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Abstract
Low-carbon innovation plays an essential role in carbon reduction worldwide. This study investigates the nexus between 
low-carbon innovation, economic growth, and carbon emissions by the dynamic spatial Durbin model from 2007 to 2020. 
First, the Moran index results verify the provincial spatial agglomeration of carbon emissions. High-emission provinces 
concentrate in major economic zones and energy extraction areas. Second, the effect decomposition results show that long-
term and short-term effects are consistent. Low-carbon innovation has a significant mitigation effect on carbon emissions in 
local regions, which effect, however, is not significant in the adjacent areas. The environmental Kuznets curve hypothesis is 
validated locally, but all provinces and cities have not reached the inflection point of the environmental Kuznets curve, and 
the linkage effect in adjacent regions remains insignificant. The above results have been tested to be robust. Third, the results 
of the mechanism analysis show that environmental policies, absorptive capacity, and financial development play a moder-
ating role in the relationship between low-carbon innovation and carbon emissions. Finally, the heterogeneity test showed 
significant differences between Eastern, Central, and Western. The direct effect of low-carbon innovation exists in Eastern 
and central regions; the spillover effect of low-carbon innovation is only in the eastern region. In addition, corresponding 
measures are proposed based on the conclusions.
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Introduction

Since the Industrial Revolution, the concentration of atmos-
pheric greenhouse gas produced by fossil fuels and biomass 
burning has caused global warming, leading to climate 
change (Atasoy 2017). Climate change will impact the eco-
system and humanity of the Earth and lead to increasing sea 
levels, extreme weather, and possible difficulties in food and 
water supply (Reuveny 2007; Solomon et al. 2009). There-
fore, it became a consensus to mitigate carbon emissions.

Carbon dioxide, when emitted, will spread rapidly around 
the globe and have a global greenhouse effect, not just where 
it is emitted, which means there are externalities to carbon 
emissions. Carbon emission mitigation requires the con-
certed efforts of countries all over the world. Several agree-
ments had been signed to slow down the process, such as the 
Kyoto Protocol and the Paris Climate Agreement,1 which set 
a goal of limiting global temperature rise to 2 °C (3.6 °F) 
above pre-industrial levels and further limit to 1.5 °C. Glas-
gow Climate Pact was adopted at COP26 in 2021, accelerat-
ing efforts toward the phase-down of unabated coal power 
and inefficient fossil fuel subsidies. Countries worldwide 
proposed carbon–neutral routes to reach the “2 °C” goal. 
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As the developing country with the most carbon emissions, 
China proposed the 30–60 target in 2020 to peak carbon 
emissions by 2030 and realize carbon neutrality by 2060. 
The Chinese government has advocated the circular econ-
omy and environmental regulations to achieve this milestone 
(Zhang et al. 2020).

Technological innovation is considered to play a cru-
cial role in achieving  CO2 neutrality and climate change 
mitigation goals. Low-carbon innovation is the technol-
ogy innovations for renewable energy supply and efficient 
end-use energy consumption to reduce carbon emissions. 
The advantage of low-carbon innovation is that it can sig-
nificantly reduce the cost of mitigating carbon emissions 
(Popp 2012). Theoretically, low-carbon innovation increases 
energy efficiency and promotes the energy consumption 
structure turning into a cleaner one (Du and Li 2019). Fur-
thermore, some low-carbon technologies directly reduce the 
amount of carbon dioxide in the air, such as carbon cap-
ture, utilization, and storage. However, the energy efficiency 
increased by low-carbon innovation may cause a higher level 
of energy consumption, called the rebound effect (Erdoğan 
et al. 2020), which often occurs in developing countries.

China is currently transitioning from high economic 
growth to high-quality development. To promote green 
economic development, the Chinese government regards 
innovation as an essential part of its national strategy. How-
ever, after years of green development, there are still ques-
tions that have not yet been answered. First, whether the 
carbon mitigation effect of low-carbon innovation exists? 
Second, what is the interaction effect of low-carbon innova-
tion between provincial levels in China, and are there any 
spillover effects? Third, what low-carbon innovative carbon 
emission mitigation mechanisms currently exist in China? 
A systematic review of the mitigation effects of low-carbon 
innovations will facilitate the development of targeted poli-
cies to achieve China’s carbon neutrality goals efficiently. 
Furthermore, since China has the greatest contribution to 
global carbon dioxide emissions, it is essential to explore 
an emission reduction pathway for China, both for global 
carbon reduction and for developing countries with similar 
economic structures. Therefore, this study investigates the 
spatial relationship between low-carbon innovation and car-
bon emissions.

The contributions of this paper can be summarized in the fol-
lowing four main aspects. First, we extended the dynamic rela-
tionship between low-carbon innovation and carbon emissions 
in China. On the one hand, the dynamic model eliminates the 
time inertia of carbon emissions; on the other hand, the dynamic 
characteristics include long-term and short-term nexus. Second, 
in accounting for the geography characteristics, we discussed 
spatial interaction. Geographic proximity plays an essential role 
in spatial spillover (Krugman 1991), which due to the innovative 
corporation may cluster in specific regions, the knowledge may 

transfer to adjacent areas. Third, we examined the policy instru-
ment for mitigating carbon emissions. The Porter hypothesis 
supposes that strict environmental policy promotes enterprises’ 
innovation, which improves energy efficiency. Furthermore, 
existing research broadly points to improvements in energy effi-
ciency resulting in a decline in total carbon emissions (Akram 
et al. 2020). Therefore, carbon emissions may be mitigated by 
environmental policy. Fourth, we investigated the EKC hypoth-
esis under a dynamic framework. This paper constructs a new 
understanding of the relationship between low-carbon innova-
tions, economic growth, and carbon emissions for policymakers, 
which has certain practical significance for policy formulation 
and policy orientation of carbon neutrality goals.

The rest of this paper is organized as follows. In the fol-
lowing section, we present a review of the literature. In 
“Research hypothesis,” the theoretical framework is intro-
duced in this paper. “Methodology and data” illustrates the 
methodology and data. The empirical results and discus-
sion are presented in “Empirical analysis” and “Discussion,” 
respectively. Moreover, “Conclusion and policy implica-
tions” summarizes and discusses the empirical findings, then 
concludes with policy implications.

Literature review

Innovation and carbon emission relationships

Innovation has been regarded as an essential channel to miti-
gate carbon emissions in countries (Ibrahim and Vo 2021). 
For example, energy production innovations boost energy 
efficiency; through innovation, more energy-efficient produc-
tion and living goods can be designed, such as new energy 
vehicles and energy-saving appliances, which reduce carbon 
emissions. Table 1 illustrates an overview of the research 
lineage on the innovation-carbon emission relationship.

The nexus between technological innovations and carbon 
emissions got widespread attention. Studies confirmed the 
carbon emission mitigating effect of technology innovation 
in 13 selected Group-20 countries (Nguyen et al. 2020), 
Nordic countries (Irandoust 2016), and Chinese industrial 
sectors and provinces (Liu and Liu 2019; Zhang et al. 2016). 
However, the estimation results are conflicting due to the dif-
ferent samples, dataset periods, and estimation approaches. 
For instance, Ibrahim and Vo (2021) reported that techno-
logical innovation reduces carbon emissions at a low inno-
vation level; however, technological innovation increases 
carbon emissions after it goes beyond a threshold level. 
Similarly, Li et al. (2021) observed the diminishing marginal 
effect of technological innovation on carbon emissions in 
52 developed and developing countries. Zhao et al. (2021) 
argued that only the inhibitory effects exist in countries 
with technological innovations in the top 10%, while the 
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Table 1  Selected literature on the innovation-carbon emission nexus

Studies Sample and time period Methodology Key findings

Technological innovation-carbon emission nexus
Irandoust (2016) 4 Nordic countries, 1975–2012 Vector autoregression (VAR) Technological innovation reduces 

carbon emissions
Zhang et al. (2016) 38 Chinese industrial sectors, 

1990–2012
Malmquist index decomposition Carbon emissions performance is 

driven by technological change 
from 2000 to 2012

Liu and Liu (2019) 30 Chinese provinces, 2005–2016 Spatial Durbin model (SDM) Technological restriction is the main 
driving force of carbon emissions

Nguyen et al. (2020) 13 selected Group-20 countries, 
2000–2014

Panel quantile regression (PQR) Technological innovation reduces 
carbon emissions

Zhao et al. (2021) 62 countries, 2003–2018 Generalized method of moments 
(GMM), PQR

Technological innovation reduces 
carbon emissions, but heterogene-
ity exists

Ibrahim and Vo (2021) 27 industrialized countries, 
1991–2014

System GMM Technological innovation reduces 
carbon emissions. Beyond a 
threshold, technological innovation 
increases carbon emissions

Li et al. (2021) Firms in 52 countries, 2002–2015 GMM Technological innovation reduces 
carbon emissions, but the marginal 
effect diminishes

Cheng et al. (2019) Organisation for Economic Co-
operation and Development 
countries, 1996–2015

PQR The carbon emissions mitigating 
effect of technological innovation 
is not significant

Cole et al. (2013) 1961 Japanese firms, 2006 Spatial error model (SEM), SDM The carbon emissions mitigating 
effect of technological innovation 
is not significant

Erdoğan et al. (2020) 14 Group-20 countries, 1997–2017 Common correlated effect mean 
group (CCEMG); Augmented 
mean group (AMG)

Technological innovation decreases 
carbon emissions in the industrial 
sector

Heterogeneity of technological innovation and low-carbon innovation
Töbelmann and Wendler (2020) 27 Euronpean Union countries, 

1992–2014
GMM Environmental innovation decreases 

carbon emissions, while techno-
logical innovation insignificantly 
impacts carbon emissions

Liu and Zhang (2021) 30 Chinese provinces, 1998–2017 Dynamic SDM While technological innovation 
decreases carbon productiv-
ity, environmental innovation 
decreases it more

Low-carbon innovation- Carbon emissions nexus
Zhang et al. (2017) 30 Chinese provinces, 2000–2013 GMM Environmental innovation decreases 

carbon emissions
Song et al. (2020) 30 Chinese provinces. 2009–2017 GMM Information and communication 

technologies and innovation reduce 
CE; Green innovation reduces 
carbon emissions

Khan et al. (2020) Group-7 countries, 1990–2017 AMG; CCEMG Environmental innovation decreases 
carbon emissions

Radmehr et al. (2021) 21 European Union countries, 
1995–2014

Generalized spatial two-stage least 
squares (GS2SLS)

Environmental innovation and car-
bon emissions are not relevant

Wang et al. (2020) Group-7 countries, 1990–2017 Pooled mean group (PMG), AMG Eco-innovation decreases carbon 
emissions

Ding et al. (2021) Group-7 countries, 1990–2018 AMG Eco-innovation decreases carbon 
emissions

Xin et al. (2021) US, 1990Q1–2016Q4 Regression discontinuity design 
(RDD)

Eco-innovation decreases carbon 
emissions during the expansion 
phase; increases carbon emissions 
during the contraction phase
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promoting effects are in the other countries. Furthermore, 
there is also a small amount of evidence that technological 
innovation has an insignificant impact on carbon emissions 
(Cheng et al. 2019; Cole et al. 2013).

