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Abstract
Traditional denitrification often produces high operating costs and excessive sludge disposal expenses due to conventional 
carbon sources. A novel electric–magnetic field (MF) 48 mT with  Fe0 and C-Fe0 powder in an upflow microaerobic sludge 
reactor (UMSR) improved nitrogen removal from wastewater without organic carbon resources and gave richness to the 
heterotrophic bacterial community. In the current study, the reactor was operated for 78 ± 2 days, divided into five stages 
(without  Fe0, with  Fe0, coupling with MF, without coupling with MF, and coupling with MF again), at a hydraulic retention 
time (HRT) of 2.5 h, with an influent loading of ammonium  (NH4

+-N) 50 ± 2 mg/L, at 25–27 °C, and less than 1.0 mg/L 
dissolved oxygen (DO). The results demonstrated nitrogen removal efficiency enhanced after coupling with MF on the levels 
of  NO3

−-N by 76% with an effluent concentration of 8.7 mg/L,  NH4
+-N by 72% with an effluent concentration of 13.6 mg/L, 

and total nitrogen removal (TN) by 76%, respectively. After coupling the MF with the reactor, the microbial community data 
analysis showed the dominant abundance of ammonia-oxidizing bacteria, heterotrophic nitrifying bacteria, and denitrifying 
bacteria on the level of Anaerolineaceae_uncultured 2%, which is capable of denitrification that uses  Fe2+ as an electron 
source, Gemmatimonadaceae_uncultured 4%, Hydrogenophaga 4% which is capable of catalyzing hydrogenotrophic deni-
trification and correlating to nitrate removal, denitrification and desulfurization bacteria SBR1031_norank 18%, anammox-
bacteria Saccharimonadales_norank 2%, and (AOM) Limnobacter 3% in the sludge.
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Introduction

In anoxic conditions, heterotrophic or/and autotrophic deni-
trification bacteria utilize organic carbon sources as electron 
donors to convert nitrite and nitrate into free nitrogen gas. 
A lack of organic material often slows denitrification; thus, 
a carbon source is added to the process to convert nitrate 
into nitrogen gas. However, external carbon sources in 
wastewater treatment plants (WWTPs) have increased the 
breadth of safety problems, high risk, and high operating 

management cost of heterotrophic denitrification associated 
with selecting optimal carbon sources. Instead of employing 
organic carbon, zero-valent iron  (Fe0) is used as the electron 
donor. Zero-valent iron  (Fe0) is a widely available, low-cost, 
non-toxic, easy-to-handle material (Fu et al. 2014). Many 
contaminants, including halogenated organics, nitrate, dyes, 
and phenol, have been successfully removed from ground-
water and wastewater using  Fe0 (Jiang et al. 2008; Siddiqui 
et al. 2013; Fu et al. 2014). However,  Fe0 is used alone as 
an electron donor to remove nitrate from the environment 
by autotrophic and heterotrophic denitrification (Aslan and 
Türkman 2005; Hosseini et al. 2011; Zhao et al. 2012). As 
a result of the  Fe0 corrosion process,  H2,  Fe2+, and  Fe3+ 
are released, and hydrogen can be used as the final electron 
donor for heterotrophic denitrification (Zhang 2002).

However, when  Fe0 is used to treat wastewater, oxi-
dants such as dissolved  O2,  H2O, and  NO3

− consume 
the bulk of the  Fe0 (Noubactep et al. 2009); decreasing 
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 NO3
− concentration by  Fe0 can represent the following 

Eq. (1) (Park et al. 2008):

The nitrite formation occurs by nitrate reduction to 
nitrite by the iron surface (Liu and Wang 2019), as shown 
in Eq. (2). It is an initial chemical step to reduce nitrate when 
electrons transfer from the  Fe0 surface to  NH4

+, as shown in 
Eq. (1), or reduced to nitrite by  Fe2+, as shown in Eq. (3), or 
an electron donor in anoxic, or by some bacteria as shown 
in Eq. (3).

