contaminated 
soil both increased by 187.5% and 67.9%, followed by wheat 
straw biochar application. Similar to biochar, compost also 
has a good promotion on enzyme activities. Bhattacharyya 
et al. (2005) revealed that municipal solid waste compost acti-
vated the activity of urease and acid phosphatase in soil con-
taminated with Cd, Pb, Cu, and Zn. Garau et al. (2019) found 
that biosolid compost addition significantly increased dehy-
drogenase activity by nearly 20 times. Biochar and compost 
amendments can therefore accelerate the recovery of micro-
bial biomass and enzyme activities by increasing nutrient 
availability and reducing that of heavy metals in contaminated 
soils. However, it is surprising that little information is availa-
ble on the effects of biochar and compost on the improvement 
of microbial properties and enzyme activities in mine tailing 
soils. In addition, the relationships between enzyme activities 
and physicochemical properties, as well as bioavailability of 
heavy metals have been rarely evaluated simultaneously.

The aims of the present study were as follows: (1) to 
determine the impact of the effects of biochar, compost, and 
their combination on the availability of heavy metal in an 
abandoned Pb–Zn tailings; (2) to investigate the improve-
ment of microbial biomass and enzyme activities following 
the application of biochar and compost; (3) to investigate the 
relationships between enzyme activities and physicochemi-
cal properties and the bioavailability of heavy metals.

Materials and methods

Soil sampling and characterization of amendments

Samples were collected from the surface horizon (0–20 cm) 
in an abandoned Pb–Zn tailings (E113°8′8.63″; N25°41′41″) 
area in Chenzhou City, Hunan Province, PR China. The soil 
was severely polluted by heavy metals due to past intensive 
mining and metallurgical activities, among which Pb, Zn, Cu, 
and Cd were the main polluted heavy metal. According to 
field investigation, this soil was mainly contaminated with 
Pb, Zn, Cu, and Cd (Table 1). After removing gravel and plant 
residues, the samples were placed in sterile sealed bags and 
transported to the laboratory. Biochar was obtained from rice 
straw using a tubular carbonization furnace under hypoxia 
conditions (500 °C, for 3 h) and ground to pass through a 
2-mm sieve (Liang et al. 2017). Compost was obtained from 
agricultural waste (rice straw, vegetable leaves, etc.) accord-
ing to previous studies (Liang et al. 2017). The main phys-
icochemical characteristics of the untreated soil, biochar, and 
compost were presented in Table 1.

Experimental design and planting trial

Four treatments were prepared as follows: (1) CK, no addi-
tion; (2) TB, 2% biochar; (3) TC, 2% compost; and (4) TBC, 
2% biochar and 2% compost. Three replicates were set for 
each treatment. Amendments were thoroughly mixed with 
mine tailings soil (1 kg) and then placed in 12 pots for each 
treatment (48 pots in total). The pots were perforated at the 
base with ten 3 mm diameter holes for drainage (a plastic 

Table 1   Physicochemical properties of soils and amendment

Numbers are presented as means ± standard deviations (SD). Differ-
ent lower case letters indicate significant differences among different 
treatments (P < 0.05)

Soil properties Untreated Biochar Compost

pH 5.8 ± 0.48b 8.6 ± 0.36a 8.3 ± 0.89a
EC (ds m−1) 0.52 ± 0.14b 0.27 ± 0.11b 5.8 ± 1.2a
Total organic C (g kg−1) 5.8 ± 0.76c 468 ± 54a 234 ± 26b
Total N (g kg−1) 0.56 ± 0.12c 7.2 ± 0.64b 19 ± 2.4a
Available P (g kg−1) 27 ± 3.2c 68 ± 7.3b 137 ± 12a
Available K (g kg−1) 42 ± 8.3c 84 ± 15b 136 ± 21a
Total Pb (mg kg−1) 521 ± 78a 63 ± 25b 42 ± 12b
Total Zn (mg kg−1) 1365 ± 341a 316 ± 74b 194 ± 58c
Total Cu (mg kg−1) 452 ± 84a 46 ± 11c 87 ± 25b
Total Cd (mg kg−1) 25 ± 7.46a 6.8 ± 1.5b 3.4 ± 0.82c
Specific surface area – 66 ± 4.5 –
Ash (%) – 54 ± 0.89 –
Moisture (%) 21 ± 1.2b 3.4 ± 0.12c 31 ± 6.4a
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container with 12 cm diameter and 11 cm depth). We placed 
40 ryegrass seeds in each pot. The ryegrass was thinned, 
leaving 20 seedlings with a similar length. All pots were 
randomly arranged in an artificial climate room and incu-
bated at room temperature (20–25 °C) for 60 days. During 
the whole incubation period, the water content was main-
tained at 70% water-holding capacity.

