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Abstract
In the transition to low-carbon agriculture, smallholder farmers face more constraints. Identifying lead smallholder farmers 
and leveraging their peer effects can accelerate low-carbon agricultural technology extension among smallholder farmers. 
Based on survey data from 643 rice farmers in Zhejiang Province, China, this study constructs a finite mixture model (FMM) 
to identify lead smallholder farmers and then uses a quantile regression model (QRM) to explore their behavioral determi-
nants. The main conclusions are as follows. First, despite the homogeneity in the production mode and resource constraints, 
lead smallholder farmers are younger and more open to risk, and they have higher educational levels and more family 
laborers. Second, a higher use efficiency of heterogeneous information is the key to differentiating lead smallholder farmers 
from other smallholder farmers. Third, green agricultural producer services can effectively alleviate resource constraints 
and contribute to the low-carbon transition of all smallholder farmers. These results can help redesign targeted extension 
policies to incentivize lead smallholder farmers.

Keywords  Low-carbon agriculture · Lead smallholder farmers · Social network · Technology extension · Finite mixture 
model · Quantile regression model

Introduction

As an important part of the ecosystem, agriculture is not 
only a key supplier of ecological products but also a major 
source of greenhouse gases (IPCC 2019). The overuse of 
chemical inputs has led to a surge in agricultural N2O emis-
sions as well as a series of adverse effects on ecosystem 
sustainability and food safety (Snyder et al. 2009; Gómez 
et al. 2013; Zeng et al. 2014; Yin et al. 2018). Thus, there is 
an urgent need to reduce chemical inputs and develop low-
carbon agriculture to address declining ecosystem quality 
and continuing climate change.

Reducing chemical inputs is a vital but challenging task 
for smallholder farmers (Andersson and D'Souza 2014; 
Zeweld et al. 2017; Jin et al. 2021), especially in developing 

countries where smallholder farms are still widespread. 
Approximately 3.4 billion people worldwide live in the rural 
areas of developing countries, and most of them depend on 
smallholder farms. Small family farms (i.e., those of less 
than 2 ha) account for 85% of all farms worldwide (IFAD). 
In China, data from the third national agricultural census 
showed that the number of smallholder farmers accounted 
for approximately 98% of the total number of agricultural 
households and that 71.4% of cultivated land was still man-
aged by smallholder farmers. At the same time, the overuse 
of chemical inputs by smallholder farmers is more serious. 
Wu et al. (2018) found that farm size is significantly and 
negatively correlated with chemical fertilizer use per hec-
tare, both in China and in 74 other countries across five 
continents. Most importantly, smallholder farmers’ transi-
tion to low-carbon agriculture faces more constraints. First, 
low-carbon agricultural technologies have higher require-
ments for capital, labor, and knowledge, many of which 
have scale thresholds (Wu et al. 2018). Second, due to defi-
cient resources and limited access to technical information 
(Zhou 2017; Han 2019; Llewellyn and Brown 2020), small-
holder farmers are more cautious with regard to low-carbon 
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agricultural technologies. Due to these problems, small-
holder farmers are unwilling or unable to adopt new low-
carbon technologies.

As an effective complement to public extension, peer 
effects and social learning among smallholder farmers are 
indispensable for solving the dilemma of these farmers’ low-
carbon transition. In developing countries, traditional public 
extension usually cannot cover large parts of the intended 
population (de Janvry et al. 2016; Sun 2021). Therefore, tar-
geting progressive farmers (Maertens 2017), seeding farmers 
(Banerjee et al. 2019) or disseminating farmers (Shikuku 
et al. 2019) to leverage their peer effects and activate social 
learning has attracted the attention of policymakers and 
scholars. In traditional work, policymakers usually target 
farmers who are better off or who are central in social net-
works (Kim et al. 2015; Beaman et al. 2021). However, such 
farmers may not be representative of all farmers, and their 
experiences may be of limited value to others, especially 
smallholder farmers (e.g., Munshi 2004; Conley and Udry 
2010; BenYishay and Mobarak 2019). Moreover, small-
holder farmers have a higher technology adoption threshold, 
and they rely more on the experiences of their peers (Ward 
and Pede 2015; Beaman et al. 2021). Consequently, iden-
tifying lead smallholder farmers and leveraging their peer 
effects will be more meaningful for the low-carbon transition 
of smallholder farmers.

However, we still know very little about who lead small-
holder farmers in the low-carbon transition are and what 
factors differentiate them from other smallholder farmers. 
China offers a unique setting to identify lead smallholder 
farmers and their behavioral determinants. In 2016, China 
implemented the “Action to Achieve Zero Growth in Chemi-
cal Fertilizer Use by 2020” and the “Action to Achieve Zero 
Growth in Pesticide Use by 2020”. More than 3 million 
large-scale farmers, technicians from productive service 
organizations and seed farmers were trained every year 
over the past 5 years. Despite that, smallholder farmers still 
struggle to reduce their chemical inputs (Gao et al. 2019; 
Liu 2020; Zhang 2020), and differences in the low-carbon 
transition of smallholder farmers are beginning to emerge. 
Based on survey data from 643 rice farmers in Zhejiang 
Province, China, this study first presents a production func-
tion through a finite mixture model (FMM) to differentiate 
smallholder farmers in the low-carbon transition and to iden-
tify lead smallholder farmers. On this basis, this study uses a 
quantile regression model (QRM) to explore the constraints 
faced by lead smallholder farmers in their transition. In this 
way, this study provides insights for redesigning extension 
policies for low-carbon agricultural technologies for small-
holder farmers in the future.

