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Abstract
Polycyclic aromatic hydrocarbon (PAH) contamination in the environment involves multiple PAHs and various intermediates 
produced during the microbial metabolic process. A multi-substrate enrichment approach was proposed to develop a mixed 
bacterial community (MBC) from the activated sludge of a coking wastewater plant. The degradation performance of MBC 
was evaluated under different initial concentrations of PAHs (25–200 mg/L), temperature (20–35 °C), pH (5.0–9.0), salinity 
(0–10 g/L NaCl), and coexisting substrates (catechol, salicylic acid, and phthalic acid). The results showed that the degrada-
tion rates of phenanthrene and pyrene in all treatments were up to (99 ± 0.71)% and (99 ± 0.90)% after incubation of 5 days, 
respectively, indicating excellent biodegradation ability of PAHs by MBC. Furthermore, 16S rRNA gene amplicon sequenc-
ing analysis revealed that Pseudomonas was dominant, while Burkholderia had the largest proportion in acidic (pH = 5.0) 
and saline (10 g/L NaCl) environments. However, the proportion of dominant bacteria in MBC was markedly affected by 
intermediate metabolites. It was shown that MBC had a higher degradation rate of PAHs in the coexisting matrix due to the 
timely clearance of intermediates reducing the metabolic burden. Overall, our study provided valuable information to help 
design an effective strategy for the bioremediation of PAHs in complex environments.

Keywords Mixed bacterial community · Multi-substrate enrichment approach · Biodegradation · Intermediate metabolites · 
Metabolic burden · Polycyclic aromatic hydrocarbons

Introduction

Polycyclic aromatic hydrocarbons (PAHs) are organic com-
pounds comprising two or more aromatic rings with different 
structural configurations (Nzila 2018). As a typical persistent 
organic pollutant, PAHs are widely present in environmental 
media, such as soil, sediments, and water bodies, because of 
natural and human activities, including wildfires, volcanic 

explosions, oil refining, and petrochemical industries (Zhang 
et al. 2022). Given their high toxicity, resistance to biodeg-
radation, and high bioaccumulation, the USEPA has listed 
16 PAHs, namely naphthalene, acenaphthylene, acenaph-
thene, fluorene, phenanthrene, anthracene, fluoranthene, pyr-
ene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene, 
benzo[k] fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd] 
pyrene, dibenz[a,h] anthracene, and benzo[g,h,i] perylene 
as priority PAHs (Gou et al. 2020).

Generally, PAH contamination involves multiple PAHs 
and various intermediates, such as catechol (CA), salicylic 
acid (SA), and phthalic acid (PA), produced during the 
microbial metabolic process (Patel et al. 2019). Despite the 
high degradability of PAHs, the consortium may lack the 
ability to efficiently degrade the metabolites produced dur-
ing biodegradation of PAHs; the accumulation of metabo-
lites can inhibit the biodegradation process (Meng et al. 
2014). The opening up of PAHs is the hardest link in the 
biodegradation process, and it is also a key factor that lim-
its the mineralization effect of pollutants. The intermediate 
metabolites that are produced as a result can induce some 
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enzyme activities (e.g., catechol 1,2-dioxygenase, catechol 
2,3-dioxygenase) of microbiota, which are used as the pri-
mary energy and carbon source for the initial microbiota. 
This reduces the adaptation time of microbiota to the pro-
vided carbon source and accelerates their growth (Gou et al. 
2020).

A mixed bacterial consortium was constructed for bio-
processing using “top-down” or “bottom-up” methods (Gao 
et al. 2020). The “bottom-up” approach focused on identify-
ing microbial interaction patterns and utilizing this informa-
tion to understand microbial communities that combined two 
or more isolated and characterized strains as inoculums to 
degrade pollutants. The microbial consortia generally lack 
stability and metabolic diversity (Iwabuchi et al. 2002). 
The function drive approach was described as a “top-down” 
approach, in which the design of the community was based 
on the overall function, stability, and performance needs that 
were prioritized (Gao et al. 2020). The synthetic community 
can lead to unforeseen and undesired interactions, adversely 
affecting community performance and functionality. Consid-
ering that many different interactions (e.g., co-metabolism, 
inhibition, and cross induction) have been identified among 
PAHs and their metabolites, it is significant to learn from 
“top-down” and “bottom-up” approaches to develop a new 
mixed bacterial consortium with high PAH-degrading ability 
that can remove intermediates in time.

