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Abstract
Chlorazol yellow (CY) is a commonly used anionic, toxic, mutagenic, and potentially carcinogenic azo dye, which is menacing 
to the environment, aquatic system, food chain, and human health as well. To remove CY dye molecules from an aqueous 
medium, a series of Ce, Bi, and N co-doped  TiO2 photocatalysts were prepared by varying the composition of the dopants. 
Under sunlight irradiation, the resultant 5 wt% (Ce-Bi-N) co-doped  TiO2 composite catalyst was found to show the best 
catalytic activity. Hence, the required characterization of this catalyst was performed systematically using energy-dispersive 
X-ray spectroscopy (EDX), scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray 
photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) techniques. From the thorough investigation, it is revealed 
that the CY molecules reached adsorption–desorption equilibrium onto the surface of the catalyst within 30 min following 
second-order kinetics. Herein, the catalyst attained 97% degradation when exposed to sunlight at neutral (pH ~ 7, [CY] = 5 mg 
 L−1) medium. The developed catalyst can destruct CY molecules with a maximum rate of 23.1 µg CY  g−1  min−1 and the 
photodegradation kinetics follows first-order kinetics below 23.5 mg  L−1, a fractional order between 23.5 and 35.0 mg  L−1, 
and a zeroth order above 35.0 mg  L−1 of CY concentration. Finding from scavenging effect implies that O−

2
 and OH∙ radicals 

have significant influence on the degradation. A suitable mechanism has been proposed with excellent stability and verified 
reusability of the proposed photocatalyst.

Keywords Chlorazol yellow · Photocatalyst · Sol–gel method · Adsorption kinetics · Degradation kinetics · Dye 
degradation · Scavenging effect

Introduction

A new era in the chemical industry was introduced by Wil-
liam Henry Perkin in 1856 with the accidental discovery of 
the first synthetic dye, mauve (Hübner 2006). Since then, 
uncountable numbers of dyes have been synthesized, with 
approximately 10,000 artificial dyes currently servicing the 
global market (Bazin et al. 2012; Sinha et al. 2013; Gürses 
et al. 2016). Yearly, about 800,000 tons of dyes are manu-
factured globally (Jamee and Siddique 2019). And, these 
dyes possess versatile applications in various branches of 
the paper, printing, plastic, leather, food, and cosmetics 
industries, where nearly 80% are being used in textile indus-
tries (Asl et al. 2012; Hiremath et al. 2018). Among a wide 
range of dyes, azo dyes are the most significant and most 
utilized dyes, which represent more than 60% of the dye 
family. Roughly 70% of the different types of dyes utilized 
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in industries (material, printing, paper fabricating) are azo 
dyes (Benkhaya et al. 2020).

Every year, during the production of dyes and textiles, 
just about 140,000 tons of artificial dyes are abandoned 
in the aquatic systems (DeVito 1993; Slama et al. 2021). 
The release of color-containing effluents has clear adverse 
consequences. Intense colors, high pH variations, elevated 
chemical oxygen demand (COD), and provoked biotoxic-
ity against microorganisms in aquatic systems are some of 
the consequences created by these effluents (GilPavas et al. 
2020; Hasani et al. 2021). Note that even 10–50 mg  L−1 of 
water-soluble dyes may have a serious impact on marine 
organisms (Helmy et al. 2018; Fried et al. 2022), photo-
synthetic activities, and ecosystems (Çiçek et al. 2007). 
Moreover, these chemicals are not directly destructed by 
sunlight, temperature, or microbial attacks and are known 
to be persistent in nature (Khan et al. 2013; Li et al. 2017; 
Kishor et al. 2021). Additionally, these chemicals, espe-
cially the azo dyes are toxic, mutagenic, and potentially 
carcinogenic, which is an outright threat to human health 
and environment (Gičević et al. 2020; Alderete et al. 2021). 
Chlorazol yellow (CY) is an example of such a dye found in 
effluents from textile industries (Yaseen and Scholz 2019). 
CY  (C28H19N5O6Na2S4, molecular weight is 695.72 g) is an 
anionic azo dye containing sulfonic groups. This dye has a 
complex chemical structure (see Scheme 1), high solubility 
in aqueous solutions, and high persistence when discharged 
into the environment. Thus, the treatment of CY dye is a 
concern in this work.

To eliminate these kinds of dyes from effluents, various 
physio-chemical strategies like ion exchange centrifugation, 
coagulation-flocculation, chemical precipitation, sorption, 
flotation, filtration, sedimentation, and catalytic and sono-
catalytic remediation have been developed (Yagub et al. 
2014; Nawaz and Ahsan 2014; Yim et al. 2015; Hassani-
and Eghbali 2018; Agrawal et al. 2020; Sakr et al. 2020; 
Liu et al. 2021; Teo et al. 2022). Electrochemical (i.e., 

ion-oxidation) and biological (i.e., aerobic or anaerobic 
digestion) techniques are also familiar but have the draw-
back of sludge generation, which requires expensive solid 
disposal techniques (Vidya et al. 2016). In this connection, 
advanced oxidation processes (AOPs) provide powerful 
oxidizing conditions and are mostly preferred. In AOPs, 
hydroxyl ions and radicles (having one of the highest oxi-
dative potentials, E0 =  + 2.80 V) are generated to treat the 
organic effluents, and then the effluents are entirely degraded 
to carbon dioxide, water, and some inorganic ions. Accord-
ing to the literature, AOPs utilize photocatalysis, Fenton oxi-
dation, photolysis, ozonation, membrane separation, and etc. 
for the removal of dye (Danmaliki and Saleh 2017; Alansi 
et al. 2018; Karim et al. 2022).