To understand why there exist conflicting results, scholars 
thought maybe the measurement of innovation. For instance, 
Töbelmann and Wendler (2020) found evidence based on the 
27 European Union countries that environmental innovation 
decreases carbon emissions, while technological innovation 
insignificantly impacts carbon emissions. Evidence from 30 
Chinese provinces proved that environmental innovation 
decreases carbon productivity more than technological inno-
vation (Liu and Zhang 2021). Studies focusing on the nexus 
between carbon emissions and environmental innovation 
found consistent results, such as in the current study based 
on the sample of Group-7 countries, the USA, and China; 
low-carbon innovation showed a significantly negative effect 
on carbon emissions (Ding et al. 2021; Khan et al. 2020; 
Lee and Min 2015; Song et al. 2020; Wang et al. 2020; Xin 
et al. 2021; Zhang et al. 2017). In addition to the total carbon 
emissions perspective, similar results exist from the carbon 
emissions efficiency perspective. Evidence from 71 coun-
tries showed that environmental innovation increases carbon 
productivity in high-income countries (Du et al. 2019; Du 
and Li 2019). Therefore, taking low-carbon innovation into 
empirical studies has gradually become mainstream.

Economic growth and carbon emission relationships 

EKC hypothesis was initially proposed by Grossman and 
Krueger (1995), which suggested an inverted U-shaped 
relationship between environmental pollution and eco-
nomic growth (Bhattarai and Hammig 2001; Stern 2004). 
Economic growth exacerbates ecological degradation when 
the level of economic development is low, while a higher 
income lowers environmental pollution. The relationship 
between environmental pollution and economic growth in 
the existing research has not yet been clarified, and several 
empirical studies have attempted to validate this hypothesis 
and found positive results. For instance, Yao et al. (2019) 

and You and Lv (2018) confirm the EKC hypothesis in 
panel data of developing and developed countries, Atasoy 
(2017) confirms the EKC hypothesis in the USA, whereas 
the findings of Cheng et al. (2017) and Shahbaz et al. (2020) 
reported the presence of EKC in China.

Although the major research finds an inverted U-shaped 
EKC relationship between carbon emissions and income, 
some suggest that the EKC hypothesis is invalid or appears to 
be a different type of curve rather than an inverted U-shape. 
For example, evidence from Group-20 countries indicates 
that the EKC hypothesis is invalid through the Common 
Correlated Effect Mean Group (CCEMG) and Augmented 
Mean Group (AMG) model (Erdoğan et al. 2020). Bali ̇n 
and Akan (2015) found an N-shaped relationship between 
 CO2 per capita and GDP per capita in 20 countries, and 
Danesh Miah et al. (2010) argue that the curve of  CO2 and 
economic development showed a monotonous straight line 
in most cases in Bangladesh. In addition, a study for 120 
countries from 1995 to 2015 noted that the EKC hypothesis 
exists only in high-income countries (Dong et al. 2020).

In summary, it is confusing whether the EKC hypothesis 
is correct. And it is difficult to find a simple answer about it 
in existing studies due to the heterogeneity in the samples 
of existing empirical studies. Therefore, this study verifies 
whether the EKC hypothesis is valid in thirty Chinese prov-
inces from a spatial perspective.

Methods

The current studies use different estimation methods to study 
the relationship between carbon emissions and low-carbon 
innovations. GMM is a widely used mainstream empirical 
method due to its properties in eliminating endogeneity in 
short panels (Töbelmann and Wendler 2020; Zhang et al. 
2017), such as introducing a lag term of the dependent vari-
able (Chen et al. 2017; Feng and Wang 2020). When con-
sidering the heterogeneity of diverse countries and regions, 
a panel threshold model or panel quantile regression is often 
introduced to the investigations (Du et al. 2019; Du and Li 
2019; Nguyen et al. 2020; Zhao et al. 2021). Finally, if only 

Table 1  (continued)

Studies Sample and time period Methodology Key findings

Lee and Min 2015) Japanese manufacturing compa-
nies, 2001–2010

OLS Green R&D decreases carbon emis-
sions

Du and Li (2019) 71 countries, 1992–2012 Panel threshold model Green technology innovations 
increase carbon productivity in 
high income while showing no 
effect in low income

Du et al. (2019) 71 countries, 1996–2012 Panel threshold model Green technology innovations 
increase carbon productivity in 
high income while showing no 
effect in low income
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to explore the two-way relationship between the two vari-
ables, some scholars have also used cointegration methods, 
such as VAR models in first-generation cointegration and 
Mean Group (MG) estimator in second-generation cointe-
gration. For instance, Khan et al. (2020) explore the role of 
environmental innovation and renewable energy on carbon 
emissions based on Augmented MG.

However, the previous methods neglect the spatial con-
nection between local and adjacent regions, which will cause 
important factors to be omitted. As a result, a spatial panel 
model is preferred in analysis when considering the spatial 
correlations among regions (Jin, 2019; Radmehr et al. 2021; 
You and Lv 2018). The spatial models are not the first to 
appear in Chinese empirical research on carbon emissions. 
For instance, Liu and Liu (2019) empirically examined the 
innovation limitation and carbon emissions in 30 Chinese 
provinces spanning 2005 to 2016. The results of the spatial 
Durbin model show that the innovation limitation positively 
impacts carbon emissions, and the results are robust in the 
east, middle, and west parts of China. However, the vast 
majority of existing empirical studies on spatial economet-
rics did not consider the dynamics nexus.

In summary, the spatial relationships between carbon 
emissions and low-carbon innovation should be considered. 
However, to our best knowledge, almost no studies have 
considered the dynamic spatial effects of low-carbon inno-
vation on carbon emissions, especially in China. Therefore, 
the purpose of this paper is to fill the gaps by empirically 
examining the role of low-carbon innovation through the 
dynamic spatial Durbin model (DSDM).

Research hypothesis

Existing macroeconomic theories emphasize that technol-
ogy is the main driver of economic growth. Despite the 
inconsistent results obtained in empirical observations, it 
is indisputable that from a theoretical perspective, there is 
a negative effect of innovation on carbon emissions. Envi-
ronmentally relevant low-carbon innovations focused on 
reducing carbon emissions are more beneficial than ordinary 
technological innovations (Dong et al. 2022). For example, 
Shao et al. (2021) found that green innovations significantly 
reduced carbon emissions. The emission reduction of low 
carbon innovation may act on two points: first, low-carbon 
innovations that directly reduce carbon emissions, such as 
carbon capture and new energy innovations, which are low-
carbon innovations that will either directly reduce carbon 
dioxide levels in the atmosphere or introduce new energy 
sources into the market to replace the use of traditional fos-
sil energy sources, thereby directly reducing carbon emis-
sions, and second, indirectly reducing carbon emissions, 
such as innovations that improve energy efficiency. These 

innovations may be achieved by improving energy efficiency. 
Therefore, this study proposes hypothesis 1.

Hypothesis 1: Low-carbon innovation negatively impacts 
carbon emissions.

In general, carbon emissions are influenced by techno-
logical innovation along with the state of economic develop-
ment. Although, as mentioned in the previous section, the 
relationship between carbon emissions and economic growth 
has not been unified in empirical studies, affected by the 
heterogeneity of the samples under study. From a theoretical 
perspective, Grossman and Krueger (1995) have proposed 
a relationship between environmental stress and economic 
development. In the early stages of development, an increase 
in output at lower levels of economic development will lead 
to an increase in carbon emissions, while in the middle and 
late stages of development, higher levels of development will 
give regions more incentive to invest in emission reductions, 
leading to a decrease in carbon emissions. In conclusion, 
it can be inferred that there is a positive and then negative 
effect of economic growth on carbon emissions over time; 
i.e., there is an inverted U-shaped relationship between eco-
nomic growth and carbon emissions. Accordingly, hypoth-
esis 2 is proposed as follows:

Hypothesis 2: Economic growth has an inverted U-shaped 
impact on carbon emissions.

The impact of environmental policies on regional 
carbon emissions has been confirmed by empirical stud-
ies (Abbas et al. 2022). In regions where environmental 
policies are implemented, the cost of carbon emissions 
for firms rises due to external government regulation. 
Firms will be pushed to control their emission levels. At 
the macro-level, it can be observed that environmental 
policies lead to a decrease in carbon emissions. On the 
other hand, based on hypothesis 1, low-carbon innovation 
helps to reduce carbon emissions. Furthermore, in addi-
tion to the direct effect, environmental policy may play a 
moderating role on the relationship between low-carbon 
innovation and carbon emissions. Specifically, low-carbon 
innovations in regions regulated by environmental policies 
have better emission reduction effects. Droste et al. (2016) 
argue that innovation is more likely to achieve sustain-
able development goals under government intervention. 
As environmental policies persistently put cost pressure 
on firms in regulated regions, firms are more likely to tar-
get their research and development to develop low-carbon 
innovations with more emission reduction potential to 
reduce their own carbon emissions effectively. There-
fore, we argue that environmental policy formulation can 
help enhance the mitigation effect of green innovation on 
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carbon emissions. The above arguments lead to the fol-
lowing hypothesis:

Hypothesis 3: Environmental policy plays a moderating 
role between low-carbon innovation and carbon emis-
sions.

