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Abstract

Since essential nexus variables were not considered in the energy subsystem, this study focused on the role of energy in the
Water, Energy, and Food nexus (WEF nexus) system. The energy subsystem interacts with water and food on the supply and
demand sides. The WEF nexus-based energy model has not been reviewed recently. This study provides a systematic review
of 459 articles regarding energy simulation modeling issues relating to the WEF nexus system. The keyword (“energy” AND
“simulation” AND “nexus”) as well as “water” OR “food” OR “climate” OR “land” OR “carbon” OR “environment” is used
for searching WEF nexus documents for energy simulation. The review highlighted that the energy subsystem is modeled
online (One-way) and offline (Two-way), and the energy simulation struggles to represent its system boundary with the
water and food subsystems in different spatial scales (household to global). The energy subsystem of the WEF nexus did
not address return flow from cooling towers and crop energy consumption comprehensively. In the research, the supply and
demand section of the energy subsystem demonstrated that a comprehensive simulation model for energy can be developed
using the nexus system approach. The energy subsystem’s supply, primarily power plants, interacts with the water subsystem,
and the energy generation policy is based on water use. The WEF nexus system assesses renewable energy effects to reduce
tradeoffs. In addition, energy demand is related to energy consumption, so the energy consumption for each crop can be
calculated and explained the appropriate cultivation pattern based on it.

Keywords Energy model - Energy security - Energy simulation - Water-energy-food nexus - Supply side and demand side -
Basin and national scale

Introduction

By 2050, the global demand for Water, Energy, and Food
(WEF) is expected to increase by nearly 50% due to popula-
tion growth, urbanization, and climate change (Ferroukhi
et al. 2015; Zhang et al. 2018). According to estimates
from the United Nations in 2019, 821 million people were
undernourished in 2017 compared to 784 million in 2015.
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Providing food for the world’s starving population will
require more land than is available now (United Nations
2019). Also, according to statistics in 2019, 785 million
people worldwide lack access to safe drinking water, and
two billion are affected by water scarcity. In 2030, it is
anticipated that 700 million people will migrate or seek ref-
uge in other locations due to severe water stress. Regional
wars are more likely to occur when many people cross a
country’s border, and the receiving country refuses to let
them in (United Nations Report 2019; United Nations 2019).
According to the World Bank, in 2019, 840 million rural
residents lacked access to electricity, and 3 billion lacked
access to clean cooking fuels such as natural gas (United
Nations 2019). Research indicates that in 2018, the Earth’s
temperature was 1 °C above the value established by the
Paris Agreement. If current trends continue, Arctic glaciers
will melt, resulting in rising oceans and seas and the sub-
mergence of 150 million people by 2050 and 360 million by
2100 (Kulp and Strauss 2019).
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The abovementioned trend is expected to worsen soon.
Because WEF security risks are interconnected, the research
and policy communities increasingly recognize the need for
a unified resource planning and management approach. Each
resource security requires a trade-off with the others (Laspi-
dou et al. 2020; Qi et al. 2022). Climate change exacerbates
resource interdependence, synergies, and trade-offs, affect-
ing the economy and people’s livelihoods (Markantonis et al.
2019; Wan and Ni 2021; Azizi and Nejatian 2022; Yavari
et al. 2022). To address the issues mentioned above, the
WETF nexus system concept refers to the interaction between
these subsystems and provides insight into how strategies
in one sector will affect the other sectors and vice versa
(Afshar et al. 2022; Molajou et al. 2021a; Soleimanian et al.
2022). The research community has recently recognized
the significance of the WEF nexus and its interdependen-
cies as it continues to develop and adopt integrated mod-
eling approaches that can potentially contribute to efficient
resource management and holistic decision-making (Endo
et al. 2020; Mahdavian et al. 2022).

The energy subsystem is a critical component of the
WEF nexus system for water withdrawal and consumption
by cooling and hydropower plants. Electricity production
is worth noting that it is 90% water-intensive (Smith 2014).
Official global statistics in 2010 show that an estimated 583
billion cubic meters (BCM) of water was withdrawn glob-
ally to produce energy (representing approximately 15% of
total withdrawals or approximately 75% of industrial water
withdrawals), with 66 BCM consumed (IEA 2010). Envi-
ronmental concerns, the generation of electricity, and other
water-dependent industries are increasingly at risk of con-
flict. Furthermore, the production of energy through the use
of alternative energy sources, such as solar and wind power,
has almost no negative impact on the environment, requires
almost no water, and emits almost no carbon dioxide. As
part of the nexus approach, renewable energy is an essential
component of the energy supply. By achieving this minimal
interaction, the energy and water subsystems can achieve
the required amount of water without conflict or synergy.

