RESEARCH ARTICLE

Enhancement of iron-based nitrogen removal with an electric–magnetic field in an upflow microaerobic sludge reactor (UMSR)

Abdulatti Algonin¹ · Bowei Zhao¹ · Ying Cui¹ · Fei Xie¹ · Xiuping Yue¹

Received: 26 June 2022 / Accepted: 21 October 2022 / Published online: 16 December 2022 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

Traditional denitrification often produces high operating costs and excessive sludge disposal expenses due to conventional carbon sources. A novel electric–magnetic field (MF) 48 mT with Fe⁰ and C-Fe⁰ powder in an upflow microaerobic sludge reactor (UMSR) improved nitrogen removal from wastewater without organic carbon resources and gave richness to the heterotrophic bacterial community. In the current study, the reactor was operated for 78 ± 2 days, divided into five stages (without Fe⁰, with Fe⁰, coupling with MF, without coupling with MF, and coupling with MF again), at a hydraulic retention time (HRT) of 2.5 h, with an influent loading of ammonium (NH₄⁺-N) 50 ± 2 mg/L, at 25–27 °C, and less than 1.0 mg/L dissolved oxygen (DO). The results demonstrated nitrogen removal efficiency enhanced after coupling with MF on the levels of NO₃⁻-N by 76% with an effluent concentration of 8.7 mg/L, NH₄⁺-N by 72% with an effluent concentration of 13.6 mg/L, and total nitrogen removal (TN) by 76%, respectively. After coupling the MF with the reactor, the microbial community data analysis showed the dominant abundance of ammonia-oxidizing bacteria, heterotrophic nitrifying bacteria, and denitrifying bacteria on the level of *Anaerolineaceae_uncultured* 2%, which is capable of catalyzing hydrogenotrophic denitrification and correlating to nitrate removal, denitrification and desulfurization bacteria *SBR1031_norank* 18%, anammoxbacteria *Saccharimonadales_norank* 2%, and (AOM) *Limnobacter* 3% in the sludge.

Keywords Magnetic field · Nitrogen removal · Nitrate removal · Nitrite removal · Microbial community richness

Introduction

In anoxic conditions, heterotrophic or/and autotrophic denitrification bacteria utilize organic carbon sources as electron donors to convert nitrite and nitrate into free nitrogen gas. A lack of organic material often slows denitrification; thus, a carbon source is added to the process to convert nitrate into nitrogen gas. However, external carbon sources in wastewater treatment plants (WWTPs) have increased the breadth of safety problems, high risk, and high operating

Responsible Editor: Guilherme L. Dotto

Xiuping Yue yuexiuping@tyut.edu.cn

¹ College of Environmental Science and Engineering, Taiyuan University of Technology, 79 Yingzexi Road, Taiyuan 030024, Shanxi Province, People's Republic of China management cost of heterotrophic denitrification associated with selecting optimal carbon sources. Instead of employing organic carbon, zero-valent iron (Fe⁰) is used as the electron donor. Zero-valent iron (Fe⁰) is a widely available, low-cost, non-toxic, easy-to-handle material (Fu et al. 2014). Many contaminants, including halogenated organics, nitrate, dyes, and phenol, have been successfully removed from groundwater and wastewater using Fe⁰ (Jiang et al. 2008; Siddiqui et al. 2013; Fu et al. 2014). However, Fe⁰ is used alone as an electron donor to remove nitrate from the environment by autotrophic and heterotrophic denitrification (Aslan and Türkman 2005; Hosseini et al. 2011; Zhao et al. 2012). As a result of the Fe⁰ corrosion process, H₂, Fe²⁺, and Fe³⁺ are released, and hydrogen can be used as the final electron donor for heterotrophic denitrification (Zhang 2002).

However, when Fe^0 is used to treat wastewater, oxidants such as dissolved O₂, H₂O, and NO₃⁻ consume the bulk of the Fe⁰ (Noubactep et al. 2009); decreasing NO_3^- concentration by Fe⁰ can represent the following Eq. (1) (Park et al. 2008):

$$4Fe^{0} + NO_{3}^{-} + 7H_{2}O \rightarrow 4Fe^{2+} + NH_{4}^{+} + 10OH^{-}$$
(1)

The nitrite formation occurs by nitrate reduction to nitrite by the iron surface (Liu and Wang 2019), as shown in Eq. (2). It is an initial chemical step to reduce nitrate when electrons transfer from the Fe⁰ surface to NH_4^+ , as shown in Eq. (1), or reduced to nitrite by Fe²⁺, as shown in Eq. (3), or an electron donor in anoxic, or by some bacteria as shown in Eq. (3).

$$Fe^{0} + 2NO_{3}^{-} + 4H^{+} \rightarrow 4Fe^{2+} + NO_{2}^{-} + 2H_{2}O$$
 (2)

$$2Fe^{2+} + NO_3^- \rightarrow NO_2^- + 2Fe^{3+}$$
 (3)

The nitrate-dependent Fe^{2+} oxidized (NDFO) reaction has recently been found to oxidize NO_3^- to NH_4^+ by Fe^{2+} in an abiotic environment (Carlson et al. 2013) or chemically oxidized to N_2 , as shown in Eqs. (4, 5) (S \oslash Rensen 1987), or by bacteria in the presence of hydrogen ion:

$$10Fe_{(aq)}^{2+} + 2NO_3^- + 24H_2O \rightarrow N_{2(g)} + 10Fe(OH)_{3(s)} + 10H_{(aq)}^+$$
(4)

$$10Fe^{2+} + 2NO_3^- + 12H^+ \rightarrow N_2 + 10Fe^{3+} + 6H_2O$$
 (5)

Consequently, through the Fearmox process, Fe^{3+} is utilized as an electron acceptor to oxidize NH_4^+ . The NH_4^+ oxidation with Fe^{3+} reduction (Fearmox) was defined as oxidizing NH_4^+ to produce N_2 , NO_2^- or NO_3^- through reducing Fe^{3+} and reducing to Fe^{2+} , as shown in Eq. (6):

$$NH_4^+ + 2H_2O + 6Fe^{3+} \rightarrow NO_2^- + 6Fe^{2+} + 8H^+$$
(6)

At the same time, Fe^{2+} is employed as an electron donor to decrease NO_3^{-} . Because Fe^{3+} has fewer electrons and is more stable than Fe^{2+} , coupling of the NDFO and Feanmox reactions was studied (Xu et al. 2016b), with Fe cycling used as a catalyst to decrease the need for Fe ions to prevent sludge mineralization.