However, transition metal-oxide nanoparticles like ZnO, 
 TiO2, and  CeO2 act as charge carriers during UV/solar irra-
diation, so they are widely used as photocatalysts (Hasnat 
et al. 2007; Milosevic et al. 2017; Ani et al. 2018; Milošević 
et al. 2018; Mishra and Mukhopadhyay 2019; Hassani et al. 
2020). There are only a few reports on CY dye degrada-
tion using oxide type catalysts, for instance,  TiO2 (Hiremath 
et al. 2018), α-Fe2O3, and γ-Fe2O3 (Akrami and Niazi 2016). 
Scientists consider  TiO2 as the most preferred photocatalyst 
for wastewater treatment of organic pollutants (Tang and 
Huren An 1995; Wahi et al. 2005; Uddin et al. 2007; Saadati 
et al. 2016; Akter et al. 2016; Zeghioud et al. 2019) because 
 TiO2 semiconductor is cheap, recyclable, stable, corrosion 
resistant, and light-resistant at ambient conditions. Due 
to the large energy gap of 3.2 eV,  TiO2-based photocata-
lytic systems exhibit some limitations in lower efficiency, 
electron–hole carrier recombination, and photonic yield 
under visible light (Radoičić et al. 2013). Hence, these facts 
became the concerns to be mitigated in this study.

Principally, a semiconductor material is activated with 
the light of a certain wavelength depending on the band 
gap of that material. The band gap of a semiconductor 
could be reduced by doping other metals or non-metals. 

Scheme 1  Molecular structure 
of chlorazol yellow dye
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Applying the advantage of the reduced band gap energy, 
visible light could be used efficiently and economically 
instead of UV light in destructing dye molecules. In this 
regard, elements like N (Ansari et al. 2016; Kovalevskiy 
et al. 2020), C (Qi et al. 2014; Varnagiris et al. 2019), B 
(Bilgin Simsek 2017; Niu et al. 2020; Arifin et al. 2022), 
and S (Cravanzola et al. 2017; Yan et al. 2017) have already 
been successfully used as dopants of  TiO2. Meanwhile, 
nowadays,  TiO2 catalysts doped with Ce and Bi dopants 
are attracting much attention for photochemical treatments. 
It is reported that decrement of the band gap of the  TiO2 
lattice, as well as the increment of the optical absorption in 
the visible light region, occurs due to the insertion of Ce or 
Bi particles (Murcia-López et al. 2011; Xue et al. 2011; Li 
et al. 2014; Worayingyong et al. 2014; Hamdi et al. 2021a). 
These species not only increase the photocatalytic activity 
but also prevent electron–hole recombination (Xiong et al. 
2015). Moreover, Ce doping provides the scope for the 
generation of  Ce3+ and  Ce4+ via the generation of empty 
oxygen space on the surface of the catalyst, leading to 
increased mobility of catalytic particles (Xiong et al. 2015). 
Besides, Bi doping promotes the feasible photodegradation 
of organic pollutants under the irradiation of visible light 
(Pan et al. 2005; Chu et al. 2020).

Considering these issues, a series of Ce, Bi, and N co-
doped  TiO2 photocatalysts were prepared by varying the 
composition of the dopants. Finally, the resultant dopant 
catalyst termed  TiO2-5 wt% (Ce-Bi-N) was found to show 
the best catalytic activity under sunlight irradiation. Hence, 
in this article, the catalytic activity of the  TiO2-5 wt% (Ce-
Bi-N) catalyst over CY dye was studied by varying contact 
time and initial dye concentration. In this study, catalyst 
selection, adsorption–desorption kinetics, photocatalytic 
kinetics, and characterizations were performed systemati-
cally. The catalyst was characterized using energy-dispersive 
X-ray spectroscopy (EDX), scanning electron microscope 
(SEM), X-ray photoelectron spectroscopy (XPS), Fourier-
transform infrared spectroscopy (FTIR), and X-ray diffrac-
tion (XRD) analysis. The overall experiment was performed 
on a neutral medium to avoid photocatalytic contamination.

Experimental

Chemicals and reagents

All the reagents used in the experiments were of analyti-
cal grade, and used without further treatment. Chlora-
zol yellow dye  (C28H19N5O6Na2S4) was purchased from 
Philip Harris Limited, Shenstone, England. Titanium 
(IV) isopropoxide [Ti(OC3H7)4], tetra-hydrated cerium 
sulfate [Ce(SO4)2.4H2O], penta-hydrated bismuth nitrate 
[Bi(NO)3.5H2O], and urea  (H2N-CO-NH2), ethanol 

 (C2H5OH), and hydrochloric acid (HCl) were bought from 
Merck, KGaA 64,271 Darmstadt, Germany.

Instruments

To investigate the dye degradation process, a UV–vis spec-
trophotometer model UV-1800, manufactured by Shimadzu, 
Japan, was used. The surface morphology of the catalyst 
was verified using JSM-760F scanning electron microscope 
(SEM) and for elemental verification, the Oxford INCA 
400 energy-dispersive X-ray spectroscope (EDX) was used. 
Powder X-ray diffractometer (XRD) patterns were recorded 
on a fully automatic horizontal multipurpose X-ray dif-
fractometer (Rigaku Smartlab; Rigku Corp.) as a 2θ range 
from 20 to 90°. The metal-oxide bonding was confirmed via 
Fourier-transform infrared spectrophotometer (IRAffinity-1, 
Shimadzu, Japan). The X-ray photoelectron spectra (XPS) 
study was performed using the delay-line detector (DLD) 
spectrometer (Kratos Axis-Ultra, Kratos Analytical Ltd.) 
with an Al Kα radiation source of 1486.6 eV. Component 
separation and energy calibration were done with the bun-
dled software where pure Gaussian profiles were maintained 
with a linear background.