According to the absorptive capacity theory of firms 
proposed by Cohen and Levinthal (1990), absorptive 
capacity is the ability to recognize the value of external 
knowledge, assimilate it, and apply it to commercial ends, 
which determines the capacity and efficiency of tech-
nological transformation. Regions with high absorptive 
capacity are able to identify precisely and efficiently how 
innovations should be applied, and are therefore able to 
reap greater benefits from the emission reduction effects of 
low-carbon innovations. In this regard, this study proposes 
hypothesis 4:

Hypothesis 4: Absorptive capacity plays a moderating 
role between low-carbon innovation and carbon emis-
sions.

Financial frictions permeate every corner of eco-
nomic activity, including the innovation process. 
Moreover, financial development can reduce the level 
of financial friction. Although the impact of financial 
development on carbon emissions is not consistent in 
empirical studies, as noted in Acheampong et al. (2020), 
financial development presents heterogeneous results 
on carbon emissions in different economies. In reality, 
the type of impact presented often depends on the rela-
tionship between the strength of the innovation and the 
rebound effect (Dasgupta et al. 2001; Zagorchev et al. 
2011). According to the three-stage innovation theory, 
innovation is divided into innovation input, patent out-
put, and new product output stages. The output of low-
carbon innovation patents may reduce carbon emissions 
by both producing new products and improving pro-
duction processes. In the process of low-carbon patent 
transformation, both existing innovation patent results 
and significant capital investment are required. Regions 
with higher levels of financial development have more 
comprehensive and complete financial infrastructures, 
which can better meet the capital needs of the local low-
carbon innovation transformation process. Therefore, we 
believe that the higher the degree of financial develop-
ment, the higher the intensity of the mitigation effect of 
low-carbon innovation on carbon emissions.

Hypothesis 5: Financial development plays a moderating 
role between low-carbon innovation and carbon emis-
sions.

Methodology and data

STIRPAT model

IPAT model is a basic framework in environmental pollution 
research (Ehrlich and Holdren 1971). The model indicates 
that environmental pressure is the product of population, 
affluence, and technology. To overcome the lacking of sto-
chastic impacts in IPAT, Dietz and Rosa (1997) proposed the 
STIRPAT model based on the IPAT model. Subsequently, 
the STIRPAT model has been widely utilized in researching 
the driving forces of environmental pressure, such as haze 
pollution and carbon dioxide emissions. The model can be 
expressed as formula (1).

where I,P,A, and T  represent the environmental pressure, 
population, affluence, and technology, respectively. After 
taking the logarithm to both sides of the equation, the model 
can express as follows:

where a is a constant term and b, c, and d are the param-
eters to be estimated. � is the logarithm of e , the resid of the 
estimation.

Spatial panel model

Moran index

It is necessary to verify the spatial dependence before 
using spatial econometrics in our analysis (Anselin 2013). 
Moran index (also called Moran’s I) is widely used to meas-
ure global spatial autocorrelation (Anselin 1995; Cliff and 
Ord 1981; Ord and Getis 1995). For variable xi , the global 
Moran’s I is presented as (Moran 1948):

where Wij is the spatial weight matrix after row standardiza-
tion. The value of the Moran index is between − 1 and 1; 
for I > 0 , there is a positive spatial correlation, showing a 
“high-high” or “low-low” distribution state; the higher the 
Moran index, the stronger the positive autocorrelation. How-
ever, a negative value of I reflects a negative spatial correla-
tion, showing a distribution of “High-Low” or “Low–High.” 
When I = 0 , it indicates that there is no spatial correlation. 
By decomposing the global Moran’s I into the units of each 
province in China, the local spatial autocorrelation can be 
obtained, as shown in Eq. (4), for province i:

(1)Iit = aPb
it
Ac
it
Td
it
e

(2)log I
it
= loga + blog P

it
+ clog A

it
+ dlog T

it
+ �

(3)I =
n
∑n

i=1

∑n

j=1
Wij(xi − x)

∑n

i=1

∑n

j=1
Wij

∑n

i

�

xi − x
�2
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Dynamic spatial Durbin model

In order to address the drawback of traditional panel models 
that cannot portray the spatial interactions between variables, 
spatial econometric models are proposed (Guo et al. 2019; 
Liu and Liu 2019). As one of the spatial econometric models, 
the spatial Durbin model can portray the spatial relationship 
between explanatory variables and explained variables. Fur-
thermore, the dynamic spatial Durbin model adds the dynamic 
relationship of the explanatory variables based on the SDM. 
This paper establishes the dynamic spatial Durbin model pre-
sented as follows:

where logCEi,t is the carbon emission of province i in period 
t , and Xi,t is the explanatory variable. The parameters �, �, 
and � represent the corresponding parameters of the time lag 
effect, the spatial lag effect, and the time-spatial lag effect of 
the explained variable, respectively. W  is the spatial weight 
matrix capturing the spillover effects (Lesage and Fischer 
2008). This paper uses the inverse squared distance matrix 
for the main model. The matrix is constructed as follows:

where Wij is the element of the inverse squared distance spa-
tial weight matrix W  , representing the spatial structure of 
connections among provinces of China. dij is the geographi-
cal distance between the province i and j. It is noteworthy 
that the estimated coefficients are biased in the spatial Dur-
bin model; thus, the model should be decomposed into direct 
and indirect effects to separate the marginal effects of the 
explanatory variables (Lesage and Fischer 2008; LeSage and 
Pace 2010). The direct effect indicates the impact of explan-
atory variables on carbon emissions, while the indirect effect 
represents the impact of explanatory variables in neighbor 
on carbon emissions; the total effect is the summary of 
direct and indirect effects. While in the dynamic model, 
All the direct, indirect, and total effects can be divided into 
short-term and long-term effects. For the variable k in X , 
short-term direct effects (SDE), short-term indirect effects 
(SIE); long-term direct effects (LDE), and long-term indirect 
effects (LIE) of DSDM can be expressed as:

(4)Ii =
n
�

xi − x
�
∑n

j=1
Wij(xj − x)

∑n

i=1

�

xi − x
�2

(5)
log CE

i,t =� log CE
i,t−1 + �W log CE

i,t

+ �Wlog CE
i,t−1 + X

i,t�1 +WX
i,t�2 + v

i,t

(6)Wij =

{

1

d2
ij

, i ≠ j

0, i = j

(7)SDEk = [(I − �W)−1
(

�1kI + �2kW
)

]
d

where d denotes the mean diagonal element of the spa-
tial weight matrix, I denotes an identify matrix, and rsum 
denotes the operator that calculates the mean row sum of the 
non-diagonal element. (In our scenario in analysis, � = 0.)

Spatial moderating effect model

The moderating effects model focuses on the role of moder-
ating variables in the relationship between the core explana-
tory variables and the explanatory variables. We construct a 
moderating effects model followed by Brambor et al. (2006) 
to examine the role of environmental policy, absorptive 
capacity, and financial development in the abatement effects 
of low-carbon innovation. The model is shown in Eq. (11).

where Dit are the moderating variables, including environ-
mental policy ( EP ), absorbing capacity ( logAC ), and finan-
cial development ( logFD).

Variable selection and data source 

A sample dataset utilized for analysis covers the thirty Chi-
nese provinces from 2007 to 2020. Due to data unavailabil-
ity and invalidity, Hongkong, Macao, Taiwan, and Tibet 
are not included in this study. The definition of variables is 
presented in Table 2. Notably, the purpose of this study is 
to address the concern about whether and how low-carbon 
innovation affects carbon emissions in China. Thus, the 
dependent variable in this paper is carbon emissions, which 
are estimated by the consumption of fossil fuels derived 
from China Energy Statistical Yearbook (2008–2021). Equa-
tion (11) is based on the method recommended by the IPCC 
(Intergovernmental Panel on Climate Change).

where ECj is the j th type of fossil fuel consumption, NCVj 
is the net calorific value of the j th type of fossil fuel, and 
CCj represents the carbon content of the unit heating value 

(8)SIEk = [(I − �W)−1
(

�1kI + �2kW
)

]
rsum

(9)LDEk = {[(1 − �)I − �W]−1
(

�1kI + �2kW
)

}
d

(10)LIEk = {[(1 − �)I − �W]−1
(

�1kI + �2kW
)

}
rsum

(11)

log CE
i,t = � log CE
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(12)CE =

17
∑

j=1

ECj × NCVj × CCj × Oj ×
44
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of the j types of energy. Oj is the carbon oxidation rate of the 
jth fossil fuel, and 44/12 is the ratio of the molecular weight 
of carbon dioxide to the carbon atom.

The other independent variables are illustrated as follows:

(1) Low-carbon innovation (LCI). Green innovation refers 
to a series of innovation outputs (i.e., improved prod-
ucts, processes, and technologies) for saving energy and 
reducing environmental pollution (Tariq et al. 2017). 
CPC (Cooperative Patent Classification) is one kind 
of patent classification proposed by EPO (European 
Patent Office) and USPTO (the United States Patent 
and Trademark Office), in which Y02 indicates patents 
against climate change. We introduce the count of pat-
ent applications under CPC-Y02 as the proxy variable 
of low-carbon innovation sourced from the incoPat 
database.2

(2) Economic development (GDP). Since Grossman and 
Krueger (1995) proposed the EKC hypothesis, many 
scholars have noticed that economic development non-
linear impacts carbon emissions (Atasoy 2017; Yao 
et al. 2019; You and Lv 2018). Hence, we introduce 
economic development and its square term, measured 
by real GDP in the base period of 2005, and the data 
are collected from China Statistical Yearbook (2008–
2021).

(3) Energy structure (ES). Carbon dioxide is mainly gener-
ated by fossil energy, of which coal has a higher car-
bon emission factor than all other fossil energy sources. 
Constrained by resource endowment, coal accounts for 
the largest proportion of fossil energy consumption in 

China (Guan et al. 2022; Qiao et al. 2014; Zhang et al. 
2018). Therefore, this research controls this factor 
in our model and proxy the ES by the share of coal 
consumption (converted into standard coal) in the 
total energy consumption of each province. The data 
are obtained from China Energy Statistical Yearbook 
(2008–2021).

