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Abstract
Silver nanoparticles (AgNPs) are applied in diverse industries due to their biocide and physicochemical properties; there-
fore, they can be released into aquatic systems, interact with environmental factors, and ultimately exert adverse effects 
on the biota. We analyzed AgNPs effects on Ceriodaphnia reticulata (Cladocera) through mortality and life-history traits, 
considering the influence of food (Tetradesmus obliquus, Chlorophyceae) presence and concentration. C. reticulata was 
exposed to AgNPs in acute (absence and two algae concentrations plus five AgNPs treatments) and chronic assays (two 
algae concentrations plus three AgNPs treatments). AgNPs did not affect algae flocculation but increased  Ag+ release, being 
these ions less toxic than AgNPs (as proved by the exposure to  AgNO3). A reduction in AgNPs acute toxicity was observed 
when algae concentration increased. Acute AgNP exposure decreased C. reticulata body size and heart rate. The chronic 
AgNP exposure reduced C. reticulata molt number, growth, heart rate, and neonate size:number ratio, being these effects 
mitigated at the highest algae concentration. Increases in relative size and number of neonates were observed in AgNP treat-
ments suggesting energy trade off. The increased  Ag+ release with food presence suggests that the AgNP-algae interaction 
might be responsible of the decreased toxicity. Although algae reduced AgNP toxicity, they still exerted adverse effects on 
C. reticulata below predicted environmental concentrations. Since algae presence reduces AgNP effects but increases  Ag+ 
release, studies should be continued to provide evidence on their toxicity to other organisms.
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Introduction

The nanotechnology industry is constantly increasing and 
diversifying due to its wide potential applications (Jeevanan-
dam et al. 2018; Turan et al. 2019). Silver nanomaterials are 
one of the most produced due to their biocide capacity and 
physicochemical properties such as electrical and thermal 
conductivity, catalytic activity, and surface plasmon reso-
nance (Jones et al. 2018; Ahmad et al. 2020; Corsi et al. 
2022). Currently, more than 50% of the commercial products 
inventoried by the Woodrow Wilson Project on Emerging 
Nanotechnologies contain silver nanoparticles (AgNPs) 
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(http:// www. nanot echpr oject. org/). AgNPs are applied in 
several fields such as medicine, cosmetics, food industry, 
electrical and optical devices, catalysis, textiles, paints, agri-
culture, and water treatment (Antezana et al. 2021; Islam 
et al. 2021; Municoy et al. 2021; Zahoor et al. 2021). The 
extensive application of AgNPs inevitably leads to their 
release into aquatic environments making it a rising issue 
of concern for eco-toxicologists (Bour et al. 2015; Skjold-
ing et al. 2016; Zhang et al. 2019; Devasena et al. 2022). 
Although quantification methods for nanoparticles in the 
environment are still limited, AgNPs are expected to reach 
about 8.8 ×  10–5 – 10 μg/L on surface water (Nowack and 
Mueller 2008; Gottschalk et al. 2013; Maurer-Jones et al. 
2013).

AgNPs released in aquatic systems could affect aquatic 
microorganisms such as zooplankton in different ways (Baun 
et al. 2008; Gutierrez et al. 2021). This community plays a 
key role as is a direct link between primary producers and 
consumers and contributes to organic matter and nutrient 
cycling (Mano and Tanaka 2016). Within zooplankters, 
micro-crustaceans are particularly sensitive to environmen-
tal disturbances as they have small size and short genera-
tion times (Resh 2008; Ferdous and Muktadir 2009). AgNPs 
have been shown to impair freshwater cladoceran survival, 
growth, and reproduction in a wide range of concentrations 
from 1 to > 100 µg/L (Gaiser et al. 2011; Völker et al. 2013; 
Ribeiro et al. 2014). These effects are usually attributed to 
the “Trojan horse” mechanism as  Ag+ released by AgNPs 
into organism cells cause oxidative stress as reviewed by de 
Souza et al. 2019, who pointed out the need for developing 
new AgNPs considering their toxicity and environmental 
behavior. Nevertheless, these studies mainly focus on Daph-
nia magna, which do not represent neither the different func-
tional groups of micro-crustaceans (copepods and cladocer-
ans) nor holotropic region scenarios (Gutierrez et al. 2021). 
In this sense, there is a gap of knowledge as model test 
species are usually holarctic and little is known about spe-
cies representatives from other regions. Particularly, Cerio-
daphnia reticulata (Jurine) is a planktonic Daphniidae that 
was recorded in Palearctic, Nearctic, Neotropical, Oriental-
Indomalaya, and Afrotropical regions (Kotov and Forró 
2019). It inhabits large streams, reservoirs, and lakes and is 
easily grown under laboratory conditions. It has a short life 
cycle that allows completing a three-brood life cycle test in 
seven days (Mount and Norberg 1984). Toxicity tests of dif-
ferent compounds have been reported for C. reticulata (e.g., 
Jaser et al. 2003; Mangas-Ramirez et al. 2007; Mano et al. 
2010); nevertheless, the effects of nanomaterials have not 
been previously evaluated for this species. In this scenario, 
there is a need for studies focusing on chronic endpoints over 
species that inhabit different regions under environmentally 
relevant AgNP concentrations to understand the population 

consequences of this kind of pollution (Baun et al. 2008; 
Gutierrez et al. 2021).

