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Abstract
Groundwater is the main source to answer the irrigation supply in several arid and semi-arid areas. In the present work, 
groundwater quality for irrigation purposes in the arid region of Menzel Habib (Tunisia) for thirty-six groundwater samples 
is assessed considering the application of different conventional water quality indicators, particularly, electrical conductivity 
(EC), sodium absorption ratio (SAR), soluble sodium percentage (SSP), magnesium adsorption ratio (MAR), Kelly ratio 
(KR), and permeability index (PI). The results obtained indicate a variability for EC: 3.06 to 14.98 mS.cm−1; SAR: 4.08 
to 19.30; SSP: 35.78 to 71.53%; MAR: 34.19 to 56.01; PI: 38.47 to 72.74; and KR: 0.56 to 2.47. These results suggest that 
groundwater from Menzel Habib aquifer system is classified between excellent to unsuitable according to the applied water 
quality indices. Furthermore, the groundwater samples are also plotted in the Richards diagram classification system, based 
on the relation between SAR and EC, suggesting that almost groundwater samples present a harmful quality. Moreover, 
fuzzy logic model has been proposed and created to assess groundwater quality for irrigation. The membership functions 
are constructed for six significant parameters such as EC, SAR, SSP, MAR, KR, and PI and the rules are, then, fired to get 
a simple Fuzzy Irrigation Water Quality Index (FIWQI). The obtained groundwater quality results suggest that 3% of the 
samples from Menzel Habib region are considered as “good” for irrigation, 3% are classified as “good to permissible”, 33% 
with a “permissible” quality, 36% “permissible to unsuitable”, while 25% of groundwater present an “unsuitable” quality. 
Thus, the use of fuzzy logic techniques has more reliable and robust results by overcoming the uncertainties in the decision-
making attributed to the conventional methods by the creation of new classes (excellent to good, good to permissible, and 
permissible to unsuitable) in addition to the classes proposed by Richards diagram classification (excellent, good, permis-
sible, and unsuitable) to assess the groundwater quality suitability for irrigation purposes.
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Introduction

Groundwater is considered as a life-sustaining resource 
on the support of socioeconomic growth, ecosystem func-
tions, and particularly, human health (e.g., Steube et al. 
2009; Ghimire et  al. 2021; Amrani et  al. 2022; Bucton 
et al. 2022; Zhai et al. 2022). Otherwise, climate change 
plays a crucial feature on the contribution to groundwater 
quantity due to the precipitation irregularity and, thus, the 
variation of groundwater recharge, particularly in arid and 
semi-arid regions (e.g., Gemitzi et al. 2017; Kahsay et al. 
2018; Nyembo et al. 2021; Ashraf et al. 2022; Chi et al. 
2022; Mensah et al. 2022). In recent decades, the supply 
of groundwater, mainly freshwater, is insufficient to answer 
the requirement in different sectors, including agriculture 
which is considered as the main consumer of groundwater 
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resources with more than 60% of freshwater is used for irri-
gation purposes (Aliyu et al. 2017; Kawo and Karuppan-
nan 2018). Water quality assessment is a critical worldwide 
concern to understand the necessary management changes 
which should be applied for short term and long term 
and will influence all socioeconomic sectors and threaten 
the durability of water resources and agricultural lands 
(Kavurmacı and Karakuş 2020; Bera et al. 2021; Dhaoui 
et al. 2022; Tzemi and Mennig 2022).

A sustainable socioeconomic development depends on 
the availability of freshwater resources (Ghazaryan et al. 
2020) considering that the application of groundwater with 
low quality for irrigation purposes can lead to economic 
losses, destroying the ecosystem and harmful diseases for 
human-being (Schwarzenbach et al. 2010). Indeed, a sus-
tainable groundwater resources management will be crucial 
to avert economic losses, particularly, in arid and semi-arid 
environments. Therefore, the efficiency of resources man-
agement will be conditioned by protection of water quality 
(Kavurmacı and Karakuş 2020).

Groundwater quality is influenced by several natural and/
or anthropogenic factors, such as hydrogeology, rock weath-
ering, ion exchange phenomena, evaporation processes, 
groundwater flow, and anthropogenic activities (e.g., Agoubi 
et al. 2012; Kharroubi et al. 2012; Isawi et al. 2016; Alabjah 
et al. 2018; Telahigue et al. 2018; Abul Qasim et al. 2022; 
Elmeknassi et al. 2022), as well as by climate change (e.g., 
D'Alessandro et al. 2017; Burri et al. 2019; Hu et al. 2019; 
Goswami et al. 2022; Ouhamdouch et al. 2022).