The nitrate-dependent  Fe2+ oxidized (NDFO) reaction 
has recently been found to oxidize  NO3

− to  NH4
+ by  Fe2+ in 

an abiotic environment (Carlson et al. 2013) or chemically 
oxidized to  N2, as shown in Eqs. (4, 5) (S⊘ Rensen 1987), 
or by bacteria in the presence of hydrogen ion:

Consequently, through the Feammox process,  Fe3+ is uti-
lized as an electron acceptor to oxidize  NH4

+. The  NH4
+ oxi-

dation with  Fe3+ reduction (Feammox) was defined as oxi-
dizing  NH4

+ to produce  N2,  NO2
− or  NO3

− through reducing 
 Fe3+ and reducing to  Fe2+, as shown in Eq. (6):

At the same time,  Fe2+ is employed as an electron donor 
to decrease  NO3

−. Because  Fe3+ has fewer electrons and is 
more stable than  Fe2+, coupling of the NDFO and Feammox 
reactions was studied (Xu et al. 2016b), with Fe cycling 
used as a catalyst to decrease the need for Fe ions to prevent 
sludge mineralization.

However, the conversion between nitrite and  Fe2+ and 
decreasing pH will produce  N2O (Park et al. 2008), then 
 N2O can act as an electron acceptor by electrons donated by 
 NO3

− to produce  N2O and  N2 following Eqs. (7–9):

(1)4Fe0 + NO−
3
+ 7H

2
O → 4Fe2+ + NH+

4
+ 10OH−

(2)Fe0 + 2NO−
3
+ 4H+

→ 4Fe2+ + NO−
2
+ 2H

2
O

(3)2Fe2+ + NO−
3
→ NO−

2
+ 2Fe3+

(4)
10Fe2+

(aq)
+ 2NO−

3
+ 24H

2
O → N

2(g) + 10Fe(OH)3(s) + 10H+
(aq)

(5)10Fe2+ + 2NO−
3
+ 12H+

→ N
2
+ 10Fe3+ + 6H

2
O

(6)NH+
4
+ 2H

2
O + 6Fe3+ → NO−

2
+ 6Fe2+ + 8H+

(7)NO−
3
+ 2e− + 2H+

→ NO−
2
+ 6H

2
O

(8)NO−
2
+ 2e− + 2H+

→ 0.5NO
2
+ 1.5H

2
O

(9)0.5NO
2
+ 2e− + H+

→ 0.5N
2
+ 0.5H

2
O

When  Fe0 is used, the aging of  Fe0 and its limited reac-
tivity are critical issues for  Fe0-based technology (Xu et al. 
2016b). Therefore, finding practical ways of significantly 
increasing  Fe0 reactivity is crucial. Many researchers 
employed various technologies to enhance  Fe0 reactivity, 
such as ultrasonic, acid washing,  H2-reducing pretreatment 
(Lai and Lo 2008), electrochemical shorthand (Chen et al. 
2012),  Fe0-based bimetals (Lim et al. 2007), and nanosized 
 Fe0-nFe0 (Huang et al. 2013). These technologies are always 
complicated, costly, and hazardous to the environment (Jiang 
et al. 2015). As a result, other technologies for increasing 
the reactivity of aging  Fe0, such as pre-magnetization or 
applying a weak permanent magnetic field (WMF) with  Fe0, 
were used to eliminate high concentrations of p-nitrophe-
nol (PNP),  SO2 removal (Jiang et al. 2008; Siddiqui et al. 
2013), accelerate chloroacetamide removal from drinking 
water, enhance phenol degradation, partial nitrification,  CH4 
production, triethyl phosphate degradation, and antibiotic 
degradation (Wang et al. 2015; Wang et al. 2017; Chen et al. 
2019; Huang et al. 2019; Pan et al. 2019, et al. 2019).

Additionally, several studies have found that the effects of 
permanent magnets or electromagnets can change water pH, 
oxidation–reduction potential (ORP) (Yin et al. 2011; Has-
san and Rahman 2016), increase electron density, and pro-
mote electron transfer for redox reactions (Yap et al. 2021). 
The magnetic field mainly affects the material’s properties, 
structure, photocatalysis, electrodynamics, synthesized reac-
tion, isomerization reaction, nuclide enhancement reaction, 
increasing electron density in water, and metabolic reaction 
(Hassan and Rahman 2016). Coupling magnetic field (MF) 
with  Fe0 is chemical-free (Xu et al. 2016a); it contributes to 
the release of  Fe2+ from the Fe corrosion process (Li et al. 
2017b; Ren et al. 2018), which can significantly improve the 
pollutants’ targeting, reduce  Fe0 doses, extend the operating 
pH range (Sun and Guan 2019; Wang et al. 2020b), and give 
energy to the donor electron (Salehani et al. 2010), and influ-
ence the anions’ movement simultaneously with paramag-
netic  Fe2+ to keep electroneutrality (Sun and Guan 2019). 
The theoretically essential point of coupling electric–mag-
netic (MF) with  Fe0 in this study is to promote the increase 
of  Fe2+, accelerating the  Fe3+ reduction to  Fe2+ because the 
reduction rate of  Fe3+ is much slower than the oxidation rate 
of  Fe2+ because the concentration of  Fe2+ would decrease 
rapidly during pollutants’ depredation (Chu et al. 2021).