Several physical, chemical, and biological factors in 
aquatic systems may alter AgNP behavior, in terms of aggre-
gation, chemical speciation, and adsorption (Corsi et al. 
2022; Kansara et al. 2022), which in turn, can modify their 
toxicity to aquatic organisms. Nevertheless, few studies have 
analyzed the incidence of environmental factors in AgNPs 
toxicity on zooplankton leading to a gap in the knowledge 
of potential attenuators (Zhang et al. 2019; Gutierrez et al. 
2021). For instance, dissolved organic matter (DOM) such 
as humic and fulvic acids are known to reduce AgNP toxic-
ity, as DOM can be adsorbed and reduce their dissolution 
(Wang et al. 2015; Jung et al. 2018; Ale et al. 2021). The 
presence of algae as food supply has also been proposed to 
be an attenuator of AgNP toxicity for some cladocerans, 
but the underlying mechanisms remain under discussion. 
Ribeiro et al. (2014) attributed this toxicity reduction to the 
alga-AgNP interaction as the particles can be agglomer-
ated by DOM or adsorbed to the algae, and also algae can 
uptake  Ag+ released by AgNPs. Besides, the attenuation of 
AgNPs toxicity could be explained due to both interaction 
alga-AgNPs and better nutritional condition of exposed cla-
docerans, as in the presence of food organisms may be more 
tolerant due to their greater energy status compared to stand-
ardized bioassays without food (Harmon et al. 2017). Algal 
exudates and metabolic products (such as oxygen peroxide) 
could also contribute to the dissolution of AgNPs (Navarro 
et al. 2015; Sigg and Lindauer 2015; Chen et al. 2019; Pon-
ton et al. 2019), and thus, modify their toxicity.

In this article, we assessed the effects of AgNPs on Cerio-
daphnia reticulata (Cladocera) through mortality and life-
history traits, considering the influence of food (Tetradesmus 
obliquus -before Scenedesmus obliquus-, Chlorophyceae) 
presence and concentration. We expected that AgNPs would 
be toxic for C. reticulata by affecting their mortality and life-
history traits such as growth, reproduction, and heart rate. 
According to previous findings reported in the bibliography, 
we hypothesized that these toxic effects would be reduced 
by algae presence and it would depend on its concentrations.

Materials and methods

Materials and reagents

Silver nanoparticles were obtained from Nanotek S.A. 
(20—40 nm, colloidal suspension of 1% w/v, nanArgen®, 
CAS no. 7440–22-4), and the main ingredient of the prod-
uct was stated as silver (purity ≥ 99.0%). The capping agent 
was made of glucose oligomers (mainly nanocrystalline 
cellulose) and the stabilizing agent was made of polyvinyl 
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pyrrolidone (PVP). Silver nitrate was purchased from Tetra-
hedron® (CAS no. 7761–88-8), purity ≥ 99.0%.

Test organisms

Ceriodaphnia reticulata was collected from a shallow lake 
of the middle Paraná River flood plain and gradually adapted 
to laboratory conditions by maintaining it for several months 
as the initial stock. One parthenogenetic female was iso-
lated from this initial stock and cultured for more than ten 
consecutive generations in laboratory to prepare the unique 
strain for the toxicological experiments. C. reticulata was 
identified under an optical microscope (Nikon E100), and 
the species was confirmed through observation of post-
abdominal claw ornamentations (Rogers et al. 2020). This 
culture was maintained at 21 ± 1 °C, 12/12 day/night pho-
toperiod, in dechlorinated and aerated tap water (pH: 7.1, 
conductivity: 1020 µs/cm, total hardness: 180 mg/L  CaCO3, 
alkalinity 120 mg/L  CaCO3, 39 mg/L  Ca++, 20 mg/L  Mg++, 
and 146 mg/L  HCO3

−). Culture water was changed three 
times a week and the organisms were fed with Tetradesmus 
obliquus every other day.