Several studies on water quality assessment have been 
developed using different techniques to investigate water 
quality, mainly based on physical properties, chemical 
relations, and water quality indices (WQI), some of them 
applied in semi-arid regions (e.g., Ben Alaya et al. 2013; 
Pazand and Javanshir 2014; Abd El-Aziz 2017; Prasad et al. 
2019; Tian and Wu 2019; Al Maliki et al. 2020; Ghazaryan 
et al. 2020; Sehlaoui et al. 2020; Yurtseven and Randhir 
2020; Aladejana et al. 2021; Jaydhar et al. 2022; Naik et al. 
2022; Tampo et al. 2022).

Different conventional or traditional water quality indices, 
such as soluble sodium percentage (SSP), sodium adsorption 
ratio (SAR), magnesium adsorption ratio (MAR), perme-
ability index (PI), Kelly ratio (KR), and residual sodium 
carbonate (RSC), are used to assess the groundwater suit-
ability for irrigation purposes (e.g., Khan et al. 2015; Safiur 
Rahman et al. 2017; Tanvir Rahman et al. 2017; Beyene 
et al. 2019; Ghazaryan et al. 2020; Khmila et al. 2021; Ayy-
andurai et al. 2022; Mukherjee et al. 2022; Rostammiri et al. 
2022). Besides, different authors have applied geostatisti-
cal methodologies to assess water suitability for irrigation 
supplies (e.g., Sutadian et al. 2017; Boufekane and Saighi 
2019; El Bilali and Taleb 2020; Jahin et al. 2020; Solgi and 
Jalili 2021).

The traditional hydrochemical and statistical methods use 
the Boolean logic, considering exact or crisp values repre-
senting the boundaries between various classified groups. 
The conventional water quality index values are, then, 
ranged between 0 and 1 (e.g., true or false), and thus, for 
the same water sample, more than one water quality classes 
could be assigned with the application of previous indices, 
contributing to an imprecision for water quality classification 
(Icaga 2007). Thus, it is important to apply some advanced 
methods to assess groundwater quality more accurately than 
the traditional methods.

In the last decades, in order to overcome this subjectiv-
ity, the shortcomings, and the environmental uncertainty in 
groundwater quality assessment procedure, artificial intel-
ligence (AI) models are extensively applied concerning to 
their flexibility and simplicity (e.g., Mujumdar and Sasi-
kumar 2002; Rezaei et al. 2013; Meyers et al. 2017; Nadiri 
et al. 2017, 2019; Agoubi et al. 2018; Rajaee et al. 2019; 
Bedi et al. 2020; Das and Pal 2020a, 2020b; Jha et al. 2020; 
Lu and Ma 2020; Ruidas et al. 2021, 2022; Arabameri et al. 
2022; Osiakwan et al. 2022; Pal et al. 2022; Pham et al. 
2022). Indeed, fuzzy logic (FL) techniques are highly used 
and show a higher capability in capturing complex envi-
ronmental problems related to groundwater (e.g., McKone 
and Deshpande 2005; Agoubi et al. 2016; Duhalde et al. 
2018; Tafreshi et al. 2018; Jaiswal and Ballal 2020; Jha et al. 
2020; Arasteh and Farjami 2021; Kord and Arshadi 2022), 
proving their strength to overcome non-linearity, ambiguity, 
and uncertainty of environmental issues (Agoubi et al. 2016; 
Tirupathi et al. 2019). Moreover, several previous research 
works have applied and verified the importance of fuzzy 
logic techniques to converge an ambiguous decision into 
a state of acceptance (Cho and Lee 2020). Fuzzy logic has 
ability to convert vagueness, uncertainty, and variability to 
a mathematical structure and is widely used in groundwa-
ter quality evaluation, usually combined with geostatisti-
cal tools and GIS approaches (e.g., Ostovari et al. 2014; 
Khashei-Siuki and Sarbazi 2015; Li et al. 2018; Jafari and 
Nikoo 2019; Shwetank and Chaudhary 2019; Jha et al. 2020; 
Pathak and Bhandary 2020). FL is, then, considered as an 
important tool to convey the results to the beneficiaries in a 
more understandable and reliable linguistic format (Raman 
et al. 2009; Alavi et al. 2010; Agoubi et al. 2016; Vadiati 
et al. 2016; Shwetank and Chaudhary 2019; Ahmad et al. 
2020).