Plant shoot samples were collected on day 60 and dried at 
105 °C for 30 min and then at 65 °C to constant weight. The 
dry weights of all plant samples were recorded. The bulk soil 
samples were collected on day 15, day 30, and day 60. All soil 
samples were divided into three parts: one part was air-dried for 
physicochemical analyses; the second part was stored at 4 °C 
for the determination of microbial biomass, and the third part 
was stored at –20 °C for determination of enzyme activities.

Determination of soil physicochemical 
characteristics

The pH and EC were measured in 1:5 (w/v) aqueous suspen-
sion (Zhang et al. 2016). The soil organic carbon (SOC) was 
determined by potassium dichromate oxidation (Zhang et al. 
2016). Total nitrogen (TN) was determined by a semi-trace 
Kjeldahl method (Zhang et al. 2016). Available phosphorus 
(AP) was extracted by 0.5 M NaHCO3 (pH 8.5) and determined 
by UV–visible spectrophotometry (Tang et al. 2020). Avail-
able potassium (AK) was extracted by 1 M NH4OAc (pH 7) 
and determined by flame spectrophotometry (Tang et al. 2020).

Determination of heavy metal availabilities in soil

Available form of heavy metals was extracted using calcium 
chloride (CaCl2) (Liang et al. 2017). Briefly, 2 g air-dried soil 
sub-samples were weighed and loaded into 50-mL centrifugal 
tubes. Forty milliliters of CaCl2 was added to each tube and 
shaken at 60 rpm for 24 h in a rotary shaker, followed by 
centrifugation at 3500 rpm for 20 min. The supernatants were 
then filtered through 0.45-μm filters. To avoid any subsequent 
precipitation of heavy metals, the extracted filtrates were 
acidified with two drops of 1 M HNO3. The concentrations 
of Cd, Pb, Cu, and Zn in the supernatants were measured by 
an inductively coupled plasma mass spectrometry (ICP-MS, 
Agilent 7700, Agilent Technologies, CA, USA).

Determination of microbial biomass and enzyme 
activities

Microbial biomass carbon (MBC) and microbial biomass 
nitrogen (MBN) were determined by using the CHCl3 
(chloroform) fumigation-K2SO4 extraction method 
(Brookes et al. 1985; Wu et al. 1990). In summary, two 

sub-samples of 20 g soil were weighed and placed into 
plastic boxes. One part was fumigated for 24 h at 25 °C 
with ethanol-free CHCl3 and the other part was incubated 
under the same conditions without the chloroform. When 
the fumigation part was completed, the fumigant was 
removed by using a vacuum compressor. The soil samples 
were treated with 80 mL of 0.5 M K2SO4, shaken for 1 h 
at 200 rpm, and then filtered. Carbon content and nitrogen 
content were measured by using an elemental analyzer 
(Vario EL III Elementar, Germany) and a continuous flow 
injection analyzer (Seal Analytical AA3, Norderstedt, Ger-
many), respectively.

Four soil enzymes including two C-cycling enzymes 
(β-glucosidase and invertase) and two N-cycling enzymes 
(urease and protease) were assayed. The activities of 
β-glucosidase and invertase were both determined by the 
3,5-dinitrosalicylic acid colorimetric method (Guan 1986). 
Glucose and sucrose were used to measure β-glucosidase 
and invertase. The activities of β-glucosidase and invertase 
were expressed as the glucose and sucrose released in 
1 g soil samples at 37 °C after 1 h. Urease activity was 
determined by the indophenol blue colorimetric method, 
expressed as the ammonia–nitrogen (NH3-N) released 
from 1 g tailings samples at 37 °C after 1 h (Guan 1986). 
The protease activity was determined by the ninhydrin 
colorimetric method and similarly expressed as the amino 
acid-nitrogen released from 1 g soil samples at 37 °C after 
1 h (Guan 1986).