The pure strain of Tetradesmus obliquus (Turpin) MJ 
Wynne (before Scenedesmus obliquus) was isolated from 
a natural shallow lake of the middle Paraná River flood 
plain. The species was confirmed by Sanger sequencing and 
defined based on the NCBI database (www. ncbi. nlm. nih. 
gov) and taxonomic keys (Wynne and Hallan 2015). The 
axenic culture was growth in Detmer modified medium for 
green algae (Watanabe 1960) (KCl: 50,  KH2PO4: 50, Ca 
 (NO3)2-4H2O: 360,  MgSO4-7H2O: 360,  Cl3Fe+: 5,  C4H6O6: 
5,  H3BO3, 2.86,  MnCl2-4H2O: 1.81,  ZnSO4-7H2O: 0.23, 
 Cl2Cu: 0.05 mg/L), at 25 °C with warm-white LED light 
(50 μmol/m2.s, 2600 lx) and constant aeration. The culture 
was cropped in the exponential growth phase and algae were 
resuspended in sterile distilled water and stocked at -4 °C in 
the dark. Cell concentration was estimated under an optical 
microscope (Nikon E100) with a Neubauer chamber.

Exposure conditions

Nanoparticle characterization

In order to assess the optical properties of AgNPs, a 
suspension of the particles was monitored by UV–vis 
spectroscopy using a Jasco V-730 Spectrophotometer 
(Jasco Analytica Spain, Madrid, Spain). Fourier trans-
form infrared (FTIR) spectra of AgNPs were obtained 
over the range of 4000–500  cm−1 using an FTIR-Raman 
Nicolet iS 50 (Thermo Scientific). A dynamic light 
scattering (DLS) analysis was performed to calculate 
the AgNP average hydrodynamic diameter (Z-average, 
nm) and polydispersity index (PDI, dimensionless) in 

both ultrapure water and culture water with a detection 
angle of 173° at 25 °C using a Zetasizer Nano-Zs Laser 
Light Scattering Instrument (Malvern Instruments, UK). 
AgNPs were characterized through transmission electron 
microscopy (TEM) and scanning electron microscopy 
(SEM) in both ultrapure and culture water. The  Ag+ 
release from AgNPs was followed by analyzing the dis-
solved fraction during 96 h in culture water with the three 
algae concentrations employed in the bioassays (A0 = 0, 
A1 = 10 ×  104, and A2 = 50 ×  104 cel/mL) and a concen-
tration of 44 µg/L AgNPs. Briefly, 1 mL of the solution 
was placed in the upper chamber of Vivaspin® 20 cen-
trifugal concentrator (30 kDa molecular weight cutoff, 
Sartorius Stedim Biotech GmbH, Göttingen, Germany) 
and was then centrifuged at 5000 rpm for 15 s at 25 °C. 
The nanoparticles remained in the upper chamber, while 
the aqueous filtrate contained the dissolved fraction. The 
concentration of Ag in the filtrate was measured con-
secutively in time for 96 h by atomic absorption. Cumu-
lative doses were calculated using a standard curve and 
expressed as a function of time. In all cases, results were 
expressed as mean ± SD from triplicate experiments.

Algae flocculation test

In order to assess the effect of AgNPs on the algae floc-
culation, which may have influenced their availability for 
cladocerans, T. obliquus flocculation was assessed at the 
same AgNP concentrations tested in the chronic toxicity 
test (C1, C2, and C3) after 48 h of exposure (chronic assay 
renewal time). Algae flocculation was determined by meas-
uring the absorbance of the supernatant at 750 nm (Griffiths 
et al. 2011) both at the beginning and final time following 
Beuckels et al. (2013):

where OD = optical density of the supernatant (750 nm), t0 
= initial time (0 h), and tf = final time (48 h).

Acute toxicity tests

In order to obtain the LC50 of AgNPs on C. reticulata, 
three acute toxicity tests were developed with differ-
ent food conditions: without algae (A0) and with two 
concentrations of T. obliquus: 10 ×  104 and 50 ×  104 cel/
mL (A1 and A2, respectively). These concentrations 
were based on a preliminary growing and reproduction 
experiment (Supplementary Material 1) and biblio-
graphic information (Savaş and Erdoğan 2006; Rodgher 
and Espíndola 2008). The acute toxicity of AgNPs was 
tested following APHA (2017) guidelines with some 

Flocculation(%) =
ODt0 − ODtf

ODt0

× 100

27139Environmental Science and Pollution Research (2023) 30:27137–27149

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov


1 3

modifications by exposing 20 neonates (> 24 h) (four 
replicates, with five neonates each) during 48 h to five 
concentrations of AgNPs (shown in Table 1) (dilution 
factor: 1.3) plus a control for each algae concentration 
(A0, A1, and A2). AgNP concentrations were chosen 
based on preliminary exploratory toxicity tests and bib-
liographic information. Fresh stock solutions (400 µg/L) 
were prepared in ultrapure water before each bioassay 
and stored in the dark to prevent any prior transforma-
tion (e.g., aggregation, agglomeration, or dissolution). 
The nominal detected Ag concentration correlated with 
the product description. We used 50  mL beakers for 
each replicate with dechlorinated and aerated tap water 
at 21 ± 1 °C. The acute toxicity tests were performed in 
darkness to avoid algae growth and AgNP degradation 
(Li et al. 2013). Mortality, determined as immobility 
after a gentile stimulus, was assessed at 24 and 48 h of 
exposure. Conductivity (µs/cm), dissolved oxygen (DO, 
mg/L), and pH were measured (Hanna multi-parameter 
portable meter) at the beginning and the end of each 
bioassay.