However, the conversion between nitrite and Fe²⁺ and decreasing pH will produce N_2O (Park et al. 2008), then N_2O can act as an electron acceptor by electrons donated by NO_3^- to produce N_2O and N_2 following Eqs. (7–9):

$$NO_3^- + 2e^- + 2H^+ \to NO_2^- + 6H_2O$$
 (7)

$$NO_2^- + 2e^- + 2H^+ \rightarrow 0.5NO_2 + 1.5H_2O$$
 (8)

$$0.5NO_2 + 2e^- + H^+ \to 0.5N_2 + 0.5H_2O$$
(9)

When Fe⁰ is used, the aging of Fe⁰ and its limited reactivity are critical issues for Fe⁰-based technology (Xu et al. 2016b). Therefore, finding practical ways of significantly increasing Fe⁰ reactivity is crucial. Many researchers employed various technologies to enhance Fe⁰ reactivity, such as ultrasonic, acid washing, H2-reducing pretreatment (Lai and Lo 2008), electrochemical shorthand (Chen et al. 2012), Fe⁰-based bimetals (Lim et al. 2007), and nanosized Fe⁰-nFe⁰ (Huang et al. 2013). These technologies are always complicated, costly, and hazardous to the environment (Jiang et al. 2015). As a result, other technologies for increasing the reactivity of aging Fe⁰, such as pre-magnetization or applying a weak permanent magnetic field (WMF) with Fe⁰, were used to eliminate high concentrations of p-nitrophenol (PNP), SO₂ removal (Jiang et al. 2008; Siddiqui et al. 2013), accelerate chloroacetamide removal from drinking water, enhance phenol degradation, partial nitrification, CH₄ production, triethyl phosphate degradation, and antibiotic degradation (Wang et al. 2015; Wang et al. 2017; Chen et al. 2019; Huang et al. 2019; Pan et al. 2019, et al. 2019).

Additionally, several studies have found that the effects of permanent magnets or electromagnets can change water pH, oxidation-reduction potential (ORP) (Yin et al. 2011; Hassan and Rahman 2016), increase electron density, and promote electron transfer for redox reactions (Yap et al. 2021). The magnetic field mainly affects the material's properties, structure, photocatalysis, electrodynamics, synthesized reaction, isomerization reaction, nuclide enhancement reaction, increasing electron density in water, and metabolic reaction (Hassan and Rahman 2016). Coupling magnetic field (MF) with Fe^0 is chemical-free (Xu et al. 2016a); it contributes to the release of Fe^{2+} from the Fe corrosion process (Li et al. 2017b; Ren et al. 2018), which can significantly improve the pollutants' targeting, reduce Fe⁰ doses, extend the operating pH range (Sun and Guan 2019; Wang et al. 2020b), and give energy to the donor electron (Salehani et al. 2010), and influence the anions' movement simultaneously with paramagnetic Fe^{2+} to keep electroneutrality (Sun and Guan 2019). The theoretically essential point of coupling electric-magnetic (MF) with Fe⁰ in this study is to promote the increase of Fe^{2+} , accelerating the Fe^{3+} reduction to Fe^{2+} because the reduction rate of Fe^{3+} is much slower than the oxidation rate of Fe²⁺ because the concentration of Fe²⁺ would decrease rapidly during pollutants' depredation (Chu et al. 2021).

However, many researchers are working to achieve a low dose of Fe^{2+} with effective pollutant degradation and removal from wastewater (Taherdanak et al. 2016). Fe^{2+} will promote decreasing pH and increase the reaction rate of non-target substrates (H⁺ and O₂) with Fe⁰ and would undoubtedly increase the Fe⁰ corrosion rate concomitantly with pollutants (Guan et al. 2015). Therefore, most bacteria species use Fe²⁺ as the electron donor for metabolism (Straub et al. 2004), promoting microbial abundance

diversity and increasing bacteria's metabolism by promoting Fe^{2+} (Li et al. 2017a). Anaerobic denitrifying Fe^{2+} oxidation bacteria grow by using Fe²⁺ as a source of energy and electron donor in marine environments or freshwater with a narrow pH range to 7 (Kappler et al. 2005; Hedrich et al. 2011). An essential point in this study is to enhance nitrogen removal efficiency in the upflow microaerobic sludge reactor (UMSR) by coupling the electric-magnetic field (MF) with Fe⁰. By coupling the electric–magnetic field (MF) with Fe⁰, there is a possibility of continuously releasing H_2 , Fe^{2+} , and Fe^{3+} from the Fe^{0} corrosion process to give activity to some heterotrophic nitrifying bacteria and denitrifying bacteria that depend on Fe^{2+} and Fe^{3+} , or H_2 for metabolism in the absence of the organic carbon source. Additionally, coupling the electric-magnetic field (MF) with Fe^0 may prevent Fe^{3+} precipitation on the bacterial cell surface by chemically reducing Fe^{3+} to Fe^{2+} . This research aimed to study a novel upflow microaerobic sludge reactor (UMSR) operated for 78 ± 2 days continuously, under five operating stages with and without coupling electric-magnetic field (MF) with Fe⁰. At the same time, the NH₄⁺-N, NO₃⁻-N, NO₂⁻-N, TN removal, and microbial community structure were evaluated in this research.

Methods and materials

As shown in Fig. 1, the UMSR has an inner volume of 4.9 L, and the HRT was 2.5 h; the influent was injected from the bottom of the reactor. A reflux aeration tank controlled dissolved oxygen (DO) in the reactor was held at less than 1.0 mg/L by a reflux aeration tank. An extra heating system maintained the temperature at 25–27 °C by a supplementary heating system. The electric-magnetic field of 40 mT was adjusted by 6 V–50 Hz alternate current (AC) and put deep into the sludge. The UMSR continuously operated for 78 ± 2 days, divided into five operating stages of 15 ± 1 days for each stage (without Fe⁰, with Fe⁰, coupling with MF,

Fig. 1 Schematic diagram of USMR setup

without coupling with MF, and coupling with MF again) until the Fe^0 corrosion was completed.

Synthetic nutrients and sludge

The nutrients in this synthetic wastewater were composed of (mg/L): NH₄Cl (190), KH₂PO (25.2), KHCO₃ (124.8), CaCl₂ (300), and MgSO₄ (200). The inoculated sludge was taken from the Taiyuan wastewater treatment plant, with the mixed liquor suspended solids (MLSS) and the mixed liquor volatile suspended solids (MLVSS) being 2.42 mg/L and 1.936 mg/L, respectively. The ratio of Fe⁰ powder and Fe–C powder was 3:1.