Tunisia region is threatened by water scarcity problems 
mainly associated to its arid and semi-arid climate. It is 
also characterized by an unstable climate with irregularity 
in rainfall spatial distribution and quantity, mainly repre-
sented by alternating of intensive rainy and drought periods, 
contributing to a global increase in groundwater resources. 
Indeed, in the Menzel Habib area (southeastern Tunisia) 
groundwater resources are mainly applied for agricultural 

29774 Environmental Science and Pollution Research (2023) 30:29773–29789



1 3

supplies, and groundwater assessment quality will be crucial 
for a sustainable water resource management.

Thus, the current study is aimed at assessing the ground-
water quality suitability for irrigation purposes from Menzel 
Habib aquifer system using a combined application of differ-
ent water quality indices and Fuzzy Irrigation Water Quality 
Index (FIWQI) determined by fuzzy logic techniques.

Materials and methods

Groundwater from the aquifer system

The Menzel Habib region is located on the North of Africa, 
on the southeastern of Tunisia, northwest the city of Gabès 
between latitudes 3,761,904.56 and 3,798,891.65 N and lon-
gitudes 523,087.79 and 589,234.20 E (Fig. 1a). The region 
is characterized by an arid climate and a complex geology, 
which includes formations from Triassic to Quaternary ages.

The aquifer system is composed by three different lay-
ers starting from the shallow aquifer which is logged in 
sandy-loam formation with plio-quaternary age and char-
acterized by a depth ranging between 10 and 65 m. The 
Senonian aquifer, which corresponds to the first deep aqui-
fer, occurs in marl levels with limestone layers, while the 

Cenomanian–Turonian layer is logged in the limestone and 
marl-limestone formations (Fig. 1b).

Groundwater from Menzel Habib aquifer system is mainly 
destinated to agricultural needs. However, the extremely 
high salinity of the Cenomanian–Turonian groundwater 
layer (Ben Cheikh 2013) does not allow the exploitation 
of this water to agricultural activities. Groundwater sam-
ples are extracted from two aquifer layers from the Menzel 
Habib aquifer system corresponding to the shallow (Plio-
Quaternary) and deep (Senonian) aquifers. The groundwater 
quality assessment from shallow and deep aquifers will be 
considered in this study.

A total of thirty-six groundwater samples were 
extracted from water supply boreholes and wells used for 
agricultural needs from the Menzel Habib aquifer system. 
Twenty-five samples were collected from the shallow aqui-
fer (P1 to P25; Fig. 1b) and eleven samples from the deep 
aquifer (G1 to G11; Fig. 1b). After pumping the boreholes 
for a minimum period of 15 min, groundwater samples 
were collected, stored, and transferred to the laboratory in 
polyethylene bottles. Physico-chemical parameter, notably, 
electrical conductivity (EC), was determined in the field 
using a multi-parameter analyzer (C933 multi-parameter). 
On the laboratory, groundwater samples were filtered 
using a 0.45 μm Millipore filter and prepared to analytical 
determinations. By the titration method with hydrochloric 

Fig. 1  Menzel Habib area: (a) geographical location; (b) simplified geological map of the aquifer system, including the spatial distribution of 
groundwater samples from shallow (P) and deep (G) aquifers
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acid (HCl), bicarbonate  (HCO3) water contents were deter-
mined. Selected cations (Na, K, Ca, and Mg) and anions 
(F, Cl, Br, and  SO4) water contents were measured through 
an ionic liquid chromatography Metrohm 850 Professional 
IC. The quality and efficiency of hydrochemical data were 
proved through the calculation of ionic charge balance 
and were within ± 5% error. All the laboratory analyses 
were developed at the Integrated Laboratory of Water Sci-
ences, Higher Institute of Water Sciences and Techniques 
of Gabès (Tunisia).

Irrigation water quality parameters

Groundwater quality assessment is crucial to evaluate the 
suitability of water resources for crop irrigation. Each crop 
needs water with predefined physicochemical parameters. 
Several and combined indices to assess groundwater qual-
ity for irrigation practices will be applied on the Menzel 
Habib region.