However, many researchers are working to achieve a 
low dose of  Fe2+ with effective pollutant degradation and 
removal from wastewater (Taherdanak et al. 2016).  Fe2+ 
will promote decreasing pH and increase the reaction rate 
of non-target substrates  (H+ and  O2) with  Fe0 and would 
undoubtedly increase the  Fe0 corrosion rate concomitantly 
with pollutants (Guan et al. 2015). Therefore, most bac-
teria species use  Fe2+ as the electron donor for metabo-
lism (Straub et al. 2004), promoting microbial abundance 
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diversity and increasing bacteria’s metabolism by promoting 
 Fe2+ (Li et al. 2017a). Anaerobic denitrifying  Fe2+ oxida-
tion bacteria grow by using  Fe2+ as a source of energy and 
electron donor in marine environments or freshwater with 
a narrow pH range to 7 (Kappler et al. 2005; Hedrich et al. 
2011). An essential point in this study is to enhance nitrogen 
removal efficiency in the upflow microaerobic sludge reactor 
(UMSR) by coupling the electric–magnetic field (MF) with 
 Fe0. By coupling the electric–magnetic field (MF) with  Fe0, 
there is a possibility of continuously releasing  H2,  Fe2+, and 
 Fe3+ from the  Fe0 corrosion process to give activity to some 
heterotrophic nitrifying bacteria and denitrifying bacteria 
that depend on  Fe2+ and  Fe3+, or  H2 for metabolism in the 
absence of the organic carbon source. Additionally, coupling 
the electric–magnetic field (MF) with  Fe0 may prevent  Fe3+ 
precipitation on the bacterial cell surface by chemically 
reducing  Fe3+ to  Fe2+. This research aimed to study a novel 
upflow microaerobic sludge reactor (UMSR) operated for 
78 ± 2 days continuously, under five operating stages with 
and without coupling electric–magnetic field (MF) with 
 Fe0. At the same time, the  NH4

+-N,  NO3
−-N,  NO2

−-N, TN 
removal, and microbial community structure were evaluated 
in this research.

Methods and materials

As shown in Fig. 1, the UMSR has an inner volume of 4.9 
L, and the HRT was 2.5 h; the influent was injected from 
the bottom of the reactor. A reflux aeration tank controlled 
dissolved oxygen (DO) in the reactor was held at less than 
1.0 mg/L by a reflux aeration tank. An extra heating system 
maintained the temperature at 25–27 °C by a supplemen-
tary heating system. The electric–magnetic field of 40 mT 
was adjusted by 6 V–50 Hz alternate current (AC) and put 
deep into the sludge. The UMSR continuously operated for 
78 ± 2 days, divided into five operating stages of 15 ± 1 days 
for each stage (without  Fe0, with  Fe0, coupling with MF, 

without coupling with MF, and coupling with MF again) 
until the  Fe0 corrosion was completed.

Synthetic nutrients and sludge

The nutrients in this synthetic wastewater were composed of 
(mg/L):  NH4Cl (190),  KH2PO (25.2),  KHCO3 (124.8),  CaCl2 
(300), and  MgSO4 (200). The inoculated sludge was taken 
from the Taiyuan wastewater treatment plant, with the mixed 
liquor suspended solids (MLSS) and the mixed liquor volatile 
suspended solids (MLVSS) being 2.42 mg/L and 1.936 mg/L, 
respectively. The ratio of  Fe0 powder and Fe–C powder was 3:1.

Analytical methods and equipment

Before experimenting with new conditions, the reactor was 
operated at its optimized condition for more than 360 days 
at 25–27 °C. An external heating wire and a temperature 
controller are used to regulate the inside temperature of 
the reactor (XH-W2140, China). The pH and temperature 
were measured using pH and temperature meters (Hanna 
Instruments CAL Check™ HI5221). The concentrations of 
 NH4

+-N,  NO3
−-N,  NO2

−-N, and TN in effluent were meas-
ured daily using standard methods (Association 1915).