Preparation of the photocatalyst

The preparation process of the photocatalyst powder was 
carried out following the processes described by Wei 
et al. (2013) with some modifications (see supplementary 
information of Scheme S1). Firstly, to prepare solution A, 
32.5 mL of ethanol  (C2H5OH) was taken as a solvent in a 
250-mL round-bottom flask. As a precursor, 4 mL of tita-
nium tetra-isopropoxide (Ti[OCH  (CH3)2]4) was added drop-
wise. The molar ratio or the volume ratio of solution A was 
42:1 or 32.5:4, respectively. Then, solution A was stirred 
vigorously for 10 min.

Next, for solution B, 32.5 mL of ethanol, 5.3 mL of HCl, 
and 0.5 mL of  H2O (at 42:4.8:2 molar ratio or 32.5:5.3:0.5 
volume ratio) were mixed into a 100-mL beaker. At this 
point, solution B was transferred to solution A with vigor-
ous stirring for 10 min. Then, 0.1505 g of  CeSO4.4H2O, 
0.1210 g of Bi(NO3)2.5H2O, and 0.1120 g of  H2N-CO-NH2 
were added sequentially to the mixture for 5% doping of Ce, 
Bi, and N. After mixing, the resultant solution was sonicated 
for 10 min. Finally, the mixture was vigorously stirred for 
2 h at room temperature before being kept for 24 h for aging. 
Consequently, the solution became transparent after aging.

Then, the solutions were transferred into a beaker and 
dried at 100 ◦C . The dried samples were calcined for 2 h 
at 200 ◦C and another 2 h at 500 °C using a muffle furnace 
(JSMF-30 T, Korea) to remove all organic pollutants. Later, 
the powder was cooled down gradually in the muffle furnace 
for 12 h at room temperature. Finally,  TiO2-5 wt% (Ce-Bi-N) 
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formed as the doped catalyst, which would be exploited in 
photocatalytic degradation.

Photocatalytic degradation

To attain adsorption–desorption equilibrium, 0.250 g of 
 TiO2-5 wt% (Ce-Bi-N) photocatalyst powder was added into 
50 mL of 5 mg  L−1 CY solution and the rest was kept in dark 
treatment for 40 min. Every 5 min, 3.0 mL of the aliquot of 
solution under dark treatment was collected and the absorb-
ance was measured at 388 nm to confirm CY adsorption on 
the catalyst surface. While absorbance was found unchanged 
due to the establishment of adsorption–desorption equilib-
rium, the solution was then kept under sunlight irradiation 
for 120 min in the daytime (preferably between 10:00 am 
and 1:00 pm). Periodically, the absorbance of the solution 
under photolysis was measured at 388 nm to ensure photo-
catalytic degradation of CY dye molecules.

The percentage of CY degradation at a time t was calcu-
lated by using the following relationship.

where C0  (mgL−1) and Ct  (mgL−1) are the initial and desired 
time intervals of the liquid phase concentrations of CY, 
respectively.

(1)%CYdegradation =
C
0
− Ct

C
0

× 100

Results and discussion

Characterization of  TiO2‑5 wt% (Ce‑Bi‑N) catalyst

Although a series of compositionally varied Ce, Bi, and 
N-doped  TiO2 catalysts were prepared,  TiO2-5 wt% (Ce-
Bi-N) showed the best photocatalytic activity (discussed 
in the later sections); hence, critical characterizations were 
made for this catalyst only. First, to obtain the morphological 
information of  TiO2 and  TiO2-5 wt% (Ce-Bi-N) nanocom-
posite, SEM images were recorded. The surface morphology 
shown in Fig. 1A and Fig. 1B represents SEM images of 
 TiO2 and  TiO2-5 wt% (Ce-Bi-N) nanocomposite, respec-
tively. Comparing these images, it can be stated that the 
morphology of the  TiO2-5 wt% (Ce, Bi, N) nanocomposite 
powder is comparatively more uniform than that of  TiO2 
powder and many of the pores left in  TiO2 are blocked by 
the dopant particles.

It is apparent from Fig. 1B that the doping of 5 wt% 
(Ce, Bi, N) occurred significantly in  TiO2 powder due to 
the facilitation of smaller grain sizes or the crystal size of 
the nanocomposite. On a further note, for the elemental 
confirmation of the  TiO2-5 wt% (Ce-Bi-N) photocatalyst, 
EDS analysis was performed to justify the presence of Ti, 
O, Ce, Bi, and N (see Fig. 1C) with the atomic percent-
age of the elements (see supplementary information of 
Table S1). Here, the as-synthesized photocatalyst image 

Fig. 1  (A) SEM image of  TiO2 
particles. (B) SEM image of 
 TiO2-5 wt% (Ce-Bi-N) pho-
tocatalyst. (C) EDS spectrum 
of  TiO2-5 wt% (Ce-Bi-N) 
photocatalyst
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shown in Fig. S1A is the uniform entity of the individual 
elements demonstrated in Fig. S1B to Fig. S1F.

Next, XRD patterns of the doped and undoped  TiO2 
catalyst were recorded to examine the altered crystalline 
properties. The PXRD patterns of  TiO2 and  TiO2-5 wt% 
(Ce, Bi, N) shown in Fig. 2 exhibit several peaks such as 
(101), (004), (200), (105), (211), (204), (116), (220), (215), 
and (303) indexing of the anatase phase of  TiO2 [53].

It is remarkable that similar peaks at similar positions 
were obtained in both cases. Moreover, no additional peaks 
related to Ce, Bi, and N appeared for the  TiO2-5 wt% (Ce-
Bi-N) spectral pattern, which indicates that Ce, Bi, and N 
acted just as dopants and did not change the crystalline 
structure of the catalyst (Shi et al. 2010). Crystallite sizes 
of  TiO2 and  TiO2-5 wt% (Ce-Bi-N) were calculated as 
16.1562 nm and 9.6730 nm, respectively, using the well-
known Scherer equation given in Eq. (2).