On the other hand, energy consumption in various water
and food production processes is critical under the WEF
nexus system. The agricultural and food industries consume
30% of global energy (Sims 2011). At every stage of the
food value chain, energy is required, including the produc-
tion of agricultural inputs, crops in the field, food process-
ing, transportation, marketing, and consumption. Primary
agriculture consumes only 20% of the world’s energy, while
food processing and transportation consume approximately
40% and thus significantly contribute to global energy con-
sumption (Sims 2011).

Groundwater pumping, desalination plants, and water
treatment are some processes that consume energy dur-
ing water production. Water’s share of global electricity
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consumption is expected to stay around 4% in 2040, but
regional differences are expected to be significant (IEA
2017; D’Odorico et al. 2018). In the USA and the Euro-
pean Union, the water industry accounts for about 3% of
total electricity consumption (IEA 2017). On the other
hand, desalination cost reductions have increased the Mid-
dle East’s share of global desalination capacity from 9 to
16% since 2015 (IEA 2017).

According to the aforementioned energy issues, the sig-
nificance of the energy subsystem modeling in the WEF
nexus system to establish interaction with the other two sub-
systems is further highlighted due to its high importance in
energy production and consumption in different parts of the
water and food production process. In addition, the avail-
ability of a comprehensive simulation model for the energy
subsystem within the context of the nexus system approach
is essential for researchers and policymakers to examine and
observe the effects of their actions and, as a result, select the
most effective policy. Several WEF nexus system review
papers have mainly assessed the interactions and interrela-
tions between water and food subsystems (Chang et al. 2016;
Zhang et al. 2018; Yuxi et al. 2021). The energy subsystem
has not been assessed in detail in the review papers, while
the energy subsystem interacts with the water subsystem in
the supply sector to supply power plants’ consumed water
and the energy demand sector to calculate the consumed
energy with the water and food subsystems. For example,
Zhang et al. (2018) did not include supply and demand sec-
tors in the energy subsystem. In the demand section, the
energy consumption of agricultural machinery and their
operation and the energy consumption of agricultural inputs
are significant and were not addressed in the abovemen-
tioned review paper. The energy supply sector did not evalu-
ate the interaction between hydro and thermal power plants
with water bodies. Chang et al. (2016) analyzed methodo-
logical and practical issues related to WEF interconnection
calculations and summarized the estimated results for WEF
interconnections. Additionally, this review paper highlighted
chances for future robust WEF nexus quantifications. The
study mentioned earlier evaluated each WEF subsystem’s
internal and external effects on one another.

Therefore, a holistic review needs to be conducted to
develop a comprehensive energy subsystem simulation
model so that the requirements of the WEF nexus system can
be met. Hence, the interactions are appropriately addressed
to lead to accurate and logical solutions to make a holistic
decision. This systematic review aims to present the main
technical features of energy modeling. The models are used
in the WEF nexus system to evaluate their advantages, dis-
advantages, and blind spots. To identify a research path to
overcome the significant shortcomings to thoroughly address
WEEF nexus system simulation to improve energy subsys-
tems and make holistic decisions.
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Research methodology of the review process

A systematic review of energy subsystem simulation
modeling within the WEF nexus system was performed to
determine how scholars in this field conducted and simu-
lated energy subsystems under the nexus system approach.
To conduct this systematic review checklist for Preferred
Reporting Items for Systematic Reviews and Meta-analy-
ses was followed (PRISMA; Liberati et al. 2009), shown
in Fig. 1.

For this study, a thorough literature search was con-
ducted to identify papers that discuss energy subsystem
simulations under the nexus system approach. These
included articles published between 2010 and the end of
2021. A protocol was created to document the analysis
method and the inclusion criteria. As depicted in Fig. 1,
a systematic collection of publications on using energy
subsystem simulation modeling in the WEF nexus system
approach has been compiled. The Elsevier Scopus and
Web of Science databases were used for the search.

An MS Excel spreadsheet was created by exporting
each identified record’s title, abstract, keywords, author
names, affiliations, journal names, and year of publication.