Determination of heavy metal in plant tissue

Heavy metals in plant samples were determined by nitric 
acid-perchloric acid digestion method. Briefly, 0.5 g of plant 
tissue was weighed and placed into a digestion tube. Five 
milliliters of concentrated nitric acid and perchloric acid 
were added to the tissue to soak overnight. The digest tubes 
were then set up in a heating block maintaining the tem-
perature at 90 °C for 30 min, 140 °C for 30 min, and then 
180 °C for 1 h. When the tubes were cooled, the digests were 
filtered through 0.45-μm filters and the tubes were washed 
with deionized water to maintain the filtrates to a constant 
volume of 100 mL. Cd, Cu, Pb, and Zn concentrations in 
the filtrates were determined by inductively coupled plasma 
mass spectrometry (ICP-MS, Agilent 7700, Agilent Tech-
nologies, CA, USA).

Statistical analysis

The physicochemical characteristics, heavy metal avail-
abilities, microbial biomass, enzyme activities, and plant 
biomass of the four treatment samples were summarized and 
analyzed statistically using SPSS software (version 22). The 
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effects of biochar and compost additions on these param-
eters were tested by one-way analysis of variance (ANOVA). 
Pearson correlation analysis was also employed to test for 
correlations between different parameters.

Results and discussion

Effects of amendments on soil physicochemical 
properties

Summarized physicochemical properties of the soil sam-
ples were presented in Fig. 1. The untreated tailings soils 
exhibited low pH and nutrient contents. The pH of tailing 
soil increased significantly in all the amended treatments, 
with the highest values in the TBC treatment. There was 
no significant difference between the TB and TC treatment 
(P > 0.05). EC also significantly increased in the TC and 

TBC treatments (P < 0.05), whereas it decreased in the TB 
treatment on day 30 and day 60 (P < 0.05). Compared with 
the TC treatment, EC in the TBC treatment showed a slight 
increase on day 15 (P > 0.05), but a slight decrease on day 
30 and day 60 (P > 0.05). The biochar, compost, and their 
combination increased the content of SOC, TN, AP, and AK 
in tailings soil. Significant increases in SOC were observed 
in all treatments, following the order TBC > TB > TC > CK 
(P < 0.05). For TN, AP, and AK, significant increases in 
SOC were observed in TC and TBC treatment (P < 0.05), 
with the highest values in the TBC treatment. No signifi-
cant difference was observed between CK and TB treatment 
(P > 0.05).

Tailings soil was generally characterized by an extreme 
pH and a low nutrient content which severely hindered the 
development of a vegetation cover (El Rasafi et al. 2021). 
The improvement of tailings soil is fundamental to the 
ecological restoration of tailings soil. In our study, the 

Fig. 1   Effect of amendments 
on physicochemical properties 
in tailings soil under different 
treatments: A pH, B EC, C 
SOC, D TN, E AP, F AK. Dif-
ferent lower case letters indicate 
significant differences between 
treatments (P < 0.05)
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application of biochar and compost significantly increased 
soil pH (Fig. 1), which coincided with the previous studies 
(Clemente et al. 2006; Chen et al. 2013; Ibrahim et al. 2016; 
Tang et al. 2020). Biochar is commonly alkaline, which is 
caused by the formation of carbonates and phosphates during 
the pyrolysis process (Li et al. 2019). The pH of biochar and 
compost in our study was 8.63 and 8.37, respectively, both 
significantly higher than that of the untreated mine tailings 
soil (Table 1). The highest pH achieved in the combination 
of biochar and compost may be related to their interactions. 
On one hand, biochar provides a favorable environment for 
microbial growth and promotes microbial proliferation by 
the selective adsorption of organic matter on the biochar 
surface and pores (Khan et al. 2016). On the other hand, 
the compost promotes the formation of oxygen-containing 
functional groups on the surface of the biochar by a complex 
interaction of oxidation and sorption processes (Wiedner 
et al. 2015), which can react with more proton (H+) in the 
tailings soil and thereby increase soil pH.