Here, D denotes the crystallite size (nm), � is the wave-
length of the X-ray sources (0.15406 nm), K is the Scher-
rer constant (0.9), � is the full width at half maximum 
(radians), and � is the peak position (radians). The smaller 
crystallite size of  TiO2-5 wt% (Ce-Bi-N) (9.6730 nm) than 
that of  TiO2 (16.1562 nm) is attributed to the wider peak 
and lower intensity of  TiO2-5 wt% (Ce-Bi-N) than that of 
 TiO2.

(2)D =
K�

�cos�

Next, FTIR spectra were recorded before and after the 
doping of the dopant particles to verify the metallic bonding 
of the catalyst. From Fig. 3A, it is evident that the peak at 
3272  cm−1 corresponds to the O–H stretching vibration band 
of the moisture, whereas the peak at 1615  cm−1 represents 
the bending vibration band of O–H for adsorbed  H2O and the 
peak at 550  cm−1 represents the stretching vibration band of 
Ti–O-Ti (Liu et al. 2012; Sarker et al. 2022).

Meanwhile, after the doping of Ce, Bi, and N onto  TiO2, 
three new peaks creep out, as can be seen in Fig. 3B. Along 
with the basic peaks of  TiO2 catalyst, the peak at 1050  cm−1 
can be assigned to the stretching vibration band of Bi-O-Ti 
(Astuti et al. 2021), the peak at 1120  cm−1 can be assigned to 
the Ce–O-Ti stretching vibration band, and finally, the peak 
at 1172  cm−1 is the O-N-Ti stretching vibration band (Huang 
et al. 2018). So, it can be ascertained from the signature of 
the metallic bonding that Ce, Bi, and N were successfully 
incorporated into the  TiO2 matrix.

For further verification, X-ray photoelectron spectra 
(XPS) were recorded to characterize the nature of chemical 
bonds in the developed catalyst. Figure 4 represents the XPS 
analysis of as-synthesized  TiO2 powder.

The survey scan shown in Fig. 4A reveals the presence of 
Ti and O in the synthesized material. Figure 4B exhibits the 
XPS spectra of Ti 2p, which contains two major peaks. The 
binding energies of these two peaks are 458.3 eV and 464.0 eV, 
which represent Ti  2p3/2 and Ti  2p1/2, respectively. Here, these 
peaks are for the presence of  Ti4+ in the  TiO2 lattice (Bharti 

Fig. 2  XRD spectra of  TiO2 
and  TiO2-5 wt% (Ce-Bi-N) 
photocatalyst
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Fig. 3  FTIR spectra of the metallic bonding of (A)  TiO2 and (B)  TiO2-5 wt% (Ce-Bi-N) photocatalyst

Fig. 4  XPS analysis of  TiO2. (A) Survey scan. (B) Ti 2p. (C) O 1s XPS spectra
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et al. 2016). The binding energy difference of 5.7 eV for these 
two peaks further proved the formation of  TiO2. From Fig. 4C, 
the deconvolution of the O 1s peak revealed two peaks at the 
binding energies of 529.5 eV and 531.3 eV for Ti–O and O–H, 

respectively (Bharti et al. 2016; Yu et al. 2017). The peak inten-
sity of the Ti–O bond is quite high compared to the O–H bond, 
which attributes to the formation of  TiO2. The XPS analyses of 
 TiO2 doped with Bi, Ce, and N are presented in Fig. 5.

Fig. 5  XPS analysis of  TiO2-5 wt% (Ce-Bi-N). (A) Survey scan. (B) Ti 2p. (C) Bi 4f. (D) Ce 3d. (E) N 1 s. (F) O 1s XPS spectra
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Herein, from Fig. 5A, a survey scan confirms the pres-
ence of Bi, Ce, and N in the  TiO2 moiety. The Ti 2p spec-
tra deconvolution yielded five peaks, which are shown in 
Fig. 5B. Two peaks at binding energies of 458.6 eV and 
464.5 eV are for  Ti4+ in Ti  2p3/2 and Ti  2p1/2, respectively 
(Bharti et al. 2016). Another peak at 462.0 eV is assigned to 
the Ti-N bond (Wang et al. 2017). Small peaks were found 
at 460.5 eV, attributed to  Ti3+ (Zhu et al. 2017). The peak at 
467.6 eV represents the Bi  4d3/2 overlapped with the Ti 2p 
XPS spectra (Luo et al. 2019). The Bi 4f XPS spectra can 
be seen in Fig. 5C, where fitting data revealed four peaks. 
Two well-separated peaks at 160.5 eV and 165.9 eV refer to 
Bi  4f7/2 and Bi  4f5/2 accordingly. These peaks are assignable 
to  Bi5+ (Chen et al. 2013), whereas the peaks at 162.7 eV 
and 168.0 eV can be assigned to basic nitrate impurities 
(Abdullah et al. 2012). Figure 5D represents the Ce 3d XPS 
spectra where the deconvolution of this spectra provides two 
peaks at 905.4 eV and 887.4 eV, corresponding to Ce  3d3/2 
and Ce  3d5/2 in  Ce3+ (Abdullah et al. 2012). In Fig. 5E, the 
N 1s XPS peak at 403.7 eV is formed due to the surface 
nitrites  (NO2

−) (Ozensoy et al. 2005). The presence of fewer 
species on the photocatalyst may very well be the reason 
of the modest signals of the dopants in Fig. 5D and 5E. As 
shown in Fig. 5F, fitting the data of O 1s revealed four peaks. 
The peaks at 529.9 eV, 531.5 eV, 532.7 eV, and 533.6 eV 
correspond to Ti–O, O–H, C = O, and C–OH, respectively. 
Here, the O–H bond might be formed by moisture, while the 
C = O and C–OH bonds could be formed by the urea, which 
is essentially employed as a supply of nitrogen (Bharti et al. 
2016; Jang and Hwang 2018; Ferreira et al. 2019). From the 
overall XPS analysis, the calculated percentages of Bi, Ce, 
and N were found to be 2.8%, 6.8%, and 0.5%, respectively.