This study makes three main contributions. First, unlike 
previous studies that target the seeding farmers or pro-
gressive farmers among all farmers, this study attempts to 

distinguish lead farmers from smallholder farmers because 
the latter face more challenges in the low-carbon transition 
and rely more on the experiences of their peers. Second, 
considering the diversity in the reduction in chemical inputs 
and the differences in resource endowment requirements, 
smallholder farmers may show preferences for technologies 
that match their resource endowments. Thus, the traditional 
criterion, i.e., involving the use of the initial adoption time 
of a certain technology, is not applicable in this situation. A 
more comprehensive criterion that includes the utilization 
rate of chemical fertilizer and the adoption rate of multi-
ple low-carbon agricultural technologies is used to identify 
lead smallholder farmers. Third, this article explores the 
constraints faced by lead smallholder farmers and provides 
a new perspective from which to understand the ambigu-
ous relationship between social learning and technology 
adoption. These contributions allow us to redesign targeted 
policies for providing incentives to lead smallholder farmers 
and promoting the low-carbon transition of all smallholder 
farmers.

Theoretical framework

Peer effects and the role of lead smallholder farmers 
in the low‑carbon transition

Rogers (2003) argued that “the heart of the diffusion process 
is the imitation by potential adopters of their near peers’ 
experiences”. Limited by household resources and access 
to technology information, smallholder farmers usually lag 
behind in the diffusion of agricultural technology. Accord-
ing to the theory of innovation diffusion, smallholder farm-
ers can be classified as the late majority or laggards. They 
may adopt a new technology only after most, if not all, of 
the surrounding farmers have adopted it. In other words, 
they have higher adoption thresholds (a larger number of 
other individuals who may influence an individual’s decision 
regarding technology adoption). Considering that innovators 
or early adopters account for only a very limited propor-
tion of all farmers, their experience is far from sufficient. 
Therefore, among smallholder farmers, the experience of 
relatively early adopters, namely, lead smallholder farmers 
whom we look for, is indispensable for smallholder farmers.

Moreover, the experience of lead smallholder farmers is 
more valuable for smallholder farmers. Peer effects can be 
divided into the information effect, experience effect and 
externality effect (Xiong and Xiao 2021). The information 
effect refers to the general information conveyed through 
social networks (Banerjee et al. 2013); the experience effect 
refers to the more detailed, accurate, and local experiences of 
earlier adopters (Conley and Udry 2010); and the externality 
effect refers to the pressure from peers’ technology adoption 
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(Katz et al. 1986). Among these three kinds of peer effects, 
only the experience effect can induce large-scale innovation 
diffusion (Xiong and Xiao 2021). The role of the experience 
effect is more prominent mainly because these experiences 
come from similar adopters, the same smallholder produc-
tion or the same agricultural environment; thus, these experi-
ences are more informative and practicable. Therefore, the 
experiences of lead smallholder farmers are indispensable 
and more valuable for smallholder farmers in the low-carbon 
transition.

Thus, identifying lead smallholder farmers and mak-
ing use of their peer effects are crucial for accelerating the 
low-carbon production transition of smallholder farmers. It 
is also necessary to explore the constraints faced by lead 
smallholder farmers to promote their transition as rapidly 
as possible.

Criterion for identifying lead smallholder farmers 
in the low‑carbon transition

Before we define lead smallholder farmers, we first need to 
define smallholder farmers. According to the official sta-
tistical standard from the third national agricultural census 
in 2016, if a farmer’s cultivated land area reaches 50 mu 
(1 mu = 0.067 ha) or more in a double-crop rice cultiva-
tion region, he/she will be considered a large-scale farmer; 
otherwise, he/she will be considered a smallholder farmer.

From the perspective of innovation diffusion, the main 
criterion for grouping adopters is the length of their inno-
vation decision period or the time sequence of adopting 
the innovation. However, due to limited resources, small-
holder farmers adopt only those technologies that match 
their resource endowments and ignore other technologies 
(Just and Zilberman 1988; Grabowski and Kerr 2014; Zheng 
et al. 2018). We define that as “resource-biased technology 
adoption”. Given this situation, the traditional criterion is 
no longer suitable. Therefore, a more comprehensive crite-
rion is needed to rectify the biased selection of smallholder 
farmers.

This study sets two indicators to identify lead smallholder 
farmers: one concerns the result of chemical fertilizer reduc-
tion, and the other concerns the adoption of divisible low-
carbon agricultural technologies. First, this study uses the 
utilization rate of chemical fertilizer as a proxy variable to 
measure the result of chemical fertilizer reduction. Different 
from previous studies, in this paper, the fertilizer utilization 
rate is estimated by the rice yield per 50 kg of chemical 
fertilizer. In such cases, the greater the rice yield is with 
the same chemical fertilizer inputs, the higher the fertilizer 
utilization rate and the more successful the low-carbon tran-
sition. Second, this study chooses four divisible low-carbon 
technologies (Szmedra et al. 1990; Dimara and Skuras 2003; 
Khaledi et al. 2010) to measure the differences in low-carbon 

agricultural technology adoption. These four technologies 
are organic fertilization, stalk shredding and plowing, inte-
grated pest management (IPM), and slow-release fertilizer. 
All these technologies are promoted as a chemical fertilizer 
reduction package: each technology has unique functions in 
terms of reducing chemical fertilizer and different require-
ments for smallholder farmers’ resource endowments. 
Therefore, they can be adopted independently. Moreover, 
these technologies are complementary in reducing chemical 
fertilizer, and therefore, they can also be adopted integrally. 
The higher the number of technologies adopted by a farmer 
is, the more obvious his/her preference for new technologies, 
the stronger his/her inner innovation spirit, and the greater 
the likelihood that he/she will be treated as a lead small-
holder farmer.

