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Abstract
Solar irradiation data are imperatively required for any solar energy-based project. The non-accessibility and uncertainty of 
these data can greatly affect the implementation, management, and performance of photovoltaic or thermal systems. Develop-
ing solar irradiation estimation and forecasting approaches is an effective way to overcome these issues. Practically, prediction 
approaches can help anticipate events by ensuring good operation of the power network and maintaining a precise balance 
between the demand and supply of the power at every moment. In the literature, various estimation and forecasting methods 
have been developed. Artificial Neural Network (ANN) models are the most commonly used methods in solar irradiation 
prediction. This paper aims to firstly review, analyze, and provide an overview of different aspects required to develop an 
ANN model for solar irradiation prediction, such as data types, data horizon, data preprocessing, forecasting horizon, feature 
selection, and model type. Secondly, a highly detailed state of the art of ANN-based approaches including deep learning and 
hybrid ANN models for solar irradiation estimation and forecasting is presented. Finally, the factors influencing prediction 
model performances are discussed in order to propose recommendations, trends, and outlooks for future research in this field.
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Introduction

The consumption of electrical energy has recently increased 
worldwide at a very high rate due to the fast growth of 
urbanization, improving life quality, and growing popula-
tion. Meanwhile, facing the increasing depletion of fossil 
fuels and reducing the massive amount of greenhouse gases, 
most countries are moving toward the use of renewable 

energies as an alternative to generating power, and to ensure 
pollution-free sustainable global electricity (Das et al. 2018; 
Jumin et al. 2021; Singla et al. 2022a). The low price and 
the universal availability of solar energy make it the most 
important resource among the available renewables. Solar 
energy comes from the sun to the earth surface in the form 
of solar irradiation. As known, there are two components 
of solar irradiation: beam normal irradiance (BNI) and dif-
fuse horizontal irradiation (DHI). These components are 
the basic information for many solar system applications, 
including site analysis, site selection, technologies installa-
tion, optimal system design, and plant operation. Moreover, 
it is indispensable for the integration of an important amount 
of solar energy production technologies in buildings or elec-
trical grids (Castangia et al. 2021a).

Forecasting solar power production is critical in power 
plant management. It helps greatly grid operators by creating 
plans to anticipate risks, maintenance schedules, and balanc-
ing both generation and demand at every moment (Diagne 
et al. 2012; Notton et al. 2019), from very short-term to long 
term going through short term and medium term. However, 
forecasting accurate solar power system outputs is highly 
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conditioned by the correct modeling of solar irradiation 
parameter given as input (Blaga et al. 2019a, b; Huang et al. 
2021; Voyant et al. 2017) since the uncertainty and vari-
ability of solar irradiation characteristics, caused by weather 
conditions, climate types, time of the day or night, and sea-
sonal variability (Kumari and Toshniwal 2021b; Lan et al. 
2019) lead to the fluctuations in power generation.

However, the availability of accurate data of global solar 
irradiation and its components present several challenges 
because the regular updates and maintenance of measure-
ment instruments such as pyranometers and pyrheliometers 
which are relatively complex and expensive (Ibrahim and 
Khatib 2017; Kleissl 2013; Zhang et al. 2017). Moreover, 
solar irradiation data are rarely measured in most meteoro-
logical stations over the world. Hence, an alternative way to 
obtain these data is to propose prediction models for loca-
tions with only accessible parameters (Sun et al. 2015).

The estimation and forecasting of solar irradiation is 
a challenging task, as it depends completely on the geo-
graphical position and weather conditions of studied sites. 
In the literature, the prediction of solar irradiation can be 
performed using various techniques. These techniques can 
be mainly categorized into six classes for forecasting: per-
sistence, Cloud motion tracking, Numerical weather predic-
tions (NWP), classical statistical, machine learning (ML), 
and hybrid methods (Blaga et al. 2019a, b). For estimation, 
four classes can be considered: empirical, physical, statisti-
cal, and machine learning models (Zhou et al. 2021).

Physical models aim to explore the physical state of solar 
irradiation and other meteorological conditions using math-
ematical equations (Ramadhan et al. 2021). Their complex 
structure needs a huge amount of data to calibrate the com-
plex dynamics of the atmosphere.

The statistical methods aim to measure the relationship 
between the historical value of solar irradiation and weather 
parameters, by applying the statistical analysis of the dif-
ferent input parameters and make predictions about solar 
irradiance. Generally, these methods are adopted for short-
term forecasting of solar irradiation (Voyant et al. 2017). 
These models are limited to solve more complex prediction 
problems in the case of longer forecasting horizons (Diagne 
et al. 2013).

The empirical models purpose to develop a nonlinear or 
linear regression equation (Jiang 2009). They are commonly 
used to correlate solar irradiation with various measured 
meteorological and geographical parameters. Empirical 
models are simple and easy; nevertheless, their accuracy is 
usually limited due to uncertain variables (Gürel et al. 2020).

The persistence model assumes that global irradiance at 
an hour ahead or a day ahead is the best forecast by its value 
at previous hour or previous day respectively (Diagne et al. 
2013). This model acts as a reference model in the solar 
irradiation forecasting community, especially for short-term 

horizon (Kumar et al. 2020). In the field of solar irradiation 
forecasting, the persistence model is used to evaluate the 
quality of the proposed approaches (Blaga et al. 2019a, b).

Cloud motion tracking based-models consist of two 
processes: cloud detection and solar irradiance forecast-
ing. These approaches based on sky images obtained from 
either ground or satellite cameras. Because solar irradiation 
is strongly influenced by cloud pattern, detection of cloud’s 
motion leads to prediction of cloud positions that subse-
quently allows the forecast of solar irradiance (Kamadinata 
et al. 2019).

Numerical weather predictions (NWP) simulate the 
physical state of atmospheric conditions using mathemati-
cal models aiming to predict weather in a future times, based 
on the current climate conditions (Blaga et al. 2019a, b), 
(Huang et al. 2021).

Recently, machine-learning methods such as Support 
Vector Machine (SVM), Extreme Learning Machine (ELM), 
and Artificial Neural Networks (ANN) have been shown to 
handle linear, non-linear, and non-stationary data forms. 
They can learn and solve the complex nonlinear relation-
ships between inputs and outputs (Zhou et al. 2021).

Finally, the hybrid methods purpose to combine two or 
more techniques to design a forecasting model. These mod-
els become popular in the last years due to their ability to 
provide better performances than a standalone model for 
different prediction problems by combining the strength and 
the benefits of each model.

The most popular machine learning methods used in solar 
irradiation estimation and forecasting are ANN models due 
to their ability to solve complex, uncertain and non-linear 
problems and require fewer experimental parameters to 
generate the input/output relationships (Yadav and Chandel 
2014), (Blaga et al. 2019a, b). Furthermore, ANN models 
are capable to deal with many input parameters that make 
them more accurate and reliable (Qazi et al. 2015).

Lately, many interesting research studies have summa-
rized and studied the literature related to the prediction of 
solar irradiation based on artificial neural network models. 
In fact, authors in (Yadav and Chandel 2014) presented a 
survey on ANN models used to estimate global and daily 
solar irradiation. Furthermore, this study also reviewed 
papers dedicated to forecasting solar irradiation in the short-
term. This work presented a summary of suitable methods 
available in the literature in order to identify research gaps.

The research work in (Qazi et al. 2015) presents a sys-
tematic review based on an artificial neural network for solar 
systems design and solar irradiation prediction. The results of 
this study show that the performance of solar irradiation pre-
diction models depends on input parameters and ANN archi-
tectures. In (Rajagukguk et al. 2020), a review of deep learn-
ing models to predict solar irradiation and photovoltaic power 
using time-series data is presented. This study reviewed three 
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single models long short-term memory (LSTM), recurrent 
neural network (RNN), gated recurrent unit (GRU), and 
one hybrid model convolutional neural network-LSTM 
(CNN–LSTM). The results show that LSTM provides the 
best performance. However, CNN–LSTM outperforms the 
three single models. In a review of Kumari and Toshniwal 
(Kumari and Toshniwal 2021a), the authors presented a 
detailed study of deep learning models for solar irradiation 
forecasting, this review proved that deep learning improves 
prediction performance over other machine learning models. 
Furthermore, deep hybrid models such as CNN-LSTM out-
perform standalone models such as LSTM, CNN, and GRU.