Analytical methods and equipment

Before experimenting with new conditions, the reactor was operated at its optimized condition for more than 360 days at 25–27 °C. An external heating wire and a temperature controller are used to regulate the inside temperature of the reactor (XH-W2140, China). The pH and temperature were measured using pH and temperature meters (Hanna Instruments CAL CheckTM HI5221). The concentrations of NH_4^+ -N, NO_3^- -N, NO_2^- -N, and TN in effluent were measured daily using standard methods (Association 1915).

Microbial community analysis

The sludge samples were taken from three continual operation conditions (before adding Fe⁰, after adding Fe⁰, and after coupling MF with Fe⁰) labeled as (S1, s2, and s3) to identify the microbial community structure during that three operating conditions. They were sent to Shanghai Lingen Biological Technology Co., Ltd to analyze the microbial diversity. After completing the genomic DNA extraction, genes were amplified using the specific primer with the barcode, 16S V4-V5: 515F–907R, 18S V9: 1380F–1510R, ITS1: ITS1F–ITS2R. The library quality was assessed on the Qubit@ 2.0 Fluorometer (Thermo Scientific) and the Agilent Bioanalyzer 2100 system. The library was sequenced on an Illumina MiSeq platform, and 250 bp/300 bp paired-end reads were generated.

Results and discussion

Parameters with operating conditions and reactor performance

Table 1 summarizes the performance of the UMSR and coupling electric-magnetic field (MF) system concerning the NH₄⁺-N, NO₃⁻-N, NO₂⁻-N, and TN removal for each stage of operation. For these data, the process continued for 78 ± 2 days until the Fe⁰ was corroded under an anaerobic condition with electric-magnetic field effects.

Operating stages at (HRT) 2.5 h	Effluent NH ₄ ⁺ -N (mg/L)	Effluent NO ₂ ⁻ -N (mg/L)	Effluent NO ₃ ⁻ -N (mg/L)	Nitrification rate (mg/L day)	Effluent PH	NO ₃ ⁻ -N removal (%)	NH ₄ ⁺ -N removal (%)	TN removal (%)
Stage (1) Stage (2) Stage (3) Stage (4) Stage (5)	26.2	0.1	9.9	1.2	7.8	58	47	58
	21.9	2.3	9.2	1.3	7.1	64	56	59
	13.6	0.5	8.7	2.3	5.7	76	72	75
	12.4	0.7	11.2	2.5	6.8	55	75	68
	12.9	0.1	8.7	2.4	7.5	76	74	76

NO₃⁻⁻N removal efficiency

As shown in Fig. 2, the concentration of $NO_3^{-}-N$ in the effluent dropped quickly for the first few days after Fe⁰ was added to the reactor. After a few days, the concentration of NO₃⁻-N increased again. After two periods of coupling MF with Fe⁰ (first coupling with MF and second coupling with MF), the NO₃⁻-N concentration dropped to a stable level. The NO₃⁻-N removal efficiencies were 58% before adding Fe⁰, 64% after adding Fe⁰, 76% at first coupling with MF, 55% without coupling MF, and 76% at second coupling with MF, respectively. The highest and most stable removal was observed during MF coupled with Fe⁰. Coupling Fe⁰ with electric–magnetic provides stability for nitrate removal by producing H_2 and Fe^{2+} . It is one of the factors that donate to denitrification by Fe⁰ corrosion. It can also happen that hydrogen can be used as an electron donor because of the corrosion of Fe⁰ in a magnetic field (Liu and Lowry 2006; Němeček et al. 2014). The magnetic field affects electrode kinetics by the accelerated effect on the cathodic reaction of the single Fe⁰ corrosion process. It will affect the Fe^{3+} reduction to Fe^{2+} in this Fe^{0} recycling. It is possible for nitrate-dependent Fe²⁺ oxidized (NDFO)

Fig. 2 Effluent pH and NO₃⁻-N concentration

to occur by producing more Fe^{2+} because the reductive efficiency of nitrate by Fe^{0} increased by the increase in dissolved ferrous ion concentration (Fe^{2+}_{aq}) . It may also release cathodic H₂ by reducing water-derived protons (Weathers et al. 1997), as shown in Eqs. (10, 11).

$$Fe^{0}_{(s)} + H_2O \rightarrow Fe(OH)_{2(aq)} + H_{2(g)}$$
 (10)

$$Fe^{0}_{(s)} + 2H^{+} \rightarrow Fe^{2+}_{(aq)} + H_{2(g)}$$
 (11)

As a favored electron donor, hydrogen gas produced by Fe⁰ corrosion can be an advantage for several metabolic groups of denitrifying bacteria. The Fe²⁺ oxidation rate could influence various abiotic factors, including a concentration in anionic species; for instance, concentration in anionic species such as Cl⁻ in water will reduce the Fe²⁺ oxidation rate and laded to a higher accumulation of Fe^{2+} (Adeleye et al., 2013). The oxidation of Fe^{2+} increases the hydrogen ion H⁺ concentration in the water, which reflects on the pH, as shown in Eqs. (4, 6). The pH is an important parameter that strongly affects the nitrate reduction by Fe^{0} because the nitrate requires proton participation, which affects Fe⁰ corrosion rate and Fe corrosion product, and Fe^{2+} occurs at lower pH (Weathers et al. 1997). It was decreased at the first stage of adding Fe⁰ to the reactor. The primary way to reduce NO_3^- is by Fe^0 ; the Fe^0 acts as an electron donor to reduce NO_3^- by Fe⁰ surface. The nitrate reduction depends on electron transfer efficiency from the Fe^0 surface $Fe^0 \rightarrow Fe^{2+} + 2e^-$.