Abstracts and titles of the records were independently
screened for relevance to the energy simulation models
within the nexus system. The papers that were descrip-
tive, conceptual, and unrelated to the energy within the
nexus simulation models were discarded. Afterward, the
full texts of the remaining papers were carefully screened
independently to determine their eligibility. The research-
ers included all papers that, to some extent, indicated that
the methods they used to identify and select the literature
were explicit, reproducible, and without a priori assump-
tions about the relevance of the selected literature (Picker-
ing and Byrne 2014; Booth 2016).

The review initially focused on modeling the nexus,
the different types of nexus simulations, and the specific
roles of the energy subsystem. The search for “nexus”
and “energy” keywords in scientific literature includes
article types of English-language documents that use key
phrases in their title, abstract, and keywords. In the last
decade, both keywords have significantly impacted the
literature; the results are limited to journal papers from
2010 to 2021.

The various key phrase combinations are tested to
include only the most relevant documents and exclude

Fig.1 PRISMA flowchart for
the energy subsystem simula-
tion under the WEF nexus

Records identified through
database searching
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(n=145)
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irrelevant search results. According to the test results, the
terms “energy” and “nexus” have been used broadly in
different forms and for different purposes, for instance,
as “suitable energy-type functional and Euler—Lagrange
equation” in the field of mathematics in applied sci-
ences and engineering (Karki and You 2020), or “nexus
between the emerging creators of innovative products and
services and the necessary funding sources in the area of
psychology” (Popescul et al. 2020). To limit the search
results for energy simulation under the WEF nexus sys-
tem approach to the context of the natural resources field,
the phrase (“energy” AND “simulation” AND “nexus”)
AND “water” OR “food” OR “climate” OR “land” OR
“carbon” OR “environment” has been selected for the
search phrase for energy simulation within WEF nexus
documents.

The keywords (“energy,” “simulation,” “nexus”),
“water,” “food,” “climate,” “land,” “carbon,” or “environ-
ment” were searched in the Scopus and Web of Science
databases, yielding 314 and 145 articles, respectively.
Second, we reviewed the titles exported to Excel and
removed 104 duplicate papers. There were 355 articles
left. We then chose final-status papers from 2010 to the
end of 2021 and articles published in English-language
journals. A total of 242 articles were chosen for quali-
tative examination. The energy simulation articles were
chosen using the nexus approach during the first round
of qualitative evaluation of article abstracts. Articles that
investigated the concept of energy were not considered.
In the second round of qualitative evaluation, the remain-
ing articles were scrutinized more closely, and those that
examined only energy simulation and the relationship
between the energy subsystem and other subsystems, such
as water and food, were chosen. Finally, only 56 articles
were left for quantitative analysis.

ELINT3 EE T3

Results
Types of simulation

Based on studies conducted in the literature, various energy
subsystem simulation models are presented within the WEF
nexus model, and the desired results are described next. An
offline and online template is used to model the nexus sys-
tem’s energy subsystem. Offline energy modeling is a one-
way flow of nexus variables model (Mounir et al. 2019).
In other words, once the energy scenario is defined, the
effects on the other two subsystems (i.e., water and food)
are assessed using the nexus system approach. Similarly, if
a scenario for a water subsystem is defined, the effects on the
other two subsystems are investigated. The disadvantage of
this type of energy modeling under the nexus system is that
it cannot examine the entire system comprehensively. The
term “online energy modeling” refers to models in which
nexus variables flow in both directions between the energy
subsystem and the other two subsystems (Araujo et al.
2021). In other words, all three subsystems receive nexus
variables from each other during a simulation time step,
which is why nexus systems are referred to as multi-centric.
For example, the response of the water and food subsystems
at any given time can be measured by exporting nexus vari-
ables like “the amount of energy allocated to groundwater
pumping,” “the amount of energy allocated to agriculture,”
and “the amount of energy allocated to desalination plants.”
(Ravar et al. 2020). In the same time step, the energy sub-
system receives the nexus variables “groundwater level,”
“groundwater abstraction volume,” and “crop cultivation
area” from the water and food subsystems and evaluates its
response (Wicaksono et al. 2020a). Regardless of its com-
plexity, online modeling of the energy subsystem contributes
to more accurate modeling of the WEF nexus system and

Table 1 Types of energy subsystem simulation under WEF nexus system approach

Offline interactions

Online interactions

Linkages One-way relationship

Advantages

water and food subsystems

Disadvantages e Cannot reflect the mutual impacts of energy with water and food

subsystems

o Less time-consuming for energy modeling in the nexus system
eDemonstrates how the energy subsystem affects or is affected by