In this study, a mixed bacterial community (MBC) was 
developed from the activated sludge of a coking wastewater 
treatment plant in Huayu Gas (Xuzhou, China). This was 
achieved through a multi-substrate enrichment approach, 
in which CA, SA, and PA were selected as intermedi-
ate metabolites of PAH degradation pathways; moreover, 
phenanthrene and pyrene were the target contaminants. The 
degradation of phenanthrene and pyrene by MBC and its 
microbial community structure under varying environmental 
conditions (pH, temperature, and salinity) was investigated 
in intermediate metabolites of PAH degradation pathways 
(CA, SA, and PA) after biodegradation.

Materials and methods

Culture media and chemicals

Phenanthrene (97%), pyrene (97%), SA (99%), PA (99%), 
and CA (99%) were purchased from Macklin Biochemi-
cal (Shanghai, China). HPLC-grade acetone and metha-
nol were procured from Aladdin Industrial Corporation 
(Shanghai, China). Mineral salt medium (MSM) consist-
ing of 2.0  g·L−1  NH4Cl, 2.5  g·L−1  KH2PO4, 0.5  g·L−1 
 K2HPO4, 1.0  g·L−1  MgSO4·7H2O, 120  mg·L−1  FeCl3, 
50 mg·L−1  H3BO3, 10 mg·L−1  CuSO4·5H2O, 10 mg·L−1 
KI, 45 mg·L−1  MnSO4·H2O, 20 mg·L−1  NaMoO4·2H2O, 

75 mg·L−1  ZnCl2·4H2O, 50 mg·L−1  CoCl2·6H2O, 20 mg·L−1 
AlK(SO4)2·12H2O, 13.25  mg·L−1  CaC12·2H2O, and 
10 mg·L−1 NaCl purchased from Nanjing Chemical Reagent 
(Nanjing, China). Stock solutions of a mixture of phenan-
threne and pyrene (each 50 mg/L) were prepared in acetone.

Sampling and multi‑substrate enrichment process

Activated sludge, the microbial source, was collected from 
a Huayu Gas coking wastewater treatment plant in Xuzhou, 
Jiangsu Province, China. The wastewater contained a variety 
of PAHs; thus, it was assumed that PAH-degrading micro-
biota were present in the activated sludge.

The acclimation process of the mixed PAH-degrad-
ing bacterial community was based on a multi-substrate 
enrichment approach, as illustrated in Fig. 1. The specific 
operation was as follows: Activated sludge suspension was 
diluted with saline (v/v, 1:2) and aerated in a plastic bucket 
for 7 days at 25 °C. Acclimation began with the addition 
of intermediate metabolites of PAH degradation pathways 
as primary carbon sources. CA, SA, and PA were selected 
as common intermediate metabolites of PAH degradation 
pathways (Patel et al. 2019). The supernatant (5 mL) was 
added to an Erlenmeyer flask (250 mL) provided with 45 mL 
sterilized MSM, 200 mg/L CA, and 50 mg/L of phenan-
threne and pyrene (each 25 mg/L) and incubated for 7 days 
(25 °C, 150 rpm). Successive transfers were performed with 
a gradual increase in the concentration (200 mg/L with 
each transfer after 7 days of incubation) of CA from 200 
to 1000 mg/L. Similar acclimation was repeated with the 
addition of SA and PA. After acclimation to the addition 
of intermediate metabolites of PAH degradation pathways, 
5 mL of bacterial suspension (15 mL in total) was trans-
ferred to 45 mL of sterilized MSM with 100 mg/L phen-
anthrene and pyrene (each 50 mg/L) as the sole carbon and 
energy source. With successive transfers, the concentration 
of phenanthrene and pyrene increased from 100 to 400 mg/L 
(50 mg/L with each transfer after 7 days of incubation), and 
a mixed PAH-degrading bacterial community was obtained 
(designated as “MBC”). The consortium was stored in 25% 
glycerin at − 80 °C after centrifugation for long-term pres-
ervation (Yang et al. 2020).