Finally, in the review of Guermoui et al. in (Guer-
moui et al. 2020), a holistic summary is provided of six 
hybrid model techniques used recently in solar irradia-
tion prediction. The purpose of this study was to com-
pare the different hybrid models proposed in the litera-
ture. The aim is to identify the promising and potential 
approaches for solar radiation prediction and covers an 
opportunity for future researchers in this area.

From the studied literature and to the author’s knowledge, 
no paper review gathering ANN model types (including 
deep learning and hybrid ANN models) has been published 
up to date. Most of the published reviews in the field of solar 
irradiation prediction focused on a specific approach like 
ANN, deep learning model, or a general topic such as hybrid 
models approaches. The purpose of the present paper is not 
only to make a comprehensive study of the literature but also 
to conduct, synthetically and clearly, an exhaustive analysis 
linked to both estimation and forecasting problems based on 
ANN models (including deep learning and hybrid ANNs).

This systematic review will help researchers to obtain an 
overview of the various ANN approaches developed over 
the last 6 years. Our work is devoted to surrounding all-
important aspects required in ANN model development for 
prediction problems in solar irradiation. The aim is to help 
interested researchers have a clear vision in this particular 
field. In this context, the main contributions and novelty of 
our work can be summarized as follows:

– Unlike some important review papers dealing with mul-
tiple machine learning techniques (Zhou et al. 2021), 
(Voyant et al. 2017), our review is focusing on the most 
used machine learning model, namely ANNs. Our objec-
tive is to update the state of art research up to 2022,

– Presenting a clear distinction between estimation and 
forecasting terminologies. In fact, regarding the existing 
papers in the literature, several authors often confuse the 
meaning of “estimation”, “prediction” and “forecasting”. 
Indeed, most available works in the literature do not indi-
cate any difference between them,

– Providing an overview of different kinds of data types, 
data horizons, data pre-processing and feature selection,

– Gathering definitions from the literature of the four fore-
casting horizons: very short-term, short-term, medium-
term, long-term,

– Classifying retained papers into single and hybrid mod-
els,

– Establishing the highly detailed state of the art with dif-
ferent columns, including ANN architecture, training/
testing data percentage, size of the input matrix, fore-
casting horizon and results of comparison methods,

– Besides single ANN models, hybrid ANNs models are 
also reviewed and summarized,

– Evaluating the existing challenges, which should be 
solved for solar irradiation estimation and forecasting, 
proposing some important recommendations from the 
analysis of the established state of the art that should be 
considered in incoming studies and identifying the recent 
trends.

Accordingly, the remainder of this review is organ-
ized as follows: in section 2, we illustrate the review 
methodology. Section 3 includes two subsections: The 
first one discusses briefly data, including data types, 
data horizon, and data preprocessing. The second pro-
vides an overview of feature selection methods and 
their application in solar irradiation prediction. Sec-
tion 4 illustrates a detailed analysis of forecasting hori-
zon and gives a resume of ANN models investigated in 
our paper. Section 5 presents summaries of different 
models proposed in the literature for solar irradiation 
estimation and forecasting based on ANN models and 
hybrid ANN models.

A detailed discussion of factors influencing the perfor-
mance of ANN models with recommendations, outlooks, 
and trends is given in Sect. 6. Finally, the main conclusions 
are provided in Sect. 7. Figure 1 shows a diagrammatic rep-
resentation of our review structure.

Review methodology

The purpose of our review is to study and analyze high 
quality papers in the field of solar irradiation predic-
tion in order to make a relevant and useful synthesis of 
previous studies aiming to extract the existing gaps in 
this particular field. This synthesis will be a valuable 
opening for future researchers working on solar irradia-
tion estimation and forecasting, particularly when ANN 
approaches are used as a prediction technique. As shown 
in Fig. 2, the flowchart of our review consists of seven 
primary steps.

– Specification of period time, language, libraries, and 
keywords for our review: initially, the reviewed papers 
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were collected by carrying out online research in well-
reputed digital libraries such as IEEE Xplore, Science 
direct, ResearchGate, Elsevier, and the Google Scholar 
search engine in order to search for relevant papers pub-
lished in the years from 2015 to 2022. This primary 
search was performed using keywords that are illustrated 
in the last columns of Table 1.

– Limit the database for our search: the obtained papers 
database was limited by searching for keywords in the 
title of the article, abstract, and investigated keywords. 
We also included studies from lists of references from 
found papers.

– Analyze and select relevant papers: the second step 
consists of checking the quality of the obtained papers 
by the previous step. Those papers are selected based on 
journal quality, inclusion criteria, and exclusion criteria 
(see Table 1).

– Classify papers into estimation and forecasting prob-
lems: in this step, the already chosen papers are then 
classified into two categories: papers dealing with esti-
mation solar irradiation problems and papers concerning 
forecasting solar irradiation.

– Results and discussion: present the actual state of the 
art for the two aforementioned categories with a detailed 
discussion on available approaches in estimation and 
forecast of solar irradiation.

– Recommendations, trends and outlooks: the last step 
offers useful recommendations and outlooks for futures 
researches in the field of solar irradiation estimation and 
forecasting using ANN techniques.

Data pre‑processing and feature 
selection for solar irradiation estimation 
and forecasting

In our review, we present an overview of the whole process 
required in estimation and forecasting models, including the 
type of input parameters, data pre-processing, feature selec-
tion, type of used models, forecasting horizon, and perfor-
mance indicators.

Data types and pre‑processing phase for forecasting 
and estimation model

Data types

The forecast or estimation of solar irradiation requires 
data from the studied site. The most used are ground 
measured and sky images data. Available ground meas-
ured data in weather stations are generally geographi-
cal and meteorological parameters, solar characteristics 
and physical parameters. On the other hand, sky images 
data present the human observation of cloud motion to 
provide a piece of information about cloud cover, type, 
speed and level of cloud over a specific spot (Marquez 
and Coimbra 2013), (Barbieri et al. 2017). There are 
generally two types of sky images: ground-based sky 
images (Ferreira et al. 2012) and satellite-based sky 
images (Blaga et al. 2019a, b). Figure 3 summarizes 
the two types of input parameters used to estimate and 
forecast solar irradiation.

Fig. 1  Diagrammatic representation of our paper structure
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In prediction problems, these variables can be divided 
into three types: endogenous, exogenous, and hybrid 
parameters. The endogenous parameters consider only the 
historical values of solar irradiation data to predict solar 

irradiation. Exogenous inputs include all pre-mentioned 
parameters (see Fig.  3) besides solar irradiation, and 
hybrid inputs combine both endogenous and exogenous 
parameters.