In addition to mortality, two other biological vari-
ables were measured at 48 h of exposure: body size and 
heart rate. Body size was measured on three surviving 
individuals per replicate (when possible) by a micro-
scale attached to the microscope eyepiece (Nikon E100) 
to identify potential effects of the AgNPs on growth. 

The methodology to assess heart rate (beats per minute 
-bpm-) was adapted from Baylor (1942). Briefly, three 
surviving individuals per replicate (when possible) were 
individually placed on a microscope slide, and most of 
the water was withdrawn; thereby, the animals were 
kept in the microscope’s field by the surface tension of 
the remaining fluid. Organisms were recorded with an 
iPhone 7 (1080p, 30 fps) mounted on an optical micro-
scope (Nikon E100) for 10 s. For greater precision, each 
video was cut to a length of 6 s (MKVToolNix 66.0.0), 
and heartbeats were recorded with a manual counter at a 
low video speed (0.12x) (Villegas-Navarro et al. 2003; 
Borase et al. 2019).

Additional experiment with  AgNO3

The acute toxicity of  AgNO3 was also tested under the 
three algae concentrations (A0, A1, and A2) (Table 1) 
to identify the toxicity of dissolved silver ions and elu-
cidate whether the toxicity of AgNPs is due to the  Ag+ 
release or the AgNPs themselves. This experiment was 
developed as described for AgNPs, but only mortality 
was assessed.

Table 1  Concentrations of 
AgNPs,  AgNO3 (µg/L), and 
algae (cel/mL) employed in the 
acute and chronic toxicity tests

x indicates the concentrations applied in each assay and exposure condition

Acute assay

AgNPs AgNO3

Algae (cel/mL) 0 (A0) 10 ×  104 (A1) 50 ×  104 (A2) 0 (A0) 10 ×  104 (A1) 50 ×  104 (A2)

Test con-
centration 
(µg/L)

0.00 x x x x x x
0.20 x
0.27 x
0.35 x
0.46 x x
0.60 x x
0.78 x x x
1.00 x x x x
1.30 x x x x x
1.70 x x x x
2.20 x x x x
2.86 x x
3.72 x
Chronic assay
0 (C0) x x
0.07 (C1) x x
0.37 (C2) x x
0.56 (C3) x x
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Chronic toxicity test

Chronic toxicity test followed APHA (2017) guidelines with 
some modifications. Briefly, C. reticulata < 24 h neonates were 
exposed to three AgNP concentrations plus a control (C0) for 
ten days in order to cover three broods of neonates according 
to the life cycle of C. reticulata (Mount and Norberg 1984). 
Exposure concentrations were based on the A1 48 h-LC50, thus 
representing the 10, 50, and 75%: C1, C2, and C3, respectively 
(Table 1). In each treatment, five replicates were performed. 
Each replicate corresponded to one neonate, which was placed 
individually in 50 mL beakers with dechlorinated and aerated 
tap water. Laboratory conditions were the same as described for 
the acute toxicity test. Culture water (control and treatments) 
was completely renewed every 48 h. This methodology was rep-
licated simultaneously with two algae concentrations (A1 and 
A2) as described for the acute toxicity test.

Every 24 h, molts and neonates were quantified, meas-
ured as described for the acute test, and removed. In addi-
tion, the adult body size and heart rate were also measured 
at the end of the experiment, as described before.

Data analysis

The dissolved fraction of AgNPs was compared among each 
algae concentration (A0, A1, and A2) through analysis of 
variance (ANOVA, Tukey post-test). The mean flocculation 
percentages of algae in AgNPs treatments were compared to 
control through ANOVA (Dunnett post-test) or Kruskal–Wal-
lis test (KW), as appropriate, in both algae concentrations 
(A1 and A2). Mean physicochemical variables (conductivity, 
DO, and pH) were compared between treatments by ANOVA 
(Tukey post-test) and through time by paired t-test.

With the mortality of the acute exposure assay, probit 
analyses (Finney 1971) were performed to obtain the 24 
and 48 h LC50. The mean size and heart rate of treatments 
in acute assays were compared to control through ANOVA 
(Dunnett post-test).

The molt sizes of each replicate of the chronic assay were 
plotted in relation to time, and their linear regression slopes 
were considered as growth rates. The neonate relative size 
and number were calculated per each replicate by dividing the 
mean neonate size and mean brood number by mother size, 
respectively. The neonate size:number ratio was calculated for 
each replicate by dividing the mean neonate size by the mean 
brood number. The mean of these variables from treatments, 
in addition to molt number and heart rate means, was com-
pared to control through ANOVA (Dunnett post-test).