Effects of initial concentration on PAH degradation

After evaporation of acetone in sterilized 50-mL flasks con-
taining different volumes of stock phenanthrene and pyrene 
solution (5000 mg/L), the degradation experiments were car-
ried out in flasks containing 9 mL MSM and 1 mL inoculum 
 (OD600 = 1, measured with a visible light spectrophotom-
eter, 722), provided with different initial concentrations of 
PAHs (25 °C, 150 rpm): (1) 25 mg/L, 50 mg/L, 100 mg/L, 
and 200 mg/L of phenanthrene and pyrene separately; (2) 
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25 mg/L, 50 mg/L, 100 mg/L, and 200 mg/L of phenan-
threne and pyrene mixture. For inoculum preparation, pre-
grown MBC was centrifuged at 6000 rpm for 6 min at 4 °C, 
washed with fresh MSM, and then resuspended in fresh 
MSM. The initial pH of the degradation system was adjusted 
to 7.0 with 1 mmol/L NaOH and HCl solution. Three rep-
licate flasks were collected on day 5 for the degradation of 
phenanthrene and pyrene. Uninoculated flasks containing 
only MSM supplemented with PAHs on day 5 were used 
as controls.

Effects of environmental factors on PAH 
degradation

To determine the effects of environmental factors on the 
degradation of 100 mg/L of phenanthrene and pyrene 
(50 mg/L each) by MBC, experiments were performed at 
different temperatures (20 °C, 25 °C, 28 °C, 30 °C, and 
35 °C), pH values (5.0, 6.0, 7.0, 8.0, and 9.0), and salini-
ties (0 g/L, 1 g/L, 3 g/L, 5 g/L, and 10 g/L NaCl). The 
inoculation was similar to that described in the “Effects of 
initial concentration on PAH degradation” section. The pH 
of MSM was adjusted to 5.0, 6.0, 7.0, 8.0, and 9.0 using 
1 mmol/L NaOH or HCl solution; the initial pH of the 
degradation system was adjusted to 7.0. Three replicate 

flasks were collected on days 1, 3, and 5 for the degrada-
tion of phenanthrene and pyrene. On day 5, another flask 
was collected for DNA extraction at each temperature, pH, 
and salinity condition. Uninoculated flasks containing only 
MSM supplemented with PAHs on days 1, 3, and 5were 
used as the controls.

Effects of intermediate metabolites on PAH 
degradation

To investigate the effects of intermediate metabolites on 
the degradation of 100 mg/L of phenanthrene and pyrene 
(50 mg/L each) by MBC, experiments were performed with 
the addition of 0.05% (w/v) of CA, PA, and SA, respectively. 
The inoculation and incubation conditions were similar to 
those described in “Effects of initial concentration on PAH 
degradation” section. Phenanthrene and pyrene degradation 
were monitored on days 1, 3, and 5 of incubation. The flasks 
without intermediates were kept under similar conditions to 
serve as controls. Samples from each treatment group under 
the same conditions were used to determine the  OD600 of the 
bacterial consortia. All experimental groups were set up in 
triplicates. On day 5, another flask was collected from each 
group for DNA extraction.

Fig. 1  Schematic illustration of the multi-substrate enrichment process. PHE = phenanthrene; PYR = pyrene; CA = catechol; SA = salicylic acid; 
PA = phthalic acid
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DNA extraction and Illumina MiSeq sequencing

According to the manufacturer’s protocol, total genomic 
DNA was extracted from the original activated sludge and 
the consortium using the E.Z.N.A.® soil DNA Kit (Omega 
Bio-tek, Norcross, GA, USA). All DNA samples were qual-
ity checked, and the concentration was quantified using a 
NanoDrop 2000 spectrophotometer (Thermo Fisher Sci-
entific, Wilmington, DE, USA). Bacterial 16S rRNA gene 
fragments (V3-V4) were amplified from the extracted DNA 
using the primers 338F (5′-ACT CCT ACG GGA GGC AGC 
AG-3′) and 806R (5′-GGA CTA CHVGGG TWT CTAAT-3′) 
(Zeng & An 2021). The PCR conditions were as follows: 
3 min of denaturation at 95 °C, 30 s at 95 °C, 30 s at 55 °C, 
and 45 s at 72 °C for 27 cycles, and a final extension at 72 °C 
for 10 min (Laothamteep et al. 2021). PCRs were performed 
with 4 μL of 5 × TransStart FastPfu buffer, 2 μL of 2.5 mM 
deoxynucleoside triphosphates (dNTPs), 0.8 μL of each 
primer (5 μM), 0.4 μL of TransStart FastPfu DNA Poly-
merase, and 10 ng of extracted DNA. Additionally,  ddH2O 
was used to make up to 20 μL. Agarose gel electrophoresis 
was performed to verify the amplicon size. Amplicons were 
subjected to paired-end sequencing on the Illumina MiSeq 
sequencing platform using the PE300 chemical at Majorbio 
Bio-Pharm Technology Co., Ltd. (Shanghai, China).