The existence of Fe^0 and Fe^{2+} may involve other reactions. They are sources of electrons and protons, as shown in Eqs. (12, 13):

$$3Fe^{0} + 4H_{2}O \rightarrow Fe_{3}O_{4} + 8H^{+} + 8e^{-}$$
 (12)

$$3Fe^{2+} + 4H_2O \rightarrow Fe_3O_4 + 8H^+ + 2e^-$$
 (13)

Hematite (Fe_2O_3) and magnetite (Fe_3O_4) were discovered in these probable reactions, as shown in Eqs. (14, 15). It would play a part in the pH decreasing due to Fe^0

corrosion serving as an electron donor from the Fe^0 surface $Fe^0 - 2e \rightarrow Fe^{2+}$.

$$2Fe^{0} + 3H_{2}O - 6e^{-} \rightarrow Fe_{2}O_{3} + 6H^{+}$$
(14)

$$3Fe^{0} + 4H_{2}O - 8e^{-} \rightarrow Fe_{3}O_{4} + 6H^{+}$$
 (15)

Moreover, the nitrate reduction with H⁺ will be consumed at neutral pH:

$$NO_3^- + 10H^+ + 8e^- \rightarrow NH_4^+ + 3H_2O$$
 (16)

When magnetic coupling in all phases, the lowest pH was at the first operating conditions when MF coupling with Fe^{0} . The pH value decreased to 5.2 at the first stage of coupling MF with Fe^{0} . The decreasing pH was low and the most stable at all stages of coupling MF with Fe^{0} , as shown in Figs. 2, 3, and 4.

NH4⁺-N removal efficiency

The effluent NH_4^+ -N concentration increased significantly from 21 to 35 mg/L in the first 4 days after Fe⁰ was added to the reactor, followed by a decrease in NO₃⁻-N concentration from 11 to 6 mg/L. Because the reaction between Fe⁰ and NO₃⁻ converts NO₃⁻ to NH₄⁺, as shown in Eq. (1), it increases the NH₄⁺ concentration. The nitrogen removal efficiency could not increase during the first few days after Fe⁰ was applied to the reactor. It was noticed that the highest NH₄⁺-N removal occurred during stage (3) when MF was first coupling with Fe⁰. The coupling of NH₄⁺ oxidation to NO₂⁻ with Fe³⁺ reduction is possible, as shown in Eq. (6). After a few days, the NH₄⁺-N concentration became

Fig. 3 Effluent pH and NH₄⁺-N concentration

Fig. 4 Effluent pH and NO_2^{-} -N concentration

lower day by day and stable, as shown in Fig. 3; the $NH_4^{+}-N$ removal efficiencies were 47% before adding Fe⁰, 56% after adding Fe⁰, 72% at the first coupled MF with Fe⁰, 74% without coupling with MF, and 75% at the second coupled MF with Fe⁰, respectively. Thus, the NO_2^{-} produced from NH_4^{+} oxidation with Fe³⁺ will be involved in the ANAMMOX reaction of ammonia, as shown in Eq. (17):

$$\mathrm{NH}_4^+ + \mathrm{NO}_2^- \to \mathrm{N}_2 + 2\mathrm{H}_2\mathrm{O} \tag{17}$$

NO₂⁻⁻N removal efficiency

The NO₂⁻⁻N concentration increased to 2.3 mg/L during stage (2) of adding Fe⁰ to the reactor due to nitrite formation caused by nitrate reduction, as shown in Eqs. (2, 3) or by NH₄⁺ oxidation with Fe³⁺ (Feammox) process, as shown in Eq. (6), whereas the NO₂⁻⁻N concentration before adding Fe⁰ was 0.1 mg/L, 0.5 mg/L at first coupled MF with Fe⁰, 0.7 mg/L without coupled MF, as shown in Fig. 4. Thus, the ANAMMOX reaction that makes increases NO₂.⁻ concentration, as shown in Eq. (18)

$$2NH_4^+ + 3O_2 \rightarrow 2NO_2^- + 4H^+ + 2H_2O$$
(18)

While the Fe³⁺ serves as an electron acceptor, Fe³⁺ oxidized NH₄⁺ into NO₂⁻ and NO₃⁻, and the effluent's NO₂⁻-N concentration was accumulated. On the other hand, by accumulated NO₂⁻, the ANAMMOX reactions with NH₄⁺ and NO₂⁻ play a part in the process of reducing NO₂⁻, as shown in Eq. (19):

(19)

nitrate, nitrite, and other nitrogen compounds to dinitrogen

As well, the electron donated by NO_3^- or which is released by Fe^0 surface with a high concentration of H⁺, the NO_2^- will act as an electron donator to produce N_2O , and then N_2O will serve as an electron acceptor to produce N_2 , as shown in Eqs. (7–9), which gives removal stability and a decrease in NO_2^- accumulation. Moreover, other research has shown that the adsorption of Fe^{2+} on iron oxides (e.g., Fe_3O_4 , FeOH, –FeO(OH)) is crucial in decreasing NO_3^- , NO_2^- , and NH_4^+ . Fe^{2+} ions ionize H⁺, which may be adsorbed on the surface and reduced to active NO^* by hydrogen produced by Fe corrosion after reducing NO_3^- to NO_2^- . This approach was not discussed in this work regarding electric–magnetic field effects.

Structure and function of the microbial community in the reactor

As shown in Fig. 5a, b, microbial community analysis detected that relative abundance changed at the levels of phyla and genus due to the changes in conditions. (The relative domain abundance > 1%). A notable increase and changes in diversity and a decrease in certain bacteria were detected in all samples associated with the three operating conditions. After adding the Fe⁰ and coupling it with the magnetic field, there were changes in certain bacteria's richness, abundance, and inhibition.

At the phylum level, the most bacteria abundance of nitrogen removal was identified, including nitrifiers, denitrifiers, and anammox bacteria. Proteobacteria were the most dominant phylum in S1 of which 56% are known for their metabolic diversity and variety including denitrifiers, which are used in crucial environmental cycles such as carbon, nitrogen, sulfur, and phosphorus (Friedrich, Bardischewsky et al. 2006; Meier et al. 2016) and the detected genera in S1 are Rhodanobacter of which 16% is capable under acidic and anaerobic conditions of producing N2 and N2O by using nitrate, nitrite, and nitrous oxide as electron acceptors (Van Den Heuvel et al. 2010) and Denitratisoma of which 14% is anaerobic oxidative that reduces nitrate to N₂O and N₂ and may lead to nitrite accumulation with some N2 fixation strains (Fahrbach et al. 2006); 45 of SWB02 and 2% of Ellin6067 oxidize nitrites to nitrates (NOB) (Fumasoli et al. 2015); 4% of Thermomonas, sulfur oxidizers, and carbon fixing convert CO_2 to carbonate, where nitrogen fixation is related (Castelán-Sánchez et al. 2020); 3% of Limnobacter is heterotrophic sulfur oxidation and may adapt with anaerobic methane oxidizer bacteria (AOM) (Chen et al. 2016), and 1% of Thiobacillus obtains energy from oxidation and reduction of ferrous and sulfide. Moreover, Thiobacillus reduces