The application of biochar and compost all significantly 
increased SOC, which was consistent with previous stud-
ies (Chen et al. 2013; Abujabhah et al. 2016; Gusiatin and 
Kulikowska 2016; Arif et al. 2018; Liang et al. 2017). The 
remediation materials were rich in organic carbon. The 
organic carbon content of biochar (468 g kg−1) and com-
post (235 g kg−1) were orders of magnitude higher than that 
in mine tailings soil (5.8 g kg−1). In addition, biochar can 
adsorb organic molecules and promote their polymeriza-
tion through surface catalytic activity and thus improve the 
organic carbon content of the soil (Song et al. 2019). The 
addition of biochar and compost could significantly increase 
the carbon content in mine tailings soil. For TN, AP, and 
AK, the addition of biochar and compost increased the con-
tent of TN, AP, and AK, but significant increases were only 
observed in the compost and biochar-compost treatments 
(Fig. 1). On one hand, the high content of TN, AP, and AK 
in compost directly increased their content in mine tailings 
soil (Table 1). On the other hand, biochar could reduce the 
leaching losses of N/P/K by providing attachment sites and 
increasing cation exchange capacity (Xu et al. 2016). In 
addition, biochar enhanced microbial activity and therefore 
accelerated the mineralization of organic carbon, which 
simultaneously released mineral N/P/K (Fu et al. 2022).

Effects of amendments on the availability of heavy 
metals

Heavy metal toxicity is the main limiting factor for the sus-
tainable development of plant communities on mine tailing 
soils (Karaca et al. 2018; Sun et al. 2018). The extractable 
heavy metals are readily taken up by plants and are com-
monly used to evaluate heavy metal toxicities (Liang et al. 
2017). The content of CaCl2-extractable Pb, Zn, Cu, and Cd 

are shown in Fig. 2. In the unamended treatment, the content 
of CaCl2-extractable Pb, Zn, Cu, and Cd was 14.8 mg·kg−1, 
27.7 mg·kg−1, 64.2 mg·kg−1, and 0.6 mg·kg−1, respectively. 
The addition of biochar and compost reduced the content of 
Pb, Zn, Cu, and Cd decreased by 33–60%, 28–62%, 33–73%, 
and 24–57%, respectively. Previous studies have also shown 
that the application of biochar and compost alone or in com-
bination with all decreased extractable concentrations of Pb, 
Zn, Cu, and Cd in tailings soil (Ibrahim et al. 2016; Gusiatin 
and Kulikowska 2016; Beesley et al. 2010). For example, 
Ibrahim et al. (2016) indicated that biochar derived from rice 
husk significantly decreased the concentrations of available 
Cr, Cd, Pb, and Zn in contaminated soil. Available Cd and 
Zn concentrations have also been reported to be effectively 
reduced by the application of sewage sludge compost (Gusi-
atin and Kulikowska 2016). Beesley et al. (2010) found that 
the addition of biochar and green waste compost can sig-
nificantly decrease the concentrations of available Cd and 
Zn in the soil.

The reduction of heavy metal availabilities may be partly 
attributed to the direct effects of the applied amendments. 
Biochar has been widely used in the remediation of heavy 
metal-contaminated soil due to its good performance in the 
immobilization of heavy metals (Al-Wabel et al. 2018): (1) 
biochar has a large specific surface area with high cation 
exchange capacity, which can adsorb heavy metals; (2) there 
are amounts of negatively charged functional groups on the 
large surface of biochar, which can immobilize metal cati-
ons by electrostatic interactions and chelation; (3) biochar 
is rich in phosphate (PO4

3−), carbonate (CO3
2−), and other 

mineral components (Fe–Mn oxides), which can adsorb and 
precipitate heavy metals; (4) biochar can regulate the soil 
redox potential by increasing soil pH and organic matter 
content and thus reduce the bioavailability of heavy metals.

Similar to biochar, the compost also mainly passivates 
heavy metals by adsorption, precipitation, and redox 
changes. Compost contains varying amounts of carboxyl, 
carbonyl, phenolic hydroxyl, and alcohol hydroxyl func-
tional groups, which can complex with heavy metal ions 
to form organic-metal complexes and thus stabilize heavy 
metals (Chien et al. 2006). The humus in compost can bind 
metal cations to form stable organometallic complexes and 
therefore reduce the mobility and bioavailability of heavy 
metals (Garciamina 2006). Compost contains large amounts 
of organic matter, which can change the redox potential in 
soil and indirectly alter the form of heavy metals.