Specification of time period, language and key words for 

our review (457 papers)

Filtered papers based on indexed journals (80 papers)

Deep analysis of forecasting papers to extract:

- Studied component 

- Forecasting horizon and Input parameters

- Input matrix dimensions

- ANN type

- Data period (training / testing period)

- Studied sites and location

- Corresponding performance indicators

Deep analysis of estimation papers to extract:

- Studied component

- Input parameters

- ANN type

- Data period (training / testing period)

- Studied sites and location

- Corresponding performance indicators

Results and discussion

Recommendations, trends and outlooks for future works

Chose well-known literature based on inclusion and 

exclusion criteria (see Table 1) (150 papers) 

End 

Classify forecasting papers into single 

ANN models and hybrid ANN models 

Filtered papers based on estimation and forecasting 

problems:

- Estimation (37 papers)

- Forecasting (43 papers)

Classify estimation papers into single 

ANN models and hybrid ANN models 

Start
• IEEE Xplore

• Science direct

• ResearchGate

• Elsevier

• Google scholar

• Springer

Fig. 2  Flowchart of our review
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Table 1  Inclusion, exclusion criteria, and search terms

Category Inclusion criteria Exclusion criteria Keywords

Estimation - Global, diffuse and beam solar irradia-
tion estimation

- Monthly, daily and hourly solar irradia-
tion estimation

- Hybrid model (ANN combined with 
other models)

- Comparative study between ANN mod-
els and other solar radiation estimation 
models

- Conference papers
- Working papers
- Commentaries
- Review papers
- Technical reports
- Doctoral and masters theses

- Solar irradiation 
estimation using 
artificial neural 
networks models

- Solar radiation esti-
mation using ANNs 
models

- Solar irradiation 
prediction based on 
ANNs models

- Hybrid ANN model 
for solar irradiation 
estimation

- Deep learning for 
solar irradiation 
estimation

Forecasting - Very short, short and medium term 
solar irradiation forecasting

- Global, diffuse and beam solar irradia-
tion forecasting

- Hybrid model (ANN combined with 
other models)

- Comparative study between ANN mod-
els and other solar radiation forecasting 
models

- Hybrid deep learning models

- Conference articles
- Working papers
- Commentaries
- Review papers
- Doctoral and masters theses
- Long term solar irradiation forecasting

- Solar irradiation 
forecasting using 
ANNs models

- Artificial neural 
network for solar 
radiation forecasting

- Solar irradiation 
prediction based on 
ANNs models

- Hybrid ANN model 
for solar irradiation 
forecasting

- Deep learning for 
solar irradiation 
forecasting

Dataset

Temperature

Relative humidity

Cloud cover

Precipitation

Wind speed

…….

Ground measured parameters

Zenith solar angle

Solar irradiation

Global/diffuse/

direct solar 

irradiation

…….

latitude

Longitude

Altitude

……

Water vapor content

Scattering of air molecules

Atmospheric constituents  

scattering of dust

…….

Sky images

Ground based 

sky images 

Satellite based 

sky images 

Meteorological 

parameters

Solar 

characteriristics 

Geographical 

parameters
Physical 

parameters

Fig. 3  Types of input parameters used for estimation and forecasting solar irradiation
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Data horizon

The measurements of solar irradiation data at ground mete-
orological stations depend on several factors such as the 
measuring instruments specifications, calibration method 
and maintenance of measuring instruments, data acquisi-
tion method and accuracy, location, and environmental 
conditions (Sengupta et al. 2021). Measurement instru-
ments can record solar irradiation values at a certain step or 
time resolution. Then, these data recorded at a specific time 
interval can be summed to obtain the desired forecasting 
horizon. These data can be sub-hourly, hourly, daily, and 
monthly solar irradiation according to their utility in solar 
systems (see Fig. 4). Sub-hourly solar irradiation is the 
value of solar irradiation recorded for one minute or sev-
eral minutes. Hourly value is the sum of recording values 
of solar irradiation over a period of one hour. Daily solar 
irradiation is the total value of solar irradiation during a 
day, while, Monthly averages or sums are the average value 
of daily radiation over a month. Generally, the measures 
of solar irradiation at short time interval such as hourly or 
sub-hourly are more accurate than long-term interval such 
as daily and monthly because these data record the change 
of solar irradiation in details during a smallest time interval 
(Zhang et al. 2017).

Furthermore, the measuring instruments can be config-
ured to produce output values of solar irradiation or other 
data at any desired time period (Sengupta et al. 2021). For 
instance, a value of solar irradiation can be a mean value of 
more frequent measurement records for a given time period.

Data pre‑processing

The quality of measured data depends on the quality of 
calibrations, and regular maintenance of measuring instru-
ments. Furthermore, these instruments are greatly affected 
by time, location, and environmental conditions. In addition, 
the obtained data are generally presented in raw format and 
do not have significant characteristics to provide suitable 
accuracy. Thus, a pre-processing phase is required to pre-
pare and ensure the dataset quality introduced to estimation 
or forecasting models. The quality of data plays a vital role 
in the accuracy of predictive models. Therefore, data should 
be quality controlled and well organized before further use. 

Data preprocessing aims to solve these issues and improve the 
data quality by removing missing, meaningless values, and 
eliminating outliers caused by the abnormal measurement of 
data (Lai et al. 2020). Moreover, data pre-processing defines 
the input data according to the specifications and transforms 
the united raw format into a simpler data representation that 
is easier to use for future processing steps.

A number of techniques have been applied in the lit-
erature to pre-process the input parameters for forecasting 
models such as Markov models, linear regression, Kalman 
filter, Wavelet transform, self-organization map, quality con-
trol, empirical mode decomposition, Principal Component 
Analysis (PCA), and normalization. For instance, the work 
of Wang et al. in (Wang et al. 2018), used Discrete Wavelet 
transform for certain weather types (cloudy, rainy and heavy 
rainy) to decompose the raw solar irradiance sequence into 
several subsequences. Results showed that Discrete Wavelet 
transform based solar irradiance sequence decomposition 
enhances the corresponding forecasting performance of the 
proposed model. However, Castangia et al. in (2021b) nor-
malized the GHI data by using the clear sky index trans-
formation to introduce the stationarity in solar irradiation 
time series and to scale each input parameter in the range 
between 0 and 1. Moreover, in (Husein and Chung 2019a, 
b), Husein and Chung used linear regression fit to replace 
the missing values in his database. In (Lan et al. 2019), Lan 
et al. used PCA to reduce the size of the original database 
and to identify the essential frequency features given to the 
Elman-based neural networks.

Feature selection

The procedure of feature selection is a crucial requirement 
for improving model accuracy. In this section, we will pro-
vide an overview of the most used feature selection tech-
niques and study their usefulness and ability to deal with 
solar irradiation prediction problems.

An overview of feature selection techniques

Feature selection is an important phase to explore process 
and analyze data to a given problem. Feature selection tech-
niques aim to explore and analyze the data in order to select 
the most important and relevant subset of features from a 

Fig. 4  Different horizons of 
solar irradiation data Data horizon 

Sub-hourly 
solar irradiation 

Hourly solar 
irradiation 

Daily solar 
irradiation 

Monthly solar 
irradiation 
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large dataset (Garcia et al. 2015; Yahya et al. 2011; Zebari 
et al. 2020).

There are various objectives of feature selection, the most 
important ones are: improve models performance, reduce 
the size of data, reduce model complexity and computa-
tional costs, avoid overfitting problem, remove redundant, 
irrelevant and noisy data, improve data quality, and reduce 
data storage (Saeys et al. 2007). For instance, some machine 
learning models do not perform well in the case of high 
dimensions data. Reducing the size of data can be more effi-
cient to visualize data clearly and reduce models complexity.

Feature selection techniques are generally performed 
through two major phases. Firstly, subset generation aiming 
to find the optimal variables from the available data. Fol-
lowed by a subset evaluation phase to assess and determine 
whether the generated subset is optimal for the given prob-
lem according to a suitable stopping criterion that speeds 
up the selection and decides which features may be added 
or removed from generated subset. Moreover, the stopping 
criteria must be defined according to the purposes of feature 
selection (Khaire and Dhanalakshmi 2019), (Karagiannop-
oulos et al. 2007) (see Fig. 5).

There are several feature selection methods available 
in the literature. The most well-known and used are Filter, 
Wrapper, and Embedded methods.
i. Filter methods

The filter method is a category of statistical methods; it 
assesses the relevance of parameters by studying the correla-
tion of each feature with the model’s output to identify the 
most relevant parameters (Castangia et al. 2021a).

These methods are used either to produce a features rank-
ing in terms of the relevant measurement by using statistical 
standards such as the Chi-squared test, mutual information, 
and Pearson correlation coefficient or combined with algo-
rithms such as forward or backward search to obtain subsets 
of features (Zhang and Wen 2019).