Photocatalytic activity

Selection of catalyst

It is accepted that anatase  TiO2 is a highly efficient 
photocatalyst in attaining dye degradation under UV 
irradiation. However, this catalyst does not efficiently 
work under visible light conditions because of its higher 
band gap energy of 3.20 eV. Thus, to make this catalyst 
workable even under sunlight, in this research, we 
have synthesized a series of photocatalysts by doping 
different combinations of Ce, Bi, and N into the core 
of  TiO2 particles. The photocatalytic activities of the 
synthesized photocatalysts pertaining to CY degradation 
are tabulated in Table  1. In each case, to perform 
photocatalytic activity, 50 mL of reaction mixture was 
prepared with 0.250 g of the photocatalyst where the 
CY dosage was 5 mg  L−1. Initially, the resultant mixture 
was kept in the dark for 60 min under stirred conditions. 

Assuming that within this time, an adsorption–desorption 
equilibrium is reached, the reaction mixture was kept for 
120 min under sunlight for photolysis. To monitor the 
concentration changes, spectral changes between 200 and 
800 nm were recorded periodically. From Figure S2 of the 
supplementary information, it is seen that CY molecules 
exhibit an absorption band at 388 nm due to the π-π* 
transition. At the end of the photolysis with  TiO2-5 wt% 
(Ce-Bi-N) [termed as C7] catalyst at 120 min, this band 
is diminished, indicating almost complete degradation. 
It can be noted that at 120  min, a pure  TiO2 catalyst 
attained 66.22% CY degradation, whereas the C7 catalyst 
obtained 97.18% degradation, which is the maximum in 
comparison to other catalytic compositions as reported 
in Table 1. The reason behind the improved catalytic 
performance can be primarily credited to the possible 
lowering of the band gap energy of the developed catalyst 
(Breault and Bartlett 2012; Modwi et al. 2018). Later, the 
specific catalytic efficiency was also estimated at ca. 98% 
for the C7 catalyst using the analogous Eq. (1).

However, to unveil the reason for such improved catalytic 
performance, band gap energies of all-catalytic compositions 
were evaluated as the band gap is directly related to the dye 
degradation capacity of any photocatalyst (Khan et al. 2014; 
Hemalatha et al. 2016). It is accepted that the higher the band 
gap, the higher the electron–hole separation between the 
valance band (VB) and the conduction band (CB). In such 
conditions, it is impossible to degrade the dye molecules 
under sunlight irradiation. Consequently, an attempt was 
made to narrow the band gap of  TiO2 (3.20 eV) by using 
metal and non-metal dopants. To do this, suspensions of the 
catalysts having a concentration of 5 g  L−1 were prepared 
and UV–visible spectra were recorded. The Tauc plot (in 
Eq. (3)) (Tauc et al. 1966) was used to determine the band 
gap of developed catalysts.

Table 1  Photocatalytic activity of different combinations of dopants 
in  TiO2 nanoparticles for the degradation of CY dye molecules

Catalyst dosage 5  gL−1, [CY] = 5 mg  L−1, pH ~ 7, temp. = 25 ◦C , stir-
ring rate = 100 rpm

Catalyst code Photocatalysts Band gap 
(Eg)/eV

% CY 
degrada-
tion

C1 TiO2 3.20 66.22
C2 TiO2-5 wt% Ce 3.13 68.06
C3 TiO2-5 wt% Bi 3.12 67.31
C4 TiO2-5 wt% N 3.14 67.12
C5 TiO2-5 wt% (Ce-Bi) 3.06 74.35
C6 TiO2-5 wt% (Ce-N) 3.09 71.14
C7 TiO2-5 wt% (Ce-Bi-N) 2.63 97.18
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Here, α and hv indicate the absorption coefficient and 
photon energy, respectively. A indicates the absorbance of 
the material, Eg indicates the material’s band gap energy, 
and n indicates the nature of the optical transition. In this 
case, n was set to 2 for the direct allowed transition. The 
adjustment of spectral data with the Tauc equation for differ-
ent catalytic suspensions is shown in Fig. 6B, and the origi-
nal light absorption of the catalyst is manifested in Fig. 6A.

As expected, it is seen from Table 1 that the incorpora-
tion of metal and non-metal dopants such as Ce-Bi-N by 5 
wt% into the  TiO2 catalytic matrix declined the Eg value of 
the  TiO2 catalyst to a minimum value of 2.63 eV from its 
original value of 3.20 eV. However, incorporation of only 
Ce or Bi or N or even their binary combinations could not 
exceed the minimum Eg value obtained by the C7 catalyst. 
This observation suggests that the highest catalytic perfor-
mance could be attained while all the Ce, Bi, and N species 
are doped into the  TiO2 catalyst’s matrix. However, there 
may remain confusion about the other compositions of the 
quaternary catalyst  TiO2-Ce-Bi-N that could show the best 
catalytic performance. To dispel this confusion, another 
series of catalysts were prepared by varying the percent-
age of Ce-Bi-N species. The photocatalytic performances 
of  TiO2-Ce-Bi-N catalysts of variable compositions are 
reported in the supplementary information of Table S2. 
The evaluation of Eg values of all-catalytic compositions is 
shown in the supplementary information of Fig. S2B derived 
from the UV plot of Fig. S2A.

It is perceptible that the best catalytic performance per-
taining to CY degradation could be attained while all the 
dopants such as Ce, N, and Bi are equally present by 5% 
in the  TiO2 matrix. As the C7 catalyst exhibited the best 

(3)�h� = A
(

h� − E
g

)n catalytic performance, the rest of the studies were performed 
using this catalyst only.