(4) Industrial structure (IND). Generally speaking, the 
industrial sector is pollution-intensive with heavy 
energy consumption and carbon emission (Du and 
Li 2019). The industrial structure is widely used in 
empirical environmental studies (Zhou and Li 2020). 
Therefore, this paper employs the share of the industrial 
sector output to the whole economy as the proxy of 
industrial structure as a control variable, and the data 
are derived from China Statistical Yearbook (2008–
2021).

(5) Foreign Direct Investment (FDI). The proposition of 
the pollution heaven and pollution halo hypothesis 
and empirical studies on verifying the above hypoth-
esis implied the necessity of controlling FDI in our 
research. Therefore, we introduce FDI as a control vari-
able, expressed by the share of the amount of foreign 
direct investment in real GDP. The data are derived 
from China Statistical Yearbook (2008–2021).

(6) Energy intensity (EI). Energy intensity reflects energy 
use efficiency and is tightly related to industrial produc-
tion. Therefore, it is often considered one of the critical 
drivers of carbon emissions (Zhang and Da 2015). We 
introduce energy intensity as another control variable, 
expressed by energy consumption per unit of real GDP, 
and the data are from China Energy Statistical Year-
book (2008–2021).

(7) Population density (PD). In general, population-dense 
regions are developed with low transport costs and 
convenient services, which reduces carbon emissions 

Table 2  Variable definitions

Variables Abbreviation Unit Definition

Carbon emissions CE Million ton Calculated from fossil fuels consumption
Low-carbon innovation LCI Number Low-carbon Patent counts
Economic growth GDP Yuan Gross domestic product
Industrial structure IND Percent The share of secondary industry in GDP
Energy intensity EI kg of standard coal/Yuan The ratio of energy consumption to GDP
Foreign direct investment FDI US dollar Foreign direct investment (net inflow)
Energy structure ES Percent The share of coal consumption in total energy consumption
Population density PD Number/km2 The number of resident population per square kilometer
Environmental Policy EP Dummy variable Carbon emission trading pilot.EP = 1 when (1) the region is the pilot 

area and (2) the year is after 2011
Absorptive capacity AC Man·year The full-time equivalent of R&D personnel by region
Financial development FD % The share of the year-end loan balance of financial institutions to GDP

2 IncoPat database contains more than 100 million pieces of patent 
information from 120 countries/organizations/regions worldwide. 
https:// www. incop at. com/
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through intensive production and transportation (Jiang 
et al. 2020). We introduce population density expressed 
by the permanent residents per square kilometer, and 
the data are from China Statistical Yearbook (2008–
2021).

The moderating variables are illustrated as follows:

(1) Environmental Policy (EP). The carbon emission trad-
ing (CET) policy, launched in 2011, is regarded as 
the most critical market-based environmental regula-
tion in carbon emission mitigation in China (Du et al. 
2021; Zhang et al. 2017). Therefore, this paper uses 
CET policy as a proxy to control policy effect. This 
study selects six provinces and cities (Beijing, Tianjin, 
Shanghai, Hubei, Guangdong, and Chongqing) that 
joined the pilot policy as pilot areas, and we set the 
beginning time as 2011.

(2) Absorptive capacity (AC). Absorptive capacity is 
mainly influenced by human input and material invest-
ment, where human input determines the extent to 
which new technologies and methods are understood 
and digested (Zhao et al. 2019). Therefore, this paper 
uses the full-time regional equivalent of R&D person-
nel to measure absorptive capacity. Data were collected 
from the China Science and Technology Statistical 
Yearbook (2008–2021).

(3) Financial development (FD). Referring to the study 
by Khan and Ozturk (2021), financial development is 
measured by the share of the year-end loan balance of 
financial institutions to GDP. Data are obtained from 
the statistical yearbooks of each Chinese province.

Table 3 summarizes the descriptive statistics of all the 
variables, including the specific descriptive statistics of all 
the selected variables. We winsorized all variables within 
region-year at the  99th percentile to eliminate outliers. 

Subsequently, we take logarithms for the variables based on 
the assumptions of the STIRPAT model.

Empirical analysis

The procedures of the estimations mainly consist of six steps 
in this paper: (1) analyzing the spatial characteristics of car-
bon emissions across China; (2) verifying the existence of 
spatial autocorrelation, including LM tests and LR tests; (3) 
examining the impact of low-carbon innovation and eco-
nomic growth on carbon emissions based on the DSDM, 
including the main results and effect decomposition results; 
(4) mechanism analysis; (5) heterogeneity test; (6) robust-
ness test.

Spatial characteristics of carbon emissions

The spatial differentiation characteristics of carbon emis-
sions in 2007, 2011, 2015, and 2019 are shown in Fig. 1. 
The western, central, and eastern provinces are represented 
in Fig. 1. A slight polarization of carbon emissions have 
been detected, manifested by higher average carbon emis-
sions in the eastern provinces than in the central and western 
provinces.

The high carbon emissions areas are concentrated in 
specific provinces all these years. The two highest carbon-
emitting provinces in Central China are Shanxi and Inner 
Mongolia, two of the Chinese major coal mining producers. 
In the eastern province, high carbon emissions provinces 
are clustered in three major economic zones, which are rel-
atively developed, including Circum-Bohai Sea Economic 
Zone (Shandong, Hebei, and Liaoning), Yangtze River Delta 
Economic Zone (Jiangsu), and Pearl River Delta Economic 
Zone (Guangdong).

In terms of the number of provinces, from 2007 to 2019, 
the percentage of provinces with consistently rising carbon 

Table 3  Descriptive analysis Variables Mean Std. Dev Minimum Median Maximum

CE 467.957 392.001 30.942 330.454 2304.617
LCI 1987.641 2827.955 6.000 965.000 19,241.000
GDP 15,202.856 13,546.710 630.930 11,159.433 78,346.039
IND 42.802 8.225 15.989 43.822 61.960
EI 18.574 16.030 2.749 13.691 88.260
FDI 7307.104 7509.792 4.769 4631.745 35,759.559
ES 66.968 18.595 2.025 68.881 97.930
PD 455.338 673.892 7.637 282.310 3912.941
EP 0.138 0.346 0 0 1
AC 114,258.6 134,542.5 1,262 67,721.5 872,238
FD 2.818 2.500 1.368 2.097 16.809
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emissions in the east, central and west are 44%, 37.5%, and 
50%, respectively. However, in terms of volume, there is 
an upward trend in most provinces with larger emissions, 
although there is a decline in the growth rate, showing the 
time inertia of carbon emissions.

Spatial autocorrelation test

The global spatial autocorrelation of carbon emissions in 
thirty selected Chinese provinces from 2007 to 2020 is 
shown in Table 4. The Moran index measures spatial auto-
correlation in examining whether to introduce the spatial 
econometric model in empirical studies (Moran 1948). 
Global Moran indexes are consistently positive and statisti-
cally significant at least the 5% level, which shows spatial 
agglomeration. In addition, the Moran index shows a down-
ward trend from 2007 to 2020, indicating that the spatial 
effect gradually decreases. From 2007 to 2020, the Moran 
index of carbon emissions shows a slight fluctuating down-
ward trend within the level of ± 0.015 from the mean, which 
implies a slight weakening of the spatial polarization effect 
of carbon emissions and a trend of convergence of provincial 
carbon emission levels.

The Moran scatter plot is widely used to show the local 
Moran index in order to determine the spatial agglomeration 
characteristics of specific provinces. Figure 2 presents the 
results of Moran scatter plots. Similar to Fig. 1, we report 
the results in 2007, 2011, 2015, and 2019, which corre-
spond to (a), (b), (c), and (d), respectively. Moran scatter 
plots were divided into four quadrants, which are high-high 
(quadrants I), low–high (quadrants II), low-low (quadrants 
III), and high-low (quadrants IV). The majority of provinces 
were located in the first and third quadrants. There are 20 
provinces (2007 and 2011, 66.7%) and 23 provinces (2015 
and 2019, 76.7%) that were located in these two quadrants. 

Hebei, Henan, Shandong, Shanxi, and Inner Mongolia 
belonged to high-high clustering in all four selected periods, 
which are basically in Bohai Rim economic circle, and the 
major coal mining provinces, indicating a significant club 
convergence phenomenon. However, some provinces indi-
cated negative spatial auto-correlation. As an illustration, 
Shanghai, Anhui, Jilin, and Ningxia are in quadrants II in 
2019, indicating these provinces are low emitters and sur-
rounded by high-emission neighbors.

Panel unit root test and cointegration test

It is necessary to examine whether the variables are mean 
stationarity to avoid spurious long-term relationships in our 
analysis. Only when the error term of estimation follows a 
stationary process, which means all the variables are cointe-
grated (You and Lv 2018), it is proper to carry out a spatial 
panel model. Therefore, first, we conduct the cross-sectional 
dependence (C-D) test (Pesaran 2021), which is reported in 
Table 5. The null hypothesis of the C-D test is that the variable 

Fig. 1  The spatial differentiation of carbon emissions

Table 4  Global Moran index of carbon emissions

  ** and *** imply the significance at the  5% and 1% levels, respec-
tively

Year Global Moran 
index

Prob Year Global Moran 
index

Prob

2007 0.189*** 0.009 2014 0.187*** 0.010
2008 0.200*** 0.006 2015 0.182** 0.011
2009 0.207*** 0.005 2016 0.184** 0.011
2010 0.198*** 0.007 2017 0.178** 0.012
2011 0.196*** 0.007 2018 0.172** 0.015
2012 0.184*** 0.010 2019 0.173** 0.014
2013 0.183** 0.011 2020 0.172*** 0.009
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is weakly cross-sectional dependent. Table 5 shows that the 
cross-sectional dependence exists.

Next, we use panel unit root tests to analyze the exist-
ence of time stationarity in variables (Chica-Olmo et al. 
2020), including LLC (Levin et al. 2002), IPS (Im et al. 
2003), Fisher DF (Dickey and Fuller 1979) and CIPS 
test (Pesaran 2007). The first three approaches are the 
first-generation unit root tests, and the last one is the sec-
ond-generation unit root test, which takes cross-section 
dependence into account. The null hypothesis of the unit 
root test is that there is a unit root in the panel. The unit 
root test results in Table 6 indicate that the variables are 
stationary after first differencing. Therefore, the panel 
cointegration test is necessary.