Amplicon sequence processing and analysis

After demultiplexing, the resulting sequences were merged 
with FLASH (v1.2.11) (Magoc & Salzberg 2011) and 
quality-filtered with fastp (0.19.6) (Chen et al. 2018). The 
high-quality sequences were de-noised using the DADA2 
(Callahan et al. 2016) plugin in the Qiime2 (Bolyen et al. 
2019) (version 2020.2) pipeline with recommended param-
eters, which resulted in single-nucleotide resolution based on 
error profiles within samples. DADA2 de-noised sequences 
are called amplicon sequence variants (ASVs). To minimize 
the effects of sequencing depth on alpha and beta diversity 
measures, the number of sequences from each sample was 
reduced to 4000, which still yielded an average Good’s cov-
erage of 97.90%. Taxonomic assignment of ASVs was per-
formed using the Naive Bayes consensus taxonomy classifier 
implemented in Qiime2 and the SILVA 16S rRNA database 
(v138). Analyses of the 16S rRNA microbiome sequencing 
data were performed using the free online Majorbio Cloud 
Platform (www. major bio. com).

Determination of PAHs

The entire content of the flasks (10 mL) was added to 
20 mL of methanol using ultrasonic dissolution promotion 
to extract residual phenanthrene and pyrene (Gu et al. 2015). 
After filtration through a 0.22-μm polytetrafluoroethylene 

membrane, the residual phenanthrene and pyrene in the 
mixed solution were determined using a Flexar Quaternary 
LC Pump Platform (Flexar LC, PerkinElmer, Singapore) 
fitted with a C18 column (Brownlee C18, 5 μm, 150 × 4.6, 
PerkinElmer) and a UV/Vis detector (PerkinElmer). Phen-
anthrene and pyrene were eluted using a mobile phase 
(methanol:water, 80:20) at a 1 mL/min flow rate and moni-
tored at 254 nm. The column temperature was 30 °C, and the 
injection volume was 50 μL. Chromatograms were recorded 
and integrated with system software (Chromera 2.1, Perki-
nElmer). The average recovery rates of phenanthrene and 
pyrene were (100 ± 0.23)% and (84 ± 0.05)%.

Statistical analysis

All experiments were carried out in triplicate. The values of 
the degradation ratio were calculated as the mean ± stand-
ard deviation (SD), which were represented in the error bar 
to show variation within the same experiments. Statistical 
analyses were performed using the Origin 2021 software 
program (OriginLab Corporation, USA).

Results and discussion

Dynamics of the bacterial community 
during the multi‑substrate enrichment process

The bacterial communities in the activated sludge and con-
sortium during the multi-substrate enrichment process were 
characterized using high-throughput sequencing of the 16S 
rRNA gene amplicons, as shown in Fig. S1. The species 
richness and diversity indices were calculated (Table S1). 
The Shannon and Simpson indices revealed that the bac-
terial community of each sample varied, and the bacterial 
diversity decreased as multi-substrate enrichment proceeded. 
Proteobacteria (91.6–98.8%) was the most abundant in all 
the samples, followed by Actinobacteria (0.9–5.6%). Previ-
ous studies have also implicated a higher relative abundance 
of Proteobacteria and Actinobacteria and a positive correla-
tion with PAH degradation in PAH-contaminated sites (Lee 
et al. 2018; Liu et al. 2022).

In addition, the species richness of the top 15 dominant 
genera in all samples during the multi-substrate enrichment 
process was reflected using a heat map (Fig. 2). The domi-
nant genus in the original sample of AS was Pseudomonas. 
Ralstonia, Delftia, and Achromobacter were dominant in 
CA, SA, and PA samples, respectively. It has been estab-
lished that Ralstonia (Oie et al., 2007) and Achromobacter 
(Chi et al., 2021) have the ability to degrade CA and PA, 
respectively; however, Delftia has not been associated with 
the biodegradation of SA. Other genera that contributed to 
PAH biodegradation were Stenotrophomonas (Zang et al. 
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2021), Pseudacidovorax (Dealtry et al. 2018), Novosphin-
gobium (Fida et al. 2017), Enterobacter (Lors et al., 2012), 
Comamonas (Qin et al. 2019), Chryseobacterium (Xiao 
et al. 2019), and Burkholderia (Morya et al. 2020). After 
acclimation with phenanthrene and pyrene, the dominant 
genus in the MBC sample was Pseudomonas.