Behavioral determinants of lead smallholder 
farmers

According to the theory of innovation diffusion, the attrib-
utes of innovation, the personal characteristics of the deci-
sion-maker, and communication channels are the main deter-
minants in grouping adopters. Because we set a variety of 
technologies that can be selected independently, the attrib-
utes of technologies can be considered homogeneous for the 
sampled farmers. Therefore, in this paper, the behavioral 
determinants are mainly derived from the personal, eco-
nomic, and social characteristics of farmers, communica-
tion behaviors, and communication channels. The specific 
influencing factors mainly include the following:

Personal, economic, and social characteristics of farm-
ers. Earlier adopters usually have a higher level of literacy, 
a higher social status, and higher social mobility, and they 
are usually more open to risk taking. They also have enough 
financial resources to accept risk (Rogers 2003). Therefore, 
this paper selects educational level, the age of the head of 
household, and risk preferences to measure farmers’ per-
sonal characteristics, and it uses the land area and the degree 
of part-time employment of farmers to represent their eco-
nomic and social status.

Communication behavior and communication channels. 
According to the theory of innovation diffusion, earlier 
adopters have a wider range of social relationships and have 
more access to external and general information than late 
adopters. External and general information can change adop-
ters’ perceptions and have a greater impact on early adopters 
(Rogers 2003; Chen et al. 2019). Additionally, interpersonal 
channels (social networks, especially peer interactions) can 
change adopters’ attitudes through two-way communication 
and persuasion, and they can have a more profound impact 
on late adopters and laggards. This paper chooses govern-
ment technical training to measure the difference in access 
to external and general information. Considering that social 

27835Environmental Science and Pollution Research (2023) 30:27833–27845



1 3

networks have a “stronger and more direct impact” on small-
holder farmers (Holloway et al. 2002; Krishnan and Patnam 
2014), we select social networks to represent the difference 
in interpersonal channels. The effect of social networks is 
closely related to the size of social networks and the position 
of individuals in social networks (Bandiera and Rasul 2006; 
Zhu 2016; Yin et al. 2019). Therefore, this paper measures 
the social network size and the social network centrality 
of smallholder farmers using the number of villagers with 
whom they frequently keep in touch and whether they have 
served as village cadres, respectively.

Data and methods

Study region

Rice cultivation is an important source of greenhouse 
gases such as methane and N2O. The region for single- and 
double-crop rice in Central China accounts for approxi-
mately 59% of the country’s total rice cultivation area. As 
a typical rice production area for single- and double-crop 
rice in Central China, the Hangjiahu Plain is located in 
the southern Taihu Basin in the northern part of Zhejiang 
Province. It is the largest plain in Zhejiang Province and 

has a total area of approximately 7620 km2, covering all 
of Jiaxing, most of Huzhou and the north-eastern part of 
Hangzhou (Fig. 1).

We select the Hangjiahu Plain as the study region for two 
main reasons. First, Zhejiang is a pilot area for low-carbon 
agriculture in China, with sufficient sample smallholder 
farmers transitioning to low-carbon agriculture. As early as 
2013, Zhejiang Province started the “water resource treat-
ment” project and the “action to reduce chemical fertilizer” 
to promote the green and low-carbon transition of agricul-
ture. An almost 10-year low-carbon technology diffusion 
period provides a completer and more accurate picture of the 
differences in adoption among smallholder farmers. Second, 
smallholder production is still dominant in the Hangjiahu 
Plain. Zhejiang Province is one of the provinces with the 
least arable land per capita in China. The third national land 
resource survey in 2019 revealed that the arable land per 
capita in Zhejiang Province was only 0.3 mu, much lower 
than the national average (1.36 mu). The average proportion 
of smallholder farmers in Jiaxing, Huzhou, and Hangzhou 
is 98%, basically the same as the nationwide proportion 
(98.08%). Therefore, the samples in the Hangjiahu Plain 
can reflect the differentiation of smallholder farmers in the 
low-carbon transition and to facilitate the identification of 
lead smallholder farmers.

Fig. 1   Study region
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Data collection

A total of 643 smallholder farmers from eight coun-
ties were selected through multistage cluster sampling 
in 2020. First, out of 11 major grain-producing coun-
ties in Zhejiang, 6 counties were randomly selected in 
the Hangjiahu Plain (including 1 county in Hangzhou, 
3 counties in Jiaxing, and 2 counties in Huzhou) and 2 
counties in surrounding areas (Fuyang and Xiaoshan in 
Hangzhou). Second, in each selected county, 1 town with 
provincial green agricultural demonstration projects and 
1–2 towns without demonstration projects were selected 
from the list of the main rice-growing villages provided 
by the county agricultural bureau. Third, approximately 
15–20 households were randomly selected from the list 
of households provided by the village cadre. A total of 
824 questionnaires were collected, including 643 ques-
tionnaires for smallholder farmers with land scales less 
than 50 mu.

The questionnaire covered five main aspects: the per-
sonal, economic, and social characteristics of farmers; the 
social networks of farmers; the costs and benefits of rice 
planting; the adoption of low-carbon agricultural technolo-
gies; and agricultural producer services and government 
support. The investigators were mainly undergraduates from 
Zhejiang University, Huzhou Normal University, and Jiax-
ing College. Before the survey, the questionnaire designer 
provided special training to the investigators to ensure that 
each investigator understood the meaning and purpose of 
each question.

Methods

Finite mixture model

We use an FMM to estimate the heterogeneity of small-
holder farmers in the low-carbon transition. As an appli-
cation of latent class regression models, FMMs have two 
unique features. First, the observed conditional distribu-
tion of the production function in our research is assumed 
to be a mixture of two or more distributions with dif-
ferent means and variances, and the parameters of the 
production function are allowed to differ across groups 
(Owen et al. 2009). This feature can help us target lead 
small farmers and capture the differences between them 
and other smallholder farmers. Second, the number of 
groups within smallholder farmers and which group one 
sample farmer belongs to are endogenously determined, 
and posterior probability can be calculated (Kasahara and 
Shimotsu 2009; Konte 2013). This feature facilitates the 
explanation of the sources of systematic heterogeneity 
by the QRM.