The evaluation of water quality for irrigation purposes 
is conditioned by water quality indices that are fixed by 
different organizations and agencies (Ayers and Westcot, 
1994; El Bilali and Taleb 2020), with possible implica-
tions, such is a poor growth and associated quality if the 
water does not satisfy crop requirements (Moharir et al. 
2019). In the present study, electrical conductivity (EC), 
sodium adsorption ratio (SAR), soluble sodium percentage 
(SSP), magnesium adsorption ratio (MAR), permeability 
index (PI), and Kelly ratio (KR) were considered as water 
quality indexes. All the ion contents are expressed in meq 
 L−1 and applied on the following Eqs. (1) to (5):

(1) SAR (Richards 1954):

(2) SSP (Kopittke et al. 2006):

(3) MAR (Szabolcs and Darab 1964):

(4) PI is expressed in % (Ragunath 1987):

(5) KR (Kelly 1963):

SAR =
Na√
Ca+Mg

2

SSP =
Na

Ca +Mg + Na
× 100

MAR =
Mg

Ca +Mg

PI =
Na +

√
HCO3

Ca +Mg + Na
× 100

Fuzzy logic

Fuzzy logic was developed by Lofti A. Zadeh in 1965 con-
sidering the fuzzy subset theory. Fuzzy subsets are a math-
ematical way of representing the imprecision of natural 
language and could be considered as a generalization of 
classical set theory (Zadeh, 1965; Ross, 2005; Baghel and 
Sharma 2013; Shwetank and Chaudhary 2019). Fuzzy logic 
is also called “linguistic logic” because its truth values are 
words from everyday language (e.g., “rather true, almost 
false, far, so far, near, big, and small”). Fuzzy logic aims to 
study the representation of imprecise knowledge and approx-
imate reasoning (Gacôgne 1997; Shwetank and Chaudhary 
2019) and tries to model vague notions of natural language 
to compensate for the inadequacy of classical set theory in 
this domain.

In classical set theory, the membership of an element to a 
subset is Boolean. Fuzzy subsets allow to know the degree of 
membership of an element to the subset. A fuzzy subset A of 
a universe of discourse U is characterized by a membership 
function (Zadeh 1965):

where μA is the level or degree of membership of an element 
of the discourse universe U in the fuzzy subset.

In fuzzy logic concepts, the data is normally represented 
by linguistic variables. A linguistic variable is a variable 
whose values are words or phrases commonly used in a 
natural language or an artificial language (Zadeh 1975). A 
linguistic variable is defined by:

where X denotes the name of the variable, U is the universe 
of discourse associated with the variable X (also called the 
reference frame), T(X) = {T1, T2… Tn} is the set of linguis-
tic values of the variable X (also called linguistic terms or 
linguistic labels), and finally, μx is the membership function 
associated with the set of linguistic terms.

A fuzzy inference system (FIS) also aims to transform 
input data into output data from the evaluation of a set of 
rules. The inputs come from the fuzzification process, and 
the sets of rules are normally defined by the expert’s knowl-
edge (Vadiati et al. 2019; Agoubi et al. 2016; Priya 2013) 
and the standards proposed by Ayers and Westcot (1994). A 
FIS consists of three steps (Malik et al. 2021): (a) fuzzifica-
tion, (b) inference, and (c) defuzzification.

The first step is fuzzification consisting in the charac-
terization of the linguistic variables of the system. It is a 

KR =
Na

Ca +Mg

μA ∶ U → [0, 1]

(
X,U, T(X),�x

)
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transformation of the real inputs into a fuzzy part defined on 
a representation space linked to the input. This spatial repre-
sentation is normally a fuzzy subset. During the fuzzification 
step, each input and output variable is associated with fuzzy 
subsets which could have several shapes (e.g., trapezoidal, 
triangular, and Gaussian). Trapezoidal shape of membership 
functions is used in this study considering the advantageous 
because it is asymmetric (Castillo and Melin 2008), although 
the gradient of the membership values develops over the 
same slope value and will classify the water quality variables 
more accurately (Al Mamun et al. 2019). The function could 
be indicated as:

where x is considered as the variable that will be fuzzified; 
a, b, c, and d are defined the linguistic variables which are 
used to split the parameters into different classes (Fig. 2).

The second step is the inference engine, which is a mech-
anism for condensing the information of a system through 
a set of rules defined for the representation of any problem. 
Each rule delivers a partial conclusion that will be aggre-
gated with the other rules to provide a conclusion (aggrega-
tion). The rules constitute the fuzzy inference system and 
are constructed using different operators such as “AND, OR, 
NOT.”