However, a sharp decrease in the level of the Proteobacteria was noted after adding the Fe⁰ to the reactor, while richness in diversity and diminishing were observed in both samples s2 and s3, at the level of genus Stenotrophomonas, which can use nitrate as a terminal electron acceptor for growth with oxygen absence (Crossman et al. 2008) of 4% in s2, Brevundimonas which have potential of N₂ fixation (Jiang et al. 2022) of 2% in s2, Diaphorobacter under anaerobic conditions reduces nitrate and nitrite to N₂ (Qiu et al. 2015) of 1% in s2, *Qipengyuania* of 1% in s2 has some strains that reported can participate in biogenic nitrogen cycling (Liu et al. 2022), Pseudoxanthomonas of 2% in s2 and s3 it is anaerobic methane oxidation bacteria (AOM) it can utilize methane as electron donor to reduce NO_2^- , NO_3^- , Fe^{3+} , and SO_4^{2-} , it typically require additional electron donors such as hydrogen (Fu et al. 2019), Hydrogenophaga of 4% in s3 it is capable nitrate denitrification and using the oxidation of H_2 as an energy source and CO_2 as a carbon source (Iannacone et al. 2020; Xu et al. 2021), Pseudomonas of 6% in s2, 4% in s3 it has been reported that hydrocarbon-degrading bacteria and may provide a carbon source and energy to other bacteria (Wang et al. 2020a), Acinetobacter of 4% in s2, 2% in s3 which use Fe²⁺ as electron donor be capable of denitrifying (Kiskira et al. 2017), the Limnobacter of 2% in s2, and of 3% in s3, SC-I-84 norank of 1% in s2 and s3, Steroidobacteraceae_uncultured was of 1% in s2, 2% in s3, the Thermomonas was of 1% in both samples s2 and s3, and Xanthobacteraceae uncultured of 1% in s3, respectively.

(Kelly and Wood 2000).

Meanwhile, the nitrifiers (AOB) detected in the reactor included Nitrospirota and Bacteroidetes; these nitrifiers bacteria are often present in activated sludge. The

Fig.5 a Relative abundance by phylum. b Relative abundance by genus

Fig. 5 (continued)

Nitrospirota was 5% in S1 and was shared by the genus Nitrospira of 5%. It is a chemolithoautotrophic nitriteoxidizing bacterium and is essential for nitrification in the completed nitrogen cycle when it oxidizes nitrite to nitrate from ammonia (Yang et al. 2022). However, the Nitrospira may also give ammonia oxidizers released from urea or cyanate in interactions known as "reciprocal feeding." Recently found members of the Nitrospira can catalyze both nitrification stages independently, earning them the name complete ammonia oxidizers or "Comammox" bacteria (Koch et al. 2019). Certain Nitrospira strains may also use hydrogen and formate to supplement their aerobic nitrite oxidation with oxygen or nitrate as the terminal electron acceptor (Palomo et al. 2018; Koch et al. 2019). The Nitrospira can adapt to a wide range of oxygen conditions according to its metabolic system (Mehrani et al. 2020) as well as observe that at the level of Chloroflexi, it was not the most dominant bacteria in sample S1. Thus, after the Fe⁰ was added or coupled with MF, Chloroflexi became one of the most predominant bacteria at 21% in S2 and 28% in S3, while it was 2% in S1. It was reported that chemoautotrophic desulfurization and denitrification of bacteria and one of the heterotrophic bacteria derive energy from H₂. It was found in low-pH soils with carbon dioxide fixation (Long et al. 2015; Islam et al. 2019). At the genus of desulfurization and denitrification bacteria SBR1031_norank of 13% in s2 and 18% in s3, heterotroph Anaerolineaceae_uncultured was 1% in s2 and 2% in s3. Chemolithotroph-denitrifying bacteria use Fe²⁺ as electron donor, OLB14 norank of 1% in s2 and s3, and KD4-96 norank by 1% in both samples s2 and s3, respectively. This can be explained by the effect of the magnetic field on Fe^{0} erosion and releasing more hydrogen and ferrous ions that enter into its metabolism process, as well as possibly due to the richness of Firmicutes and hydrogen production in this condition. However, Firmicutes were absent before adding the Fe⁰ to the reactor. It has been reported that when coupled with iron, it generates hydrogen (Mohan et al. 2011). Before adding Fe⁰, Firmicutes were absent in sample S1; in contrast, after adding Fe⁰ and coupling with MF, the abundance was 4% in s2 and 5% in s3, respectively, at the genus Lysinibacillus of 1% in both samples s2 and s3. This can be explained by some Firmicutes strains exploiting acids as a source of carbon and energy; the decrease in pH and the existence of Fe⁰ provided the richness of the Firmicutes bacteria in the reactor.

Whilst, before adding Fe⁰ to the reactor in sample S1, the Gemmatimonadota phylum of 6%, on the level of the genus *Gemmatimonadaceae_uncultured* of 6%. The Gemmatimonadota proportion decreased to 3% after adding Fe⁰ in s2, and after coupling with MF, an enrichment of 4% was observed in s3, shared by the same genus *Gemmatimonadaceae_uncultured*. In contrast, the Gemmatimonadota groups have been found in various ecosystems and activated sludge used in wastewater treatment. These groups seem to depend on urea hydrolysis inside cells for energy (Chen et al. 2021; Mujakić et al. 2022). Anammox bacteria Planctomycetota of 4% in S1, 3% in s2 and s3. Planctomycetota

in S1 was shared by genus 2% of *Schlesneria*, which utilizes an organic nitrogen compound as nitrate and ammonium as nitrogen sources; after adding Fe⁰ and coupling with MF, that genus vanished in both samples s2 and s3. After adding Fe⁰ to the reactor and coupling with MF, the genus *Saccharimonadales_norank* has increased by 1% in s2 and 2% in s3 and noted that the genus *Patescibacteria* increased by 2% in s2 and 3% in s3, while it was 1% in S1, respectively.

In the same context, 1% of Armatimonadota in S1 and 2% in s2 and s3 has been shared by genus Armatimonadota norank by 1% in S1 and 2% in samples s2 and s3, respectively. Furthermore, Actinobacteriota was absent in sample S1 and appeared after Fe⁰ was added in s2 and s3 by 6%, with genus 67-14 norank in both samples s2 and s3 by 2%. Actinobacteriota have some strains that produce organic acids and siderophores which might delay the biogenic Fe^{2+} reoxidation and decrease pH (Zhang et al. 2019). In anoxic conditions, many Actinobacteriota reduces Fe³⁺ in the iron cycle and plays as main important bacterium in the denitrification process (Huang et al. 2022). After adding Fe⁰, Deinococcota abundance was increased and returned to the same proportion after coupling with MF at the same genus Meiothermus by 1% in S1, 2% in s2, and 1% in s3, which is chemoorganoheterotroph and use nitrate as the terminal electron acceptor (Song et al. 2021).