Adsorption–desorption equilibrium

The present research aims to attain CY degradation with 
a composite catalyst using sunlight irradiation. As the C7 
catalyst exhibited catalytic superiority, hence, it is impor-
tant to unveil the time of adsorption–desorption equilibrium 
such that available sunlight irradiation can be applied in the 
daytime. To do this, 50 mL of 5 mg  L−1 of CY solution 
was prepared in the presence of the C7 catalyst at pH ~ 7.0 
and kept in the dark. As time progressed, CY molecules 
started to be adsorbed on the surface of catalyst particles. 
Consequently, the CY concentration gradually decreased, as 
demonstrated by the lowering of absorbance at 388 nm in 
Fig. 7A. The amount of CY adsorbed (qt) was determined 
from the spectral data using Eq. (4).

where Ao and At are the absorbances at 388 nm and ε repre-
sents the molar extinction coefficient of CY dye (3.18 ×  10−2 
L  mg−1).

Figure 7B shows the qt vs. time plot for CY adsorption 
onto the C7 catalyst. It is apparent from this figure that 
the amount of CY adsorption gradually increased with the 
passage of time and reached a maximum at 30 min. After 
this time, no measurable changes in the CY spectrum were 
noticed. This observation suggests that under the experimen-
tal condition, at least a period of 30 min is required to reach 
adsorption–desorption equilibrium prior to photolysis under 
any kind of irradiation.

(4)qt =
Ao − At

�

Fig. 6  (A) UV–visible spectra of CY dye degradation by  TiO2 photocatalyst with various dopants (catalyst codes mentioned in Table 1). (B) 
Tauc plot of  TiO2 photocatalyst with various dopants. Catalyst dosage: 5 mg  L−1, [CY] = 5 mg  L−1, pH ~ 7, temp. = 25 ◦C , stirring rate = 100 rpm
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At this point, the adsorption kinetics of the CY dye on 
the C7 catalyst was evaluated by using the pseudo-first-
order and the pseudo-second-order kinetics models (Caner 
et al. 2009; Kalantary et al. 2015). Lagergren described the 
pseudo-first-order kinetics model as per Eq. (5),

where qe and qt refer to the amount of CY dye adsorbed 
(mg  g−1) at equilibrium, and t (min) refers to the 
adsorption time progressed, respectively. k1  (min−1) is the 
equilibrium rate constant of pseudo-first-order adsorption, 
which was calculated from the slope of ln (1 − qt/qe) vs. 
t curve as shown in the supplementary information of 
Fig. S4A. The values of k1 and the correlation coefficient 
R2 were 0.2036  min−1 and 0.84, respectively. In the case 
of a pseudo-second-order kinetics model for the CY dye 
adsorption process, Eq. (6) can be used.

Here, k2 indicates the rate constant at equilibrium of 
the pseudo-second-order adsorption (min g  mg−1) which 
was calculated using the slope and the intercept of the 
curve as in the supplementary information of Fig. S4B. 
The values of k2 and the correlation coefficient R2 were 
0.6638 (g  mg−1   min−1) and 0.95, respectively. From 
the above investigation, it was found that the R2 value 
of pseudo-first-order kinetics (0.84) was lower than 
that of pseudo-second-order kinetics (R2 = 0.95), which 
corroborated that the adsorption process of CY dye onto 
C7 catalyst followed the pseudo-second-order kinetics 
model.

(5)ln
(

1 − qt∕qt
)

= −k
1
t

(6)
t

qt
=

1

k
2
q2
e

+
1

qe
t

Degradation kinetics

In order to optimize the C7 catalyst’s degradation capacity, 
CY concentration-dependent photocatalytic degradation 
experiments were performed for 120  min under sunlight 
irradiation between 11.00 am and 1.00 pm on a sunny day. In 
this case, the CY concentration was varied from 0 to 45 mg  L−1, 
keeping the catalyst dose constant at 5 g  L−1. By measuring the 
changes in CY concentration with respect to irradiation time, 
the rate of CY (v) degradation was determined as per Eq. (7).

Figure  8 shows the variation of the CY degradation 
rate (v) with CY concentration. It is noticeable that the 

(7)v = −
1

5

d[CY]

dt

Fig. 7  (A) UV–visible spectra of CY adsorption onto the C7 catalyst in the dark and (B) a plot of the dye adsorption with respect to time. Cata-
lyst dosage: 5 g  L−1, [CY] = 5  mgL−1, pH ~ 7.0, temp. = 25 ◦C , stirring rate = 100 rpm

Fig. 8  Dependency of CY degradation rate on fixed C7 catalyst dose. 
pH ~ 7, temp. = 25 ◦C , stirring rate = 100 rpm
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degradation rate decreased with the increment of CY con-
centration. This observation suggests that photons of sun-
light destructed CY molecules adsorbed on C7 catalyst par-
ticles. At the same time, free CY molecules diffused to the 
catalyst’s surface to start another cycle of reaction followed 
by adsorption. However, as the CY concentration reached ca. 
35 mg  L−1, the degradation rate became limited to a value of 
23.1 µg CY  g−1  min−1, and further increments of CY con-
centration did not improve the degradation rate any more. 
This observation suggests that at this concentration of CY, 
the surface of the C7 catalyst became highly saturated with 
the adsorbed CY molecules where the adsorption rate and 
the degradation rate became equal. Moreover, as the catalyst 
concentration was fixed, the photoactive species, such as 
evolved hydroxyl radicals ( OH∙ ) and superoxide ( O−

2
 ), were 

also fixed in number (Hemalatha et al. 2016). The degrada-
tion rate reached a maximum at higher concentrations of CY 
dye because the number of oxidants required to degrade the 
dye was not sufficient. For the same reason, further concen-
tration effects were not observed. Thus, it can be considered 
that the C7 can degrade CY molecules with a maximum rate 
of 23.1 µg  g−1  min−1.