The third step is defuzzification, corresponding to the 
reverse of fuzzification, and will transform the fuzzy outputs 
of the inference into a non-fuzzy value as the final answer of 
the fuzzy inference system (FIS).

f (x, a, b, c, d) =

⎧
⎪⎪⎨⎪⎪⎩

0x < aord < x
a−x

a−b
a ≤ x ≤ b

1b ≤ x ≤ c
d−x

d−c
c ≤ x ≤ d

Fuzzy rules are generally represented by “IF … THEN” 
and allow to define the relation between the input and output 
variables. More precisely, a fuzzy rule is defined as follows 
(Agoubi et al. 2016):

where A and B are linguistic variables defined in a universe 
of discourse X and Y. The first part of the rule “x is A” will 
be the antecedent, while the second part of the rule “y is B,” 
will be the consequent.

The Mamdani approach in fuzzy toolbox of MATLAB 
software is used to develop fuzzy inference system (FIS) to 
classify groundwater for irrigation purposes. SAR, SSP, KR, 
PI, MAR, and electrical conductivity (EC) are considered 
as the inputs, and the Fuzzy Irrigation Water Quality Index 
(FIWQI) will be the output (Fig. 3).

Results and discussion

Geochemistry of groundwater and water quality 
indicators

A statistical summary of groundwater physio-chemical 
parameters from Menzel Habib shallow and deep aquifer, 
considering maximum, minimum, standard deviation, and 
mean values, is presented in Fig. 4. For the shallow aqui-
fer, the chemical element contents range between 879 and 
2876 mg/L for  SO4 (mean: 1507 mg  L−1), 490 and 3265 mg 
 L−1 for Cl (mean: 1415 mg  L−1), 67 and 189 mg  L−1 for 
 HCO3 (mean: 137 mg  L−1), 319 and 2065 mg/L for Na 
(mean: 946 mg  L−1), 176 and 895 mg  L−1 for Ca (mean: 
367 mg  L−1), 110 and 342 mg  L−1 for Mg (mean: 170 mg 

ifxisAthenyisB

Fig. 2  Illustration of trapezoidal 
of fuzzy membership function
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 L−1), and 18.27 and 53.01 mg  L−1 for K (mean: 28.94 mg 
 L−1) (Fig. 4a). However, for the deep aquifer (Fig. 4b), 
the chemical element contents range between 1074 and 
2704 mg/L for Cl (mean: 1848 mg  L−1), 880 and 2785 mg 
 L−1 for  SO4 (mean: 1838 mg  L−1), 60 and 237 mg  L−1 for 
 HCO3 (mean: 160 mg  L−1), 521 and 1902 mg  L−1 for Na 
(mean: 1152 mg  L−1), 179 and 826 mg  L−1 for Ca (mean: 

495 mg  L−1), 135 and 285 mg  L−1 for Mg (mean: 197 mg 
 L−1), and 17.59 and 52.62 mg  L−1 for K (mean: 29.25 mg 
 L−1). Nevertheless, the Br and F groundwater contents 
are very low for both aquifers. Consequently, a spatial 
variation can be observed on the major anions and cations 
from groundwater samples. The dominance of ground-
water ions is classified as the following order: from shal-
low aquifer  SO4 > Cl >  HCO3 > Br > F for anions (Fig. 5a) 

Fig. 3  Structure of fuzzy model

Fig. 4  Descriptive statistics of chemical elements from Menzel Habib 
(a) shallow aquifer; (b) deep aquifer

Fig. 5  Mean values for groundwater major (a) anions, (b) cations
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and Na > Ca > Mg > K for cations (Fig.  5a); from deep 
aquifer Cl >  SO4 >  HCO3 > Br > F for anions (Fig. 5a) and 
Na > Ca > Mg > K for cations (Fig. 5b).