Conclusions

Adding Fe^0 and coupling it with the electric–magnetic was favorable for large-scale applications due to its simple operation, low cost, and high effectiveness for nitrogen removal. As a result, Fe^0 corrosion under an electric–magnetic field may provide Fe^{2+} and Fe^{3+} and be used as an electron donor to oxidize NO_3^- to NH_4^+ . By producing H_2 and decreasing pH and using it as an electron donor donated by NO_3^- to produce N_2O and N_2 , the NH_4^+ -N, NO_3^- -N, and TN removal efficiencies in the UMSR are enhanced under MF with Fe^0 . Through coupling electric–magnetic with Fe^0 , the energy would be served to electron donors from the Fe^0 surface and increase electron density. The direction of electron transfer from Fe^0 to nitrate would be directly converted into N_2 ; on the other hand, NO_3^- converted into NH_4^+ and NO_2^- before the coupling MF stage.

Moreover, adding Fe⁰ and coupling with electric-magnetic to the reactor decreased the level of Proteobacteria and Nitrospirota. Changing microbial communities became the dominant abundance besides the Proteobacteria, such as Chloroflexi and Firmicutes. After Fe⁰ was coupled with electric-magnetic, it gave richness to some anammox such as *Saccharimonadales_norank* and *Patescibacteria*. Denitrification bacteria depend on ferrous Fe²⁺ as the source metabolisms, such as *Anaerolineaceae_uncultured* and *Acinetobacter*, and ferric iron Fe³⁺ such as *Pseudoxanthomonas*, or use hydrogen ion such as *Hydrogenophaga*. However, some bacteria genera have been found with an apparent richness, and the functions have not been determined by researchers yet.

Author contribution Abdulatti Algonin: sample collection, data analysis, and initial draft preparation. Bowei Zhao: writing review and data analysis. Xiuping Yue: supervisor, funding, and support. Writing review: Ying Cui. Fei Xie; writing review.

Funding This research was supported by the Ministry of Environmental Protection of the People's Republic of China (Major Science and Technology Program, Nos. 2019YFC0408601 and 2019YFC0408602), the National Natural Science Foundation of China (NSFC, No. 52070139), the Foundation Research Program of Shanxi Province, China (No. 202103021224099), and the Natural Science Foundation of Shanxi Province (Youth), China (No. 20210302124479).

Data availability Not applicable.

Declarations

Ethical approval Not applicable.

Consent to participate All the authors have given consent to their contribution.

Consent for publication All the authors have agreed with the content, and all have given explicit permission for publication.

Competing interests The authors declare no competing interests.

References

- Adeleye AS, Keller AA, Miller RJ, Lenihan HS (2013) Persistence of commercial nanoscaled zero-valent iron (nZVI) and by-products. J Nanopart Res 15(1):1–18
- Aslan Ş, Türkman A (2005) Combined biological removal of nitrate and pesticides using wheat straw as substrates. Process Biochem 40(2):935–943
- Association APH (1915) Standard methods for the examination of water and sewage.
- Bardischewsky F, Fischer J, Höller B, Friedrich CG (2006) SoxV transfers electrons to the periplasm of Paracoccus pantotrophus–an essential reaction for chemotrophic sulfur oxidation. Microbiology 152(2):465–472
- Carlson HK, Clark IC, Blazewicz SJ, Iavarone AT, Coates JD (2013) Fe (II) oxidation is an innate capability of nitrate-reducing bacteria that involves abiotic and biotic reactions. J Bacteriol 195(14):3260–3268
- Castelán-Sánchez HG, Meza-Rodríguez PM, Carrillo E, Ríos-Vázquez DI, Liñan-Torres A, Batista-García RA, Pérez-Rueda E, Rojas-Ruíz NE, Dávila-Ramos S (2020) The microbial composition in circumneutral thermal springs from Chignahuapan, Puebla, Mexico reveals the presence of particular sulfur-oxidizing bacterial and viral communities. Microorganisms 8(11):1677
- Chen L, Jin S, Fallgren PH, Swoboda-Colberg NG, Liu F, Colberg PJ (2012) Electrochemical depassivation of zero-valent iron for trichloroethene reduction. J Hazard Mater 239:265–269

- Chen Y, Feng X, He Y, Wang F (2016) Genome analysis of a Limnobacter sp. identified in an anaerobic methane-consuming cell consortium. Front Mar Sci 3:257
- Chen S, Wang F, Chu W, Li X, Wei H, Gao N (2019) Weak magnetic field accelerates chloroacetamide removal by zero-valent iron in drinking water. Chem Eng J 358:40–47
- Chen Y, Chen H, Chen Z, Hu H, Deng C, Wang X (2021) The benefits of autotrophic nitrogen removal from high concentration of urea wastewater through a process of urea hydrolysis and partial nitritation in sequencing batch reactor. J Environ Manag 292:112762
- Chu Y, Su H, Lv R, Zhang X (2021) Enhanced electro-reduction of Fe³⁺ to Fe²⁺ by acidified carbon nanotube-modified graphite cathode and its application in a novel Fenton process for p-nitrophenol degradation. J Water Process Eng 40:101912
- Crossman LC, Gould VC, Dow JM, Vernikos GS, Okazaki A, Sebaihia M, Saunders D, Arrowsmith C, Carver T, Peters N (2008) The complete genome, comparative and functional analysis of Steno-trophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol 9(4):1–13
- Fahrbach M, Kuever J, Meinke R, Kämpfer P, Hollender J (2006) Denitratisoma oestradiolicum gen. nov., sp. nov., a 17β-oestradioldegrading, denitrifying betaproteobacterium. Int J Syst Evol Microbiol 56(7): 1547–1552
- Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205
- Fu L, Bai Y-N, Lu Y-Z, Ding J, Zhou D, Zeng RJ (2019) Degradation of organic pollutants by anaerobic methane-oxidizing microorganisms using methyl orange as an example. J Hazard Mater 364:264–271
- Fumasoli A, Morgenroth E, Udert KM (2015) Modeling the low pH limit of Nitrosomonas eutropha in high-strength nitrogen wastewaters. Water Res 83:161–170
- González-Dávila M, Santana-Casiano JM, Millero FJ (2006) Competition between O_2 and H_2O_2 in the oxidation of Fe (II) in natural waters. J Solution Chem 35(1):95–111
- Guan X, Sun Y, Qin H, Li J, Lo IM, He D, Dong H (2015) The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994–2014). Water Res 75:224–248
- Hassan S, Rahman RA (2016) Effects of exposure to magnetic field on water properties and hatchability of Artemia salina. ARPN J Agric Biol Sci 11(11):416–423
- Hedrich S, Schlömann M, Johnson DB (2011) The iron-oxidizing proteobacteria. Microbiology 157(6):1551–1564
- Hosseini SM, Ataie-Ashtiani B, Kholghi M (2011) Nitrate reduction by nano-Fe/Cu particles in a packed column. Desalination 276(1-3):214–221
- Huang Q, Liu W, Huang W (2013) Reductive dechlorination of tetrachlorobisphenol A by Pd/Fe bimetallic catalysts. J Hazard Mater 262:634–641
- Huang W, Yang F, Huang W, Wang D, Lei Z, Zhang Z (2019) Weak magnetic field significantly enhances methane production from a digester supplemented with zero-valent iron. Biores Technol 282:202–210
- Huang Y, Yang H, Li K, Meng Q, Wang S, Wang Y, ... Li Q (2022) Red mud conserved compost nitrogen by enhancing nitrogen fixation and inhibiting denitrification revealed via metagenomic analysis. Biores Technol 346:126654
- Iannacone F, Di Capua F, Granata F, Gargano R, Esposito G (2020) Simultaneous nitrification, denitrification and phosphorus removal in a continuous-flow moving bed biofilm reactor alternating microaerobic and aerobic conditions. Biores Technol 310:123453