Two-way relationships

oThe energy subsystem can be linked to the other two
subsystems holistically

eSimulating nexus system thoroughly from an energy
perspective

eImport/export nexus variables to/from water and food
subsystems

eTime-consuming modeling to link with other subsystems
eData-intensive

o Defining the scenario in the energy subsystem and getting the

response of the other two subsystems and vice versa

Features
o Simple energy modeling

e Not holistic simulation of energy under nexus system

eSimulation of the WEF nexus system comprehensively
eSophisticated energy modeling
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leads to more holistic decisions. The main characteristics of
online and offline modeling are shown in Table 1.

Modeling scale

On the other hand, several spatial and temporal scales are
systematically considered in the energy modeling under the
WETF nexus approach based on the reviewed literature (see
Fig. 2).

Relevant processes at the household level, such as
Hussien et al. (2017), may include electricity usage, cars,
cooking, cleaning, etc. Similarly, the community is made
up of a collection of households. Local governments and
municipalities are essential in distributing and selling energy
to households (Martinez-Hernandez et al. 2017; Toba et al.
2021). Furthermore, regional (basin and national) WEF net-
works serve community aggregation. At the basin scale, the
energy production process and its water consumption from
thermal and hydroelectric power plants and other energy
components are considered. The operational energy demand
of water (for example, groundwater pumping) and food (for

example, agricultural activities) subsystems is highlighted
(Bakhshianlamouki et al. 2020). In general, decision-mak-
ing, operation, and policymaking are critical on this study
scale. The operation of hydropower reservoirs and related
thermal power plant formulation are ignored on the national
scale, but the national grid and its dispatching rules are con-
sidered (Wicaksono et al. 2020).

It should be noted that most of the energy simulation’s
relationships are considered databases in the form of energy
or water intensity. Furthermore, global or continental energy
processes also include global/continental energy supply
chains, in addition to natural processes, which are very simi-
lar to but much broader and more varied than those at the
regional level (Pavicevi€ et al. 2021). It is worth noting that
international diplomatic relationships, GHG emissions, and
transportation costs are all vital on the global scale of energy
modeling within the WEF nexus system.

It is also critical to consider the energy subsystem’s tem-
poral scales. Water levels in reservoirs and rivers fluctuate
hourly, weekly, monthly, and yearly, generating hydropower.
Furthermore, water temperatures fluctuate throughout the

« Focus on cnergy demand modelling under nexus system

Houschold

* Energy supply is external impact to the system boundary

 Policy impacts of low importance

» National grid supply for clectricity

Community

*System boundary mismatching

* Policy effects increase in importance

» River Basin scale energy supply and demand modclling under

nexus system
» System houndary mismatching with water and food subsystems

* Opcrational decision making impacts of high importance

Spatinl and temporal scale increase

National

* National energy supply and demand modelling under nexus
system

* Policy making impacts are significantly important

* GHG emissions important

Global

* Global energy supply and demand modelling under nexus
system

* Water, energy, and food nexus diplomacy essential
* GHG emissions highly important

*‘I'ransportation costs

Fig.2 Energy subsystem simulation spatial scale within the WEF nexus system
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year, which is critical for power plants that require heat-
ing and cooling. Crop cultivation occurs worldwide during
the growing season and ceases in winter. During the winter
months, irrigation water and energy requirements are drasti-
cally reduced, allowing for the implementation of alternative
uses. In addition, there is a connection between spatial and
temporal scales. As the spatial scale increases, for instance,
from a household to a global scale, the temporal scale also
increases (Garcia and You 2016).

Supply and demand are the two main components of the
energy subsystem. The energy subsystem interacts with the
water and food subsystems within the nexus approach. This
sector deals with energy production, mainly interacting with
the water subsystem to provide cooling water and hydro-
power to power plants. In the energy demand section, the
energy consumption of the defined scenarios is calculated
for each water and food subsystem. The primary energy
consumption for the water subsystem is related to ground-
water pumping. The energy subsystem calculates the pump-
ing energy consumption by receiving the nexus variables
simulated by the water subsystem. Similarly, for the food
subsystem, the energy subsystem calculates the amount of
energy consumed by receiving different cultivation patterns
and related nexus variables, such as the area under cultiva-
tion (Afshar et al. 2021). Tables 2, 3, 4, 5, and 6 illustrate the
articles relating to the energy subsystem simulation within
the WEF nexus system approach in diverse spatial scales
and its interactions with other subsystems bilaterally and
unilaterally.