The filter technique consists of two stages, the first one 
uses measures such as information, distance, dependence 
or consistency. The second stage is the learning and testing 
process with the subsets of relevant features.

The filter approach has several advantages such as deal-
ing with high dimensional data, having better generaliz-
able properties, being faster than other feature selection 
techniques, and finally the scalability for large-sized data. 

Although, they can fail to evaluate complex and profound 
relationships between the features and the output. In addi-
tion, they ignore the dependency between features (Zhang 
and Wen 2019).

 ii. Wrapper methods

Wrapper methods use a learning model with different 
subsets of features to select relevant feature subsets. The 
purpose to produce a ranking based on the accuracy obtained 
with each subset. In fact, a various subsets of features are 
generated and evaluated based on defining stooping criteria. 
The evaluation of a specific subset is obtained by training 
and testing the related model.

The Wrapper methods can be classified into two main 
groups, sequential Selection Algorithms and Meta-Heuristic 
Algorithms. The sequential selection algorithms start with 
an empty or full set and add or remove features respectively 
according to chosen criteria until obtaining the best subsets 
of features that achieve better performance. However, the 
heuristic search algorithms generate and evaluate different 
subsets to find the optimal one presenting the best accuracy 
(Chandrashekar and Sahin 2014). These search methods can 
be divided in two classes: deterministic and randomized 
search algorithms.

The advantages of wrapper techniques are their ability 
to include the interaction between feature subset search 
and model selection, and their capacity to take into account 
dependency between features. However, they are highly 
dependent on machine learning models, which lead to 
overfitting and computational problems with high dimen-
sion datasets (Garcia-Hinde et al. 2016). Also, the wrapped 
methods produce high time complexity due to the fact that 
they react after prediction stage.

 iii. Embedded methods

Those methods are embedded into machine learning 
models that consider feature selection as a part of the learn-
ing process. The main approach of embedded methods is to 
integrate the feature selection as part of the training process. 
There are multiple machine learning techniques with embed-
ded feature selection used in estimation such as: decision 
tree, convolutional neural network models (CNN) (Zhang 
and Wen 2019), and Multi-Objective Evolutionary Algo-
rithms (Ferreira and Ruano 2011).

Fig. 5  Major phases of feature 
selection technique Set of all 

features

Final results

Subset generation Subset evaluation

Stopping 

criteria

No Yes

5414 Environmental Science and Pollution Research (2023) 30:5407–5439



1 3

The embedded method combines the qualities of both filter 
and wrapper methods. Indeed, they have better computational 
complexity than wrapper and higher performance accuracy 
than filter. Furthermore, Embedded methods could provide a 
faster solution by avoiding reclassifying each subset of features 
and re-training a predictive model (Garcia et al. 2015).

Feature selection for solar irradiation prediction using ANN 
models

The available solar irradiation data, together with meteoro-
logical and geographical parameters, result in a large num-
ber of variables that can contain unimportant and irrelevant 
parameters, which leads to a complex database with high 
dimensions. In fact, solar irradiation prediction models often 
suffer from a large amount of irrelevant information due to 
the existence of a high degrees of uncertainty associated 
with inadequate maintenance of sensors and absence of data 
quality control (Cebecauer and Suri 2015).

As mentioned above, there is a large number of param-
eters that are related to solar irradiation. Thus, feature selec-
tion is carried out to select the parameters that have a strong 
correlation with solar irradiation. Note that feature selection 
algorithms aim to keep the best set of variables in a predic-
tion problem.

According to literature, several studies applied the feature 
selection techniques to identify the features that are most 
relevant as inputs and necessary for estimation or forecast-
ing models for solar irradiation. In the case of endogenous 
inputs, there is no feature selection issue. However, for 
exogenous and hybrid inputs, choosing relevant ones giving 
the best accuracy is an important and open problem. For 
instance, Dahmani et al. in (Dahmani et al. 2016), Castan-
gia et al. in (2021a), Pang et al. in (2020), Ahmad et al. in 
(Ahmad et al. 2015), Almaraashi in (Almaraashi 2018), and 
Meenal and Selvakumar in (Meenal and Selvakumar 2018) 
investigated the use of Filter methods. The wrapped methods 
were used in (Bouzgou and Gueymard 2017; Jadidi et al. 
2018; Marzouq et al. 2019; El Mghouchi et al. 2019a, b; 
Rao et al. 2018), and the embedded methods were used in 
(Ghimire et al. 2019), (Zang et al. 2020).

Forecasting horizon and models type

Forecasting horizon

In solar system application, each stage of a solar energy 
system development requires data of solar irradiation at 
different time scales. The inaccuracy of measured data at 
specific locations leads to the high financial cost of any 
solar system project (Sengupta et al. 2021). Furthermore, 
the operation and management of an intermittent source 

of energy produced from a solar system are very difficult 
when connected to an electrical grid due to their inabil-
ity to balance between generation and demand at different 
time scales. In fact, a solar system output could be highly 
affected by the weather condition (Voyant and Notton 2018), 
(Kumari and Toshniwal 2021a). Thus, the accurate predic-
tion of solar power requires accurate data of solar irradiation 
(Rajagukguk et al. 2020). Therefore, there is a crucial need 
to accurately predict solar irradiation at different forecasting 
horizons.

The forecast horizon is the time interval for which a 
model can predict future values. This period can range from 
few seconds to hours, days, weeks, months, or even years 
(Gupta et al. 2021). In the case of solar irradiation fore-
casting, different forecasting horizons can be found in the 
literature such as very short-term, short-term, medium-term 
and long-term. However, there is no universal definition of 
these forecasting horizons.

In fact, in (Yang et al. 2015), very short-term is defined 
as sub-5 min interval. Caldas and Alonso-Suárez in (2019) 
define very short as a time interval from 5 min to some hours 
ahead. In (Kumari and Toshniwal 2021b), it is from few min-
utes up to few hours, while in (Pedregal and Trapero 2021) 
it is from few seconds to 1 h.

In short-term horizon, the time interval for forecasting 
horizon is ranging from few hours up to several hours or 
days. For instance, in (Diagne et al. 2012), short-term hori-
zon is defined from 1 h up to 5 h forecasts. Other research-
ers such as Voyant and Notton in (2018) and Marzouq et al. 
in (2020) considered short term forecast from 1 to 6 h. In 
addition, the study of Voyant et al. in (2017) considered 
that short-term can be divided in two sub-classes: now-cast-
ing (from 0 to 3 h ahead) that presents the very short time 
domain, and short-term forecasting (from 3 to 6 h ahead).

For medium-term, there are few studies carrying out fore-
casting of solar irradiation. In (Sharma and Kakkar 2018) 
and (Kumari and Toshniwal 2021b) medium-term is for one 
week ahead and in (Pedregal and Trapero 2021) it is longer 
than 48 h ahead.

For Ozoegwu, long term is a period of few months to 
years (Ozoegwu 2019). In (Aslam et al. 2019) it is up to one 
year ahead. However, in (Sharma and Kakkar 2018) and in 
(Kumari and Toshniwal 2021b) long-term is forecasting for 
months or years ahead.

The requirement for the forecasting horizon changes with 
applications. A synthesis of the studied papers of the litera-
ture can be summarized in Fig. 6, which shows the utility 
of each horizon from the very short to the very long term.

ANN estimation and forecasting models

The estimation of solar irradiation is defined as the process 
in which the solar irradiation data can be predicted from the 
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knowledge of other parameters of different nature. The col-
lected data up to, and excluding time t are given as an input 
to an estimation model and it predicts the value of solar 
irradiation at the same time t as an output. The forecasting 
process consists in predicting future values of solar irra-
diation based on present and historical data. The collected 
data given to a forecasting model as inputs can be times 
series data that consider only current and past values of solar 
irradiation, structural data that present other variables of a 
different nature, or hybrid data that combine between time 
series data and structural data.