- Islam ZF, Cordero PR, Feng J, Chen YJ, Bay SK, Jirapanjawat T, ... Greening C (2019) Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. ISME J 13(7):1801–1813
- Jiang J-H, Li Y-H, Cai W-M (2008) Experimental and mechanism research of SO₂ removal by cast iron scraps in a magnetically fixed bed. J Hazard Mater 153(1–2):508–513
- Jiang X, Qiao J, Lo IM, Wang L, Guan X, Lu Z, Zhou G, Xu C (2015) Enhanced paramagnetic Cu²⁺ ions removal by coupling a weak magnetic field with zero-valent iron. J Hazard Mater 283:880–887
- Jiang Y, Li Q, Mao W, Tang W, White Jr JF, Li H (2022) Endophytic bacterial community of Stellera chamaejasme L. and its role in improving host plants' competitiveness in grasslands. Environ Microbiol
- Kappler A, Schink B, Newman DK (2005) Fe (III) mineral formation and cell encrustation by the nitrate-dependent Fe (II)-oxidizer strain BoFeN1. Geobiology 3(4):235–245
- Kelly DP, Wood AP (2000) Confirmation of Thiobacillus denitrificans as a species of the genus Thiobacillus, in the beta-subclass of the Proteobacteria, with strain NCIMB 9548 as the type strain. Int J Syst Evol Microbiol 50(2):547–550
- Kiskira K, Papirio S, Van Hullebusch E, Esposito G (2017) Fe (II)mediated autotrophic denitrification: a new bioprocess for iron bio precipitation/bio recovery and simultaneous treatment of nitrate-containing wastewaters. Int Biodeterior Biodegradation 119:631–648
- Koch H, van Kessel MA, Lücker S (2019) Complete nitrification: insights into the ecophysiology of comammox Nitrospira. Appl Microbiol Biotechnol 103(1):177–189
- Lai KC, Lo IM (2008) Removal of chromium (VI) by acid-washed zero-valent iron under various groundwater geochemistry conditions. Environ Sci Technol 42(4):1238–1244
- Li R, Feng C, Xi B, Chen N, Jiang Y, Zhao Y, Li M, Dang Q, Zhao B (2017a) Nitrate removal efficiency of a mixotrophic denitrification wall for nitrate-polluted groundwater in situ remediations. Ecol Eng 106:523–531
- Li X, Zhou M, Pan Y, Xu L, Tang Z (2017b) Highly efficient advanced oxidation processes (AOPs) based on pre-magnetization Fe⁰ for wastewater treatment. Sep Purif Technol 178:49–55
- Lim T-T, Feng J, Zhu B-W (2007) Kinetic and mechanistic examinations of reductive transformation pathways of brominated methanes with nano-scale Fe and Ni/Fe particles. Water Res 41(4):875–883
- Liu Y, Lowry GV (2006) Effect of particle age (Fe⁰ content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination. Environ Sci Technol 40(19):6085–6090
- Liu Y, Wang J (2019) Reduction of nitrate by zero-valent iron (ZVI)based materials: a review. Sci Total Environ 671:388–403
- Liu Y, Pei T, Du J, Yao Q, Deng MR, Zhu H (2022) Comparative genomics reveals genetic diversity and metabolic potentials of the Genus Qipengyuania and suggests fifteen novel species. Microbiology Spectrum pp e01264–21
- Long XE, Yao H, Wang J, Huang Y, Singh BK, Zhu YG (2015) Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils. Environ Sci Technol 49(12):7152–7160
- Mehrani MJ, Sobotka D, Kowal P, Ciesielski S, Makinia J (2020) The occurrence and role of Nitrospira in nitrogen removal systems. Bioresource technology 303:122936
- Meier DV, Bach W, Girguis PR, Gruber-Vodicka HR, Reeves EP, Richter M, ... Meyerdierks A (2016) Heterotrophic Proteobacteria in the vicinity of diffuse hydrothermal venting. Environ Microbiol 18(12):4348–4368
- Mohan SV, Agarwal L, Mohanakrishna G, Srikanth S, Kapley A, Purohit HJ, Sarma PN (2011) Firmicutes with iron dependent

hydrogenase drive hydrogen production in anaerobic bioreactor using distillery wastewater. international journal of hydrogen energy 36(14):8234–8242