We first construct a production function. The dependent 
variable is the rice yield per 50 kg of chemical fertilizer, and 
the independent variables are other inputs for rice produc-
tion, including the seedling cost, pesticide cost, machinery 
cost, labor, and land input; the adoptions of the four divisible 
technologies are covariates. Notably, unlike the general pro-
duction function, which uses the total yield or yield per mu 
as the output, the rice yield per 50 kg of chemical fertilizer 
is used as the output variable to directly show the difference 
in the utilization efficiency of chemical fertilizer. A higher 
output means a larger rice yield per 50 kg of chemical fer-
tilizer and, thus, higher chemical fertilizer use efficiency.

Specifically, we assume that the production function can 
be classified into K discrete classes. That is, smallholder 
farmers can be divided into K groups based on the difference 
in the low-carbon transition. The basic form of the FMM is 
as follows:

where f (
(
Y|X, �k

)
 is the conditional probability density 

of sample Y falling into latent class K due to unobservable 
heterogeneity; X is a vector of the independent variables (all 
kinds of inputs); �k is a parameter to be estimated; and �k 
is the mixing ratio, which is also known as the weight cor-
responding to each subdensity fk(X) and satisfies 

∑
�k = 1.

The probability distribution, which reflects the input–out-
put relationship, can be explained by the covariates (the 
adoptions of the four divisible technologies). For example, 
if the sample can be divided into two classes, then its distri-
bution function can be expressed as follows:

The estimated posterior probability of each sample farmer 
falling into the jth class, j = (I,K) , is calculated by Eq. (3), 
and PIandPK are the posterior probabilities of the sample 
falling into two latent classes, I and K, respectively.

Quantile regression model

To explore the behavioral determinants of lead smallholder 
farmers in the low-carbon transition, a QRM is established. 
The probability that a farmer is a lead smallholder farmer 
(i.e., the probability of the sampled farmers falling into the 
lead smallholder farmers group, which is estimated using 
Eq. (3)) is the dependent variable. In the QRM, the inde-
pendent variables mainly include the personal, economic 

(1)

f (Y|X, �) =
K∑

k=1

�kf (
(
Y|X, �k

)
= �1f1(X) + �2f2(X) +⋯ + �kfk(X)

(2)f (Y|X, �) = �HfH(X) + �LfL(X)

(3)P(j|X, Y) =
�jfj

(
Y|X, �j

)

�HfH
(
Y|X, �H

)
+ �LfL

(
Y|X, �L

)
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and social characteristics of a farmer (attitude towards risk, 
educational level, age, land area, and part-time employ-
ment), communication behaviors and communication chan-
nels (number of technical training sessions received by the 
interviewed farmer per year and social networks). In addi-
tion, drawing on existing studies on resource-biased tech-
nology selection, we introduce labor quantity and whether 
producer service organizations exist as control variables.

The advantages of the QRM are that, first, it describes 
the overall conditional distribution of the independent 
variables and demonstrates the differences in influenc-
ing factors at different quantiles (Koenker and Hallock 
2001). By comparing the differences in the influencing 
factors of lead smallholder farmers and laggards, we can 
explore the key reasons for this differentiation in the low-
carbon transition and what drives lead smallholder farm-
ers. In addition, QRMs are less susceptible to extreme 
values and lead to more robust regression results than do 
least squares methods (Yu et al. 2003; Koenker 2017). 
The QRM for the above differentiation in the low-carbon 
transition is as follows:

where Yi,q is the probability of the ith farmer falling 
into the lead smallholder group; q is the quantile; Xij,q is 
the personal, economic and social characteristic variables 
and communication behavior and communication channel 
variables; Zik,q is a series of control variables; �j,qand�k,q are 

(4)Yi,q =

n∑

j=1

�

j,q

Xij,q +

n∑

k=1

�

k,q

Zik,q + �i,q

the regression coefficients of the corresponding variables at 
quantile q; and �i,q is the random error term at quantile q.

Descriptive statistics

As the descriptive statistical analysis shows (Table 1), 
the mean rice yield per 50 kg of chemical fertilizer is 
766.9 kg, but the standard deviation reaches 429.76 kg, 
indicating substantial variation in the sample. Among 
the four low-carbon agricultural technologies, the mean 
amount of organic fertilizer used (including commercial 
and self-cultivated organic fertilizer) is approximately 
233.3 kg, and the mean adoption rates of stalk shredding 
and plowing, IPM, and slow-release fertilizer are 65.94%, 
44.42%, and 26.91%, respectively.

The sample smallholder farmers can be characterized 
by a low educational level, age, and risk aversion. There 
are approximately two laborers with a high level of part-
time employment, and the proportion of nonfarm income 
in household income exceeds 60%. Constrained by family 
resources, the mean land area is only 6.47 mu, which is far 
less than 50 mu and very scattered. Farmers have received 
fewer than two training sessions on eco-friendly technol-
ogy, indicating that smallholder farmers face limitations 
in acquiring external technological knowledge. In terms 
of social networks (Table 2), the number of villagers with 
whom smallholder farmers maintain regular contact is 
approximately seven, and 8% of the farmers have served 
as village cadres. Moreover, the coverage rate of green 
producer service organizations exceeds 70%.