Biodegradation of individual PAHs vs. a mixture 
of PAHs under different initial concentrations

Figure 3 illustrates phenanthrene and pyrene degradation by 
MBC, individually and as a mixture, at different initial con-
centrations (25 mg/L, 50 mg/L, 100 mg/L, and 200 mg/L). 
When the initial concentrations of phenanthrene were 25 
and 50 mg/L, the degradation ratio of phenanthrene was 
almost 100.0%, individually and when mixed with pyr-
ene. When the initial concentrations of pyrene were 25 and 
50 mg/L, the degradation rates of pyrene were 99.0% and 
73.3%, respectively, when provided in the mixture, and were 
73.1% and 66.3% when supplemented as individual PAHs. 
When the initial concentrations of both phenanthrene and 
pyrene were 100 mg/L and 200 mg/L, the degradation rate 
of the individual PAHs was higher than a mixture of PAHs. 
Li et al. (2021) found that in a phenanthrene (500 mg/L)-
pyrene (10 mg/L) mixture system, the biodegradation effi-
ciency of pyrene increased from 17.8% (in a single substrate 
system) to 96.2% after 7 days because phenanthrene served 
as a co-metabolic substrate to significantly improve pyrene 
biodegradation. Competitive inhibition and increased toxic-
ity levels were revealed at higher initial concentrations of 
mixed PAHs (Yuan et al. 2018). In addition, phenanthrene 
was quickly degraded, followed by pyrene, at the above four 

initial concentrations. This was consistent with previous 
studies, in which the degradation ratios generally increased 
with decreasing molecular weight (Geng et al. 2022).

Effect of environmental factors on PAH degradation

To evaluate the potential degradation capacity of MBC for 
mixed PAHs, a range of degradation tests were conducted at 
various temperatures, pH values, and salinities. Figure 4A 
reveals that MBC exhibited good biodegradation efficiency 
between 20 and 35 °C on day 5. However, there was no 
impact on pyrene degradation between 25 and 35 °C. In 
comparison, the degradation rates of phenanthrene and pyr-
ene at 20 °C were lower for the first 3 days, possibly due to 
lower PAH solubility and bacterial metabolic activity (He 
et al. 2022). Typically, increasing the medium temperature 
increases the solubility of PAHs, thereby increasing their 
bioavailability and mass transfer into cells (Kumar et al. 
2021). Moreover, microbial activities increased with increas-
ing temperature in the appropriate range due to the enhance-
ment of enzymatic activity and microbial metabolism, which 
facilitated the degradation efficiency of PAHs (Liu et al. 
2017). Although the enrichment of MBC was carried out 
at 25 °C, the results of this study showed that it could adapt 
well to temperature changes.

The consortium also maintained high degradation activity 
over a wide range of pH values (5.0–9.0). Most heterotrophic 
bacteria prefer neutral to alkaline pH for their metabolic 
activity. According to Govarthanan et al. (2020), PAH bio-
degradation efficiency can be maximized at pH 7.0 because 
a neutral to nearly alkaline pH environment is suitable for 

Fig. 2  Heat map analysis of the 15 dominant genera of bacterial 
microbiota during the multi-substrate enrichment process. AS: acti-
vated sludge; CA: the consortium domesticated by catechol; SA: 
the consortium domesticated by salicylic acid; PA: the consortium 
domesticated by phthalic acid; MBC: the consortium after the multi-
substrate enrichment process

Fig. 3  Biodegradation of PAHs (phenanthrene and pyrene) when they 
were provided as individuals and as a mixture of PAHs under initial 
concentrations (25 mg/L, 50 mg/L, 100 mg/L, and 200 mg/L) by con-
sortium MBC after incubation of 5 days (28 °C, 150 rpm). The deg-
radation was calculated in percentage, and error bars represented the 
standard deviation of triplicate independent measurements

24610 Environmental Science and Pollution Research  (2023) 30:24606–24616

1 3



the carboxylation reaction. On day 1, the degradation rates 
of phenanthrene and pyrene were the highest at pH 7.0. No 
significant differences in phenanthrene and pyrene degra-
dation were observed at pH values ranging from 5.0 to 8.0 

on days 3 and 5. The degradation rate of phenanthrene was 
the lowest at pH 9.0 and remained > 70% on day 5, suggest-
ing the practical implementation of MBC on a larger scale 
(Fig. 4B). Our results were consistent with previous reports 
showing that PAH-degrading bacteria preferred neutral pH 
for PAH degradation (Vaidya et al. 2017).