This study introduces the Pedroni cointegration test, 
shown in Table 7 (Pedroni, 2004). The panel cointegra-
tion test assesses the existence of a long-term relationship. 
The within-dimensional cointegration test statistics (ν, ρ, 
PP, ADF statistic) and between-dimensional cointegration 
test statistics (ρ, PP, ADF statistic) indicate that all vari-
ables are cointegrated. Therefore, a long-term relationship 
between the variables exists.

Specification of the spatial panel model

To examine the existence of spatial dependence and decide 
which spatial model is more appropriate, we employ 
Lagrange multiplier (LM) tests, the robust LM tests, and 

Fig. 2  Moran scatter plot: a 2007, b 2011, c 2015, and d 2019

Table 5  Cross-sectional dependence tests

*** represents statistical significance at 1% level

logCE logLCI logGDP logIND logEI logES logFDI logPD

C-D test 77.966*** 77.790*** 78.034*** 77.836*** 77.678*** 77.235*** 77.897*** 78.035***
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likelihood ratio (LR) tests. The null hypothesis of the LM 
tests is that there is no spatial lagged term (LM-lag and 
robust-LM-lag) or spatial error term (LM-error and robust-
LM-error). The null hypothesis of the LR test is that there 
is no spatial error term (LR-SDM-SAR) or spatial lagged 
term (LR-SDM-SEM) in the model. The results of the 
specification test are presented in Table 8. LM-Lag, LM-
Error, robust-LM-Lag, and robust-LM-Error statistics are 
357.325, 198.600, 2610.778, and 2253.652. The results 
reject the null hypothesis at the 1% significance level. The 
LR-SDM-SAR and LR-SDM-SEM statistics are 49.91 and 
49.92, respectively, rejecting the null hypothesis. There-
fore, it is reasonable to introduce the spatial Durbin model 
into the empirical study. The result of the Hausman test 
justifies the fixed effects model.

Spatial panel model estimation results

Table 9 reports the spatial panel results estimated by bias-
corrected quasi-maximum likelihood estimation (Lee and 
Yu 2010; Yu et al. 2008). Model II is the static SDM; 
Models III is the Dynamic SDM with the time-lagged 
dependent variables; Model IV is the DSDM with time-
lagged dependent variables and square term of logGDP . 
And Model V is with time-lagged and spatial-time-lagged 
dependent variables. The Wald and LR test confirm the 
validity of the Spatial Durbin Model in our analysis, and 
the DSDM is better than the SDM from the more signifi-
cant coefficients in DSDM. However, the insignificance of 
the spatial-time-lagged coefficient ( � ) allows us to exclude 
model V. It is reasonable to use model IV in our analysis.

The time-lagged coefficient ( � ) is positive and sig-
nificant, which shows inertia characteristics of carbon 

Table 6  Panel unit root tests

*** , **, and *represent statistical significance at 1%, 5%, and 10% levels, respectively. The critical values of 
CIPS are − 2.14, − 2.25, and − 2.45, respectively

Variables LLC IPS Fisher DF CIPS

log CE Level  − 10.441***  − 2.978*** 10.819***  − 2.01
First difference  − 9.004***  − 4.126*** 11.028***  − 3.17***

log LCI Level  − 7.519***  − 1.653*** 18.196***  − 1.92
First difference 9.655***  − 6.932*** 7.732***  − 3.29***

log GDP Level  − 16.581***  − 9.254*** 5.810***  − 1.38
First difference  − 14.289***  − 0.017 15.164***  − 2.72***

log IND Level 0.070 3.049 6.090***  − 1.86
First difference  − 6.511***  − 3.757***  − 1.698  − 2.91***

log EI Level 0.070 2.199 6.116***  − 2.05
First difference  − 2.034**  − 4.905*** 4.369**  − 3.11***

log ES Level  − 2.085**  − 7.949*** 3.302***  − 2.12
First difference 9.819  − 11.980***  − 2.732  − 4.55***

log FDI Level  − 11.959***  − 4.608 4.229***  − 1.83
First difference  − 6.564***  − 1.315* 4.953***  − 2.93***

log PD Level 3.541 2.658 1.674**  − 1.61
First difference  − 5.667***  − 3.267*** 1.385*  − 2.97***

Table 7  Pedroni cointegration test

*** represents statistical significance at 1% level.  H0: no cointegration 
relationship between the variables

�2 Prob

Within-dimension cointegration test
  Panel � − statistic  − 3.927*** 0.000
  Panel � − statistic 8.467*** 0.000
  Panel PP − statistic  − 9.215*** 0.000
  Panel ADF − statistic  − 9.210*** 0.000

Between-dimension cointegration test
  Group � − statistic 10.460*** 0.000
  Group PP − statistic  − 12.831*** 0.000
  Group ADF − statistic  − 11.386*** 0.000

Table 8  Specifications of the spatial panel model

*** represents statistical significance at 1% level

Statistics Prob

LM lag (Anselin) 357.325*** 0.000
LM Error (Burridge) 198.600*** 0.000
LM lag (Robust) 2610.778*** 0.000
LM Error (Robust) 2253.652*** 0.000
LR-SDM-SAR 49.91*** 0.000
LR-SDM-SEM 49.92*** 0.000
Hausman test 172.36*** 0.000
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emissions, meaning that carbon emissions in the previous 
period positively affect the current period. The result of 
Model IV indicates that the CE in the next period will 
increase by 0.171% on average if CE increases by 1% 

in the current year, which indicates that if carbon emis-
sions are not mitigated promptly, they will become more 
challenging to control the emission process as the base 
of carbon emissions grows larger.

Table 9  Estimation results of 
OLS model, SDM, and DSDM

*** , **, and * represent statistical significance at 1%, 5%, and 10% levels, respectively; the values in paren-
theses represent the t-statistics

Model I Model II Model III Model IV Model V

OLS-FE SDM DSDM DSDM DSDM
� 0.263*** 0.234*** 0.158* 0.127

(2.946) (2.736) (1.767) (1.365)
τ 0.177*** 0.171*** 0.171***

(10.821) (10.524) (10.470)
� 0.007

(0.124)
log LCI 0.004  − 0.018***  − 0.015**  − 0.015**  − 0.015**

(0.546) (− 2.600) (− 2.400) (− 2.513) (− 2.516)
log GDP 1.104*** 1.064*** 0.877*** 1.020*** 1.020***

(28.014) (100.286) (44.910) (23.408) (23.371)
(log GDP)2  − 0.008***  − 0.008***

(− 3.662) (− 3.661)
log IND  − 0.307*** 0.569*** 0.488*** 0.517*** 0.517***

(− 2.992) (7.709) (7.215) (7.557) (7.555)
log EI 1.076*** 1.053*** 0.883*** 0.889*** 0.889***

(101.145) (146.484) (52.123) (52.975) (52.404)
log ES 0.029*** 0.049*** 0.037*** 0.038*** 0.038***

(7.409) (7.340) (6.218) (6.367) (6.328)
log FDI  − 0.002  − 0.016***  − 0.010***  − 0.008**  − 0.008**

(− 0.597) (-3.748) (− 2.597) (− 2.112) (− 2.115)
log PD  − 0.237***  − 0.001  − 0.003  − 0.001  − 0.001

(− 5.316) (− 0.161) (− 0.740) (− 0.291) (− 0.278)
W × log LCI  − 0.009  − 0.015  − 0.010  − 0.010

(-0.513) (− 0.912) (− 0.586) (− 0.592)
W × log GDP 0.109 0.082  − 0.142  − 0.148

(1.063) (0.826) (− 0.937) (− 0.927)
W × (log GDP)2 0.008 0.008

(1.450) (1.443)
W × log IND  − 0.241  − 0.122  − 0.105  − 0.108

(− 1.364) (− 0.741) (− 0.615) (− 0.626)
W × log EI 0.051 0.011  − 0.056  − 0.060

(0.541) (0.120) (− 0.612) (− 0.620)
W × log ES 0.023 0.012 0.009 0.008

(1.528) (0.909) (0.645) (0.621)
W × log FDI 0.044*** 0.040*** 0.031*** 0.031***

(4.644) (4.652) (3.538) (3.529)
W × log PD  − 0.070***  − 0.061***  − 0.051***  − 0.051***

(-5.495) (− 5.245) (− 4.325) (− 4.292)
N 420 420 390 390 390
Wald - 47.71*** 46.91*** 32.17*** 33.99***
LR - 40.05*** 349.07*** 343.43*** 73.06***
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The spatial-lagged coefficient ( � ) is significantly posi-
tive, indicating the contagion effect of synchronous change, 
meaning that carbon emissions in adjacent regions positively 
impact carbon emissions in the local region. For every 1% 
increase of CE in adjacent provinces, the CE in the local 
province will increase by 0.158% on average. The result 
reveals that the control on a single region is ineffective, 
which may result from high-emission enterprises would 
transfer to adjacent regions, increasing the emission level in 
the local province. Therefore, the control policy conducive 
to carbon emissions mitigation should take joint precautions 
in neighboring regions. Furthermore, the spatial-lagged 
effect of carbon emissions is greater than the time-lagged 
effect, confirming that CE is influenced more by CE from 
adjacent provinces, which indicates that more attention 
should be paid to inter-regional joint prevention and control 
when implementing policies.

To get the accurate marginal effects, we estimated the 
direct, indirect, and total effects in the short-term and long-
term of model IV according to the Eq.  (7) to (10). The 
results are reported in Table 10. It can be concluded from 
Table 10 that the long-term and short-term effects are in the 
same direction, and the long-term effect is higher than the 
short-term effect, which is consistent with the reality and the 
theory of the dynamic spatial model.

Regarding the core explanatory variable, the Short-term 
direct effect (SDE) and Short-term indirect effect (SIE) of 
low-carbon innovation are -0.016 and -0.009, respectively. 
Similar results also appeared in the long term. However, 
only the direct effects are significant at the 1% level. It can 
be concluded that low-carbon innovations reduced carbon 
emissions only locally, while the spillover effect of LCI 
cannot be observed, which is consistent with Liang et al.
(2019). Improving the regional low-carbon innovation can 
significantly inhibit local carbon emissions. However, it does 
not affect adjacent regions significantly, which may result in 
that low-carbon innovation resources are mainly applied to 
local development currently, lacking the linkage effect with 
the adjacent regions. Therefore, the progress of low-carbon 
technologies can only reduce local carbon emission levels, 
making it difficult to obtain a more efficient mitigating mode 
overall. Based on the effect decomposition results, Hypoth-
esis 1 is verified. Carbon emissions can be reduced by an 
increase in low-carbon innovation.