At the household scale, the energy demand section
is further investigated. In other words, for example, how

much water and energy are needed for cooking. Although
the energy supply sector at home is an external impact, this
sector is not modeled. Also, the importance of policymaking
is low, and the temporal scale of the household planning for
the WEF nexus system is hourly to daily.

On a local scale, the supply sector boundary of the WEF
nexus system is slightly expanded, and water and energy
supply, which is related to water pumping stations and dis-
tribution of the electricity network, enters the nexus system.
However, at this scale, food distribution to consumers is the
essential component of the food subsystem, and crop growth
under optimal cropping patterns, specifically policymaking,
is not evaluated.

The nexus system’s spatial scale increases the importance
of energy subsystem planning and policymaking. At the pro-
vincial level, it becomes more essential to produce energy
from thermal power plants (centralized) and consume their
water, and interactions between subsystems are well repre-
sented. Hydropower plants are also critical on the provincial
scale. On the other hand, both centralized and decentralized,
renewable power plants, such as solar and wind, can play an
important role in energy distribution in the energy supply
sector.

The nexus approach considers the basin scale the most
important spatial scale for the energy subsystem. Because
of significant interactions with water and food subsystems
in the water and demand sector at the watershed scale, plan-
ning and policymaking are critical. The energy subsystem,
for example, receives the nexus variables of crop cultivation
area and groundwater level in the energy demand section and
then calculates the amount of energy consumed in the water

Table 2 Relevant features and summary of energy simulation research methods and their application under the WEF nexus approach on a house-

hold scale

Citation

Interconnectedness Interaction type Specific purposes Underlying methodology Research priorities

(Hussien et al. 2017) Water-energy-food Online Demand

(Zhuge et al. 2020)  Water-energy Online Demand

(Xue et al. 2021) Water-energy-food Online Demand

(Casazza et al. 2021) Water-energy-food Online Demand

System dynamic Developing an integrated model,
capturing the interactions between

WEEF at the end-use level

Developing an agent-based spati-
otemporal integrated approach
to simulate the water-energy
consumption of each household or
person agent in seconds throughout
a whole day

Agent-based simulation

System dynamic Developing household WEF nexus
dynamic model to explore the
influence of various factors on the
end-uses

Simulation Simulating and providing alternative
scenarios to assess the impacts of
monetary policies as well as edu-
cation and communication actions
on the enhancement of resource

savings
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Table 4 Relevant features and summary of energy simulation research methods and their application under WEF nexus approach in Province

scale

Citation

Interconnectedness Interaction type Specific purposes Underlying methodology

Research priorities

(Nouri et al. 2019) Water-energy Online

(Lietal. 2019) Water-energy-food Online

(Zhai et al. 2020) Energy-carbon Online

(Zhang et al. 2021) Water-energy Online

(Keyhanpour et al. 2021) Water-energy-food Online

Supply

Supply—demand

Supply

Supply—demand

Demand

Simulation—optimization Assessing renewable energy
effects on water with-

drawal and consumption

Interpretive structural
modeling

To explain and quantify
complex relationships in
the water-energy-food
nexus (WEF nexus)

Network simulation Describing the integral
mutual relationships
between provinces and
distinguishing the control
intensity of each province
from different CO, flows
directions

System dynamic Clarifying the embodied
linkages and the compli-
cated system interactions
in the energy-water nexus
network

System dynamic Investigating the simula-
tion of sustainable water
resources management to
assess the impact of socio-
economic development on
water, food, and energy

resources security

and food subsystems. In the comprehensive WEF nexus sys-
tem, the energy demand section using the defined approach
can evaluate the optimal cultivation pattern. Hydropower
plants, on the other hand, become especially important in the
supply sector due to the presence of reservoirs. Furthermore,
because of the use of rainfall-runoff models, the effects of
climate change on energy production can be assessed by
considering the relevant interactions.

A system boundary that is the same in WEF subsys-
tems should be considered for the WEF nexus system. The
national scale is the complete spatial scale for the energy
subsystem because its system boundary does not mismatch
with the water and food subsystems within the comprehen-
sive WEF nexus system. Because electricity is generated by
various types of power plants and injected into the national
grid, the watershed and provincial spatial scales are insuf-
ficient for the energy subsystem. Only the national scale can
provide the same system boundary for all three subsystems.
However, interactions will be poorly represented at this
scale, and the energy model will be more data-driven.