Data analysis was performed with R Studio (version 
1.2.5042), packages “drc” (Ritz et al. 2015), and “rstatix” (Kas-
sambara 2020).

Results

Exposure conditions

Nanoparticle characterization

The characteristics of AgNPs were analyzed in ultrapure 
water through FTIR and UV–visible spectroscopy. FTIR 
spectra of the AgNPs stabilized with PVP showed a wide 
band at 3246  cm−1 (H-bonded OH), a peak at 1288  cm−1 
(N–OH complex), and a strong peak at 1060  cm−1 (C-N of 
pyrrolidone) (Wang et al. 2005) (Fig. 1a). The UV–visible 
absorption spectrum presented the typical surface plasmon 
of AgNPs, with a maximum peak close to 410 nm (Fig. 1b). 
The observed asymmetry in the plasmon has been reported 
by several authors and is due to the presence of nanoparti-
cles that are not spherical, but have triangular or elongated 
shapes (Tak et al. 2015), as can be seen in TEM and SEM 
analyses (Fig. 2a and c). TEM analysis showed that the aver-
age size of the spherical AgNPs was 24 ± 7 nm, while for 
the non-spherical shapes, it was 80 ± 13 nm. This correlates 
with what was observed in the DLS (Table 2 and Fig. 2e).

The AgNPs tended to agglomerate in culture water, 
but the z-potential remained constant (-13.7), as can be 
observed in TEM, SEM (Fig. 2b and d), and DLS analyses 
(Table 2 and Fig. 2f).

The dissolved fraction of AgNPs increased signifi-
cantly at higher algae concentration (ANOVA F = 59.46 
p = 0.004) (Fig. 1c). At 48 h, the mean dissolved fraction 
was 11.17 ± 0.61% in absence of algae (A0) and increased 
to 15.95 ± 1.18% (p < 0.05) and 23.35 ± 0.15% (p < 0.01) 
at A1 and A2 algae concentrations, respectively.

Algae flocculation test

The AgNP treatments did not induce algae flocculation (A1: 
KW H = 6.83, p = 0.078, A2: ANOVA F = 0.06, p = 0.981). 
The percentage of algal flocculation was significantly lower 
in A2 control compared to A1 control (ANOVA F = 14.65, 
p = 0.009) (Supplementary Material 2).

Physicochemical variables

Physicochemical variables did not vary significantly nei-
ther between treatments (ANOVA F = 2.07, 2.78, and 1.09, 
p = 0.21, 0.14, and 0.39, for conductivity, DO, and pH, 
respectively) nor through time (paired t-test t = 2.06, 1.27, 
and 1.51, p = 0.1, 0.33, and 0.19, for conductivity, DO, and 
pH, respectively); conductivity: 1018 – 1089 µs/cm, DO: 
7.7 – 8.6 mg/L, and pH: 7.1 – 7.7.
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Fig. 1  (a) Fourier transform 
infrared (FTIR) spectra of 
AgNPs. (b) Surface plasmon 
resonance of AgNPs. (c) dis-
solved fraction of AgNPs in 
culture water. A0: absence of 
algae, A1: low algae concen-
tration, and A2: high algae 
concentration

Fig. 2  Transmission electron 
microscopy (TEM) of AgNPs 
in (a) ultrapure water and (b) 
culture water. Scanning electron 
microscopy (SEM) of AgNPs 
in (c) ultrapure water and (d) 
culture water. Size distribution 
by intensity of AgNPs in (e) 
ultrapure water and (f) culture 
water

27142 Environmental Science and Pollution Research (2023) 30:27137–27149
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Acute toxicity tests

A reduction in both AgNPs and  AgNO3 acute toxicity on 
C. reticulata was observed; meanwhile, algae concentration 
increased.  AgNO3 was less toxic than AgNPs in all treat-
ments (Table 3 and Fig. 3a and b).

C. reticulata body size increased significantly in con-
trols with algae (A1 and A2) in comparison with the control 
without algae (A0) (ANOVA F = 115.04, p < 0.001). The 
organism size was significantly reduced at higher AgNP 
concentration (i.e., ≥ 1 µg/L) compared to control in the 
presence of algae (ANOVA A1: F = 8.8, p = 0.001; A2 
F = 7.46, p = 0.002) (Fig. 3c). The heart rate was signifi-
cantly higher in the controls with algae (A1 and A2) than the 
control without algae (A0) (ANOVA F = 115.04, p < 0.001). 
In both treatments with algae (A1 and A2), a significative 
decrease in heart rate was observed at higher AgNP concen-
trations compared to control (i.e., ≥ 0.78 and 1 µg/L for A1 
and A2, respectively) (ANOVA A1: F = 6.13, p = 0.006; A2 
F = 12.67, p < 0.001) (Fig. 3d).