There are numerous types of ANN models used in 
the estimation and forecasting of solar irradiation, they 
can be broadly classified into single and hybrid ANN 
models. Single ANN models can be feedforward neu-
ral networks such as Multi-Layer Perceptron (MLP), 
Radial Basis Function Network (RBFNN), Generalized 
Regression Neural Network (GRNN), Extreme Learn-
ing Machine (ELM) and Recursive Neural Networks 
as Recurrent Neural Network (RNN), and Long Short-
Term Memory (LSTM). The single ANN models can be 
used in different configuration for instance, Non-linear 
Autoregressive Neural Network with eXogenous inputs 
(NARX), Non-linear Autoregressive Neural Network 
(NAR), Time-Delay Neural Network (TDNN), and 
Wavelet Neural Network (WNN).

On the other hand, the hybrid approach consists of 
combining two or more models. In our review, we have 
only focused on hybrid models that combine ANN and 
other models such as statistical, empirical, or machine 
learning models. Even though these hybrid models are 

complex, they have been widely used because of their 
ability to combine the advantages of different mod-
els, thus achieving higher accuracy for estimation and 
forecasting.

In Fig. 7, we synthesize existing ANN single models and 
some of the most used hybrid ANN models found in the 
literature for the prediction of solar irradiation.

State of the art of solar irradiation 
estimation and forecasting based on ANN 
models

This section presents notable findings in estimation and fore-
casting models of solar irradiation after a deep analysis of 
the published articles based on all types of ANN models 
(including the hybrid ANNs and deep learning). In addition, 
a brief introduction to performance indicators investigated 
in the literature studies is briefly presented.

Performance indicators of accuracy evaluation

Since the estimation and forecasting accuracy is a critical 
factor in selecting any prediction model, many well-known 
indicators were used in the literature. The most used are 
Mean Absolute Percentage Error (MAPE), Root Mean 
Square Error (RMSE), Mean Absolute Error (MAE), nor-
malized Mean Absolute Error (nMAE), and normalized Root 
Mean Square Error (nRMSE) (see Table 2).

Where N is the number of samples in the database, Ypred 
is the ith predicted value and Ymeas is the ith measured value.

Fig. 6  Applications of different forecasting horizons
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State of the art of solar irradiation estimation

Our analysis of the retained papers from the literature 
dealing with the estimation of solar irradiation using an 
ANN-based model is classified and summarized into sin-
gle and hybrid models presented respectively in Tables 3 
and 4. These tables have been listed in a descendant 

chronological order according to publication year by 
specifying the estimated component, the inputs param-
eters, the types of estimation model, the ANN architec-
ture, data period and training/testing percentage, the 
number of studied sites and location, the corresponding 
performance indicators, and finally the results of com-
pared methods.

Fig. 7  Single and hybrid ANN 
models found in the literature

Table 2  Performance indicators 
used in our review study

Performance indicator Formula

- Mean Absolute Percentage Error ( ����) 100

N
×
∑N

i=1

��
�
Ypred−Ymeas

Ymeas

��
�

- Normalized Root Mean Square Error (�����/�����)

- Root-Coefficient of Variation Mean-Squared Error ( ������)
100

1

N

∑N

i=1
Ymeas

×

�
1

N

∑N

i=1

�
Ypred − Ymeas

�2

- Coefficient of determination (�2)
1 −

� ∑N

i=1 (Ypred−Ymeas)
2

∑N

i=1
(Ymeas−

1

N

∑N

i=1
Ymeas)

2

�

- Root Mean Square Error ( ����∕����)
�

1

N

∑N

i=1

�
Ypred − Ymeas

�2

- Normalized Mean Bias Error ( ����) ∑N

i=1
(Ymeas−Ypred )
∑N

i=1
Ymeas

× 100

- Normalized Mean Absolute Error ( ����∕���) 100
∑N

i=1
Ymeas

×
∑N

i=1

��
�
Ypred − Ymeas

��
�

- Mean Absolute Error ( ���)
- Mean Absolute Bias Error ( ����)

1

N

∑N

i=1

��
�
Ypred − Ymeas

��
�

- Mean Percentage Error (MPE) 100

N
×
∑N

i=1

(Ypred−Ymeas)

Ymeas

- Mean Bias Error (���) 1

N

∑N

i=1
(Ymeas − Ypred)
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1 3

Estimation of solar irradiation based on single ANN models

In the literature, several ANN modeling approaches were 
used to estimate solar irradiation. Table 3 presents our state 
of the art of single ANN models for solar irradiation esti-
mation. From this table, we can see that even if there is a 
large choice of approaches in neural networks models, only 
four models were widely used in the literature: MLP with 
different configurations and ELM, which demonstrates their 
effectiveness in this field.

Estimation of solar irradiation based on hybrid ANN models

The hybrid ANN approach combines an extension of the 
ANN model with another approach aiming to overcome 
the disadvantages of a single ANN model. These models 
have been developed and broadly used in the estimation of 
solar irradiation, especially in the last years. We can see 
from Fig. 7 that hybrid models can be a combination of two 
or more models or optimization of a single ANN model. 
Table 4 lists our state of the art of solar irradiation estima-
tion using hybrid ANN models.

Solar irradiation forecasting based on ANN models

The published papers during the last seven years based on 
ANN techniques for solar irradiation forecasting were ana-
lyzed and summarized in Tables 5 and 6. These tables have 
been classified in a descendant chronological order accord-
ing to the year of publication by specifying the forecasting 
component and horizon, the inputs parameters, the forecast-
ing model type, the input matrix dimension, data period and 
training/testing percentage, the number of studied sites, loca-
tion, the performance evaluation indicators, and results of 
compared methods if available.

Forecasting using ANN‑based single model

Solar irradiation forecasting is a challenging task. In fact, 
there are several proposed algorithms aiming to maximize 
prediction accuracy. Regarding ANN models, MLP with dif-
ferent architucture, and LSTM are the most used to solve this 
issue (Additional details will be given in Sect. 6). In Table 5, 
we provided a deep analysis of the published works.

Forecasting using ANN‑based hybrid models

From the literature, we can note that the most published 
studies in the last years for solar irradiation forecasting are 
based on hybrid models. Those methods adopt either com-
bination or optimization techniques to increase the ANN-
based single model accuracy. For instance in (Kumari and 
Toshniwal 2021c), authors combine CNN and LSTM. While Ta
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e 
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in (Marzouq et  al. 2020), authors used an optimization 
method in the form of evolutionary algorithm to increase 
the ANN model accuracy. More discussion will be given in 
the next section. A detailed analysis of the state of the art is 
presented in Table 6.

Discussion, trends and recommendations

From the previously presented states of the art, a detailed 
discussion will be given about research directions and open 
problems extracted from the related papers. Finally, our 
review is concluded with compilation of the main findings 
and interesting outlooks in solar irradiation prediction based 
on ANN models.

Discussion of factors influencing the performance 
of ANN models

During our review, we noticed that forecasting or estimating 
solar irradiation with a good accuracy is a difficult task. In 
fact, as we can see from Tables 3, 4, 5, and 6, the perfor-
mances of ANN models are highly dependent on several 
influential factors including forecasting horizon, climate 
type, used ANN model, input data, optimization algorithms, 
input matrix dimension, and forecast component (see Fig. 8).

In the next subsections, we will present a detailed discus-
sion about all pre-mentioned factors.

Impact of ANN model type

Despite the fact that single ANN models provide high accu-
racy in predicting solar irradiation, many researchers are still 
working to improve it by combining ANN models with other 
algorithms in order to form a more accurate hybrid model.

As we can see from Tables 3, 4, 5, and 6, there are various 
approaches of ANN models to estimate and forecast solar 
irradiation. In our review, we classified these methods into 
two main classes. The first class is dedicated to single ANN 
models such as MLP, RBFNN, LSTM, and CNN. The sec-
ond class is devoted to hybrid ANN models, which combine 
ANN with other statistical or machine learning approaches, 
for instance, evolutionary artificial neural networks (EANN), 
LSTM-CNN, and ANFIS.