Microbial community analysis

The sludge samples were taken from three continual opera-
tion conditions (before adding  Fe0, after adding  Fe0, and after 
coupling MF with  Fe0) labeled as (S1, s2, and s3) to identify 
the microbial community structure during that three operating 
conditions. They were sent to Shanghai Lingen Biological 
Technology Co., Ltd to analyze the microbial diversity. After 
completing the genomic DNA extraction, genes were ampli-
fied using the specific primer with the barcode, 16S V4-V5: 
515F–907R, 18S V9: 1380F–1510R, ITS1: ITS1F–ITS2R. 
The library quality was assessed on the Qubit@ 2.0 Fluorom-
eter (Thermo Scientific) and the Agilent Bioanalyzer 2100 
system. The library was sequenced on an Illumina MiSeq 
platform, and 250 bp/300 bp paired-end reads were generated.

Results and discussion

Parameters with operating conditions and reactor 
performance

Table 1 summarizes the performance of the UMSR and 
coupling electric–magnetic field (MF) system concerning 
the  NH4

+-N,  NO3
−-N,  NO2

−-N, and TN removal for each 
stage of operation. For these data, the process continued for 
78 ± 2 days until the  Fe0 was corroded under an anaerobic 
condition with electric–magnetic field effects.

Aeration tanknutrients tank 

Heating system 

pump

pump

Aeration pump

AC
Effluent

influent
drain

MF

Fig. 1  Schematic diagram of USMR setup
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NO3
−‑N removal efficiency

As shown in Fig. 2, the concentration of  NO3
−-N in the 

effluent dropped quickly for the first few days after  Fe0 was 
added to the reactor. After a few days, the concentration 
of  NO3

−-N increased again. After two periods of coupling 
MF with  Fe0 (first coupling with MF and second coupling 
with MF), the  NO3

−-N concentration dropped to a stable 
level. The  NO3

−-N removal efficiencies were 58% before 
adding  Fe0, 64% after adding  Fe0, 76% at first coupling 
with MF, 55% without coupling MF, and 76% at second 
coupling with MF, respectively. The highest and most sta-
ble removal was observed during MF coupled with  Fe0. 
Coupling  Fe0 with electric–magnetic provides stability for 
nitrate removal by producing  H2 and  Fe2+. It is one of the 
factors that donate to denitrification by  Fe0 corrosion. It 
can also happen that hydrogen can be used as an electron 
donor because of the corrosion of  Fe0 in a magnetic field 
(Liu and Lowry 2006; Němeček et al. 2014). The magnetic 
field affects electrode kinetics by the accelerated effect on 
the cathodic reaction of the single  Fe0 corrosion process. It 
will affect the  Fe3+ reduction to  Fe2+ in this  Fe0 recycling. 
It is possible for nitrate-dependent  Fe2+ oxidized (NDFO) 

to occur by producing more  Fe2+ because the reductive 
efficiency of nitrate by  Fe0 increased by the increase in 
dissolved ferrous ion concentration  (Fe2+

aq). It may also 
release cathodic  H2 by reducing water-derived protons 
(Weathers et al. 1997), as shown in Eqs. (10, 11).

As a favored electron donor, hydrogen gas produced by 
 Fe0 corrosion can be an advantage for several metabolic 
groups of denitrifying bacteria. The  Fe2+ oxidation rate 
could influence various abiotic factors, including a con-
centration in anionic species; for instance, concentration in 
anionic species such as  Cl− in water will reduce the  Fe2+ 
oxidation rate and laded to a higher accumulation of  Fe2+ 
(Adeleye et al., 2013). The oxidation of  Fe2+ increases the 
hydrogen ion  H+ concentration in the water, which reflects 
on the pH, as shown in Eqs. (4, 6). The pH is an important 
parameter that strongly affects the nitrate reduction by  Fe0 
because the nitrate requires proton participation, which 
affects  Fe0 corrosion rate and Fe corrosion product, and 
 Fe2+ occurs at lower pH (Weathers et al. 1997). It was 
decreased at the first stage of adding  Fe0 to the reactor. The 
primary way to reduce  NO3

− is by  Fe0; the  Fe0 acts as an 
electron donor to reduce  NO3

− by  Fe0 surface. The nitrate 
reduction depends on electron transfer efficiency from the 
 Fe0 surface  Fe0 →  Fe2+  +  2e−.