Chronic toxicity test

The growth rate decreased significantly in the lower algae 
concentration (A1) in the three AgNP treatments com-
pared to control (ANOVA F = 7.34, p = 0.004) (Fig. 4a). 
Also, a smaller number of molts were observed at 0.07 and 

0.56 µg/L AgNPs compared to control in the lower algae 
concentration (A1) (ANOVA F = 3.83, p = 0.032) (Fig. 4b). 
Under the higher algae concentration (A2), a significant 
increase in growth rate was observed at 0.07 and 0.56 µg/L 
AgNPs compared to control (ANOVA F = 21.46, p < 0.001) 
(Fig. 4a).

At the end of the experiment, the heart rate of adults was 
significantly lower in the three AgNP treatments compared 
to control in the case of the lower algae concentration (A1) 
(ANOVA F = 10.29, p = 0.001). Under the higher algae 
concentration (A2), no significative effects of the AgNP 
treatments were observed (ANOVA F = 2.44, p = 0.111) 
(Fig. 4c).

The neonate relative size significantly increased in the 
three AgNP treatments compared to control at the lower 
algae concentration (A1) (ANOVA F = 7.98, p = 0.002). In 
the case of the higher algae concentration (A2), this relation 
was significantly higher at 0.37 and 0.56 µg/L AgNPs than 
control (ANOVA F = 5.06, p = 0.013) (Fig. 4 d). Also, under 
both algae concentrations (A1 and A2), the neonate rela-
tive number was significantly higher at 0.37 and 0.56 µg/L 
AgNPs compared to control (ANOVA A1: F = 10.58, 
p = 0.001, A2: F = 13.78, p < 0.001) (Fig. 4e).

The neonate size:number ratio was lower at the higher 
algae concentration (A2) control (i.e., many smaller neo-
nates) compared to the lower algae concentration (A1) 
control (ANOVA F = 12.93, p = 0.016). In A1, a significant 

Table 2  Dynamic light scattering (DLS) analysis showing the AgNP average hydrodynamic diameter (Z-average, nm), polydispersity index 
(PDI, dimensionless), and z-potential (mV) in both ultrapure water and culture water

S.D.: standard deviation, PDI: polydispersity index

Sample Average hydrodynamic diameter (nm) (± S.D.) PDI (± S.D.) z-potential 
(mV) 
(± S.D.)Peak 1 % Peak 2 % Peak 3 %

Ultrapure water 53.0 (3.9) 65.6 (3.1) 343.9 (49.6) 26.2 (3.4) 3.0 (0.3) 5.3 (0.3) 0.594 (0.148) -13.7 (0.8)
Culture water 230.7 (7.3) 100.0 (0.0) - - - - 0.146 (0.027) -13.7 (0.8)

Table 3  Acute toxicity 
values (24 and 48 h LC50, 
µg/L) of both AgNPs and 
 AgNO3 in C. reticulata, and 
confidence interval (95%). 
A0: absence of algae, A1: low 
algae concentration, and A2: 
high algae concentration (0, 
10 ×  104, and 50 ×  104 cel/mL, 
respectively)

LC50 (µg/L) CI 95%

AgNP 24 h A0 0.46 0.42 - 0.49
A1 0.73 0.68 - 0.78
A2 1.18 1.10 - 1.25

48 h A0 0.44 0.39 - 0.48
A1 0.72 0.67 - 0.77
A2 1.10 1.01 - 1.20

AgNO3 24 h A0 1.19 1.08 - 1.29
A1 2.35 2.03 - 2.66
A2 2.94 2.79 - 3.08

48 h A0 1.12 1.01 - 1.23
A1 2.32 2.18 - 2.46
A2 2.89 2.73 - 3.05
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increase in this relation was observed at 0.07 µg/L (i.e., 
fewer bigger neonates) compared to control, while at 0.37 
and 0.56 µg/L AgNPs, this relation decreased significantly 
(i.e., many smaller neonates) (ANOVA F = 27.76, p < 0.001). 
In A2, no significative effects of the AgNPs treatments were 
observed (ANOVA F = 1, p = 0.421) (Fig. 4f).

Discussion

Exposure conditions

Nanoparticle characterization

Although no agglomeration was observed in ultrapure water, 
AgNPs tended to form medium-sized agglomerates in the 
culture water. This may be a consequence of the interaction 
with the salts present in the media, as observed in numer-
ous studies (Griffitt et al. 2008; Li et al. 2013; Borase et al. 
2019).

Several authors reported that algae might induce AgNP 
dissolution by increasing  Ag+ release, given that algae 
exudates and reactive oxygen species (ROS) metabolites—
such as hydrogen peroxide—can destabilize AgNPs (Nav-
arro et al. 2015; Sigg and Lindauer 2015; Chen et al. 2019; 
Ponton et al. 2019). This process might occur in the algae 

cell boundary layer since, in general, algal wall pores have 
an average diameter of 5—20 nm; therefore, only smaller 
nanoparticles could enter cells (Chen et al. 2019). Moreo-
ver, Tetradesmus obliquus has the typical cell wall of the 
Chlorococcales, which is more resistant due to the trilaminar 
structure (Burczyk 1973; Allard and Templier 2001), which 
would make it even more difficult for the AgNPs to enter the 
cells. Thus, in our case, it is also likely that the mechanism 
of  Ag+ release occurred in the algae wall.

