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Ochratoxin A induces locomotor impairment and oxidative imbalance 
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Abstract
Ochratoxin A (OTA) is a mycotoxin produced by species of filamentous fungi widely found as a contaminant in food and with 
high toxic potential. Studies have shown that this toxin causes kidney and liver damage; however, data on the central nervous 
system effects of exposure to OTA are still scarce. Thus, this study aimed to investigate the effects of exposure to OTA on 
behavioral and neurochemical parameters in adult zebrafish. The animals were treated with different doses of OTA (1.38, 
2.77, and 5.53 mg/kg) with intraperitoneal injections and submitted to behavioral evaluations in the open tank and social 
interaction tests. Subsequently, they were euthanized, and the brains were used to assess markers associated with oxidative 
status. In the open tank test, OTA altered distance traveled, absolute turn angle, mean speed, and freezing time. However, no 
significant effects were observed in the social interaction test. Moreover, OTA also increased glutathione peroxidase (GPx), 
glutathione-S-transferase (GST), and glutathione reductase (GR) levels and decreased non-protein thiols (NPSH) levels in 
the zebrafish brain. This study showed that OTA can affect behavior and neurochemical levels in zebrafish.
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Introduction

It is estimated that 200 thousand people are added daily to 
the world’s demand for food (Nellemann et al. 2009). With 
the projections that by 2050 the world will reach 9.8 billion 
inhabitants (United Nations 2017), the search for solutions to 
meet those needs becomes urgent. Currently, the tools used to 
solve this issue are responsible for creating other problems. For 
example, the increase in pesticide use in large crops is already 

causing serious environmental and public health impacts 
(World Health Organization 2006; Langley and Mort 2012; 
Rani et al. 2021). Improperly tampering with livestock prod-
ucts may put consumers’ lives in danger (Xin and Stone 2008; 
Cavin et al. 2018), and industry investment in processed foods 
has been linked to the incidence of obesity, diabetes, celiac dis-
ease, and heart disease (Canella et al. 2014; Anand et al. 2015; 
Aguayo-Patrón and Calderón de la Barca 2017). Although for a 
long time environmental conditions and inadequate storage of 
food products have been ignored, today it is already clear that 
these conducts are responsible for the increasing presence of 
mycotoxins (Marroquín-Cardona et al. 2014).

Mycotoxins are naturally occurring compounds in species 
of fungi and are potentially toxic (Tola and Kebede 2016). 
Ochratoxin A (OTA) is a mycotoxin produced by filamentous 
fungi and belongs to the ochratoxin subgroup, along with 
ochratoxins B and C. However, OTA has more natural occur-
rence and higher toxicity than other ochratoxins. OTA has 
become a very common contaminant in food and the ecosys-
tem. There is evidence of the presence of OTA in water sources 
(Mata et al. 2015; Hu et al. 2017) and sea animals (Sun et al. 
2015). The highest incidence of detection, however, occurs in 
food. OTA has already been found in many types of food in the 
world, including meats found in Croatia (Pleadin et al. 2015), 
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Brazilian and European coffee (v. d. Stegen et al. 1997; de 
Almeida et al. 2007), wines and beers from Chile and Hungary 
(Vega et al. 2012; Varga et al. 2014), fruits in Argentina and 
Canada (Magnoli et al. 2004; Lombaert et al. 2004), European 
juices (Jørgensen 2005), and several other types of products 
across the globe. The contamination of feed commodities also 
affects the preparation of animal feeds with the mycotoxin hav-
ing already been identified in fish and poultry feed (Abidin 
et al. 2017; Pietsch et al. 2020; Nogueira et al. 2020).

The exportation market moves around billions of dollars 
per year (Food and Agriculture Organization (FAO) 2019a) 
and billions of food tons (Food and Agriculture Organiza-
tion (FAO) 2019b) are transported to countries with varying 
laws and cultures. Most nations have protocols and specific 
regulations for the tolerable limits of contaminants in the food, 
including OTA (Official Journal of the European Union 2006; 
Bureau of Chemical Safety et al. 2009; Ministério da Saúde 
and Agência Nacional de Vigilância Sanitária 2011). However, 
there is no consensus on acceptable limits for this contaminant 
among countries and, as the trade develops, the OTA present 
in food crosses borders and easily spreads around the world 
due to a lack of consent between health inspection standards.

The mechanism of OTA toxicity is not clear yet. It is 
believed to be related to the inhibition of protein synthesis 
caused by the competition between the phenylalanine group of 
OTA and phenylalanine amino acid (Kőszegi and Poór 2016). 
The effects of OTA have already been evaluated in rodents 
(Kanisawa and Suzuki 1978; Castegnaro et al. 1998), birds 
(Stoev 2010), and fish (Doster et al. 1974; Manning et al. 
2003). The toxin has been associated with immune modulation 
(Lea et al. 1989), hepatic (Qi et al. 2015), and kidney diseases 
(Abid et al. 2003; Fuchs and Peraica 2005). OTA has also 
been increasingly associated with neuropsychiatric disorders 
(Sava et al. 2006a, b; Yoon et al. 2009; Brewer et al. 2013). 
However, despite the importance of these reports, there is still 
little information regarding the behavioral and neurochemi-
cal effects related to OTA on non-target organisms. Therefore, 
OTA is an important contaminant for both environment and 
food commodities, but there are still several gaps in the knowl-
edge about the effects of this toxin in organisms.