Another vital component of the supply side is renewable
energy. Renewable energy, such as solar and wind power
plants, are considered alternative energy in the supply sector.
Renewable energy plays an essential role in the energy sub-
system within the WEF nexus system. The energy and food

@ Springer

subsystems both consume water to produce their products.
This issue causes a trade-off between energy and food sub-
systems, which is increased with the emergence of climate
change as a driver. As a result of climate change, crops’
evapotranspiration may increase in the food subsystem. As
a result, the need for irrigation will increase. Therefore, the
water subsystem must allocate more water to the agricultural
system. The trade-offs between energy and food subsystems
increase for water withdrawal. Compared with conventional
energy sources, renewable energy sources (solar and wind
power plants) consume a small quantity of water, and this
causes little interaction between the energy and water sys-
tems. It also reduces the trade-off between agriculture and
energy production.

Discussion: Direction of future research
for energy simulation under the WEF nexus
approach

Based on the necessary interactions within the energy sub-
system, the review highlighted how difficult it is to analyze
it within the WEF nexus approach. According to the litera-
ture, energy subsystem simulations can be modeled offline
and online. As these (bilateral) simulations can give more
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Table 5 (continued)

(5

Assessing the influence of adding floating photovoltaic power

Interaction type Specific purposes Underlying methodology Research priorities
Supply Simulation

Online
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Springer

in the large-scale reservoir

Developing an integrated assessment approach to quantify the

Simulation

Supply

Online

Water-energy-climate

(Mitra et al. 2021)

water-energy nexus

Assessing the robustness of hydropower supply concerning the

Simulation

Supply

Online

Water-energy-climate

(Chowdhury et al. 2021)

hydroclimatic variability

Simulation—optimization Investigating the role of operation of the cascade reservoirs

Supply

Online

Water-energy-ecosystem

(Schull et al. 2021)

may play in mitigating existing conflicts and achieving co-

benefits in the entire River Basin

Simulating various Eucalyptus plantation scenarios that fol-

Simulation

Supply

Online

Water-energy-food

(Heidari et al. 2021)

lowed physically based rules for land use conversion to study
hydrological effects, biomass production, and the green

water footprint of energy production

Simulating various water- and energy-saving policies and their

Supply—demand  System dynamic

Online

Water-energy

(Gozini et al. 2021)

effectiveness in improving resource security was evaluated

using water- and energy-saving indices

Simulation—optimization Investigating groundwater pumping and cropping pattern

Demand

Online

Water-energy-food

(Zhang and Ren 2021)

based on the WEF nexus approach

accurate and comprehensive results under an integrated
WEEF nexus system, the two-way interactions can provide
a more comprehensive and accurate picture of the relation-
ship between the energy, the water, and the food subsys-
tems (Zhang et al. 2018). On the other hand, the energy
subsystem simulator under the WEF nexus approach must
be able to import the required nexus variables from both
the water and food subsystems to calculate the energy pro-
duced and consumed. For example, to calculate the pump-
ing energy consumption on the energy demand side, the
energy subsystem must receive two nexus variables, the
groundwater level and the amount of water withdrawn from
the water subsystem. Of the studies conducted, Bakhshi-
anlamouki et al. (2020), Ravar et al. (2020), and Shari-
finejad et al. (2020) studies have only been able to simu-
late the energy subsystem on the basin scale in the form
of an online template concerning the other two water and
food subsystems and simulate more components of its sup-
ply and demand (e.g., hydropower, thermal power plants,
groundwater pumping, etc.) than other studies. Also,
Wicaksono and Kang (2019), Araujo et al. (2021), and
Gozini et al. (2021) simulated both the supply and demand
side of the energy subsystem comprehensively to capture
nexus variables among WEF subsystems. Wicaksono and
Kang (2019) modeled the WEF nexus system nationally
using data-based relations in these studies.

One of the most critical parts of the energy subsystem in
the WEF nexus system is the return flow from power plants.
The studies reviewed in this paper did not cover return water,
which is a required nexus variable between energy and water
subsystems, thus affecting the amount of water measured
at hydrometric stations (Martinez-Hernandez et al. 2017,
Bakhshianlamouki et al. 2020; Ravar et al. 2020; Sharifine-
jad et al. 2020; Wicaksono et al. 2020a; Gozini et al. 2021).
As a result, the results of the entire WEF nexus system can
be affected. Additionally, on the energy demand side, the
energy consumption of the different crops has not been stud-
ied separately; however, it is necessary to consider this in the
comprehensive simulation of the nexus system to determine
the optimal cultivation pattern. In other words, the best culti-
vation pattern reduces the amount of energy and water spent
and maximizes yield.