The aim of hybrid models is to maximize the model accu-
racy by overcoming the weakness of a single ANN approach 
(Benmouiza and Cheknane 2016), (Pazikadin et al. 2020). 
Indeed, each extension of ANN models has strengths and 
limitations to forecast and estimate solar irradiation. Several 
studies proved that ANN as a single model has difficulties to 
deal with the intermittency and fluctuations of solar irradi-
ance (Huang et al. 2021). In order to overcome the short-
comings of a single model to aim higher accuracy, authors Ta
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1 3

focused on testing hybrid models to improve forecasting 
accuracy and improve model reliability, especially in bad 
weather conditions (Azimi et al. 2016), (Ali-Ou-Salah et al. 
2021), (Benmouiza and Cheknane 2016). As we can see in 
(Gairaa et al. 2016a), authors conducted a study to forecast 
solar irradiation by combining Auto Regressive Moving 

Average (ARMA) with ANN: ARMA was used to capture 
the linearity information and the ANN was capturing the 
nonlinear characteristics of data.

Regarding the studied literature, we deduced that models 
as MLPNN, RBFNN are limited in high dimensional data-
sets and sky images, which directly influences the prediction 

Fig. 8  Factors influencing solar 
irradiation prediction accuracy

ANN model type

Forecasting horizons Data nature and size 

Input parameters

Optimization algorithms 

of ANN architecture

Climate conditions

Factors influencing solar 
irradiation prediction 

accuracy

Fig. 9  Most used approaches in 
solar irradiation forecasting ANN + Machine Learning models

Others

ANN + Optimization algorithmsANN + Statistical algorithms

LSTM

MLP

Others

NARX

Fig. 10  Most used approaches 
in solar irradiation estimation

MLP

Others

ANN + Machine Learning modelsANN + Statistical algorithms

Others

FFNN

ANN + Optimization algorithms
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1 3

model accuracy by overfitting and extrapolation. Therefore, 
further studies with more focus on other extensions of ANNs 
such as RNN, LSTM, CNN, and their combination (Huynh 
et al. 2020), (Liebermann et al. 2021), (Husein and Chung 
2019a, b), (Pang et al. 2020) were proposed to overcome 
this limitation. These models become popular in the last 
years, as they present some advantages, such as the abil-
ity of capturing the short and the long-term dependencies 
within the solar irradiation data series patterns to accurately 
predict it in the future at different time horizons and also 
the ability of performing a more general feature extraction. 
In addition, these models perform well in different weather 
conditions. As demonstrated in the study of (Gbémou et al. 
2021), LSTM presents good performances for cloudy days. 
Moreover, the hybrid models that combine between LSTM 
and CNN are more robust under diverse climatic conditions 
seasonal and sky conditions (Liebermann et al. 2021), (Zang 
et al. 2020), (Kumari and Toshniwal 2021c). The perfor-
mance of these models exceed other extension of ANN mod-
els; however, they have some limitations. In fact, these mod-
els require high dimensional datasets and complex inputs 
parameters such as images. In addition, research in this 
area is very recent and other studies are expected to deeply 
explore more performances from future models. Figure 9 
and Fig. 10 show a synthesis of studied papers. We can note 
that the number of papers dealing with forecasting problem 
is slightly higher than papers devoted to estimation. We can 
also see that FFNN is the most used algorithm in the case of 
irradiation estimation and LSTM in the case of forecasting 
for single ANN models. For hybrid, models optimized ANN 
and machine learning combined with ANNs are the most 
used in the case of estimation and forecasting respectively.

Optimization algorithms of ANN architecture

In all presented models, the selection of appropriate param-
eters is crucial for improving the model accuracy. In ANN 
models, the selected parameters are usually, the number 
of hidden layers, the number of neurons in each hidden 
layer, and the number of epochs and the initial weights. 
These parameters are associated with the data patterns, 
input parameters, training, and testing datasets and training 
algorithms.

During our inspection of the literature, we observed that 
various studies determined the pre-mentioned parameters 
experimentally based on the trial-and-error method to select 
parameters that enhance the accuracy of estimation and fore-
casting models. For instance, Citakoglu in (2015) and Quej 
et al. in (2017) tested the ANN model under several archi-
tectures to choose the best ANN structure. However, this 
method produces high computational complexity.

On the other hand, there are few studies carrying out 
automatic methods to optimize these parameters. In this 

context, optimization algorithms have been adopted as the 
best solution to overcome this problem by identifying and 
selecting the appropriate model parameters. Various types of 
optimization techniques have been used in the literature by 
several researchers such as Genetic Algorithms (GA), Simu-
lated Annealing (SAN) and Particle Swarm Optimization 
(PSO. In fact, in (Xue 2017), two optimization techniques, 
genetic algorithms (GA) and particle swarm optimization 
(PSO), have been used to improve the efficiency of back-
propagation neural network model to estimate daily diffuse 
solar radiation. Results show that the proposed model opti-
mized by PSO performs better than the one optimized by 
GA. Marzouq et al. proposed evolutionary artificial neural 
networks for estimation and forecasting solar irradiation, 
where the authors selected automatically the input param-
eters in (Marzouq et al. 2019) and ANN architecture (size of 
input matrix, number of hidden layers and hidden neurons 
in each layer) in (Marzouq et al. 2020).

Impact of forecasting horizon

According to published literature, we noticed that forecast-
ing horizon could be divided into five time intervals: intra-
hour, intra-day, day ahead, two days ahead, and three days 
ahead. Every time scale is relevant according to its applica-
tion in solar systems. Figure 11 shows the number of papers 
devoted to forecasting in each time interval from the studied 
literature.

As previously noticed in Tables 5 and 6, forecasting per-
formances depend on the prediction horizon. In fact, forecast-
ing errors rise with the increase in time horizon as shown 
in the work of Marzouq et al. in (2020) where the values of 
nRMSE significantly increased from one to six hours ahead. 
This can be also noticed in the study of Ghofrani et al. in 
[132] where the forecast was performed from one hour to 
two days ahead.

Climate conditions

The availability of solar irradiation data is heavily influ-
enced by clouds motion and weather conditions. In fact, 
the cloudiness affects the amount of solar irradiation 
received at the earth’s surface (Besharat et al. 2013). As 
demonstrated in the literature, the forecasting accuracy can 
change drastically depending on the site climate (Lieber-
mann et al. 2021), (Hong et al. 2020). Certainly, most 
proposed models perform well on sunny days (Moham-
madi et al. 2016a), while on cloudy days the forecasting 
accuracy decreases significantly. In addition, ANN mod-
els present a limitation in forecasting in extremely bad 
weather conditions (Benmouiza and Cheknane 2016). 
As we can see in the study of Pedro et al. in (Pedro and 
Coimbra 2015), the forecast error doubles between Merced 
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(a location with low GHI variability) and Ewa Beach (a 
location with high GHI variability). These results indi-
cate that low forecast errors are more difficult to obtain 
for locations where clouds are formed locally. Another 
study in (Kumari and Toshniwal 2021c) proposed a hybrid 
LSTM–CNN model where the authors proved that this 
model presents highly prediction accuracy in different sky 
conditions (overcast, cloudy, mixed, and sunny) for differ-
ent climatic locations.

Accordingly, some researchers suggest classifying 
weather before prediction. In fact, this procedure is essen-
tial to increase the forecasting performances and the robust-
ness of used models. As proved by McCandless et al. in 
(2016), identifying the different cloud regimes by applying 
the K-means clustering based on surface weather and irra-
diance data can improve significantly forecasting accuracy. 
Also, the study of Wang et al. in (2018) forecast solar irra-
diation in four different weather types (sunny days, cloudy 
days, rainy days, and heavy days). For sunny days, the hybrid 
CNN- LSTM model performs well, while for cloudy and 
rainy days, they used Discrete Wavelet transform as a pre-
processing step to decompose data given to the CNN-LSTM 
model.