The change of physicochemical properties induced by 
biochar and compost is another important factor affect-
ing the availability of heavy metals. In the present study, 
CaCl2-extractable Pb, Zn, Cu, and Cd all showed a nega-
tive correlation with pH, SOC, TN, AP, and AK (Table 2), 
indicating that pH increase and nutrient promotion may 
help to alleviate the heavy metal toxicity on plant growth. 
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An increase in AP results in a decrease in the availability 
of heavy metals which was possibly arisen by precipitation 
and complexation as insoluble phosphates (Ahmad et al. 
2012). Soil organic matter can act as an important adsor-
bent for heavy metals because it contains important func-
tional groups, such as –COOH and –OH which can easily 
bind metal ions and form organic-metal complexes (Chap-
man et al. 2013; Yang et al. 2016). Moreover, organic mat-
ter can have an impact on the solubility of metals through 
hydrolysis, oxidation, and depolymerization (Gusiatin and 
Kulikowska 2016).

Effects of amendments on microbial biomass 
and enzyme activity

The microbial biomass carbon (MBC) and nitrogen (MBN) 
were presented in Fig.  3. The addition of biochar and 

compost significantly increased both MBC and MBN in the 
mine tailings soil. The combination of biochar and compost 
resulted in the greatest increase, followed by compost and 
biochar (P < 0.05). Compared to the unamended treatment 

Fig. 2   Effect of amendments on the heavy metal availability in soil samples under different treatments: A Pb, B Zn, C Cu, D Cd. Different lower 
case letters indicate significant differences between treatments (P < 0.05)

Table 2   Correlation coefficients between soil properties and the 
CaCl2-extractable heavy metals

Significance levels: *, P < 0.05; **, P < 0.01

CaCl2-Pb CaCl2-Zn CaCl2-Cu CaCl2-Cd

pH  − 0.95**  − 0.87**  − 0.96**  − 0.89**
EC  − 0.58  − 0.46  − 0.56  − 0.41
SOC  − 0.71*  − 0.58  − 0.76*  − 0.69*
TN  − 0.88**  − 0.82**  − 0.86**  − 0.82**
AP  − 0.84**  − 0.72*  − 0.81**  − 0.73*
AK  − 0.75*  − 0.61*  − 0.73*  − 0.58
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on day 60, the MBC and MBN increased by 35% and 34% 
(TB), 130% and 126% (TC), and 151% and 234% (TBC), 
respectively.

Glucosidase (GLU), invertase (INV), urease (URE), and 
protease (PRO) were measured to characterize the dynamic 
changes of microbial activities in the mine tailing soil fol-
lowing biochar and compost addition (Fig. 4). Compared 
to CK treatment, TB significantly decreased the activities 
of glucosidase and protease on day 60 (P < 0.05), whereas 
significantly increased urease activity on day 60 (P < 0.05). 
Compared to the CK and TB treatment, TC and TBC signifi-
cantly increased the activities of all enzymes (P < 0.05) and 
TC had higher enzyme activities than that in TBC treatment 
(except for urease).

The microbial biomass and enzyme activities were 
significantly promoted after the application of biochar 

and compost. Biomass oils and unstable compounds pro-
duced during biochar pyrolysis are adsorbed to its surface 
and provide the main substrate for microbial growth and 
metabolism (Cheng et al. 2006). The porous structure of 
biochar also provides a suitable substrate for the growth 
and reproduction of microorganisms (Amoakwah et al. 
2022). In addition, biochar has a strong adsorption capac-
ity for inorganic nutrients and soluble organic carbon, 
which provides adequate nutrients for microbial growth 
and metabolism (Zavalloni et al. 2011).

In addition to the direct effects of biochar and compost 
on soil structure, the improvements in soil physicochemi-
cal properties and the reduction of heavy metals induced by 
soil additives may also affect microbial biomass and enzyme 
activities. In the present study, the microbial biomass carbon 
and nitrogen (MBC and MBN) and enzyme activities (GLU, 

Fig. 3   Effect of amendments on 
the microbial biomass in soil 
samples under different treat-
ments: A MBC, B MBN. Differ-
ent lower case letters indicate 
significant differences between 
treatments (P < 0.05)

Fig. 4   Effect of amendments on 
the enzyme activities in mining 
soil under different treatments. 
A Glucosidase, B invertase, 
C urease, D protease. Differ-
ent lower case letters indicate 
significant differences between 
treatments (P < 0.05)