On the other hand, renewable energy is one of the most sig-
nificant and influential energy sources in the WEF nexus sys-
tem. This means that alternative energy, such as solar and wind
power plants, has very little water consumption and greenhouse
gas emissions, and they can be used to reduce the trade-off
between energy and food subsystems for water consumption
(Nouri et al. 2019; Liu et al. 2020; Sharma et al. 2021).

Furthermore, a system boundary mismatch with two water
and food subsystems is one of the problems with the energy
subsystem simulation. It is critical for the integrated = WEF
nexus system simulation to have a unique system boundary,
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Table 6 (continued)

(5

Examining the energy-related water and air pol-

Interaction type Specific purposes Underlying methodology Research priorities
Supply—demand  Simulation

Energy-water—air pollution-economy Online

Interconnectedness

(Zhai et al. 2021)

Citation

Springer

lution embodied in household consumption at

different income levels

Exploring the function of economic policy

System dynamic

Supply

Online

Energy-environment-economy

(Amin and Dogan 2021)

uncertainty in the energy-environment nexus

Soft linking between two models: the LIS-

Simulation

Supply

Offline

Water-energy

(Pavicevic et al. 2021)

FLOOD model is used to generate hydrological
inputs, and the Dispa-SET model is used for

mid-term hydrothermal coordination and opti-
mal unit commitment and power dispatch

which should be at least the national level in the case of energy
due to the generation of electricity as a national grid. The sys-
tem boundaries of the food and water subsystems are compat-
ible—precisely, the water subsystem, where production and
consumption often occur in the same study area. In contrast,
energy production is a national network where production and
consumption do not constantly occur in the same study area.

In order to develop a comprehensive energy subsystem
simulator that can interact bilaterally with water and food
subsystems while, on the other hand displaying its response
to the WEF nexus variables more thoroughly and accurately,
the problems and gaps mentioned above must be addressed.
Consequently, a comprehensive simulation model for the
energy subsystem will be developed based on the WEF
nexus approach, enabling interactions between the nexus
system and the other two subsystems within the holistic
simulation of the WEF nexus system, allowing for more
accurate and comprehensive decisions.

Conclusion

The energy subsystem is one of the most critical elements
of the WEF nexus system, which is interdependent with
the water and food subsystems. Hence, simulating an
energy subsystem in a nexus approach that can interact
bilaterally with water and food subsystems is vital. There
has been an offline and online simulation of energy subsys-
tems in the reviewed literature. Offline interactions occur
through a soft link between the software, and the interac-
tion between subsystems is one-way only. In online inter-
actions, the interlinkages are hard links, all subsystems
are programmed within the WEF nexus system, and the
interactions between the subsystems are two-way. Through
simultaneous simulation of the WEF subsystems, online
interactions can be enabled, leading to comprehensive
decision-making within the WEF nexus system.

One of the biggest problems with energy subsystem
simulators under the WEF nexus system approach is that
its system boundaries do not correspond with those of water
and food. Electricity generation occurs in the study area,
is injected into the national grid, and the generated energy
is not necessarily consumed in the same study area. It is
crucial to solving the problem of the incompatibility of the
boundary of the energy simulator subsystem on more minor
scales than the national scale. The return flow from the
cooling systems of thermal power plants is also an essen-
tial part of the supply side of the energy subsystem that can
affect the amount of water measured in hydrometric stations
in the water subsystem with the nexus approach. In future
research, the amount of returned water can be evaluated by
simulating the water withdrawn and consumed by thermal
power plants.
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Additionally, renewable energy technologies, which can
lead to sustainable development due to the reduction of
trade-offs and synergies, have not been adequately modeled
in the WEF nexus system. Research can be conducted in
the future to evaluate the effects of renewable energy, such
as solar and wind power, on the WEF nexus system under
various scenarios in terms of saved water.

The energy consumption of agricultural products on the
energy demand side has not been studied separately, while in
the comprehensive simulation of the WEF nexus system for
the optimal cultivation pattern, energy and water consump-
tion is expected to be minimal. In contrast, crop yields are
expected to be maximum.
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