Table 1   Variables in the FMM and the descriptive statistics

(a) For example, the chemical fertilizer input is 40 kg per mu; the seedling cost, pesticide cost, machinery cost, labour input, and land input 
are 8 yuan, 40 yuan, 60 yuan, 12 days, and 1 mu, respectively; and the yield is 500 kg. Thus, the rice yield per 50 kg of chemical fertilizer is 
500 × 50/40 = 625 kg, the seedling cost converted by yield is 8 × 625/500 = 10 yuan, the pesticide cost converted by yield is 40 × 625/500 = 50 
yuan, the machinery cost converted by yield is 60 × 625/500 = 75 yuan, the labour input converted by yield is 12 × 625/500 = 15 days, and the 
land input converted by yield is 1 × 625/500 = 1.25 mu
(b) Among the input variables, the machinery input is 0 since smallholder farmers are likely to rely entirely on their own labour for production 
operations. Referring to Battese’s method of adding dummy variables (Battese, 2010), we set the machinery input to 0 to ensure the unbiased 
estimation of the production function

Name Definition Mean St. Dev

Dependent variable Rice yield Rice yield per 50 kg of chemical fertilizer (kg) 766.8967 429.7609
Independent variables Seedling cost Seedling input converted by yield (yuan)a 3.0012 2.6027

Pesticide cost Pesticide input converted by yield (yuan) 103.9150 66.3561
Machinery cost Machinery input converted by yield (yuan)b 150.4736 138.2094
Labor input Labor input converted by yield (days) 3.9847 3.8924
Land input Land input converted by yield (mu) 1.5714 0.7298

Covariates Organic fertilization Amount of organic fertilizer converted by yield (kg) 233.3026 217.6446
Stalk shredding and plowing Whether it is adopted: yes = 1, no = 0 0.6594 0.4743
IPM Whether it is adopted: yes = 1, no = 0 0.4442 0.4576
Slow-release fertilizer Whether it is adopted: yes = 1, no = 0 0.2691 0.4438
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Results

Results of identifying lead smallholder farmers

First, the optimal number of groups is determined based on 
the Akaike information criterion (AIC) and Bayesian infor-
mation criterion (BIC):

where k is the number of model parameters, L is the like-
lihood function, and n in Eq. (6) is the sample size.

The results show that minimum values of both the AIC 
and BIC are obtained when the number of classes is 3 
(Table 3), indicating that the sampled farmers in the green 
transition can be divided into three classes based on unob-
servable heterogeneity.

Based on the posterior probabilities and estimated mar-
ginal mean of the latent classes (Table 4), the probabilities 
of a sample falling into subclasses 1, 2, and 3 are 16.17%, 
44.98%, and 38.85%, respectively. There are significant dif-
ferences in the utilization efficiency of chemical fertilizer 
among the three groups, with mean yields of 681.24 kg, 
625.03  kg, and 891.01  kg for subclasses 1, 2, and 3, 
respectively. Regarding the differences in the adoption of 

(5)AIC = 2k − 2ln(L)

(6)BIC = kln(n) − 2ln(L)

low-carbon agricultural technologies, the analysis of vari-
ance (Table 5) shows significant differences in all technolo-
gies, except for stalk shredding and plowing. Additionally, 
the Bonferroni test (Table 6) shows that the adoption rates 
of organic fertilization, IPM, and slow-release fertilizer in 
subclass 3 are significantly higher than those in the other two 
subclasses and that the adoption rate of IPM is significantly 
higher in subclass 2 than in subclass 1.

With a higher utilization efficiency of chemical ferti-
lizer and a higher adoption rate of low-carbon agricultural 
technologies, farmers in subclass 3 are the lead smallholder 
farmers in low-carbon agriculture. Farmers in subclasses 1 
and 2 correspond to “survival-oriented smallholder farmers” 
and “production-oriented smallholder farmers”, respectively 
(Zhang 2020). Although the farmers in subclass 1 have a 
higher utilization efficiency of chemical fertilizer than do 
those in subclass 2, these farmers have the lowest adoption 
rate of low-carbon technologies, indicating that they inten-
tionally control chemical fertilizer inputs and increase free 
family labor input to reduce their input costs. This finding is 
in line with the characteristics of survival-oriented farmers, 

Table 2   Variables in the QRM and the descriptive statistics

Variable Definition Mean St. Dev

Dependent variable Probability that farmers 
are lead farmers

Probability that farmers are lead farmers (%) 0.3343 0.3711

Independent variables Risk attitude Risk preference = 1; risk neutral/risk aversion = 0 0.3421 0.4748
Educational level Educational level of the head of household: primary school or below = 1; 

junior school = 2; high school = 3; above high school = 4
1.9238 0.8440

Age Age of the head of household (years) 51.6791 8.9015
Land area Operational land area of rice (mu) 6.4688 10.9897
Part-time employment Proportion of nonfarm income of total income (%) 60.6540 26.4389
Technical training Number of technical trainings received by the interviewed farmers per 

year
1.9907 1.0937

Social network size Number of villagers who frequently keep in touch (people) 7.0467 3.9254
Social network centrality Whether acquaintances have served as village cadres: yes = 1; no = 0 0.0793 0.2704

Control variables Labor quantity Number of family laborers (people) 2.1415 0.9223
Producer services Whether there are producer service organizations: yes = 1; no = 0 0.7045 0.4566

Table 3   Results of the AIC and BIC tests

Classes DF AIC BIC

1 9 8,591.389 8,631.213
2 23 8,444.714 8,551.991
3 31 8,414.82 8,546.486

Table 4   Posterior probabilities of samples falling into the latent 
classes and the estimated marginal means

Classes Posterior prob-
abilities of samples 
falling into the latent 
classes

Estimated marginal means of the 
latent classes

Margin Delta 
method 
Std. Err

Margin Delta 
method 
Std. Err

Z value

Subclass 1 0.1617 0.0297 681.2391 8.9447 76.1600
Subclass 2 0.4498 0.0465 625.0278 17.8897 34.9400
Subclass 3 0.3885 0.0420 891.0142 20.9521 42.5300
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whose primary goal is to reduce their cost of living. In con-
trast, farmers in subclass 2 have higher chemical fertilizer 
inputs and adopt IPM to reduce labor inputs, ensuring that 
enough labor can be transferred to non-agricultural busi-
nesses with higher returns and maximizing total household 
income. In such cases, the farmers in subclass 2 exhibit the 
characteristics of production-oriented farmers.