32343Environmental Science and Pollution Research (2023) 30:32337–32347



1 3

INV, URE, and PRO) showed significantly positive correla-
tion with EC, TN, AP, and AK (P < 0.05) (Table 3). In addi-
tion, MBC and MBN showed significantly negative correla-
tion with CaCl2-extractable Pb, Zn, Cu, and Cd (P < 0.05). 
The activities of all selected enzymes (GLU, INV, URE, 
and PRO) were negatively correlated with CaCl2-extractable 
Pb, Cu, and Cd (P < 0.05) (Table 3). These results indicated 
that the decrease in the availability of heavy metals and 
the increase in nutrient status would contribute to micro-
bial recovery, by increasing the microbial population and 
improving extracellular enzyme activities. Previous studies 
have shown that the availability and quality of soil nutrients 
have great impacts on soil microbial biomass and enzyme 
activities, which may be promoted by high-nutrient sup-
plements, whereas they are inhibited when nutrient levels 
are low (Xu et al. 2015; Liu et al. 2017; Hu et al. 2014). 
Supplementation of N, P, and K may alleviate any nutrient 
limitation of microbial metabolism and therefore enhance 
the metabolic activities of microorganisms, including the 
secretion of extracellular enzymes (Liu et al. 2017). The 
decrease of available heavy metal content may also result 
in a promotion of enzyme activities as high concentrations 
inhibit soil enzyme activities due to the metal ions reacting 
with sulfhydryl groups, chelating with substrates, or reacting 
directly with enzyme substrates (Hu et al. 2014).

Effects of amendments on the growth of ryegrass

The ryegrass biomass under different treatments was pre-
sented in Table 4. Both biomass and plant height were signif-
icantly increased in the amended treatments (P < 0.05), indi-
cating that the application of biochar and compost stimulated 
plant growth. Compared to the CK treatment, the ryegrass 
biomass increased by 175% (TB), 353% (TC), and 425% 
(TBC), respectively (Fig. 5).

The content of heavy metals in plant was summarized in 
Table 5. In the control treatment, the content of Pb, Zn, Cu, 
and Cd was 30.1 mg·kg−1, 57.7 mg·kg−1, 129.6 mg·kg−1, and 
3.8 mg·kg−1, respectively (Table 4). The addition of biochar 

and compost decreased the content of Pb, Zn, Cu, and Cd 
by 25–62%, 45–65%, 47–75%, and 23–80%, respectively 
(Table 4). The lowest content of Pb, Zn, Cu, and Cd were all 
observed in TBC treatment, followed by TC treatment and 
TB treatment (Table 4). These results indicated that biochar 
and compost inhibited the uptake of Pb, Zn, Cu, and Cd 
from the mine tailing soil to plants, and their combination 
achieved the greatest effect.

Plant biomass was positively correlated with pH, EC, 
SOC, GLU, INV, and PRO (P < 0.05) and strongly corre-
lated with TN, AP, AK, MBC, MBN, and URE (P < 0.01) 
(Table 5). A negative correlation (P < 0.01) was detected 
between plant biomass and all heavy metal content (Table 5). 
The content of Pb, Zn, Cu, and Cd in plant was nega-
tively correlated with pH, EC, SOC, GLU, INV, and PRO 
(P < 0.05), but was positively correlated with TN, AP, AK, 
MBC, and MBN, and URE (P < 0.01) (Table 5). The content 
of Pb, Zn, Cu, and Cd in plant was positively correlated with 
CaCl2-extractable Pb, Zn, Cu, and Cd content in the mine 
tailing soils (P < 0.01) (Table 5).

The addition of biochar and compost promoted plant 
growth on the mine tailings soil. This may be attributed 
to the increased nutrient status, decreased available heavy 
metal content, and increased microbial biomass and enzyme 
activities (Table 5). In addition to low nutrient element 
status, heavy metal toxicity is also often a primary factor 

Table 3   Correlation coefficients 
between physicochemical 
properties, heavy metals, and 
microbial properties in tailings 
soil

Significance levels: *, P < 0.05; **, P < 0.01

MBC MBN GLU INV URE PRO

pH 0.87** 0.91** 0.56 0.63* 0.82** 0.56
EC 0.69* 0.72** 0.88** 0.79** 0.82** 0.87**
SOC 0.68* 0.75** 0.19 0.13 0.57 0.26
TN 0.82** 0.83** 0.64* 0.63* 0.68* 0.62*
AP 0.95** 0.94** 0.67* 0.66* 0.86** 0.64*
AK 0.93** 0.91** 0.71* 0.71* 0.89** 0.68*
CaCl2-Pb  − 0.82**  − 0.86**  − 0.56  − 0.62  − 0.75**  − 0.56
CaCl2-Zn  − 0.68*  − 0.72**  − 0.51  − 0.55  − 0.58  − 0.47
CaCl2-Cu  − 0.81**  − 0.85**  − 0.52  − 0.58  − 0.76*  − 0.51
CaCl2-Cd  − 0.68*  − 0.74**  − 0.41  − 0.48  − 0.63*  − 0.41