After the effect decomposition, the relationship between 
economic development and carbon emissions becomes 
clearer. The direct effects in both the long term and short 
term show that the inverted U-shaped relationship between 
GDP and carbon emissions exists, supporting the validity 
of the EKC hypothesis, in line with the results of the other 

Table 10  Direct, indirect, and 
total effect in short-term and 
long-term

*** , **, and * represent statistical significance at 1%, 5%, and 10% levels, respectively; the parentheses' val-
ues represent the t-statistics

Variables Short-term Long-term

Direct effect Indirect effect Total effect Direct effect Indirect effect Total effect

log LCI  − 0.016***  − 0.009  − 0.024**  − 0.019***  − 0.010  − 0.029**
(− 2.643) (− 0.525) (− 2.032) (− 2.642) (− 0.527) (− 2.029)

log GDP 1.023***  − 0.144 0.879*** 1.234***  − 0.171 1.064***
(23.980) (− 1.319) (7.491) (23.969) (− 1.310) (7.577)

(log GDP)2  − 0.008*** 0.008 0.001  − 0.010*** 0.010 0.001
(− 3.990) (1.470) (0.086) (− 3.987) (1.460) (0.086)

log IND 0.520***  − 0.092 0.428** 0.627***  − 0.110 0.517**
(7.709) (− 0.557) (2.128) (7.700) (− 0.550) (2.128)

log EI 0.888***  − 0.051** 0.837*** 1.072***  − 0.058** 1.013***
(52.239) (− 2.021) (27.062) (52.212) (− 2.541) (32.215)

log ES 0.038*** 0.010 0.048*** 0.046*** 0.012 0.058***
(6.566) (0.787) (3.449) (6.559) (0.798) (3.451)

log FDI  − 0.008** 0.032*** 0.024**  − 0.010** 0.038*** 0.029**
(− 2.016) (3.568) (2.476) (− 2.012) (3.525) (2.447)

log PD  − 0.052***  − 0.001  − 0.053***  − 0.063***  − 0.001  − 0.064***
(− 4.133) (− 0.305) (− 3.814) (− 4.042) (− 0.312) (− 3.733)

� 0.158*
(1.767)

� 0.159***
(10.092)

  N 390
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studies (Apergis 2016; Grossman and Krueger 1995; Jiang 
et al. 2021; Sun et al. 2021). However, after obtaining the 
inflection points for SDE and LDE (63.94 and 61.7, respec-
tively) and comparing the inflection points with provincial 
real GDP, we find that none of the provinces is close to 
the inflection point yet. Therefore, if the current economic 
development structure keeps unchanged, improving eco-
nomic development in China still promotes local carbon 
emissions in the short and long term, which possibly results 
from that economic growth increasing energy consumption 
and thus contributes to the carbon emissions (Mikayilov 
et al. 2018), the effect of low-carbon development has not 
yet been fully demonstrated. The indirect effects of GDP 
and its square term are not significant, which indicates that 
improving GDP from adjacent regions cannot affect local 
carbon emissions statistically significantly in the short term 
or the long term. Therefore, hypothesis 2 is verified.

For the control variables in the effect decomposition 
results, the total effect results show that industrial structure 
optimization, energy intensity reduction, and energy struc-
ture optimization help to mitigate carbon emissions, while 
the rise in population density will reduce carbon emissions. 
Overall, the total carbon emissions will be relatively high 
for an economy with a high industrial share, high energy 
consumption per unit of output, and a high dependence on 
coal as the main energy source, which is in line with previ-
ous studies (Ma et al. 2019; Zhang et al. 2014; Zhu 2022). 
For more densely populated areas, which are generally rela-
tively more developed, resource intensification in developed 
areas can lead to more efficient energy consumption. The 
results for the direct effects were generally consistent with 
the results for the total effects, which implies that a region 
with higher industrialization, less efficient energy use and 
a relatively high share of high carbon emission energy use 
leads to higher carbon emissions. In contrast, the industrial 
structure, energy intensity, and energy structure do not affect 
carbon emissions in the adjacent regions. The spillover effect 
is not significant.

It should be noted that the decomposition of the effect 
of foreign direct investment (FDI) shows opposite results 
for the direct effect (negative) and the indirect effect (pos-
itive). On the one hand, FDI in China is concentrated in 
labor-intensive and resource-intensive industries, which 
drive up carbon emissions. On the other hand, the pollu-
tion halo hypothesis also points out that the new technol-
ogy brought by FDI will help the host country reduce pol-
lution. In addition, FDI also squeezes out the market share 
of local firms to some extent. FDI in China can reduce local 
carbon emissions, suggesting that the pollution halo effect 
and crowding out effect are higher than the effect of FDI 
directly contributing to carbon emissions. New technologies 
brought by FDI will help host countries to reduce pollution. 
However, there is a significant negative effect of FDI on 

carbon emissions in the surrounding area. There may be two 
possible reasons for this (Cheng et al. 2017): first, projects 
crowded out by FDI are transferred to nearby areas, leading 
to an increase in carbon emissions in nearby areas; second, 
for local governments, the promotion tournament system 
for officials incentivizes local governments to increase local 
investment attraction when they find that neighboring areas 
receive more foreign investment. However, in the process of 
attracting investment, both foreign and domestic enterprises 
are attracted. On the one hand, domestic firms may be less 
energy efficient and correspond to higher carbon emissions. 
On the other hand, areas with foreign investment concen-
trated develop energy-intensive industries with high carbon 
emissions, which will cause a local agglomeration of similar 
industries, leading to an increase in carbon emissions.

Mechanism analysis: moderating effect model

Based on the preceding theoretical study, we now exam-
ine hypotheses 3 through 5, which relate to the moderat-
ing effects of environmental policy, absorptive capacity, 
and level of financial development between low carbon 
innovation and carbon emissions. The results of the effect 
decomposition of the DSDM model are shown in Table 11. 
Among them, Models VI, VII, and VIII represent the results 
of model estimation of the moderating effects of introducing 
the interaction terms of low carbon innovation with environ-
mental policy, absorptive capacity, and financial develop-
ment, respectively. Since the indirect effects of the baseline 
model (model IV) are not statistically significant, we focus 
on the direct and total effects in the mechanism analysis.

First, this study analyzes the moderating effect of 
environmental policy. In terms of direct effects, the coef-
ficient of low-carbon innovation is negative and signifi-
cant both in the short-term and long-term. In addition, 
we find that the short-term and long-term direct effects 
of environmental policy on carbon emissions are − 0.095 
and − 0.109, respectively, indicating the negative effect 
of environmental policy on carbon emissions when the 
level of carbon emissions is fixed. The interaction term 
( logLCI × EP ) enters with negative coefficients, which 
suggests that implementing environmental policies will 
further enhance the ability of low-carbon innovations to 
reduce emissions locally. The results of total effects show 
identical results with direct effects, indicating that a sig-
nificant moderating effect of environmental policy is still 
presented even when non-significant spillover effects are 
taken into account. Overall, environmental policy has a 
moderating effect on the mitigation effect of low-carbon 
innovation on carbon emissions, i.e., environmental policy 
can enhance the mitigation level of low-carbon innova-
tion on carbon emissions (Lv and Bai 2021). Market-
based emissions trading policies enhance the low-carbon 
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innovation performance of enterprises, optimize the allo-
cation of innovation resources, and improve innovation 
effectiveness. The mitigation effect of low carbon innova-
tion on carbon emissions is stronger in regions where envi-
ronmental policies are implemented. Therefore, hypothesis 
3 is verified.

Second, for analyzing the moderating effect of absorp-
tive capacity on the relationship between low-carbon 
innovation and carbon emissions, the interaction term of 
logLCI and logAC was generated. Model VII in the table is 
a spatial moderation effect model used to verify hypothesis 
4 to portray how absorptive capacity moderates the rela-
tionship between low carbon innovation and carbon emis-
sions. Considering the direct effects, the short-term and 
long-term effects of logLCI  , logAC , and logLCI × logAC 
are negative at the 1% significance level. In conclusion, 
the above results suggest that absorptive capacity has a 
significantly enhanced moderating effect on the carbon 
mitigation effect of low-carbon innovations in the short 
and long term, which verifies hypothesis 4. In other words, 
regions with greater absorptive capacity benefit more from 
the emission reduction effect of low-carbon innovation 
because they are able to use the low-carbon innovation pat-
ents more effectively. The mitigation effect of low carbon 
innovation on carbon emissions will continue to increase 
as regional absorptive capacity grows (Zhao et al. 2019).

Third, Model VIII is the moderating effect model to 
verify hypothesis 5. The coefficients of the moderat-
ing variable logFD show a mitigating effect of financial 
development on carbon emissions, which can also spillo-
ver to adjacent regions. The results are consistent in the 
long and short term. In terms of direct effects, the short-
term and long-term effects of logLCI and the interaction 
term ( logLCI × logFD ) are negative and statistically sig-
nificant. Furthermore, the total effects of the interaction 
terms are consistent with the direct effect results. It can 
be concluded that low-carbon innovation has a significant 
mitigation effect on carbon emissions, and the magnitude 
of this effect depends heavily on financial development 
locally. This result verifies hypothesis 5 and emphasizes 
the critical moderating role of financial development on 
the carbon mitigation effect of low carbon innovation. A 
well-functioning financial system can provide substantial 
investment for innovative enterprises (Hsu et al. 2021; Lv 
et al. 2021), help build fail-safe mechanisms, and increase 
the proportion of low-carbon innovation patents applied to 
production and consumption.

Heterogeneity analysis 

China is a vast country with uneven development and obvi-
ous heterogeneity between regions. Generally speaking, 
the eastern coastal regions of China with more developed Ta
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economies and more intensive innovation activities. There-
fore, it is necessary to conduct heterogeneity analysis and 
study the internal relationship between different regions. 
This study divides China's 30 provinces into three regions, 
namely, eastern, central, and western, and carries out esti-
mation using DSDM separately. The results of the effect 
decomposition are shown in Table 12. where models IX, X, 
and XI denote the estimation results for the eastern, central, 
and western regions, respectively.