The existence of  Fe0 and  Fe2+ may involve other reac-
tions. They are sources of electrons and protons, as shown 
in Eqs. (12, 13):

Hematite  (Fe2O3) and magnetite  (Fe3O4) were discov-
ered in these probable reactions, as shown in Eqs. (14, 
15). It would play a part in the pH decreasing due to  Fe0 

(10)Fe0
(s)

+ H
2
O → Fe(OH)2(aq) + H

2(g)

(11)Fe0
(s)

+ 2H+
→ Fe2+

(aq)
+ H

2(g)

(12)3Fe0 + 4H
2
O → Fe

3
O

4
+ 8H+ + 8e−

(13)3Fe2+ + 4H
2
O → Fe

3
O

4
+ 8H+ + 2e−

Table 1  Parameters and operating conditions

Operating stages at (HRT) 2.5 h Effluent 
 NH4

+-N 
(mg/L)

Effluent 
 NO2

−-N 
(mg/L)

Effluent 
 NO3

−-N 
(mg/L)

Nitrification 
rate (mg/L 
day)

Effluent PH NO3
−-N 

removal
(%)

NH4
+-N 

removal 
(%)

TN 
removal 
(%)

Stage (1)
Stage (2)
Stage (3)
Stage (4)
Stage (5)

26.2 0.1 9.9 1.2 7.8 58 47 58
21.9 2.3 9.2 1.3 7.1 64 56 59
13.6 0.5 8.7 2.3 5.7 76 72 75
12.4 0.7 11.2 2.5 6.8 55 75 68
12.9 0.1 8.7 2.4 7.5 76 74 76
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Fig. 2  Effluent pH and  NO3
−-N concentration
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corrosion serving as an electron donor from the  Fe0 sur-
face  Fe0 − 2e →  Fe2+.

Moreover, the nitrate reduction with  H+ will be consumed 
at neutral pH:

When magnetic coupling in all phases, the lowest pH was 
at the first operating conditions when MF coupling with  Fe0. 
The pH value decreased to 5.2 at the first stage of coupling 
MF with  Fe0. The decreasing pH was low and the most 
stable at all stages of coupling MF with  Fe0, as shown in 
Figs. 2, 3, and 4.

NH4
+‑N removal efficiency

The effluent  NH4
+-N concentration increased significantly 

from 21 to 35 mg/L in the first 4 days after  Fe0 was added 
to the reactor, followed by a decrease in  NO3

−-N concen-
tration from 11 to 6 mg/L. Because the reaction between 
 Fe0 and  NO3

− converts  NO3
− to  NH4

+, as shown in Eq. (1), 
it increases the  NH4

+ concentration. The nitrogen removal 
efficiency could not increase during the first few days after 
 Fe0 was applied to the reactor. It was noticed that the high-
est  NH4

+-N removal occurred during stage (3) when MF 
was first coupling with  Fe0. The coupling of  NH4

+ oxida-
tion to  NO2

− with  Fe3+ reduction is possible, as shown in 
Eq. (6). After a few days, the  NH4

+-N concentration became 

(14)2Fe0 + 3H
2
O − 6e− → Fe

2
O

3
+ 6H+

(15)3Fe0 + 4H
2
O − 8e− → Fe

3
O

4
+ 6H+

(16)NO−
3
+ 10H+ + 8e− → NH+

4
+ 3H

2
O

lower day by day and stable, as shown in Fig. 3; the  NH4
+-N 

removal efficiencies were 47% before adding  Fe0, 56% after 
adding  Fe0, 72% at the first coupled MF with  Fe0, 74% with-
out coupling with MF, and 75% at the second coupled MF 
with  Fe0, respectively. Thus, the  NO2

− produced from  NH4
+ 

oxidation with  Fe3+ will be involved in the ANAMMOX 
reaction of ammonia, as shown in Eq. (17):

NO2
−‑N removal efficiency

The  NO2
−-N concentration increased to 2.3 mg/L during 

stage (2) of adding  Fe0 to the reactor due to nitrite forma-
tion caused by nitrate reduction, as shown in Eqs. (2, 3) or 
by  NH4

+ oxidation with  Fe3+ (Feammox) process, as shown 
in Eq. (6), whereas the  NO2

−-N concentration before adding 
 Fe0 was 0.1 mg/L, 0.5 mg/L at first coupled MF with  Fe0, 
0.7 mg/L without coupled MF, as shown in Fig. 4. Thus, the 
ANAMMOX reaction that makes increases  NO2.− concen-
tration, as shown in Eq. (18)