The main source of groundwater ion composition for 
both aquifers could be evaluated using the saturation indi-
ces of different minerals (Fig. 6a). As a result, negative 
saturation indices are registered for halite, anhydrite, and 
gypsum, while positive ones characterize dolomite and 
calcite. Thus, the main hydrogeochemistry origin should 
be associated to the dissolution of evaporites and dissolu-
tion/precipitation of carbonates (Farid et al. 2012; Patel 
et al. 2016; Argamasilla et al. 2017; Bahir et al. 2018; 
Mejri et al. 2018; Dhaoui et al. 2021, 2022; Sunkari et al. 
2021). Some groundwater samples are represented by an 

adsorption of Na and release of Ca, while others are char-
acterized by adsorption of Ca and release of Na (Fig. 6b). 
That leads to confirm that cationic exchange and inverse 
cationic exchange with soil and aquifer materials could 
also be identified as main origins of major ions (Abid et al. 
2009; Ahmed et al. 2013; Kammoun et al. 2018; Dhaoui 
et al. 2021, 2022).

Considering groundwater quality parameter standards for 
irrigation purposes (Table 1), different water quality indi-
ces will be calculated for shallow and deep aquifer system 
concerning groundwater ion contents combined with physi-
cal parameters. Groundwater quality is classified into four 
classes based on the indices: excellent, good, permissible, 
and unsuitable (Table 1).

Fig. 6  (a) Saturation index of 
different minerals; (b) Ca + Mg-
(HCO3 +  SO4) versus Na + K-Cl
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The SAR groundwater quality index is considered as one 
of the foremost parameters to review the water quality suit-
able for irrigation. For Menzel Habib aquifer system ground-
water, SAR varies between 4.08 and 19.3 (Fig. 7a) which 
reflect that 36% of groundwater samples have an excellent 
quality and 64% with a good quality.

The SSP groundwater parameter is an important param-
eter to assess the suitability of water to irrigation consid-
ering that an excess of sodium water content could affect 
the plant growth. In the present study, the SSP values range 
between 35.78 and 71.53% (Fig. 7b). Additionally, the SSP 
allows to detect that 17% of the groundwater samples are of 
good quality, while 83% are permissible and, consequently, 
deemed for irrigation purposes.

The KR groundwater quality parameter varies from 0.56 
to 2.47 (Fig. 7c), allowing that 25% of groundwater samples 

have an excellent quality, 11% are of good quality, and 14% 
permissible. Otherwise, 50% of groundwater samples are 
unsuitable for irrigation purposes. The obtained results indi-
cate that Menzel Habib groundwater is polluted by alkali 
hazard, according to defined criteria (Karanth 1987).

Indeed, the groundwater quality indices (SAR, SSP, and 
KR) may evaluate the sodium adsorption degree by the 
soil in water with its negative or positive influence on crop 
yields. Besides, Ca groundwater content is lower than Na 
content (Fig. 5b) because of the ionic substitution, includ-
ing cationic exchange and reverse cationic exchange, could 
have occurred (Tanvir Rahman et al. 2017). This substitution 
could enhance a breakdown of physical structure of the soil 
irrigated by this water, with the magnesium and calcium 
replacement by the high concentration of sodium yielding to 
sodic enrichment in the soil, thus, soil structure destroying, 

Table 1  Irrigation water quality 
parameters

SAR SSP KR PI MAR EC Water Classification

 < 9  < 20  < 0.7  > 75  < 17  < 250 Excellent
10–17 20–40 0.7–1 50–75 17–34 250–750 Good
18–25 40–80 1–1.2 25–50 34–50 750–3000 Permissible
 > 25  > 80  > 1.2  < 25  > 50  > 3000 Unsuitable

Fig. 7  Boxplot of groundwater 
quality parameters: (a) SAR; (b) 
SSP (%); (c) KR; (d) PI (%); (e) 
MAR (%); (f) EC (μS cm.−1)
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dispersion of clay, permeability and plant growth reducing 
as discussed by other researchers (Nagarajah et al. 1988; 
Subba Rao et al. 2012, 2021; Olofinlade et al. 2018), in 
which the soil could not support crop yields due to the soil 
permeability reduction. As a result, the plant roots could not 
receive nutrients issued from the soils because they could 
not properly absorb water.

Sodium, calcium, magnesium, and bicarbonate soil con-
tents will affect the soil permeability, which could be related 
to PI groundwater quality indices for irrigation purposes. 
In the study area, the PI values range between 38.47 and 
72.74% (Fig. 7d). Consequently, 64% of the groundwater 
samples are classified as with a good quality, while 36% are 
considered permissible for irrigation purposes.