The effect of salinity on PAH biodegradation is presented 
in Fig. 4C. After 5 days of incubation, MBC degraded > 90% 
of phenanthrene and > 60% of pyrene at NaCl concentra-
tions of 0–3 g/L. When the NaCl concentration was greater 
than 3 g/L, the degradation rates of phenanthrene and pyrene 
began to decrease. When the NaCl concentration reached 
10 g/L, the degradation rates of phenanthrene and pyrene 
decreased considerably to < 40% and < 20%, respectively. 
The prediction of potential functions indicated that high 
salinity could disrupt the co-metabolism between carbohy-
drate metabolism and PAH degradation (Shi et al. 2021). 
These results suggested that MBC had the potential for PAH 
bioremediation in saline environments.

Overall, the results showed that MBC exhibited excel-
lent PAH degradation performance over a wide range of pH 
values, temperatures, and salinities, suggesting good biore-
mediation potential for various contaminated sites.

Effect of environmental factors on the community 
structure of the consortium MBC during mixed‑PAH 
degradation

At different temperatures, the dominant genus in all treat-
ments after mixed-PAH degradation was Pseudomonas; no 
obvious effect of temperature on bacterial communities in 
consortium MBC was observed (Fig. 5A). Pseudomonas 
is a well-known degrader of PAHs and has been widely 
applied in PAH remediation (Rabodonirina et al. 2019). Liu 
et al. (2021) isolated a newly isolated Pseudomonas bras-
sicacearum strain, MPDS, and found that it could effectively 
degrade PAHs and heterocyclic derivatives, including naph-
thalene, fluorene, dibenzofuran, and dibenzothiophene.

Under different pH conditions, the bacterial composi-
tion in all treatments after mixed-PAH degradation was 
dominated by Pseudomonas, Burkholderia, Chryseobac-
terium, and Stenotrophomonas (Fig. 5B). Li et al. (2021) 
enriched a novel microbial consortium, QY1, in which 
Methylobacterium, Burkholderia, and Stenotrophomonas 
were the dominant genera. It was revealed that QY1 
degraded 94.5% of 500 mg/L phenanthrene and 17.8% of 
10 mg/L pyrene after 7 days. The proportion of Burkholde-
ria remarkably increased at pH 5.0, 6.0, and 9.0, which 
may be due to its adaptability to a wide range of acidic 
and alkaline conditions (Morya et al. 2020). Garrido-Sanz 
et al. (2019) isolated a bacterial consortium dominated 
by Pseudomonas, Aquabacterium, Chryseobacterium, 

Fig. 4  Biodegradation of phenanthrene and pyrene as a mixture by 
consortium MBC after incubation of 1, 3, and 5 days under different 
temperatures (A), pH values (B), and salinities (C). The initial con-
centration of phenanthrene and pyrene was 50 mg/L
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and Sphingomonadaceae that could grow using diesel as 
well as different alkanes and PAHs as the sole carbon and 
energy sources.

The bacterial communities in the MBC after mixed-PAH 
biodegradation were affected by the addition of NaCl, as 
shown in Fig. 5C. The proportions of Burkholderia and 
Novosphingobium markedly increased with increasing 
NaCl concentration. It has been reported that 0.5–3% NaCl 
is optimal for the growth of some Burkholderia strains and 
phenanthrene removal (Liu et al. 2019). Birch et al. (2022) 
prepared 294 parallel test systems using wastewater treat-
ment plant effluent as inoculum. Passive dosing was used 
to add a mixture of 19 chemicals at 6 initial concentrations 

(ng/L to mg/L). Growth of Novosphingobium was observed 
at the highest test concentration (17 mg C/L added).