On the other hand, the season has a major impact on fore-
casting performances. In the literature, several authors tested 
ANN models under each season. In (Yu et al. 2019), the 
authors evaluated their models under four seasons: spring, 
summer, fall, and winter. They found that the forecast error 
decreases in winter and summer and increases in spring and 
fall. Another study in (Kumari and Toshniwal 2021c) proved 
that the hybrid LSTM–CNN model outperforms other mod-
els such as SP, SVM, MLP, CNN, and LSTM in all seasons 
for three different locations. Furthermore, this study revealed 
that the seasonal errors of the proposed model are highly 
influenced by the site climate.

Impact of feature selection, data nature and size

The estimation and forecasting ANN models require accu-
rate dataset from studied sites. From our investigation, we 
noticed that some studies do not provide specifications about 
used dataset such as total samples and data recording inter-
vals. This information should be considered in future works 
in order to evaluate prediction models properly. Further-
more, the combination of input parameters is important to 
enhance model’s performance. Therefore, a pre-processing 
phase followed by a feature selection procedure are neces-
sary to solve this issue and identify the best subset of data 
fed to the ANN model. In fact, research shows that the per-
formance of ANN models increases when the input param-
eters have high correlation factor with the solar irradiation.

Regarding input nature, the estimation approaches pro-
posed in the literature are mostly based on exogenous inputs. 
However, in the forecasting process, we found that authors 
adopt endogenous, exogenous and hybrid inputs for their 
models.

The best choice of input parameters in estimation 
models plays an important role in increasing the pre-
diction performances. Thus, many works used different 
combinations of parameters to choose input variables 
that present better prediction accuracy. Based on the 
finding results of (Jahani and Mohammadi 2019), (Kaba 
et al. 2018) and (Marzo et al. 2017), sunshine duration 
was the most relevant parameter and most significant in 
the estimation process compared to other parameters. 
However, in (Citakoglu 2015) authors proved that the 
ANN model with four input parameters: month number 
(M), extraterrestrial radiation, average air temperature 
 (Tm), and average relative humidity  (RHm) presents the 
best result. In addition, this study proved that the month 
number is the most significant one among the other 

Fig. 11  Number of papers in 
each time interval for solar 
irradiation forecasting
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variables. On the other hand, (Guijo-Rubio et al. 2020) 
proposed an approach to estimate solar irradiation based 
only on satellite data in order to avoid the use of ground 
data obtained with expensive measuring instruments. 
This approach can be used to predict solar irradiation in 
locations with similar data.

Regarding the forecasting procedure, Husein and Chung 
in (2019a, b) forecast solar irradiation using only exogenous 
inputs. They proved that the prediction accuracy of the pro-
posed algorithm is dependent on the combination of weather 
predictor variables and training algorithms. On the other 
hand, the studies in (Notton et al. 2019), (Huynh et al. 2020), 
(Bou-Rabee et al. 2017), (Sharma et al. 2016), (Benmouiza 
and Cheknane 2016), (Azimi et al. 2016), (Pedro and Coim-
bra 2015) and (Gairaa et al. 2016b) only used endogenous 
parameters to forecast solar irradiation. Additionally, vari-
ous authors used mixed parameters (endogenous and exog-
enous). Indeed, Castangia et al. in (2021a) and Jadidi et al. 
(Jadidi et al. 2018) proved that adding exogenous inputs to 
solar irradiation parameters can significantly improve the 
forecasting performance for prediction horizons greater than 
15 min.

Furthermore, in the study of Ahmad et al. in (2015), sev-
eral combinations of endogenous and exogenous inputs to 
forecast solar irradiation for 24 h in advance have been used. 
In addition, Wojtkiewicz et al. in (2019) proved that adding 
cloud cover as input improves the prediction performance. 
However, the main challenge of using both endogenous and 
exogenous inputs is to develop a model with the simplest 
architecture and the smallest possible number of inputs that 
can achieve a better accuracy of forecasting (Diez et al. 
2020).

From the above studies, the historical input values can 
also have a significant impact on forecasting accuracy. 
Therefore, authors need to choose the optimal input matrix 
dimension. As indicated by Wojtkiewicz et al. in (2019), 
they tested from one to three historical values as an inputs 
matrix. The authors found that two previous days of input 
data give the best performance (using LSTM and GRU) to 
forecast solar irradiation for one hour ahead. However, there 
are only a few studies carrying out an automatic selection of 
previous values used as inputs to their models. For instance, 
in the study of Marzouq et al. in (2020), the authors used an 
evolutionary approach to determine the optimal historical 
data needed. In (Notton et al. 2019), (Fouilloy et al. 2018), 
(Benali et al. 2019), the authors used the auto mutual infor-
mation method for this purpose.

Estimation and forecasting of solar irradiation using ANN 
versus other Models

In order to show the ability of the proposed approach to fore-
cast and estimate solar irradiation, authors have compared 

their results with other machine learning, statistical, and 
empirical models. In fact, in the studies of Martinez-Castillo 
et al. in (2021) and of Gürel et al. in (2020), ANNs reveal 
better accuracy than RF, SVM, MLR, Holt-Winters, RSM, 
and empirical models. Most studies show that ANN models 
performances exceed all other methods (see Tables 3, 4, 5, 
and 6).

On the other hand, the deep learning models such as 
LSTM, RNN, and GRU exceed other types of ANN mod-
els such as MLP and BPNN in terms of performance. As 
showed in (Castangia et al. 2021a), (Aslam et al. 2019), 
(Qing and Niu 2018), the LSTM model exceeds BPNN and 
FFNN. In addition, deep learning models are found to accu-
rately forecast solar irradiation in different climatic condi-
tions (Jallal et al. 2020). The study of Yu et al. in (2019) 
compared LSTM with ARIMA, SVR, and ANN models and 
found that LSTM has a strong competitive advantage in fore-
casting in cloudy days and mixed days in different seasons.

Recommendations, trends and outlooks for future 
research

From our review, we noticed that the performances of esti-
mation and forecasting models depend on several factors 
(see Fig. 8). In this subsection, we will provide concluding 
remarks, recommendations, and trends deduced from our 
investigation of the studied papers.

Figure 12 shows the cumulative number of publications 
per year using single or hybrid ANN models from 2015 to 
2022.

• As we can see from Fig. 12, the use of hybrid models 
increased in comparison with single ANNs, proving that 
the predictions generated by single ANN models tend to 
be limited in terms of performances. The key findings of 
the studied works highlighted the capacity of the hybrid 
ANN models to significantly improve the performances 
of the solar irradiation prediction for different climates 
and seasons.

• To prove the generalization ability of proposed mod-
els, researchers should test their models under different 
weather conditions, seasons, and locations. Nevertheless, 
in the literature only few works consider data collected 
from different climates and few compare the model per-
formance under different weather conditions and seasons. 
These gaps should be taken into consideration in future 
studies.

Figure 13 shows the cumulative number of works using 
deep learning models in the studied literature for both esti-
mation and forecasting models.

Arising trend in the use of deep learning models in the 
solar irradiation forecasting field can be clearly noticed 
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in Fig. 13, where the number of publications using deep 
learning models increased significantly from 2015 to 2022, 
which demonstrates that deep learning models proved their 
ability to perform well under bad weather conditions. Thus, 
the research community proposed to extend their attention 
toward deep learning models for forecasting and estimating 
solar irradiation and its components.

Another important finding through the literature study 
is that recent works use the cloud cover, temperature and 
humidity as inputs to their neural network predictor (Wojt-
kiewicz et al. 2019), which may indicate their effectiveness 
and pertinence as input features. These variables should 
be taken into account in the forecasting process, espe-
cially in sites with high solar irradiation variability. In fact, 
many authors found that including these exogenous inputs 

improves the forecasting performances (Castangia et al. 
2021a),(Jadidi et al. 2018), which explains the trends toward 
using simultaneously endogenous and exogenous inputs. 
This trend is clearly shown in Fig. 14 detailing the number 
of publications versus the types of used inputs. However, 
the correlation between such parameters and the forecasting 
output changes from one site to another. Thus, more com-
parative studies should be carried out to show the effect of 
including meteorological parameters on the performance of 
the proposed models to draw a conclusion on this research 
topic.