Algae flocculation test

AgNPs did not affect algae flocculation in the chronic 
exposure concentrations used in the present study (up to 
0.56 µg/L). Therefore, algae were equally available for Ceri-
odaphnia reticulata in treatments and control. This agrees 
with the toxicological data on the effect of AgNPs on T. 
obliquus, as the reported EC50 growth inhibition concentra-
tions are several orders of magnitude higher (between 38.5 
and 1000 µg/L (Zouzelka et al. 2016; Pham 2018).

Acute toxicity tests

The AgNPs were highly toxic for C. reticulata even under 
the presence of food (LC50 0.44 – 1.1 µg/L). Although the 
AgNP toxicity has not been previously evaluated for this 

Fig. 3  Dose response curves of 
acute exposure of C. reticulata 
to (a) AgNPs and (b)  AgNO3. 
A0: absence of algae, A1: low 
algae concentration, and A2: 
high algae concentration. Mean 
values ± SD of (c) size (µm) 
and (d) heart rate (bpm) of 
surviving neonates of the acute 
toxicity test with AgNPs (48 h). 
A0: absence of algae, A1: low 
algae concentration, and A2: 
high algae concentration. Let-
ters: significative differences 
between controls, *Significative 
differences between treatments 
and control
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species, the LC50 values found in the present study are 
among the lowest toxicity values reported for C. dubia: 
LC50 between 0.15 and 67 µg/L (Griffitt et  al. 2008; 
McLaughlin and Bonzongo 2012; Angel et al. 2013; Ken-
nedy et al. 2015; Harmon et al. 2017) and Daphnia spp.: 
LC50 between 0.26 to 30 µg/L (Hoheisel et al. 2012; Zhao 
and Wang 2012; Silva et al. 2014; Becaro et al. 2015; Assis 
da Silva et al. 2022). Moreover, the LC50 informed in the 
present study is below the estimated exposure scenarios 
for freshwater bodies (8.8 ×  10–5 – 10 μg/L) (Nowack and 
Mueller 2008; Gottschalk et al. 2013; Maurer-Jones et al. 
2013), which may imply a high environmental risk for cla-
docerans. The AgNPs imposed higher toxicity than  AgNO3 
for C. reticulata; therefore, the nanoparticles themselves 
showed to be more toxic than the  Ag+ ions they release. 
This constitutes a relevant result as is opposite to previous 

studies (e.g., Angel et al. 2013; Hu et al. 2017; Ribeiro 
et al. 2014; Zhao and Wang 2011), which tend to subor-
dinate the toxicity of AgNPs to the current regulation for 
silver and may underestimate the toxic effects and the dif-
ferent mechanisms of action of nanoparticles. The higher 
toxicity of AgNPs could have been due to different aspects 
related to their nanometric properties. Several studies 
reported that their greater reactivity could promote their 
permeability through biological membranes (McShan et al. 
2014), and then, AgNPs can release  Ag+ into organism 
cells, generating oxidative stress, a process called “Trojan 
horse” mechanism (Ulm et al. 2015; de Souza et al. 2019; 
Galhano et al. 2022). Also, several reports showed that 
AgNPs can impose mechanical effects such obstruction of 
filter setae and digestive system and adhesion to antennas 
and carapace (Zhao and Wang 2010; Asghari et al. 2012).

Fig. 4  Chronic toxicity test with AgNPs results: C. reticulata: (a) 
growth rate (µm/day), (b) molt number, (c) heart rate (bpm), (d) neo-
nate relative size (dimensionless: mean neonate size µm/mother size 

µm), (e) neonate relative number (dimensionless: mean brood num-
ber/mother size µm), and (f) neonate size:number ratio (dimension-
less: mean neonate size µm /mean brood number)
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The lethal toxicity of AgNPs in C. reticulata decreased 
when algae concentration increased. Some authors have 
attributed this toxicity reduction to two main factors: bet-
ter nutritional condition and the interaction algae-AgNPs 
(Allen et al. 2010; Ribeiro et al. 2014; Harmon et al. 2017). 
In this sense, Conine and Frost (2017) tested the AgNP tox-
icity under the presence of T. obliquus with different phos-
phorus content and concluded that the decrease of AgNP 
toxicity was primarily due to the algae binding and uptake 
abilities and, to a lesser extent, to their effects on Daphnia 
magna nutrition. Although both factors (nutritional condi-
tion and AgNPs-algae interaction) can act simultaneously, 
the observed increase in  Ag+ release in relation to the algae 
concentration in the present study indicated that algae actu-
ally interacted with the AgNPs. Therefore, as AgNPs were 
more toxic than  Ag+ for C. reticulata, the AgNP-algae inter-
action could have been one of the main factors conditioning 
the particle toxicity.