As can be seen in Table 12, low-carbon innovation in 
the eastern region has a significant negative effect on car-
bon emissions. The negative effects include both direct and 
indirect effects. That is, low carbon innovation is able to 
spillover between eastern provinces while reducing local 
carbon emissions. Moreover, the above effects hold in both 
the long and short term. The reason may be that the eastern 
region has an overall more developed economy and better 
innovation infrastructure. And the strong R&D capability 

Table 12  Heterogeneity test results

*** , **, and * represent statistical significance at 1%, 5%, and 10% levels, respectively; the values in parentheses represent the t-statistics

Eastern: Model IX Central: Model X Western: Model XI

Direct effect Indirect effect Total effect Direct effect Indirect effect Total effect Direct effect Indirect effect Total effect

Short-term
  log LCI  − 0.021**  − 0.084***  − 0.105***  − 0.005** 0.001  − 0.004** 0.010 0.074 0.085

(− 2.439) (− 3.715) (− 3.847) (− 2.395) (0.209) (− 2.056) (0.886) (0.508) (− 0.445)
  log GDP 1.113***  − 1.111*** 0.002 1.484*** 0.157 1.641*** 1.094***  − 0.986*** 0.108

(10.787) (− 4.981) (0.006) (9.512) (0.486) (4.191) (15.702) (− 5.309) (0.548)
  (log GDP)2  − 0.004 0.064*** 0.059***  − 0.033***  − 0.010  − 0.043**  − 0.011*** 0.044*** 0.033***

(− 0.973) (6.069) (4.505) (− 4.086) (− 0.555) (− 1.986) (− 2.812) (4.790) (3.154)
  log IND  − 0.071  − 1.279***  − 1.351** 0.293*** 0.583*** 0.875***  − 1.002*** 0.242  − 0.760*

(− 0.280) (− 3.070) (− 2.079) (2.804) (3.334) (3.368) (− 7.923) (0.643) (− 1.693)
  log EI 0.992*** 0.037 1.029*** 0.951*** 0.060*** 1.011*** 0.977*** 0.122*** 1.100***

(49.450) (0.840) (19.640) (89.551) (4.218) (62.480) (48.566) (4.339) (28.375)
  log ES 0.039*** 0.014 0.053*** 0.006  − 0.014  − 0.008 0.013* 0.015 0.028

(6.403) (1.276) (3.886) (0.939) (− 1.004) (− 0.454) (1.870) (0.913) (1.340)
  log FDI  − 0.041*** 0.027  − 0.013 0.009 0.023*** 0.032*** 0.003 0.002 0.005

(-5.740) (1.581) (-0.637) (1.599) (2.812) (2.795) (0.805) (0.212) (0.462)
  log PD  − 0.043***  − 0.103***  − 0.145*** 0.029*** 0.026 0.055** 0.069*** 0.186*** 0.255***

(− 2.800) (− 3.856) (− 3.688) (4.159) (1.637) (2.535) (13.955) (9.108) (10.684)
Long-term

  log LCI  − 0.023**  − 0.091***  − 0.114***  − 0.007** 0.001  − 0.053** 0.011 0.074 0.085
(− 2.434) (− 3.695) (− 3.826) (− 2.393) (0.214) (− 2.052) (0.883) (0.504) (0.445)

  log GDP 1.213***  − 1.212*** 0.002 1.543*** 0.161 1.704*** 1.219***  − 1.098*** 0.120
(10.728) (− 4.981) (0.005) (9.513) (0.478) (4.186) (15.595) (− 5.288) (0.548)

  (log GDP)2  − 0.005 0.069*** 0.065***  − 0.034***  − 0.010  − 0.044**  − 0.013*** 0.049*** 0.037***

(− 0.964) (6.030) (4.467) (− 4.087) (− 0.552) (− 1.984) (− 2.789) (4.786) (3.147)
  log IND  − 0.078  − 1.397***  − 1.476** 0.304*** 0.605*** 0.909***  − 1.117*** 0.266  − 0.851*

(− 0.281) (− 3.042) (− 2.067) (2.794) (3.299) (3.341) (− 7.917) (0.634) (− 1.692)
  log EI 1.082*** 0.041 1.123*** 0.988*** 0.061*** 1.050*** 1.090*** 0.140*** 1.230***

(49.418) (0.892) (20.413) (89.543) (4.059) (60.253) (48.473) (3.980) (26.338)
  log ES 0.043*** 0.015 0.058*** 0.006  − 0.015  − 0.009 0.015* 0.017 0.031

(6.404) (1.274) (3.885) (0.940) (− 1.004) (− 0.454) (1.870) (0.915) (1.340)
  log FDI  − 0.044*** 0.030  − 0.014 0.010 0.024*** 0.034*** 0.003 0.002 0.005

(− 5.727) (1.586) (− 0.634) (1.595) (2.793) (2.779) (0.806) (0.213) (0.462)
  log PD  − 0.047***  − 0.112***  − 0.159*** 0.030*** 0.027 0.057** 0.078*** 0.208*** 0.286***

(− 2.796) (− 3.785) (− 3.644) (4.152) (1.627) (2.524) (13.842) (9.081) (10.628)
  � 0.049*** 0.046*** 0.041*

  � 0.083*** 0.038*** 0.103***

  N 156 117 117
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and absorptive capacity of eastern regions make the innova-
tion output higher and able to absorb the innovation output 
in the eastern regions. Thus, the transformation of low-
carbon innovation into economic activities reduces carbon 
emissions.

For the central region, there is a direct effect of low car-
bon innovation on carbon emissions, but the coefficient of 
the direct effect is significantly lower than that of the eastern 
region. In addition, the indirect effect is not significant. The 
possible reason is that the independent R&D capability of 
the central region is weaker than that of the eastern region, 
and the quality of low-carbon innovation output is insuf-
ficient, so the emission reduction effect of low-carbon inno-
vation is weaker compared to the eastern region. However, 
the current situation of insufficient low-carbon innovation 
output in the central region makes the spatial spillover effect 
of low-carbon innovation not strong enough to observe a 
statistically significant spillover effect.

For the western region, no significant impact of low-carbon 
innovation on carbon emissions could be observed. One possible 
reason is that the overall economic strength of the western region 
is weak, and local governments focus their main efforts on eco-
nomic development, with insufficient incentives for low-carbon 
innovation in enterprises. In addition, the west may have taken 
over some of the high energy consumption and low energy effi-
ciency enterprises from the eastern and central regions, resulting 
in a less significant mitigation effect of low carbon innovation 
on carbon emissions in these regions. On the other hand, the 
topography of the western region is mostly mountainous, and 
the exchange between provinces is not frequent enough, so the 
spillover effect is not significant.

Robustness test 

In order to verify the validity of the dynamic spatial Durbin 
model, this paper tests the robustness from two aspects. First, 
the spatial weight matrix is replaced with an adjacency spatial 
weight matrix. Second, the core explained variable low-carbon 
innovation is replaced by the count of the low-carbon patents 
granted, denoted by LCI2 . The effect decomposition results of 
the robustness test are presented in Table 13. Comparing the 
results of models XII and XIII with those of model IV, it can be 
observed that the sign and significance of the estimated coef-
ficients remain broadly consistent. Therefore, the robustness of 
the model has been verified.

Discussion

Based on the dynamic spatial Durbin model, this study 
investigates the spatial effects of low-carbon innova-
tion and economic development on carbon emissions. 

Consistent with the general findings, low-carbon inno-
vation is effective in reducing local carbon emissions. 
However, the indirect effects are statistically insignificant 
in both the short and long term. In other words, the car-
bon emissions mitigating effects of low-carbon innova-
tion do not spillover to the adjacent areas, which is in 
line with the results of Liang et al. (2019). Generally, 
innovation not only helps to relieve local environmental 
pressure but also relieves pressure in surrounding areas 
through spillover effects. However, This finding of this 
study is inconsistent with our expected results. Why does 
the result appear? We try to explain this phenomenon 
from the perspective of regional heterogeneity.

In the heterogeneity analysis, it can be found that the 
within-group spillover effect of low-carbon innovation on 
carbon emissions is significant only in the eastern region 
but not in the central and western areas. The indirect 
effect of the spatial Durbin model measures the spillover 
effect within the group, and there is a spillover effect 
between each other in the eastern region, while the spillo-
ver effect is insignificant in the western region. Innova-
tion externalities make knowledge spillovers possible, and 
there may be a threshold for this spillover effect, i.e., the 
ability to receive and learn from advanced technologies 
from other regions only when the local level of innova-
tion reaches a certain threshold, leading to a macro-level 
spillover effect.