The MAR indices can also characterize groundwater 
quality concerning the excess of magnesium over calcium 
water content. In the aquifer system from Menzel Habib, 
groundwater MAR values range between 34.19 and 56.01% 
(Fig.  7e). The application of MAR index classifies the 
groundwater samples into two groups. The first group, con-
taining 92% of the groundwater samples, is considered suit-
able for irrigation (MAR < 50%), while the second group, 
with 8% of the groundwater samples, is classified as unsuit-
able for irrigation. Groundwater exceeding the allowed 

standard (MAR > 50%) will promote an increasing in soil 
alkalinity and an adverse effect on crop yields. The continu-
ous application of unsuitable groundwater will cause nega-
tive risks, a consequent need of interventional plans.

Calcium and Mg have different behavior in the soil. The 
high Mg content will negatively affect the soil structure, par-
ticularly associated with a high water salinity and high den-
sity of sodium. Generally, high Mg water contents will result 
in a highly exchangeable Na (Fig. 6b) in the irrigated soils 
(FAO, 2008). This situation could negatively influence the 
soil quality and contribute to poor yield crop. Consequently, 
soils irrigated by high salinity water will be infertile owing 
to the deposition of sodium carbonate (Keesari et al. 2016).

To provide a more efficient management of ground-
water suitability for irrigation purposes, EC (Fig. 7f) and 
SAR parameters were plotted on the diagram of Richards, 
considering the USSL (United States Salinity Laboratory) 
classification (Fig. 8). The irrigation water, with respect to 
EC according to Richards diagram, are classified as C1, 
excellent water for irrigation (could be applied in all type of 
soils); C2, good water for irrigation (could be applied in all 
plants provided a medium degree leach forms); C3, permis-
sible water for irrigation (cannot be used on soils with lim-
ited drainage, other plants could tolerate); C4, doubtful for 

Fig. 8  Groundwater samples 
plotted in the Richards diagram
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irrigation due to very high salinity; and C5, unsuitable for 
irrigation associated to an extremely high salinity. Relatively 
to SAR parameter, water for irrigation could be classified 
as S1, excellent water for all type of soils (SAR < 13); S2, 
good water for irrigation (SAR: 13–22); S3, water doubt-
ful for irrigation (SAR: 22–32); and S4, unsuitable water 
for irrigation (SAR > 32). The soil irrigated with S2 and S3 
water types will require a special management concerning 
to possible production of sodium oxide hazardous.

The Richards diagram revealed that three groundwater 
samples from Menzel Habib aquifer system fall within the 
C4S2, nine fall within C5S2, one is classified in C4S3, five 
in C5S3, and the other groundwater samples are character-
ized by a SAR ratio more than 10 and an extremely high 
salinity (Fig. 8). The high levels of Na and EC registered for 
almost groundwater samples, could be derived from ionic 
leaching, weathering of rocks and anthropogenic activities, 
particularly, related to agricultural activities.

Indeed, almost groundwater samples from the study area 
should not be applied under natural conditions (e.g., plant 
non-tolerant for salinity, without drainage network; Ayers 
and Westcot 1994; FAO 1997). Nevertheless, this ground-
water type could be applied in areas that require soil man-
agement or with permeable soil and containing crops that 
are tolerant to salinity. Therefore, a particular soil treatment 
in areas with a high leaching and high organic matters asso-
ciated to good drainage conditions will be required to the 

crops growing using this quality of water. It could also be 
used on the soil with calcium-enriched soil water. The need 
to gypsum/soil modification is required to apply and use 
these water resources for irrigation purposes (Mukherjee 
et al. 2022).

FIWQI

The calculation of groundwater quality parameters from 
Menzel Habib aquifer system will be crucial to get accurate 
decisions to manage groundwater in this region. There is 
an uncertainty and overlap in decision-making considering 
groundwater quality of some analyzed groundwater samples. 
Thus, in the study area, groundwater samples are character-
ized by values on the range limits, which could lead to a 
confusion on the decision in situations that can be classi-
fied in more than one groundwater quality class for irriga-
tion purposes. Hence, the groundwater quality of Menzel 
Habib area was assessed applying more accurate fuzzy logic 
approaches.

Sodium absorption ratio, EC, SSP, MAR, PI, and KR, as 
representative groundwater quality indicators, are considered 
as the inputs of the fuzzy index process. Then, the resulted 
membership functions are considered and constructed 
(Fig. 9). The obtained FIWQI has a score that ranges from 
0 to 1 (Fig. 10), and it is the output resulted from defuzzifi-
cation for the considered groundwater samples. The fuzzy 

Fig. 9  Inputs membership functions
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toolbox of MATLAB software was used to create the appro-
priate rules for groundwater classification where some rules 
are shown in Fig. 11.