The observed increase in C. reticulata size in relation 
to food concentration in controls was expectable due to 
the increase in energy supply (Savaş and Erdoğan 2006). 
However, AgNP concentrations ≥ 1 µg/L caused develop-
ment inhibition (i.e., decreased final size) together with a 
decreased heart rate. As AgNPs did not affect algal floc-
culation, food availability for C. reticulata was not affected 
in treatments. Nevertheless, several studies reported that 
algae can uptake  Ag+ or adsorb AgNPs; therefore, they 
may have less nutritional quality and constitute another Ag 
uptake route for cladocerans, which could have affected their 
metabolism and growth (Zhao and Wang 2010; Yoo-iam 
et al. 2014; Wang et al. 2019a; Dang et al. 2021). In addition, 
the potential mechanical effects of AgNPs on micro-crusta-
ceans previously mentioned (obstruction of filter setae and 
digestive system, and adhesion to antennas and carapace) 
can affect their feeding and locomotion (Zhao and Wang 
2010; Asghari et al. 2012).

Chronic toxicity test

In the case of low algae concentration, C. reticulata heart 
rate, number of molts, and growth rate were lower in all 
AgNP treatments. However, these effects were not observed 
at the highest algae concentration. Furthermore, an opposite 
trend was observed as the growth rate increased in the high-
est algae concentration treatments compared to control; thus, 
the underlying mechanisms of this trend remain unclear and 
need to be further explored. Our findings clearly show a 
mitigation on AgNP toxicity when the algae concentration 
increased, which, as discussed above, might be due to both 
nutritional condition and algae-AgNP interaction (Harmon 
et al. 2017). Concomitantly, Ribeiro et al. (2014) reported 
no effects of AgNPs on D. magna growth exposed to up to 
5 µg/L AgNPs (21 d). Conversely, Zhao and Wang (2011) 

registered an inhibition of D. magna growth when exposed 
to higher AgNP concentrations (over 5 µg/L, 21 d) and 
attributed these results to a poor food quality because algae 
can adsorb the particles or uptake  Ag+ ions (Wang et al. 
2019b; Dang et al. 2021).

Cladocera heart rate is considered a sensitive physiologi-
cal indicator (Villegas-Navarro et al. 2003; Corotto et al. 
2010), and recent studies showed negative effects of AgNPs 
on this variable. For instance, Borase et al. (2019) reported 
that Moina macrocopa heart rate decreased when exposed 
for 15 min to a high concentration (500 µg/L) of AgNPs. 
Park et al. (2022) found a significant decrease in D. magna 
heart rate after a 3 h exposure to a lower concentration 
(10 µg/L) of AgNPs.

Regarding reproductive parameters, an increase in neo-
nate relative size and number in relation to the mother 
size was observed in AgNP treatments under both low and 
high algae concentrations. These results may indicate that 
C. reticulata has suffered energy allocation compromises, 
investing its energy in reproduction instead of growth. In 
accordance, Li et  al. (2011) reported energy allocation 
compromises in C. dubia exposed to titanium oxide and 
aluminum oxide nanoparticles due to a reduction in energy 
assimilation. Also, Sun et al. (2022) found that zinc oxide 
nanoparticles affect energy allocation on reproduction and 
growth of D. magna under different food (Chlorella pyrenoi-
dosa) concentrations.

In the present study, energy allocation compromises 
were also observed in the offspring characteristics. At low 
algae concentration, the neonate size:number ratio was 
variable depending on AgNP concentration: at 0.075 µg/L 
AgNPs, fewer bigger neonates were observed compared to 
control, whereas the opposite was registered at concentra-
tions ≥ 0.373 µg/L AgNPs. At high algae concentration, this 
ratio was lower (i.e., many smaller neonates) but AgNPs 
did not change this pattern, indicating that this effect was 
mitigated by the algae. Several studies reported a decrease 
in D. magna offspring when exposed to AgNPs concentra-
tions ≥ 1 µg/L (Ribeiro et al. 2014) and 50 µg/L (Zhao and 
Wang 2011). Those effects were attributed to reduced food 
consumption and nutrient absorption (Park et al. 2021).

Conclusions

AgNPs negatively affected C. reticulata life-history traits, 
including mortality, growth, reproduction, and heart rate. 
The presence of algae mitigated most of these negative 
effects in a concentration-dependent manner. Nevertheless, 
even in presence of algae, negative effects of AgNPs on C. 
reticulata were imposed below the predicted environmental 
concentrations. Our study demonstrated that algae promote 
the release of  Ag+ from AgNPs, which could negatively 
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affect other organisms and ecological processes. This study 
highlights the importance of assessing realistic exposure 
scenarios considering potential environmental effects on 
AgNP behavior and toxicity.
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