- Mujakić I, Piwosz K, Koblížek M (2022) Phylum Gemmatimonadota and its role in the environment. Microorganisms 10(1):151
- Němeček J, Lhotský O, Cajthaml T (2014) Nanoscale zero-valent iron application for in situ reductions of hexavalent chromium and its effects on indigenous microorganism populations. Sci Total Environ 485:739–747
- Noubactep C, Schöner A, Woafo P (2009) Metallic iron filters for universal access to safe drinking water. CLEAN–Soil, Air, Water 37(12): 930–937
- Palomo A, Pedersen AG, Fowler SJ, Dechesne A, Sicheritz-Pontén T, Smets BF (2018) Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. ISME J 12(7):1779–1793
- Pan Y, Zhang Y, Zhou M, Cai J, Tian Y (2019) Enhanced removal of antibiotics from secondary wastewater effluents by novel UV/premagnetized Fe⁰/H₂O₂ process. Water Res 153:144–159
- Park H, Yeon K-H, Park Y-M, Lee S-J, Lee S-H, Choi Y-S, Chung Y (2008) Reduction of nitrate by nanoscale zero-valent iron supported on mesoporous silica beads. J Water Environ Technol 6(1):35–42
- Qiu T, Zuo Z, Gao J, Gao M, Han M, Sun L, Zhang L, Wang X (2015) Diaphorobacter polyhydroxybutyrativorans sp. nov., a novel poly (3-hydroxybutyrate-co-3-hydroxyvalerate)-degrading bacterium isolated from biofilms. Int J Syst Evol Microbiol 65(Pt_9): 2913–2918
- Ren Y, Li J, Lai L, Lai B (2018) Premagnetization enhancing the reactivity of Fe⁰/(passivated Fe⁰) system for high concentration p-nitrophenol removal in aqueous solution. Chemosphere 194:634–643
- S⊘ rensen J (1987) Nitrate reduction in marine sediment: pathways and interactions with iron and sulfur cycling. Geomicrobiol J 5(3-4):401–421
- Salehani HK, Esmaeilzadeh M, Shakouri K (2010) Magnetic field effects on electron eigenstates in a concentric triple quantum ring. J Nano Res Trans Tech Publ
- Siddiqui M, Momin CM, Acharya P, Kabir J, Debnath MK, Dhua R (2013) Dynamics of changes in bioactive molecules and antioxidant potential of Capsicum chinense Jacq. cv. Habanero at nine maturity stages. Acta Physiologiae Plantarum 35(4): 1141–1148
- Song T, Li S, Yin Z, Bao M, Lu J, Li Y (2021) Hydrolyzed polyacrylamide-containing wastewater treatment using ozone reactor-upflow anaerobic sludge blanket reactor-aerobic biofilm reactor multistage treatment system. Environ Pollut 269:116111
- Straub KL, Schönhuber WA, Buchholz-Cleven BE, Schink B (2004) Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling. Geomicrobiol J 21(6):371–378
- Sun Y, Guan X (2019) Combined effect of weak magnetic fields and anions on arsenite sequestration by zerovalent iron. Environmental Arsenic in a Changing World, CRC Press: 451–453
- Taherdanak M, Zilouei H, Karimi K (2016) The effects of Fe⁰ and Ni⁰ nanoparticles versus Fe²⁺ and Ni²⁺ ions on dark hydrogen fermentation. Int J Hydrogen Energy 41(1):167–173
- Van Den Heuvel R, Van Der Biezen E, Jetten M, Hefting M, Kartal B (2010) Denitrification at pH 4 by a soil-derived Rhodanobacterdominated community. Environ Microbiol 12(12):3264–3271

- Wang Y, Sun H, Duan X, Ang HM, Tadé MO, Wang S (2015) A new magnetic nano zero-valent iron encapsulated in carbon spheres for oxidative degradation of phenol. Appl Catal B 172:73–81
- Wang Z, Liu X, Ni S-Q, Zhang J, Zhang X, Ahmad HA, Gao B (2017) Weak magnetic field: a powerful strategy to enhance partial nitrification. Water Res 120:190–198
- Wang W, Li Z, Zeng L, Dong C, Shao Z (2020a) The oxidation of hydrocarbons by diverse heterotrophic and mixotrophic bacteria that inhabit deep-sea hydrothermal ecosystems. ISME J 14(8):1994–2006
- Wang W, Zhao P, Hu Y, Zan R (2020b) Application of weak magnetic field coupling with zero-valent iron for remediation of groundwater and wastewater: a review. J Clean Prod 262:121341
- Weathers LJ, Parkin GF, Alvarez PJ (1997) Utilization of cathodic hydrogen as electron donor for chloroform cometabolism by a mixed, methanogenic culture. Environ Sci Technol 31(3):880–885
- Xu C, Zhang B, Zhu L, Lin S, Sun X, Jiang Z, Tratnyek PG (2016a) Sequestration of antimonite by zerovalent iron: using weak magnetic field effects to enhance performance and characterize reaction mechanisms. Environ Sci Technol 50(3):1483–1491
- Xu H, Sun Y, Li J, Li F, Guan X (2016b) Aging of zerovalent iron in synthetic groundwater: X-ray photoelectron spectroscopy depth profiling characterization and depassivation with uniform magnetic field. Environ Sci Technol 50(15):8214–8222
- Xu R, Huang D, Sun X, Zhang M, Wang D, Yang Z, Jiang F, Gao P, Li B, Sun W (2021) Diversity and metabolic potentials of As (III)oxidizing bacteria in activated sludge. Appl Environ Microbiol 87(23):e01769-e1721
- Yang L, Xu X, Wang H, Yan J, Zhou X, Ren N, ... Chen C (2022) Biological treatment of refractory pollutants in industrial wastewaters under aerobic or anaerobic condition: batch tests and associated microbial community analysis. Biores Technol Rep 17:100927
- Yap ACW, Lee HS, Loo JL, Mohd NS (2021) Electron generation in water induced by magnetic effect and its impact on dissolved oxygen concentration. Sustain Environ Res 31(1):1–9
- Yin J, Zhang JK, Wu L, Li X (2011) Influence of water physical and chemical performance by magnetizing. Trans Tech Publ, Advanced Materials Research
- Zhang TC (2002) Nitrate removal in sulfur: limestone pond reactors. J Environ Eng 128(1):73–84
- Zhao Y, Zhang B, Feng C, Huang F, Zhang P, Zhang Z, Yang Y, Sugiura N (2012) Behavior of autotrophic denitrification and heterotrophic denitrification in an intensified biofilm-electrode reactor for nitrate-contaminated drinking water treatment. Biores Technol 107:159–165
- Zhang L, Zeng Q, Liu X, Chen P, Guo X, Ma LZ, ... Huang Y (2019) Iron reduction by diverse actinobacteria under oxic and pH-neutral conditions and the formation of secondary minerals. Chem Geol 525:390–399

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.