While the  Fe3+ serves as an electron acceptor,  Fe3+ oxi-
dized  NH4

+ into  NO2
− and  NO3

−, and the effluent’s  NO2
−-N 

concentration was accumulated. On the other hand, by accu-
mulated  NO2

−, the ANAMMOX reactions with  NH4
+ and 

 NO2
− play a part in the process of reducing  NO2

−, as shown 
in Eq. (19):

(17)NH+
4
+ NO−

2
→ N

2
+ 2H

2
O

(18)2NH+
4
+ 3O

2
→ 2NO−

2
+ 4H+ + 2H

2
O
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Fig. 3  Effluent pH and  NH4
+-N concentration
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As well, the electron donated by  NO3
− or which is 

released by  Fe0 surface with a high concentration of  H+, 
the  NO2

− will act as an electron donator to produce  N2O, 
and then  N2O will serve as an electron acceptor to pro-
duce  N2, as shown in Eqs. (7–9), which gives removal 
stability and a decrease in  NO2

− accumulation. Moreo-
ver, other research has shown that the adsorption of  Fe2+ 
on iron oxides (e.g.,  Fe3O4, FeOH, –FeO(OH)) is crucial 
in decreasing  NO3

−,  NO2
−, and  NH4

+.  Fe2+ ions ionize 
 H+, which may be adsorbed on the surface and reduced to 
active NO* by hydrogen produced by Fe corrosion after 
reducing  NO3

− to  NO2
−. This approach was not discussed 

in this work regarding electric–magnetic field effects.

Structure and function of the microbial community 
in the reactor

As shown in Fig.  5a, b, microbial community analysis 
detected that relative abundance changed at the levels of 
phyla and genus due to the changes in conditions. (The 
relative domain abundance > 1%). A notable increase and 
changes in diversity and a decrease in certain bacteria were 
detected in all samples associated with the three operating 
conditions. After adding the  Fe0 and coupling it with the 
magnetic field, there were changes in certain bacteria’s rich-
ness, abundance, and inhibition.

At the phylum level, the most bacteria abundance of 
nitrogen removal was identified, including nitrifiers, deni-
trifiers, and anammox bacteria. Proteobacteria were the most 
dominant phylum in S1 of which 56% are known for their 
metabolic diversity and variety including denitrifiers, which 
are used in crucial environmental cycles such as carbon, 
nitrogen, sulfur, and phosphorus (Friedrich, Bardischewsky 
et al. 2006; Meier et al. 2016) and the detected genera in S1 
are Rhodanobacter of which 16% is capable under acidic 
and anaerobic conditions of producing  N2 and  N2O by using 
nitrate, nitrite, and nitrous oxide as electron acceptors (Van 
Den Heuvel et al. 2010) and Denitratisoma of which 14% 
is anaerobic oxidative that reduces nitrate to  N2O and  N2 
and may lead to nitrite accumulation with some  N2 fixa-
tion strains (Fahrbach et al. 2006); 45 of SWB02 and 2% of 
Ellin6067 oxidize nitrites to nitrates (NOB) (Fumasoli et al. 
2015); 4% of Thermomonas, sulfur oxidizers, and carbon 
fixing convert  CO2 to carbonate, where nitrogen fixation is 
related (Castelán-Sánchez et al. 2020); 3% of Limnobacter is 
heterotrophic sulfur oxidation and may adapt with anaerobic 
methane oxidizer bacteria (AOM) (Chen et al. 2016), and 1% 
of Thiobacillus obtains energy from oxidation and reduc-
tion of ferrous and sulfide. Moreover, Thiobacillus reduces 

(19)NH
+
4
+ 1.32NO

−
2
+ 0.066HCO

3
+ 0.13H

+
→ 1.02N

2
+ 0.26NO

−
3
+ 0.066CH

2
O

0.5
N

0.15
+ 2.03H

2
O

nitrate, nitrite, and other nitrogen compounds to dinitrogen 
(Kelly and Wood 2000).