However, surface-confined reaction kinetics could be best 
explained by the surface coverage of CY molecules on the 
C7 catalyst. If θ is the surface coverage of CY molecules 
on the C7 catalyst, then based on the Langmuir adsorption 
isotherm (Hasnat et al. 2007), θ could be related to the 
adsorption equilibrium constant (K) and the corresponding 
CY concentration [CY] by Eq. (8);

Under photolysis, adsorbed CY molecules undergo 
degradation; hence, the photocatalytic degradation rate (v) 
must be proportional to the value of θ. Consequently, the CY 
degradation rate could be expressed by Eq. (9) where k is the 
proportionality constant.

The linearization of Eq.  (9) yields Eq.  (10) given as 
follows.

It is already reported that above 35 mg  L−1 CY concen-
tration, the photocatalytic degradation rate was found to be 
independent of CY concentration. This means that above 
this concentration, the surface of the C7 catalyst becomes 
saturated with adsorbed CY molecules, i.e., at this concen-
tration, θ equals unity. Hence, according to Eqs. (9) and 
(10), CY degradation should follow zeroth order kinetics 

(8)� =
K[CY]

1 + K[CY]

(9)v = k
K[CY]

1 + K[CY]

(10)
1

v
=

1

kK[CY]
+

1

k

above 35 mg  L−1 CY concentration. It is worth noting that 
according to Eq. (9) at sufficiently low CY concentration i.e., 
while 1 >  > K[CY], the degradation kinetics should follow 
first-order kinetics. Thus, it was necessary to evaluate the 
value of K. For this purpose, 1/v was plotted against 1/[CY] 
within the CY concentration range between 5 and 32 mg  L−1 
as shown in Fig. 5.

From the slope and intercept of Fig. 9, the values of k and 
K were evaluated as 2.42 ×  10−7  min−1 and 2.95 ×  104 mol 
 L−1, respectively. This parametric evaluation suggests that 
the product of K and [CY] equals unity while [CY] value 
equals 3.39 ×  10−5 M or 23.5 mg  L−1, implying that below 
this concentration, the CY degradation follows first-order 
kinetics. By contrast, the reaction order was fractional 
between 23.5 and 35.0 mg  L−1 of CY concentration. Finally, 
concerning thermodynamics, the evaluation of K value 
assumes that − 25.5 kJ  mol−1 free energy ( ΔGo

= −RTlnK ) 
was liberated while the C7 catalyst was employed for CY 
degradation under experimental conditions.

Degradation mechanism

At this stage, the photodegradation mechanism of CY mol-
ecules can be summarized by the fact that CY degradation is 
initiated by the absorption of light that is equal to or greater 
than the band gap of the semiconducting photocatalyst. The 
photodegradation phenomenon, as shown in Scheme 2, is 
based on the ease of migration of electrons (ejected on sun-
light irradiation) from the valance band to the conduction 
band. Electrons are promoted to the conduction band (CB) 
from the valence band (VB) by creating a hole in the valance 
band followed by Eq. (11). These electron holes ( e− − h

+ ) 
react with electron acceptor and electron donor species 
which are adsorbed on the photocatalyst surface. The VB 
and the CB energies were calculated and presented in the 

Fig. 9  A plot of 1/v against 1/[CY]. Catalyst dosage: 5  gL−1, pH ~ 7.0, 
temp. = 25 ◦C , stirring rate = 100 rpm
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scheme from the following formulas (Hu et al. 2011; Ali 
et al. 2021).

where ECB and EVB imply the CB and VB band potentials, 
which specifies the absolute electronegativity of the semi-
conductor, and Ee and Eg imply the energy of free elec-
trons on hydrogen scale (4.5 eV) and band gap energy of 
semiconductor, respectively. Herein, the estimated χ value 
for C1 and C7 catalysts was 5.90 (Hu et al. 2011; Ali et al. 
2021). The ECB values of C1 and C7 were then determined 
to be − 0.2 eV and 0.085 eV vs. NHE, respectively. Further-
more, the EVB values for C1 and C7 catalysts were deter-
mined to be about 3.0 eV and 2.715 eV vs. NHE, respec-
tively. Following this rapid and enhanced photocatalytic 
activity of the C7 catalyst, the mechanism of CY photodeg-
radation is proposed in Scheme 2.

Reactive oxygen species (ROS), namely superoxide 
( O−

2
 ), hydroxyl radicals ( OH∙ ), and photogenerated 

holes ( h+ ), play a key part in photocatalytic degradation 
reactions. Therefore, trapping the ROS by scavenging 
agents like ethanol, glycerol, benzoquinone (BQ), and 
EDTA is typically used to justify the role of these species 
in photocatalytic degradation (Zeghioud et al. 2019). To 
examine the impact of the inhibition using scavenging 
agents, an initially blank effect was observed without 
any scavengers. Later, the degradation efficiency was 
examined thoroughly using the scavenging agents, and 
the outcome showed a noticeable effect, as shown in 
Fig.  S5 of the supplementary information. Herein, it 
is obvious that the presence of scavengers reduced the 

(11)ECB = �s − Ee − 0.5E
g

(12)EVB = ECB + E
g

degradation efficiency of the C7 catalyst, which implies 
the existence of ROS in the degradation as well. And it is 
to mention that the hole scavengers (glycerol and EDTA) 
had negligible effect in degradation. In fact, when the 
scavengers trapped the holes, electrons were allowed 
to be freed and consequently generated superoxide by 
reacting with  O2 as given in Eq. (14). Later, the generated 
O

−

2
 reacts with the surrounded water  (H2O) to produce 

peroxide and hydroxyl ions ( OH− ) following Eqs. (15) 
and (16). Rationally, it can be inferred from the other 
scavenging (BQ and ethanol) effects that the superoxide 
and hydroxyl radicals have significant functionality in the 
overall CY dye degradation (Liu et al. 2017). Basically, 
superoxide ( O−

2
 ) and hydroxyl radical ( OH∙ ) are strong 

oxidizing agents and oxidize organic dyes such as CY 
and lead to harmless dye degraded products (Eq. (17)), 
which could tentatively be  CO2,  NO2,  SO2,  H2O, and etc. 
(Vidya et al. 2020). The reaction mechanism is as follows 
(Eqs. (13)-(17)),

Based on these findings, it can be stated that O−

2
 had a 

principal role in the degradation where as OH∙ radical had 
an auxiliary support in the photodegradation.