Additionally, principal coordinate analysis (PCoA), based 
on weighted UniFrac dissimilarity, was used to compare 
bacterial diversity among all samples (Fig. 5D). Approxi-
mately 87.2% of the bacterial community variance could be 
explained by the first two principal components. The initial 
communities (MBC) and the communities in the temperature 
[the temperature was 20 (T_20), 25 (T_25), 28 (T_28), 30 
(T_30), and 35 °C (T_35)], pH (pH = 7.0, pH = 6.0), and 
salinity treatments [the concentration of NaCl was 5 g/L 
(NaCl_5) and 10 g/L (NaCl_10)] were clustered in the 
left bottom quadrant. In addition, the communities in the 

Fig. 5  Bacterial compositions at genus level under different tempera-
tures (A), pH values (B), salinities (C), and principal coordinates 
analysis (PCoA) based on weighted UniFrac distance (D). T_20, 
T_25, T_28, T_30, T_35: The temperature of the solution was 20, 
25, 28, 30, and 35 °C respectively; pH_5, pH_6, pH_7, pH_8, pH_9: 

The pH of the solution was 5.0, 6.0, 7.0, 8.0, and 9.0 respectively; 
NaCl_0, NaCl_1, NaCl_3, NaCl_5, NaCl_10: The concentration of 
NaCl was 0, 1, 3, 5, and 10 g/L; MBC: the consortium after the multi-
substrate enrichment process
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temperature treatment showed the least variation with tem-
perature. Among the pH treatments, the communities in the 
acid group (pH = 5.0) were clearly distinguished from the 
initial communities (MBC) along the first principal coor-
dinate. In contrast, a separation between the alkaline group 
(pH = 8.0, pH = 9.0) and MBC was observed along the sec-
ond principal coordinate. The NaCl_10 treatment exhibited 
the greatest variation in community composition among 
all salinity treatments. The above results demonstrated that 
the MBC community composition responded to changes in 
environmental conditions. It is worth noting that > 90% of 
phenanthrene and > 65% of pyrene were removed at pH 5.0, 
indicating that MBC was able to obtain good biodegradation 
of PAHs under a wide range of environmental conditions by 
changing the interactions among members of MBC.

Effect of intermediate metabolites on mixed‑PAH 
degradation by consortium MBC

Figure 6 depicts the effect of the chosen intermediate metab-
olites on phenanthrene and pyrene degradation by MBC. 
After 5 days of incubation, the degradation rates of phen-
anthrene and pyrene in the presence of CA, PA, and SA 
decreased from 93.8% (2.85 mg/L) to 64.6% (16.28 mg/L), 
91.7% (3.82 mg/L), and 89.6% (4.77 mg/L), and from 72.2% 
(11.54 mg/L) to 53.5% (19.30 mg/L), 68.1% (13.24 mg/L), 
and 71.8% (11.7 mg/L), respectively. It is worth noting that 
the degradation of PAHs in the presence of CA was at a min-
imum on day 3 and maximum on day 5, as compared with 
that in the presence of SA and PA. The initial degradation 
rates of phenanthrene and pyrene decreased significantly but 

became less distinct after day 5 in the presence of SA and 
PA. This may be because the intermediate metabolites of 
PAH degradation pathways were preferentially utilized as 
carbon sources due to their simpler structure, resulting in 
the reduction of phenanthrene and pyrene biodegradation 
(Patel et al. 2019). In addition, under multi-component con-
taminated substrate conditions, some key enzymes induced 
by easily degradable contaminants promoted the simultane-
ous metabolism of refractory contaminants by microorgan-
isms (Gupta et al. 2015). The regulator NahR, activated by 
an intermediate of PAH biodegradation, upregulated deg-
radation enzymes, which enhanced the biodegradation of 
phenanthrene (Cao et al. 2021). As a result, the accumulated 
intermediate metabolites were promptly scavenged by MBC 
to degrade PAHs in the mixed matrix.

Effect of pathway intermediates on the community 
structure of the consortium MBC after mixed‑PAH 
degradation

At the genus level, apparent changes in the composition of 
microbial communities were observed before and after the 
addition of intermediate metabolites (Fig. 7). The relative 
abundance of Pseudomonas in the CK sample increased 
after PAH biodegradation, whereas it decreased in the SA, 
PA, and CA samples. Additionally, the composition of 
the microbial communities was markedly different among 
treatments with intermediate metabolites. The dominant 
bacterial genera in the SA samples were Delftia (37.4%), 
Curvibacter (14.7%), Chryseobacterium (13.6%), and 
Comamonas (12.7%). The dominant bacterial genera in the 
PA samples were Achromobacter (27.2%), Pseudacidovorax 
(26.6%), Novosphingobium (17.3%), Delftia (12.3%), and 
Burkholderia (9.1%). In the CA sample, Ralstonia (60.1%), 
Comamonas (14.5%), and Burkholderia (7.3%) were pre-
dominant. Pseudomonas and Stenotrophomonas were good 
biosurfactant producers and tolerant to alkaline pH, with the 
former being a N-fixing, P-solubilizers and the latter being a 
mild P-solubilizer (Kuppusamy et al. 2016). Cluster analysis 
was conducted to better understand the microbial response 
to PAH biodegradation with the addition of intermediate 
metabolites. The cluster plot showed that the control sample 
without intermediate metabolites was clustered with MBC. 
The bacterial communities of the CA and PA samples were 
closely linked and clustered into one group, whereas the SA 
sample was not closely linked to either group.