In terms of personal characteristics, lead smallholder 
farmers are younger and more open to risk, and they also 
have higher educational levels and more family laborers. 
As shown in Table 7, there are significant differences in per-
sonal, economic, and social characteristics among the three 
groups of smallholder farmers, but there are no significant 
differences in communication behavior and communica-
tion channels. Compared with the other two groups, lead 
smallholder farmers are younger and better educated, which 
empowers them and makes them more capable of learning 
new technologies. Lead smallholder farmers are more open 
to risk, and they are more willing to embrace new low-car-
bon technologies. Meanwhile, more laborers help to ease the 
constraints imposed by labor-intensive technology. However, 
there is no significant difference in the land area, part-time 

employment, social networks (size and centrality), and tech-
nical training among the three groups, indicating that the 
sample smallholders are homogeneous in their production 
mode and communication channels.

Behavioral determinants of lead smallholder 
farmers

After combining the posterior probability and probability 
distribution of the sampled lead farmers, we select the 25% 
(posterior probability is 5.5%, referred to as “laggards”) and 
75% (posterior probability is 80.2%, referred to as “lead 
smallholder farmers”) quantiles to identify the factors driv-
ing lead smallholder farmers. To test the robustness of the 
estimation results, we add the 50% quantile (posterior prob-
ability is 18.49%) for comparison.

The quantile regression results show that social network 
size, technical training, labor quantity, and producer services 
have a significant influence on lead smallholder farmers 
(Q75 in Table 8). However, only social network size and pro-
ducer services have a significant influence on both quantiles. 

Table 5   Adoption of low-carbon agricultural technologies by the three groups

***, **, and * Significance at the 1%, 5%, and 10% levels, respectively

Subclass 1 Subclass 2 Subclass 3 St. Dev

Samples Mean Samples Mean Samples Mean F value P value

Organic fertilizer 104 294.8481 289 436.3551 250 620.8015 6.60 0.0015***

Stalk shredding and plowing 104 0.6216 289 0.6703 250 0.6712 0.61 0.5438
IPM 104 0.1149 289 0.3743 250 0.7548 128.54 0.0000***

Slow-release fertilizer 104 0.0608 289 0.1341 250 0.58 111.20 0.0000***

Table 6   Bonferroni test of technology adoption

***, **, * Significance at the 1%, 5% and 10% levels, respectively

Organic fertilizer Stalk shredding and plow-
ing

IPM Slow-release fertilizer

Difference Sig Difference Sig Difference Sig Difference Sig

Subclasses 1 and 2 222.3640 0.3240 0.0487 0.9440 0.2594 0.0000*** 0.0732 0.1830
Subclasses 1 and 3 512.2030 0.0010*** 0.0496 0.9790 0.6399 0.0000*** 0.5191 0.0000***

Subclasses 2 and 3 289.8390 0.0550* 0.0009 1.0000 0.3805 0.0000*** 0.4459 0.0000***

Table 7   Bonferroni test of the characteristics among the three groups

***, **, and * Significance at the 1%, 5%, and 10% levels, respectively

Risk attitude Educational level Age Labor quantity
Difference Difference Difference Difference

Lead smallholder farmers Survival-oriented smallholder farmers 0.122* 0.278*  − 2.32* 0.334*

Production-oriented smallholder farmers 0.112* 0.199*  − 1.56 0.214*
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This result contrast highlights the unique influencing factors 
of lead smallholder farmers.

The impact of social network size on lead smallholder 
farmers is positive and significant at the 1% level, while 
the impact on laggards is negative and significant at the 1% 
level. This significant impact of social network size on the 
two groups confirms the importance of social networks for 
smallholder farmers’ technology adoption and low-carbon 
transition. Since smallholder farmers often lack the neces-
sary capacity and knowledge to cope with the uncertainty 
brought by new technology (Banerjee et al. 2018), they 
need one-on-one or face-to-face communication with peers 
to obtain local information and to make further decisions. 
However, the size of social networks has opposite impacts 
on these two groups: larger social networks promote the 
low-carbon transition of lead smallholder farmers but trig-
ger the technological lock-in of laggards. The reason for 
this phenomenon is that in the face of the potential uncer-
tainty of new technology, lead farmers not only can achieve 
social learning and obtain mutual assistance in their social 
networks but also have an urgent need for heterogeneous 
information, such as technical training. Lead farmers can 
combine general knowledge acquired externally with local 
knowledge acquired through their social networks, thereby 
overcoming the over-embeddedness effect caused by homo-
geneous communication (Wagner et al. 2016). In contrast, 
laggards prefer to trust their own experience or the infor-
mation conveyed by their social networks. Especially when 
external information is inconsistent with their knowledge, 
selective perception occurs, which leads to a very limited 
impact of external information on the technology adoption 
of laggards (Flor et al. 2020). The expansion of their social 

networks also allows laggards to observe more cases of fail-
ure, which solidifies their resistance to new technologies and 
leads to technological lock-in (Bandiera and Rasul 2006; Ma 
et al. 2018).

Technical training promotes lead smallholder farmers’ 
low-carbon transition, but its effect on laggards is not sig-
nificant. The different impacts of technical training confirm 
that lead smallholder farmers use heterogeneous information 
more efficiently than do laggards. Lead smallholder farmers 
can obtain and use more heterogeneous information through 
technical training to reduce technological uncertainty. More-
over, the nonsignificant impact of technical training on lag-
gards also highlights the insufficiency of China’s current 
public agricultural technology extension. With the dramatic 
change in the agricultural technology extension system after 
2000, public agricultural technology extension has been una-
ble to meet the diversified technical needs of farmers. Hence, 
numerous smallholder farmers with more fragmented tech-
nology demands are marginalized (Zhou 2017; Sun 2021).