Table 4   Effects of biochar and compost on the concentrations of 
heavy metals in plant dry matter

Numbers are presented as means ± standard deviations (SD). Differ-
ent lower case letters indicate significant differences between treat-
ments (P < 0.05)

Treatment Pb
(mg·kg−1)

Zn
(mg·kg−1)

Cu
(mg·kg−1)

Cd
(mg·kg−1)

CK 30 ± 5.5a 57 ± 8.8a 129 ± 16a 3.7 ± 0.41a
TB 14 ± 3.1b 31 ± 6.4b 69 ± 6.46b 2.8 ± 0.8b
TC 22 ± 3.9c 29 ± 5.5b 52 ± 5.95c 1.7 ± 0.51c
TBC 11 ± 2.1d 20 ± 2.9c 32 ± 4.14d 0.74 ± 0.22d
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limiting plant growth in mine tailings soils. All the heavy 
metal concentrations in plant biomass decreased to different 
degrees in our biochar and compost-treated soils.

Our study has confirmed that the addition of biochar 
and compost reduced the toxicity of the heavy metals 
present in the mine tailing soil, as well as improved the 
content of organic carbon and nutrient status. The bio-
char and compost also promoted the recovery of microbial 
biomass and enzyme activities, which facilitated plant 

growth in this short-term growth trial. However, the long-
term effects of the organic amendments on the immobili-
zation of heavy metals and the establishment of a diverse, 
functional, and stable microbial community still need to 
be investigated.

Conclusion

The addition of biochar and compost improved the phys-
icochemical properties, reduced available heavy metal con-
centrations, promoted enzyme activities in mining soil, and 
thus promoted plant growth. The ryegrass biomass yields 
significantly increased while we conducted the application 
of biochar and compost, especially in their combination. 
Additionally, the biochar and compost all significantly 
reduced the availability of Pb, Zn, Cu, and Cd in min-
ing soil. Moreover, the biochar and compost significantly 
increased nutrient contents, microbial biomass, and enzyme 
activities in mining soil. Plant biomass was significantly 
increased by SOC and TN, whereas decreased by extract-
able heavy metals. This study suggested that the application 
of biochar and compost reduced the bioavailability of heavy 
metals in mining soil and improved the quality of mining 
soil and plant.
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Fig. 5   Effect of amendments on the biomass of ryegrass under differ-
ent treatments. Different lower case letters indicate significant differ-
ences between treatments (P < 0.05)

Table 5   Correlation coefficients between plant parameters and soil 
characteristics

Significance levels: *, P < 0.05; **, P < 0.01

Tailings prop-
erties

Plant parameters

Biomass Pb Zn Cu Cd

pH 0.91**  − 0.86**  − 0.83**  − 0.95**  − 0.83**
EC 0.63*  − 0.61  − 0.31  − 0.59*  − 0.54
SOC 0.69*  − 0.59*  − 0.73**  − 0.74**  − 0.67*
TN 0.84**  − 0.73**  − 0.76**  − 0.85**  − 0.85**
AP 0.88**  − 0.86**  − 0.87**  − 0.98**  − 0.86**
AK 0.95**  − 0.85**  − 0.86**  − 0.94**  − 0.88**
CaCl2-Pb  − 0.91** 0.89** 0.86** 0.93** 0.83**
CaCl2-Zn  − 0.82** 0.84** 0.93** 0.91** 0.88**
CaCl2-Cu  − 0.93** 0.89** 0.84** 0.92** 0.85**
CaCl2-Cd  − 0.91** 0.85** 0.91** 0.95** 0.88**
MBC 0.91**  − 0.81**  − 0.75**  − 0.95**  − 0.84**
MBN 0.87**  − 0.83**  − 0.82**  − 0.93**  − 0.88**
GLU 0.57  − 0.65*  − 0.43  − 0.55  − 0.58
INV 0.61*  − 0.66*  − 0.41  − 0.54  − 0.53
URE 0.95**  − 0.92**  − 0.81**  − 0.93**  − 0.81**
PRO 0.61*  − 0.63*  − 0.43  − 0.54  − 0.55
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