Therefore, fuzzy logic method has clearly modified 
groundwater classification by creating three new water 
quality groups, excellent to good, good to permissible, and 
permissible to unsuitable (Table 2), compared with the Rich-
ards diagram classification (excellent, good, permissible, 
and unsuitable; Fig. 8). Consequently, from Menzel Habib 
aquifer system, 3% of groundwater samples are character-
ized by “good quality,” 3% of “good to permissible quality,” 
and 33% of “permissible quality” for irrigation purposes. 
About, 36% of groundwater sampled points are considered 
as “permissible to unsuitable quality” for irrigation; how-
ever, 25% are classified as “unsuitable quality” for irrigation 
purposes. The created fuzzy index shows superiority and 
improvement over the classification given by the diagram of 
Richards. This is notably relevant in groundwater samples 

characterized by similar quality, reflecting and promoting 
a more robust decision, precisely on groundwater samples 
with values located between two different groups. Overall, 
using Richards diagram classification, making the decision 

Fig. 10  FIWQI classification of groundwater from Menzel Habib aquifer system

Fig. 11  Sample of rules created 
in fuzzy toolbox in MATLAB 
software

Table 2  FIWQI vs. USSL classification

Fuzzy classification USSL classification

FIWQI Class SSP EC (μS/cm) Class

 < 0.2 Excellent 0–50 0–750 Excellent
0.2–0.25 Excellent to good
0.25–0.45 Good 50–65 750–2000 Good
0.45–0.5 Good to permissible
0.5–0.7 Permissible 65–80 2000–3000 Doubtful
0.7–0.75 Permissible to unsuit-

able
 > 0.75 Unsuitable  > 80  > 3000 Unsuitable
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was taken according to crisp values, while the FIS showed 
flexible limits based on linguistic terms related to ground-
water quality threshold values that is located between two 
different groups. This methodology will allow for more reli-
able and consistent information concerning groundwater 
quality for irrigation supplies. The fuzzy logic method is, 
then, greater than other indices as discussed by Priya (2013), 
Agoubi et al. (2016) and Mohamed et al. (2019) where it 
has the ability to reflect the state of groundwater quality and 
could be a useful approach for groundwater quality modeling 
as it is an alternate approach to problems where the limits 
are diffuse or imprecise.

Conclusion

Using different traditional water quality indices (SAR, SSP, 
KR, PI, and MAR) and Richard’s diagram, the fuzzy logic 
techniques have been applied to assess groundwater qual-
ity for irrigation purposes. Based on hydrochemical analy-
sis results, different sources of salinization were detected, 
notably, the dissolution of evaporites, the precipitation of 
carbonates, the inverse cationic exchange, and the inverse 
cationic exchange. Therefore, groundwater samples were 
classified using the traditional indices and the Richards dia-
gram where almost of them are characterized by a low suit-
ability for irrigation use.

Then, a Fuzzy Irrigation Water Quality Index (FIWQI) is 
developed basing on the combination of conventional water 
quality indices in a global one. This index allows to clas-
sify the groundwater samples into seven categories: 3% of 
groundwater samples were classified as “good,” 3% were 
categorized as being “good to permissible,” 33% were con-
sidered “permissible,” 36% were classified as being “per-
missible to unsuitable,” and 25% were classified as being 
“unsuitable” for irrigation purposes. The proposed model 
was validated with satisfactory results on groundwater sam-
ples for Menzel Habib area. The resulted FIWQI is more 
adequate to Menzel Habib aquifer system than Richard’s 
diagram, and the conventional water quality indices where 
the creation of new groundwater quality classes, classified 
as excellent to good, good to permissible, and permissible to 
unsuitable, will be more relevant on the groundwater classi-
fication for irrigation purposes by avoiding the uncertainties 
and imprecision associated in decision-making processes.

Depending on these obtained results where the quality 
of almost groundwater samples is unsuitable for the soil 
and, thus, for a sustainable crop production, an appropriate 
remediation is required in Menzel Habib area, notably, by 
the treatment of groundwater resources before using for irri-
gation or the use of specific crop tolerant to the water high 
salinity. These recommendations will be useful in this local 
area and will benefit other regions that have similar issues.
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