Labor quantity has a positive impact on lead smallholder 
farmers, indicating that farmer households with a larger 
labor force are more willing to take the lead in the low-
carbon transition. Because the four low-carbon agricultural 
technologies include labor-intensive technologies, the more 
abundant the household labor resources are, the weaker the 
labor constraints that are faced, thus promoting technology 
adoption. However, laggards with a large labor quantity do 
not adopt more technologies. Although they have the ability 
to use low-carbon agricultural technologies, laggards usually 
lack the motivation to update their technology. This point is 
verified in the estimation results of the impact of risk attitude 
on laggards.

Table 8   Quantile regression results

(a) Although the probabilities here are different from the group probabilities in the FMM, the farmers below the 25% quantile are the least inno-
vative group in the sample. Thus, they are referred to as “laggards” in this study. Similarly, the farmers above the 75% quantile are the most inno-
vative group in the sample (all belonging to the lead farmer group) and are therefore referred to as “lead farmers”
(b) ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively

Variables Laggards (Q25) Q50 Lead farmers (Q75)

Coefficient St. Dev T value Coefficient St. Dev T value Coefficient St. Dev T value

Risk attitude 0.0170* 0.0090 1.9000 0.1137** 0.0488 2.33 0.1185 0.0730 1.6200
Educational level 0.0042 0.0048 0.8800 0.056 0.02 2.76 0.0559 0.0393 1.4200
Age  − 0.0003 0.0004  − 0.6900  − 0.0029 0.0025  − 1.18  − 0.0043 0.0039  − 1.1000
Land area 0.0005 0.0015 0.3100 0.0037* 0.0019 1.96 0.0010 0.0021 0.4600
Part-time employment 0.0002* 0.0001 1.6900 0.001 0.0007 1.35 0.0013 0.0012 1.0200
Technical training 0.0051 0.0033 1.5300 0.0288 0.0201 1.43 0.0666** 0.0261 2.5500
Social network size  − 0.0016*** 0.0005  − 2.9600  − 0.0016 0.0064  − 0.25 0.0147** 0.0062 2.3600
Social network centrality  − 0.0058 0.0159  − 0.3600  − 0.0658 0.0704  − 0.93  − 0.1390 0.0913 -1.5200
Labour quantity 0.0061 0.0060 1.0200 0.0411 0.0318 1.29 0.0867*** 0.0261 3.3200
Producer services 0.0127* 0.0067 1.9000 0.1102*** 0.039 2.82 0.3202*** 0.1163 2.7500
Constant 0.0084 0.0264 0.3200  − 0.0327 0.1444  − 0.23  − 0.0521 0.2445  − 0.2100
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The driving effect of agricultural producer services on lead 
smallholder farmers and laggards is significant at the 1% and 
10% levels, respectively. For smallholder farmers, compared 
with technical training, producer services can alleviate the con-
straints of household resource endowments, lower the uncer-
tainty of technology adoption (Sun and Liu 2019), and thus help 
promote the low-carbon transition of all smallholder farmers.

The part-time employment level has a positive and signifi-
cant impact only on laggards at the 10% level, indicating that 
the investment effect of nonfarm income on laggards is greater 
than the crowding-out effect. Since most laggards are old 
farmers with low household incomes, the role of agriculture 
in reducing the cost of living is crucial for this group (Li and 
Gao 2013; Zhang 2020). Therefore, farmers with high levels of 
part-time employment have an incentive to update their technol-
ogy to achieve efficient and cost-effective farming. Although 
nonsignificant, educational level and land area have positive 
impacts, while age has a negative impact, mainly because the 
sampled farmers generally have the common characteristics of 
a small land size, old age, and a low educational level, and the 
differences in these traits between the sampled farmers are not 
significant. Social network centrality, i.e., having served as vil-
lage cadres, has a negative but nonsignificant impact. Village 
cadres are at the central node of the social networks in a village, 
and this position can theoretically provide more information 
and resources for the transition. However, with village cadres 
becoming “full time”, they gradually detach from agricultural 
production (Yin 2017; Du 2020). Therefore, they tend not to 
apply the resources brought by centrality to agricultural produc-
tion, leading to negative and limited effects on green technology 
adoption and the green transition.

The estimation result of the 50% quantile (Q50 in Table 8) 
verifies the robustness of the conclusions above. Compared 
with laggards (Q25), the effect of social network size is still 
negative but no longer significant; however, the coefficient of 
technical training becomes larger. These results indicate that 
the sampled smallholder farmers at the 50% quantile give 
more weight to heterogeneous information, thus avoiding 
the over-embeddedness caused by homogeneous commu-
nication to some extent. However, the nonsignificant effect 
of technical training indicates that these farmers are still 
underutilizing heterogeneous information compared to lead 
smallholder farmers. Regarding agricultural producer ser-
vices, their effect remains significant.

Robustness tests

We first use a different model to test the robustness of the 
behavioral differences between laggards and lead farm-
ers. Based on the grouping results of the FMM and the 
posterior probability that a farmer is classified as a lead 
smallholder farmer, we define farmers with a posterior 
probability of more than 50% as lead smallholder farmers 

(receives the value of 1 and 0 otherwise). A logit model 
is used to analyze the behavioral influences of lead small-
holder farmers. The regression results (Table 9) show 
that both social network size and technical training have 
a positive impact, although the former is nonsignificant. 
The previous conclusion that a higher use efficiency of 
heterogeneous information is the key to differentiating 
lead smallholder farmers from other smallholder farmers 
is supported.

Next, we exclude some special samples to test the robust-
ness of the results again. We remove the following samples: 
first, farmers whose sales ratio is less than 50%; and, second, 
farmers older than 65 years old and with a land area of less 
than or equal to 1 mu. The main reason we drop these sam-
ples is that they pay less attention to new technologies and 
lack sufficient cognitive and practical abilities to adopt new 
technologies. Based on these criteria, 95 households were 
excluded. From the results of the robustness test (Table 10), 
there is still a difference in the utilization efficiency of het-
erogeneous information between the two groups of farmers: 
the impact of social network size on laggards (Q25) is nega-
tive, but the impact on lead farmers (Q75) is positive. The 
impact of technical training on laggards is nonsignificant, but 
its impact on leaders is significant. The former result confirms 
that expanding the size of social networks will promote the 
low-carbon transformation of lead smallholder farmers but 
cause the technological lock-in of laggards. The latter result 
verifies the importance of heterogeneous information for lead 
smallholder farmers.