In fact, the differences between regions in China are very 
large. In particular, the eastern region has a well-developed 
innovation infrastructure, abundant human capital, and a 
large amount of low-carbon innovation output. In contrast, 
the western region has insufficient research and development 
inputs, a shortage of high-quality talents, and relatively low 
innovation output in China. To support the point, we plot a 
bar chart of the amount of low-carbon innovation within the 
three regions (the eastern, the center, and the western) from 
2007 to 2020, as shown in Fig. 3. According to Fig. 3, we 
can find that the innovation level in the central and western 
regions is much lower than that in the eastern region. Moreo-
ver, the current level of economic development in the western 
region is still relatively low. The lower level of economic 
development and innovation could result in insufficient intra-
regional communication in innovation (Dauda et al. 2021). 
Currently, the level of low-carbon innovation in the central 
and western regions may not reaches the threshold of knowl-
edge spillovers. Therefore, the indirect effects are statisti-
cally insignificant in both the short and long term when all 
subsamples are combined. However, it should be noted that 
the results of the sub-sample estimation in the heterogene-
ity analysis also have some limitations. In our model, it is 
impossible to examine the between-group spillover effects of 
low-carbon innovation, i.e., between the eastern, the center, 
and the western.
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Conclusion and policy implications

In this study, focusing on China, we address low carbon 
innovation, economic growth, and carbon emissions nexus to 

help the economy develop green and high-quality. Therefore, 
we study the period from 2007 to 2020, considering energy 
structure, industrial structure, foreign direct investment, 
energy intensity, and population density in the Chinese 

Table 13  The results of the 
robustness test

*** , **, and *represent statistical significance at 1%, 5%, and 10% levels, respectively; the t-statistics are 
given in parentheses

Replace weight matrix: model XII Replace explanatory variable: model XIII

Direct effect Indirect effect Total effect Direct effect Indirect effect Total effect

Short-term
  log LCI    − 0.013*** 0.014 0.002

(− 2.588) (0.953) (0.109)
  log LCI2    − 0.022*** 0.020  − 0.002

(− 3.816) (1.181) (− 0.099)
  log GDP 1.016***  − 0.150 0.866*** 1.035***  − 0.156 0.878***

(24.092) (− 1.369) (7.250) (24.518) (− 1.358) (7.050)
  (log GDP)2  − 0.008*** 0.007  − 0.001  − 0.008*** 0.006  − 0.002

(− 3.919) (1.114) (− 0.188) (− 4.140) (0.981) (− 0.351)
  log IND 0.548*** 0.074 0.622*** 0.533*** 0.088 0.621***

(8.062) (0.421) (2.948) (7.892) (0.478) (2.809)
  log EI 0.890***  − 0.060** 0.830*** 0.890***  − 0.068** 0.822***

(52.144) (− 2.315) (25.943) (52.659) (− 2.442) (24.499)
  log ES 0.037*** 0.013 0.050*** 0.038*** 0.012 0.050***

(6.445) (0.968) (3.474) (6.521) (0.928) (3.412)
  log FDI  − 0.007* 0.034*** 0.027***  − 0.008** 0.035*** 0.027***

(− 1.723) (3.625) (2.642) (− 2.013) (3.778) (2.700)
  log PD  − 0.003  − 0.054***  − 0.056*** 0.001  − 0.055***  − 0.054***

(− 0.803) (-4.311) (− 4.063) (0.190) (− 4.351) (− 3.844)
Long-term

  log LCI  − 0.015*** 0.017 0.002
(− 2.582) (0.947) (0.113)

  log LCI2  − 0.026*** 0.024  − 0.002
(− 3.813) (1.166) (− 0.092)

  log GDP 1.225***  − 0.171 1.054*** 1.245***  − 0.173 1.072***
(24.071) (− 1.300) (7.320) (24.489) (− 1.261) (7.152)

  (log GDP)2  − 0.009*** 0.008  − 0.001  − 0.010*** 0.007  − 0.003
(− 3.913) (1.096) (− 0.187) (− 4.131) (0.957) (− 0.349)

  log IND 0.661*** 0.096 0.757*** 0.642*** 0.117 0.759***
(8.046) (0.449) (2.938) (7.870) (0.514) (2.790)

  log EI 1.073***  − 0.063*** 1.010*** 1.071***  − 0.068*** 1.004***
(52.108) (− 2.677) (31.044) (52.619) (− 2.783) (30.113)

  log ES 0.045*** 0.016 0.061*** 0.045*** 0.016 0.061***
(6.441) (0.994) (3.470) (6.517) (0.965) (3.405)

  log FDI  − 0.008* 0.041*** 0.033***  − 0.009** 0.043*** 0.033***
(− 1.712) (3.567) (2.606) (− 1.995) (3.704) (2.657)

  log PD  − 0.003  − 0.065***  − 0.069*** 0.001  − 0.067***  − 0.066***
(− 0.824) (− 4.209) (− 3.975) (0.159) (− 4.237) (− 3.757)

  � 0.138** 0.155***
  � 0.170*** 0.169***
  N 390 390
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economy. We applied the LLC, IPS, Fisher DF, and CIPS 
unit root tests to verify the integration order of the variables 
and carried out cointegration tests to determine the existence 
of a cointegration relationship between carbon emissions 
on its determinants. A spatial analysis was then performed 
to select an appropriate spatial econometric model. Subse-
quently, we applied the dynamic spatial Durbin model and 
estimated the long-term and short-term effects. In addition, 
we analyzed the moderating effects of environmental policy, 
absorptive capacity, and financial development in the role 
of low-carbon innovation on carbon emission mitigation. 
Furthermore, we divided the sample into eastern, central, 
and western to conduct heterogeneity analysis. Finally, this 
paper tests the robustness of the above estimation results.

Our evidence-based study provides significant results 
for the role of low-carbon innovation in reducing carbon 
emissions in developing countries. The Moran index results 
verify the provincial agglomeration of carbon emissions. 
The high-emitting provinces mainly concentrate in major 
economic zones and energy extraction areas.

First, we verify the inertia characteristics from the time 
perspective and contagion effect from the spatial perspec-
tive of carbon emissions through the dynamic spatial Durbin 
model. The carbon emissions in current periods are posi-
tively influenced by the previous periods' carbon emissions 
and in the adjacent regions. Second, we find that low-carbon 
innovation can mitigate carbon emissions by employing 
DSDM. After the effect decomposition, however, the miti-
gation effect of low-carbon innovation exists only locally; 
the spillover effect cannot be observed. Third, regarding the 

relationship between GDP and carbon emissions. Our results 
validate the EKC hypothesis locally in a dynamic frame-
work, which holds in the long and short term, although none 
of the provinces reach the inflection point of the inverted 
U-shaped curve. Fourth, we find that there are moderat-
ing effects of environmental policy, absorptive capacity, 
and financial development, which indicates that they can 
enhance the emission reduction effect of low-carbon innova-
tions. Finally, The results of heterogeneity analysis show that 
the direct effect of low carbon innovation on carbon emis-
sions exists in the eastern and central regions; the indirect 
effect exists only in the eastern region.

Several policy implications are made in response to the 
previous findings. First, encourage low-carbon innova-
tion inputs. Low-carbon innovation is the key to achiev-
ing carbon emission reduction. Low-carbon innovation has 
already achieved direct emission reduction effects in the 
central and eastern regions, and the output and transforma-
tion of innovation results need to be further encouraged. 
This requires local governments to mobilize market incen-
tives to motivate enterprises to increase R&D investment 
in low-carbon technologies when voluntary participation 
is insufficient. Local governments can consider introduc-
ing and improving targeted market-based incentive mecha-
nisms (Qin et al. 2021; Sun et al. 2019), such as green 
government subsidies and green credit policies, to increase 
high R&D investment enterprises by targeting to alleviate 
the financing constraints of high R&D investment enter-
prises and moderately restricting the financing channels of 
high pollution, high energy consumption, and high water 

Fig. 3  Low-carbon innovation 
in eastern, central, and western 
China
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consumption enterprises to prevent these enterprises from 
over-expansion of green R&D investment.

Second, enhance the spatial spillover effect of low-car-
bon innovation. Previous studies have shown that knowl-
edge spillover effects exist between regions, but in this 
study, it is found that the spillover effects of low-carbon 
innovation are not significant at the provincial level in 
China. Further research found the weak spillover effect 
of innovation in central and western China. Therefore, 
local governments need to work together and strengthen 
cooperation among themselves to build an interregional 
technology exchange system, especially for east-central 
and east–west technology exchange systems. Sharing low-
carbon technologies through platforms can help enhance 
the spillover effect of provincial knowledge. It is con-
ducive to the emergence of new knowledge, improving 
long-term environmental efficiency, and promoting carbon 
emission reduction.

Third, promote the implementation and enforcement of 
environmental policies related to carbon emissions, such 
as carbon emissions trading policies. This study confirms 
the moderating role of environmental policies between low-
carbon innovation and carbon emissions. Therefore, policy-
makers should further extend the experience of pilot regions 
to the national carbon emissions trading market to form a 
synergy between regions to promote the development of a 
low-carbon economy jointly. Currently, the Chinese gov-
ernment has launched a national carbon emissions trading 
market, but only the power sector is included in the trading 
scope. Policymakers need to explore the inclusion of sec-
tors other than electricity in the carbon market regulation 
in the pilot regions to make the carbon market system more 
comprehensive.

Fourth, focus on developing absorptive capacity in the 
central and western regions. Repeatedly building innovation 
infrastructure and repeatedly investing too much capital may 
be inefficient from an overall perspective. Especially for the 
central and western regions, which currently have low aver-
age incomes and limited resources for local governments, it 
is effective and helpful to divert some resources to develop 
local innovation absorptive capacity while vigorously devel-
oping the economy. Absorptive capacity contributes to the 
absorption and transformation of innovations, and increased 
absorptive capacity in central and western regions can help 
these regions absorb innovations from regions with high 
levels of innovation in the eastern regions (Hao et al. 2021), 
thus efficiently achieving carbon reduction targets.

Fifth, promote financial development, especially for green 
credit. This study confirms the moderating role of financial 
development in the carbon emission reduction path of low-
carbon innovation. China's current financial market is still 
dominated by the credit market, and to enhance the emission 
reduction effect of low-carbon innovation, we can consider 

vigorously promoting green credit, increasing the amount 
of green credit to the total loans in the banking sector, and 
encouraging enterprises to carry out low-carbon innovation.

Last, the government should make integrated growth per-
formance a development goal and develop a green economy 
based on controlling carbon emissions. According to the 
empirical results, Chinese provinces have not yet reached 
the inflection point of the inverted U-shaped environmental 
Kuznets curve, but carbon emission reduction pressure is 
imminent. Specific paths concentrating on low-carbon devel-
opment may include. (1) Adjusting the industrial structure 
and guiding industrial upgrading, which requires, on the one 
hand, reducing the share of the secondary industry in output, 
especially the high-energy-consuming industries, and on the 
other hand, developing more high-end manufacturing indus-
tries with low energy consumption and high added value. (2) 
Guiding domestic and foreign capital to invest in the afore-
mentioned industries, especially the latter. This paper finds 
a negative externality of FDI on carbon emissions, which 
stems from massive FDI in energy-intensive industries 
(Bakhsh et al. 2021). (3) Improving energy efficiency and 
encouraging comprehensive conservation of energy on the 
production, transportation, and consumption sides to reduce 
per capita energy consumption. (4) Encouraging the use of 
renewable energy, such as solar and wind energy, and gradu-
ally reducing the proportion of coal in energy consumption 
until gradually withdrawing from coal consumption.
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