Notably, the degradation rates of PAHs (Fig. 6) and the 
 OD600 (Fig. S2) of PA were higher than CA on day 5. The 
total number of bacteria had a significant effect on the deg-
radation rate of PAHs. Therefore, although the bacterial 
communities of the CA and PA samples were more closely 
linked, the bacterial number of CA was less than that of PA, 
resulting in a lower degradation rate of PAHs.

Fig. 6  Biodegradation of a mixture of PAHs (phenanthrene and pyr-
ene) in the presence of intermediate metabolites by consortium MBC 
after incubation of 1, 3, and 5 days (28 °C, 150 rpm). The degrada-
tion was calculated in percentage, and error bars represented the 
standard deviation of triplicate independent measurements. CK: con-
trol check; CA: coexistence of PAHs and catechol; SA: coexistence of 
PAHs and salicylic acid; PA: coexistence of PAHs and phthalic acid
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Furthermore, despite the different community structures 
of PA and SA, their inhibitory effects on the degradation 
rates of phenanthrene and pyrene PAHs were similar 
(Fig. 6). The microbial community composition after the 
multi-substrate enrichment process (Fig. 2) and the bio-
degradation of phenanthrene and pyrene mixture in the 
presence of intermediate metabolites (Fig. 7) showed that 
the dominant bacterial genera were similar. The percentage 
of the dominant genera (Delftia, Achromobacter, Ralsto-
nia) after the addition of intermediate metabolites was less 
than 10% (Fig. 2). In contrast, the proportion of the three 
dominant genera increased greatly after the biodegradation 
of the phenanthrene and pyrene mixture in the presence 
of intermediate metabolites (Fig. 7). Most identified PAH-
degrading bacteria from MGP sites reported in the litera-
ture belonged to the genera of Delftia, Achromobacter, and 
Ralstonia (Chattopadhyay et al. 2022). The draft genome 
of Deliftia tsuruhatensis and Pseudomonas putida con-
tains the entire benzoate and near-complete naphthalene 
and phenanthrene degradation pathways (Ibrar & Yang 
2022). Vera et al. (2022) examined microbial community 
structure in samples from the contaminated sediments and 
groundwater. The most abundant genera for sediments/
microcosms included Pseudomonas, Methylotenera, Rho-
dococcus, Stenotrophomonas, and Brevundimonas, and the 
most abundant for the groundwater/microcosms included 
Pseudomonas, Cupriavidus, Azospira, Rhodococcus, and 
unclassified Burkholderiaceae. It was proved that MBC 
had the potential to degrade PAHs and their intermedi-
ates. The MBC members behaved markedly differently 
under the stress of different intermediate metabolites. 
These results revealed that MBC adjusted the proportion 

of dominant bacteria through the metabolic burden to 
maintain the PAH degradation performance on multiple 
substrates.

Conclusion

Multi-substrate enrichment was proposed to develop a bac-
terial community named MBC from the activated sludge 
of a coking wastewater plant. MBC degraded mixtures of 
phenanthrene and pyrene at temperatures of 20–35 °C, pH 
of 5.0–9.0, salinity of 0–10 g/L NaCl, and in the presence of 
complex coexisting substrates, such as CA, SA, and PA to 
reveal excellent tolerance to different environmental stresses. 
The consortium MBC was dominated by Pseudomonas 
under all environmental conditions after the biodegradation 
of the mixed PAHs. Burkholderia was the major genus in 
both acidic environments and those with high salt concen-
trations. Additionally, MBC had a distinct response to the 
inhibition of intermediate metabolites degraded by PAHs; 
it adjusted the proportion of dominant bacteria through the 
metabolic burden. Thus, the findings of this study provide 
important strategies for practical bioremediation of various 
PAH-contaminated environments.
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