However, a sharp decrease in the level of the Proteobac-
teria was noted after adding the  Fe0 to the reactor, while 
richness in diversity and diminishing were observed in 
both samples s2 and s3, at the level of genus Stenotropho-
monas, which can use nitrate as a terminal electron accep-
tor for growth with oxygen absence (Crossman et al. 2008) 
of 4% in s2, Brevundimonas which have potential of  N2 
fixation (Jiang et al. 2022) of 2% in s2, Diaphorobacter 
under anaerobic conditions reduces nitrate and nitrite to 
 N2 (Qiu et al. 2015) of 1% in s2, Qipengyuania of 1% in s2 
has some strains that reported can participate in biogenic 
nitrogen cycling (Liu et al. 2022), Pseudoxanthomonas of 
2% in s2 and s3 it is anaerobic methane oxidation bacteria 
(AOM) it can utilize methane as electron donor to reduce 
 NO2

−,  NO3
−,  Fe3+, and  SO4

2−, it typically require additional 
electron donors such as hydrogen (Fu et al. 2019), Hydrog-
enophaga of 4% in s3 it is capable nitrate denitrification 
and using the oxidation of  H2 as an energy source and  CO2 
as a carbon source (Iannacone et al. 2020; Xu et al. 2021), 
Pseudomonas of 6% in s2, 4% in s3 it has been reported that 
hydrocarbon-degrading bacteria and may provide a carbon 
source and energy to other bacteria (Wang et al. 2020a), 
Acinetobacter of 4% in s2, 2% in s3 which use  Fe2+ as elec-
tron donor be capable of denitrifying (Kiskira et al. 2017), 
the Limnobacter of 2% in s2, and of 3% in s3, SC-I-84_
norank of 1% in s2 and s3, Steroidobacteraceae_uncultured 
was of 1% in s2, 2% in s3, the Thermomonas was of 1% in 
both samples s2 and s3, and Xanthobacteraceae_uncultured 
of 1% in s3, respectively.

Meanwhile, the nitrifiers (AOB) detected in the reac-
tor included Nitrospirota and Bacteroidetes; these nitri-
fiers bacteria are often present in activated sludge. The 

Fig. 5  a Relative abundance by phylum. b Relative abundance by 
genus
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Nitrospirota was 5% in S1 and was shared by the genus 
Nitrospira of 5%. It is a chemolithoautotrophic nitrite-
oxidizing bacterium and is essential for nitrification in the 
completed nitrogen cycle when it oxidizes nitrite to nitrate 
from ammonia (Yang et al. 2022). However, the Nitros-
pira may also give ammonia oxidizers released from urea 
or cyanate in interactions known as “reciprocal feeding.” 
Recently found members of the Nitrospira can catalyze 
both nitrification stages independently, earning them the 
name complete ammonia oxidizers or “Comammox” bac-
teria (Koch et al. 2019). Certain Nitrospira strains may 
also use hydrogen and formate to supplement their aerobic 
nitrite oxidation with oxygen or nitrate as the terminal 
electron acceptor (Palomo et al. 2018; Koch et al. 2019). 
The Nitrospira can adapt to a wide range of oxygen con-
ditions according to its metabolic system (Mehrani et al. 
2020) as well as observe that at the level of Chloroflexi, it 
was not the most dominant bacteria in sample S1. Thus, 
after the  Fe0 was added or coupled with MF, Chloroflexi 
became one of the most predominant bacteria at 21% in 
S2 and 28% in S3, while it was 2% in S1. It was reported 
that chemoautotrophic desulfurization and denitrification 
of bacteria and one of the heterotrophic bacteria derive 
energy from  H2. It was found in low-pH soils with carbon 
dioxide fixation (Long et al. 2015; Islam et al. 2019). At 
the genus of desulfurization and denitrification bacteria 
SBR1031_norank of 13% in s2 and 18% in s3, heterotroph 
Anaerolineaceae_uncultured was 1% in s2 and 2% in s3. 
Chemolithotroph-denitrifying bacteria use  Fe2+ as electron 

donor, OLB14_norank of 1% in s2 and s3, and KD4-96_
norank by 1% in both samples s2 and s3, respectively. This 
can be explained by the effect of the magnetic field on  Fe0 
erosion and releasing more hydrogen and ferrous ions that 
enter into its metabolism process, as well as possibly due 
to the richness of Firmicutes and hydrogen production in 
this condition. However, Firmicutes were absent before 
adding the  Fe0 to the reactor. It has been reported that 
when coupled with iron, it generates hydrogen (Mohan 
et al. 2011). Before adding  Fe0, Firmicutes were absent in 
sample S1; in contrast, after adding  Fe0 and coupling with 
MF, the abundance was 4% in s2 and 5% in s3, respec-
tively, at the genus Lysinibacillus of 1% in both samples s2 
and s3. This can be explained by some Firmicutes strains 
exploiting acids as a source of carbon and energy; the 
decrease in pH and the existence of  Fe0 provided the rich-
ness of the Firmicutes bacteria in the reactor.