Conclusions

In developing countries, accelerating the low-carbon tran-
sition of smallholder farmers is important and challeng-
ing. Constrained by household resource endowments and 

Table 9   Robustness test by logit regression

***, **, * Significance at the 1%, 5%, and 10% levels, respectively

Variables Coefficient St. Dev Z value

Risk attitude 0.2830 0.1862 1.5200
Educational level 0.2033* 0.1141 1.7800
Age  − 0.0073 0.0107  − 0.6800
Land area 0.0104 0.0079 1.3200
Part-time employment 0.0083** 0.0036 2.2800
Technical training 0.1934** 0.0818 2.3600
Social network size 0.0348 0.0221 1.5800
Social network centrality  − 0.6114* 0.3537  − 1.7300
Labour quantity 0.2252** 0.0975 2.3100
Producer services 0.8281*** 0.2118 3.9100
Constant  − 3.1591*** 0.7612  − 4.1500
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difficulties in accessing information and services, small-
holder farmers are often in a disadvantaged position in the 
low-carbon transition. Therefore, it is crucial to identify 
lead smallholder farmers and use their information sharing, 
interactive learning, and mutual assistance to accelerate the 
transition of laggards.

Based on survey data from 643 rice farmers in Zhejiang 
Province, this study sets a comprehensive criterion and con-
structs a production function using an FMM to target lead 
small farmers. We also analyze the factors that influence 
group differentiation with a QRM to identify the driving 
factors of being lead smallholder farmers. The main findings 
are as follows.

First, the FMM results show that there is a clear differ-
entiation in the low-carbon transition of the sampled small-
holder farmers. The sampled farmers can be divided into 
lead smallholder farmers, survival-oriented smallholder 
farmers and production-oriented smallholder farmers. Lead 
farmers account for 38.85% of the sampled smallholder 
farmers. They have a higher utilization efficiency of chemi-
cal fertilizer and a higher adoption rate of four divisible low-
carbon agricultural technologies. Although homogeneous in 
their production mode and communication channels, lead 
smallholder farmers are younger and more open to risk, and 
they also have higher educational levels and more family 
laborers.

Second, a higher use efficiency of heterogeneous 
information is the key to differentiating lead smallholder 
farmers from other smallholder farmers. Lead small-
holder farmers can integrate general knowledge acquired 
externally (such as technical training) with localized 
knowledge acquired through social networks to achieve 
a higher use efficiency of heterogeneous information. In 
contrast, laggards rely excessively on information con-
veyed by their social networks. Therefore, expanding the 
size of social networks can promote the green technology 
adoption of lead farmers but can lead to technological 

lock-in for laggards. This conclusion also provides a 
new explanation for the ambiguous relationship between 
social networks and technology adoption.

Third, public agricultural technology extension pro-
motes the low-carbon transition of only lead smallholder 
farmers, but green producer services can effectively alle-
viate resource constraints and contribute to the green 
transition of all smallholder farmers. The heterogeneous 
impacts of technical training highlight the insufficiency 
of China’s public agricultural technology extension and 
the necessity of social learning in low-carbon technology 
extension. The influence of labor quantity and agricul-
tural producer services also proves that limited resources 
are the main obstacles to the low-carbon transition of 
smallholder farmers.

To alleviate lead smallholder farmers’ resource con-
straints and maximize their peer effects in low-carbon 
agricultural technology diffusion, the government should 
provide more targeted support and incentives for them. 
First, the coverage of subsidy policies for low-carbon agri-
cultural technology should be extended to lead smallholder 
farmers rather than new agricultural business entities as 
in the past. In addition to subsidies for low-carbon agri-
cultural inputs, the government should add subsidies for 
information access, such as free broadband hardware or 
free mobile phone data, to meet lead smallholder farmers’ 
needs for external information. Second, the government 
should provide material or moral incentives to lead small-
holder farmers based on technology extension. Third, it 
is necessary to promote the development of low-carbon 
agricultural producer service organizations, for example, 
by increasing subsidies for green production-related equip-
ment and green inputs. At the same time, it is also nec-
essary to integrate the scattered demands of smallholder 
farmers through government purchases to truly lower the 
adoption thresholds of farmers and the implementation 
costs of low-carbon technology.

Table 10   Robustness test by 
dropping 95 samples

Variables Laggards (Q25) Lead farmers (Q75)

Coefficient St. Dev T value Coefficient St. Dev T value

Risk attitude  − 0.0013** 0.0006  − 2.0200 0.0173** 0.0072 2.4000
Educational level  − 0.0223 0.0207  − 1.0800  − 0.1707 0.1288  − 1.3300
Age 0.0018 0.0044 0.4100 0.1005* 0.0491 2.0500
Land area  − 0.0002 0.0004  − 0.4300  − 0.0019 0.0041  − 0.4600
Part-time employment 0.0071 0.0052 1.3600 0.0878*** 0.0294 2.9900
Technical training 0.0002* 0.0001 1.8500 0.0019 0.0013 1.4300
Social network size 0.0005 0.0020 0.2600 0.0010 0.0016 0.6200
Social network centrality 0.0175** 0.0072 2.4200 0.1201 0.0750 1.6000
Labor quantity 0.0028 0.0027 1.0600 0.0845*** 0.0237 3.5600
Producer services 0.0112 0.0073 1.5300 0.3042*** 0.0773 3.9300
Constant 0.0056 0.0255 0.2200  − 0.3818 0.2587  − 1.4800
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