• An effective approach that we have identified from our 
literature study includes investigations on the clouds 
effect during model development, starting by classifying 

Fig. 12  Cumulative number 
of publications that used ANN 
models for solar irradiation pre-
diction with single and hybrid 
ANN models
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the sky conditions before following up by the forecasting 
task (McCandless et al. 2016). This decomposition can 
be performed using data-preprocessing techniques such 
as K-means clustering and Discrete Wavelet transform.

• From the literature review, we noticed that all proposed 
works focused only on a specific issue, which is either esti-
mation or forecasting. In (Amiri et al. 2021), Amiri et al. 
presented for the first time a new approach that could both 
estimate and forecast solar irradiation. This study is based 
on a hybrid model with two outputs: one estimates the irra-
diation at the current instant and another predicts it for the 
next hour. Despite the complexity of the addressed prob-
lem, obtained results are good compared to the literature 
as claimed by the authors. This approach can be useful 
for monitoring a solar system in real-time and forecast-
ing future energy production. Further studies simultane-
ously estimating and forecasting solar irradiation should 
be addressed to evaluate this proposed approach. This can 
be a challenging direction in future research.

• In solar irradiation prediction problems, ANN models 
need to be trained with an accurate and preferably a 
large database. Moreover, the method to set the model 
architecture, the number of input features, and the input 
matrix size to enhance the prediction accuracy remains 
an open problem, especially with different types of data 
and different time horizons. As a synthesis, using proper 
data pre-processing methods, optimization algorithms, 

and feature selection techniques has a remarkable impact 
on the model performance and should be considered as 
key success factors of incoming models.

Conclusion

The understanding of solar irradiation predictive methods 
is of great interest to control and operate solar power gen-
eration. In this paper, we provided a comprehensive and 
in-depth review of the recent studies on estimation and 
forecasting solar irradiation using ANN models in order to 
reveal the existing gaps and future suggestions in this field.

Findings show that the performance of predicting models 
depends on several aspects:

• Pre-processing phase and feature selection procedures 
used at the first steps of the prediction process,

• selection of ANN architecture, and type of employed 
model,

• desired forecasting horizon which can lead to higher 
accuracies for very short horizons,

• climate type of the location of interest,

In most cases, the model prediction accuracy is influenced 
by the forecast horizon and the climatic conditions. In fact, 
ANN models performed well under the clear sky while the 
accuracy decreases significantly under rapid and varying 
weather conditions. Moreover, it is worth noting that solar 
irradiation phenomenon is extremely complex and is not 
necessarily well modeled with simple approaches, especially 
when high performances are required. Thus, combining sev-
eral approaches might be necessary to seek greater accuracy. 
Further, in the last few years, several studies moved toward 
the use of deep neural networks such as LSTM and RNN to 
overcome some limitations of conventional ANNs.

The state of the art of solar irradiation prediction pre-
sented in this paper can enrich and chart a path toward 
promising and suitable directions for future planners and 
forecasting professionals to develop an appropriate ANN 
predictor. Additionally, the offered directions will inspire 
future researches that can improve the prediction models 
toward more accuracy and efficiency.
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Appendix

Nomenclature

ACRT ACR data logger temperature DA Dragonfly Algorithm
ANFIS Adaptive neuro fuzzy inference system DBT Dry bulb temperature
Alt Altitude E Earth skin temperature
∝ Angle of inclination ESN Echo State Network ( Recurrent 

Neural Network (RNN))
ANN Artificial Neural Networks EMD Empirical Mode Decomposition
P Atmospheric pressure EEMD Ensemble empirical mode decom-

position
ARIMA Auto regressive integrated moving average models Evap Evaporation
AR Auto regressive EATE Evolutionary algorithms with tourna-

ment selection and elitism
ARMA Autoregressive and moving average model ETS Exponentiall trend smoothing
ARX Autoregressive exogenous Ho Extraterrestrial radiation 

(KW.hour∕m2.D)

AA Average airmass ELM Extreme Learning Machine
Azm Average/Mean azimuth angle FFNN Feedforward Neural Network
DPTm Average dew point temperature F(Tm) Function of Tm
Az Azimuth angle FCM Fuzzy c-means algorithm
PWSm Average peak wind speed GPV Gaussian process vector
RFm Average/Mean rainfall GRU Gated recurrent unit
RHm Average relative humidity GRNN Generalized regression neural 

network
ART Average roof temperature GA Genetic algorithm
SDm Average/Mean sunshine duration GP Genetic programming
Tm Average/ Mean temperature GHI Global horizontal solar irradiation
WCT m Average wind chill temperature BNI Global normal irradiation
WSm Average/Mean wind speed GTI Global Tilted Irradiation/Irradiance
�Zm Average zenith angel GBMs Gradient boosting machines
ANFIS-muSG ANFIS-SSA-GOA GOA Grasshopper Optimization Algorithm
BPNN Backpropagation neural network GWO Grey Wolf Optimizer
BSRN Baseline Surface Radiation Network H Hours
Bi-LSTM Bidirectional long short term memory � Hour angle
BDT Boosted decision tree CIh Hourly clearness index
Cs Clear-sky Dh Hours of day
Kt Clearness index KELM Kernel extreme learning machine
CC Cloud cover KNN k-Nearest Neighbours
CI Cloud index Lat Latitude
Comp Component LM Levenberg–Marquardt
CEEMDAN Complete ensemble empirical mode decomposition adap-

tive noise
Long Longitude

CNN Convolutional neural network LSTM Long short-term memory
DD Day duration ME Maximum elevation (ME)
GId Daily values of total global radiation Pm Mean station level pressure
D Day MEA Mind evolutionary algorithm
DoM Day of month Pmin Minimum pressure
δ Declination angle Mth Month
DPT Dew point temperature MoY Month of the year
ΔT Difference of daily maximum and minimum temperature MLP Multilayer perceptron
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Nomenclature

DHI Diffuse horizontal irradiation NREL National Renewable Energy Labora-
tory

DFT Discrete Fourier transform Pmax Maximum pressure
DWT Discrete wavelet transformation SDmax Maximum sunshine duration
DSN Distance from Solar Noon Tmax Maximum temperatures
MOSMLP Model Output Statistics multilayer perceptron based on 

ANN and Numerical Weather Prediction
SAN Simulated annealing

Tmin Minimum temperatures SC Sky cover
NAR Nonlinear autoregressive neural network SP Smart persistence
N Number SA Solar altitude angle (α)
PSO Particle swarm optimization GI Solar irradiation/irradiance/ radiation
Per Persistence STMLP Statistical model based on multilayer 

perceptron
P Pressure SD Sunshine duration
PCA Principal component analysis SR Sunshine Ratio
PUNN Product Unit Neural Network SDday Sunshine duration per day (hour)
RBF Radial basis function SVM Support vector machine
RBFNN Radial Basis Function Neural Network Ta Temperature ambient
RF Rainfall BNIth Theoretical Global normal irradiation
RFR Random forest regression SDth Theoretical sunshine duration
RNN Recurrent neural network Td Time of day
VIS 0.6 and VIS 0.8 Reflectivity TB K-means Transformation based K-means 

algorithm
RT Regression trees UV Ultraviolet index
FOS-ELM Regularized online sequential extreme learning machine 

with variable forgetting factor
VPD Vapor pressure deficiency

RHmax Relative humidity Maximum Pwv Water vapor pressure
RHmin Relative humidity minimum WNN Wavelet neural network
RP Relative position among target and chosen locations WPD Wavelet Packet Decomposition
RBP Resilient back propagation WT Weather type
SSA Salp Swarm Algorithm WD Wind direction
SCG Scaled conjugate gradient WS Wind speed
SaDE-ELM Self-adaptive differential evolutionary ELM �Z Zenith angle
SUNN Sigmoidal Unit Neural Network LSR Linear least square regression
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