Whilst, before adding  Fe0 to the reactor in sample S1, 
the Gemmatimonadota phylum of 6%, on the level of the 
genus Gemmatimonadaceae_uncultured of 6%. The Gem-
matimonadota proportion decreased to 3% after adding  Fe0 
in s2, and after coupling with MF, an enrichment of 4% was 
observed in s3, shared by the same genus Gemmatimona-
daceae_uncultured. In contrast, the Gemmatimonadota 
groups have been found in various ecosystems and activated 
sludge used in wastewater treatment. These groups seem 
to depend on urea hydrolysis inside cells for energy (Chen 
et al. 2021; Mujakić et al. 2022). Anammox bacteria Planc-
tomycetota of 4% in S1, 3% in s2 and s3. Planctomycetota 

Fig. 5  (continued)
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in S1 was shared by genus 2% of Schlesneria, which utilizes 
an organic nitrogen compound as nitrate and ammonium as 
nitrogen sources; after adding  Fe0 and coupling with MF, 
that genus vanished in both samples s2 and s3. After adding 
 Fe0 to the reactor and coupling with MF, the genus Sac-
charimonadales_norank has increased by 1% in s2 and 2% 
in s3 and noted that the genus Patescibacteria increased by 
2% in s2 and 3% in s3, while it was 1% in S1, respectively.

In the same context, 1% of Armatimonadota in S1 and 
2% in s2 and s3 has been shared by genus Armatimon-
adota_norank by 1% in S1 and 2% in samples s2 and s3, 
respectively. Furthermore, Actinobacteriota was absent in 
sample S1 and appeared after  Fe0 was added in s2 and s3 
by 6%, with genus 67-14_norank in both samples s2 and 
s3 by 2%. Actinobacteriota have some strains that produce 
organic acids and siderophores which might delay the bio-
genic  Fe2+ reoxidation and decrease pH (Zhang et al. 2019). 
In anoxic conditions, many Actinobacteriota reduces  Fe3+ in 
the iron cycle and plays as main important bacterium in the 
denitrification process (Huang et al. 2022). After adding  Fe0, 
Deinococcota abundance was increased and returned to the 
same proportion after coupling with MF at the same genus 
Meiothermus by 1% in S1, 2% in s2, and 1% in s3, which 
is chemoorganoheterotroph and use nitrate as the terminal 
electron acceptor (Song et al. 2021).

Conclusions

Adding  Fe0 and coupling it with the electric–magnetic was 
favorable for large-scale applications due to its simple opera-
tion, low cost, and high effectiveness for nitrogen removal. As 
a result,  Fe0 corrosion under an electric–magnetic field may 
provide  Fe2+ and  Fe3+ and be used as an electron donor to oxi-
dize  NO3

− to  NH4
+. By producing  H2 and decreasing pH and 

using it as an electron donor donated by  NO3
− to produce  N2O 

and  N2, the  NH4
+-N,  NO3

−-N, and TN removal efficiencies in 
the UMSR are enhanced under MF with  Fe0. Through coupling 
electric–magnetic with  Fe0, the energy would be served to elec-
tron donors from the  Fe0 surface and increase electron density. 
The direction of electron transfer from  Fe0 to nitrate would be 
directly converted into  N2; on the other hand,  NO3

− converted 
into  NH4

+ and  NO2
− before the coupling MF stage.

Moreover, adding  Fe0 and coupling with electric–mag-
netic to the reactor decreased the level of Proteobacteria 
and Nitrospirota. Changing microbial communities became 
the dominant abundance besides the Proteobacteria, such 
as Chloroflexi and Firmicutes. After  Fe0 was coupled with 
electric–magnetic, it gave richness to some anammox such 
as Saccharimonadales_norank and Patescibacteria. Denitri-
fication bacteria depend on ferrous  Fe2+ as the source metab-
olisms, such as Anaerolineaceae_uncultured and Acineto-
bacter, and ferric iron  Fe3+ such as Pseudoxanthomonas, or 

use hydrogen ion such as Hydrogenophaga. However, some 
bacteria genera have been found with an apparent richness, 
and the functions have not been determined by researchers 
yet.
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