(13)C7 + hv → C7
(

e
−

CB
+ h+

VB

)

(14)e
−

CB
+ O

2
→ O

−

2

(15)O
−

2
+ 2H

2
O → H

2
O

2
+ O

2
+ 2OH

−

(16)H
2
O

2
+ e

−

CB
→ OH + OH

−

(17)C7 + O
2

(

O
−

2
orOH

)

→ dyedegrationproducts

Scheme 2  Proposed photo-
catalytic degradation mecha-
nism for CY dye. Working 
conditions: catalyst dosage: 
5 g  L−1, [CY] = 5 mg  L−1, 
pH ~ 7.0, temp. = 25 ◦C , stirring 
rate = 100 rpm
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Reusability, stability, and comparative study

In general, the reusability of a photocatalyst has impera-
tive importance for practical applications. Following this, 
a series of experiments were conducted using the proposed 
C7 catalyst for the purpose of CY degradation under sun-
light irradiation. The experiments were carried out for four 
consecutive times and the noted degradation efficiencies 
are manifested in Fig. 10A. Herein, after the completion of 
the first experiment, the catalyst was recovered, rinsed, and 
dried for a certain time; then, it was further reused in a fresh 
solution of CY dye, maintaining the as-used experimental 
conditions. The reason for the reduction of the degradation 
efficiency after consecutive experiments could either be the 
blocking of active sites with the adsorption of CY or could 
be the system loss during the recovery and reuse of the pho-
tocatalyst (Hassani et al. 2020).

Just after the reusability test, FTIR spectra were recorded 
to observe the stability of the composite photocatalyst, as 

can be seen from Fig. 10B. And it is pretty clear from the 
spectra that the photocatalyst remained stable even after four 
consecutive degradations with a slight negligible shift.

Afterwards, a comparison of the proposed catalyst is 
made against various  TiO2-based photocatalysts as shown 
in Table 2. In comparison, the proposed catalyst has clearly 
outperformed efficient photocatalytic activity toward CY dye 
in natural sunlight irradiation, making it a viable and com-
petent photocatalyst for industrial wastewater purification.

Conclusion

A 5 wt% of Ce-Bi-N co-doped  TiO2 composite catalyst 
was prepared through a simple sol–gel method for the 
efficient treatment of wastewater laced with dyes such as 
chlorazol yellow. When exposed to sunlight, the proposed 
catalyst exhibited photocatalytic degradation of ca. 97% 
for CY dye at neutral medium (pH ~ 7). Despite reaching 

Fig. 10  (A) Reusability of the proposed photocatalyst for consecutive four times and (B) FTIR spectra of the proposed catalyst before and after 
CY degradation. Catalyst dosage: 5 g  L−1, [CY] = 5  mgL−1, pH ~ 7.0, temp. = 25 ◦C

Table 2  Comparison of 
different  TiO2 photocatalyst 
against the proposed 
photocatalyst

RG 12 reactive green 12, MO methyl orange, MB methylene blue, CY chlorazol yellow

Catalyst Pollutant Light source Time Degradation 
efficiency

Ref

Cux/TiO2 RG 12 LEDs 360 min 53.4% Zeghioud et al. (2019)
Ce-TiO2 Glyphosate Hg Lamp 60 min 76% Xue et al. (2011)
BiOCl/TiO2 MO Sunlight 220 min 39% Li et al. (2014)
B-Y-TiO2 Phenol UV–Vis DRS 240 min 89% Shi et al. (2010)
P-doped  TiO2/MWCNTs MB Sunlight 240 min 55% Sarker et al. (2022)
TiO2-x  Nx MB Visible light 180 min 91% Asahi et al. (2001)
CeTiO2/Eu-TiO2 AB UV–Vis 180 min 99.6% Hamdi et al. (2021b)
Pt–TiO2/zeolites MO UV–Vis 30 min 86.2% Huang et al. (2008)
TiO2-5 wt% (Ce-Bi-N) CY Sunlight 120 min 97.18% This work
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adsorption–desorption equilibrium 30 min before photolysis, 
the catalyst was able to totally breakdown the CY dye after 
120 min of photolysis. The adsorption of CY on the cata-
lyst was driven by pseudo-second-order kinetics here. As 
determined by the degradation kinetics, the CY degradation 
follows a first order below 23.5 mg  L−1. However, beyond 
this concentration, the reaction order becomes fractional. 
Furthermore, a free energy of − 25.5 kJ  mol−1 was estimated, 
implying pure spontaneous degradation of CY dye. Moreo-
ver, scavenging effect renders that superoxide and hydroxyl 
radicals have essential influence on the proposed degrada-
tion mechanism. From the evaluation of the stability and 
the reusability, this can be proposed as a competent photo-
catalyst for CY dye degradation which also could also be an 
efficient anti-tonic for cationic dye and other industrial efflu-
ents, or wastewater compared to different  TiO2 oxide-based 
photocatalyst. Moreover, in this work, the influence of pH 
was not mentioned due to the inconsistency of catalytic per-
formance found in acidic conditions. On further hypothesis, 
boron-doped  TiO2 with the optimization of other competent 
dopants is supposed to be more efficient, which is the focus 
of our future research.
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