Native from Asia, zebrafish is a teleost that has high 
genetic and physiological homology with humans (Lieschke 
and Currie 2007). For this reason, this species has been 
used as a research animal model for different fields such 
as embryology and development (Keller et al. 2008; Hao 
et al. 2013), oxidative stress (Choi et al. 2010; Marcon 
et al. 2018), behavior (Abozaid et al. 2020; Reis et al. 2020; 
Nabinger et al. 2021), and genetics (Nasevicius and Ekker 
2000; Pimentel Falcão et al. 2021). Moreover, this aquatic 
animal is a very interesting environmental bioindicator used 
in toxicology and ecotoxicology research due to its capacity 
to simulate the conditions of an animal in its natural eco-
system (Asharani et al. 2008; Valadas et al. 2019; Park et al. 

2020). In this context, since zebrafish is a suitable environ-
mental bioindicator used in toxicology research, this study 
aimed to investigate the behavior and neurochemical effects 
of OTA in adult zebrafish.

Materials and methods

Animals

The experiments were performed using 96 adult (4–6-month-
old) short-fin wild-type zebrafish (Danio rerio, Hamilton, 
1822) obtained from a local commercial supplier. Ani-
mals were of both sexes (50:50 male:female ratio) with the 
detailed ratio per group presented in Online Resource 1.

The animals were housed in a maximum density of two fish 
per liter of water in 16-L tanks (40 × 20 × 24 cm) and under 
a 14–10-h day/night cycle for 10 days before any procedure. 
Water parameters such as pH (7.0 ± 0.3), chlorine, ammonia (< 
0.01 mg/L), and temperature (26 °C ± 2) were controlled. Fish 
were fed twice a day with commercial flake food (Poytara®, 
Brazil) and supplementation of brine shrimp (Artemia salina). 
After the behavioral tests, the animals were euthanized by 
hypothermic shock (2–4 °C) followed by decapitation, accord-
ing to the AVMA Guidelines for the Euthanasia of Animals 
(Leary and Johnson, 2020). All procedures were approved by 
the Universidade Federal do Rio Grande do Sul ethical com-
mittee (#37761/2020). The protocols were reported following 
ARRIVE Guidelines 2.0 (Percie du Sert et al. 2020).

Chemicals

Ochratoxin A (OTA) (CAS 303-47-9), dimethyl sulfox-
ide (DMSO) (CAS 67-68-5), and tricaine (MS-222) (CAS 
886–86-2) were obtained from Sigma-Aldrich (St. Louis, 
MO, USA). Sodium chloride solution 0.9% (saline, ADV 
Farma, SP, Brazil) was obtained from a local commercial 
supplier. OTA was dissolved into DMSO (final concentration 
of 10% DMSO). The OTA doses were based on the LD50 for 
intraperitoneal injection on rainbow trout (Salmo gairdneri 
or Oncorhynchus mykiss) (Doster et al. 1972) of 5.53 mg/kg 
since there are no similar studies on adult zebrafish.

Experimental procedures

After the period of acclimation to the laboratory environment, 
the animals were divided into the following experimental groups: 
control (CTRL), 10% DMSO, OTA (1.38, 2.77, and 5.53 mg/kg). 
Allocation to experimental groups followed randomization pro-
cedures with a computerized random number generator (random.​
org) and the procedure was performed by researchers blinded to 
the experimental group. The drugs for each experimental group 
were administered at the beginning of the experiment (at 0 h) by 
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intraperitoneal injections and the control group received saline. 
Briefly, the intraperitoneal injections were performed using a 
Hamilton Microliter™ Syringe (701 N 10 μL SYR 26 s/2″/2) 
× Epidurakatheter 0.45 × 0.85 mm (Perifix® Katheter, Braun, 
Germany) × Gingival Needle 30G/0.3 × 21 mm (GN Injecta, SP, 
Brazil). The injection volume was 1 μL/100 mg of animal weight. 
The animals were previously anesthetized by immersion in a solu-
tion of tricaine (300 mg/L) until loss of motor coordination and 
reduced respiratory rate. After the anesthesia, the animals were 
placed in a sponge soaked in water exposing the abdomen and 
the needle was gently inserted parallel to the spine in the abdo-
men’s midline posterior to the pectoral fins. This procedure was 
conducted in approximately 10 s (Fig. 1A) (Bertelli et al. 2021).

Following drug administration, the fish were kept in 4-L 
static tanks (17 × 17 × 17 cm) with two tanks for each concen-
tration to minimize potential tank effects and remained there 
for 96 h. After 96 h of exposure, the animals were individually 
submitted to the open tank test (OTT). After this, the animals 
returned to the experimental tank and remained for 24 h. Then, 
the animals were submitted to the social interaction test (SIT). 
Immediately after the SIT, the animals were euthanized, and the 
brains were dissected and homogenized for the neurochemical 
assays of the parameters associated with oxidative status. The 
neurochemical parameter analyses were as follows: thiobarbitu-
ric acid reactive substance (TBARS), non-protein thiol (NPSH), 
glutathione peroxidase (GPx), glutathione-S-transferase (GST), 
and glutathione reductase (GR). The sex of the animals was con-
firmed after euthanasia by dissecting and analyzing the gonads.

Open tank test (OTT)

The OTT consists of a white circular arena (24 cm diameter, 
8 cm height, and 2 cm water level). In this test, the animals 
were placed in the center of the arena and the behavior was 
individually recorded for 10 min (Fig. 1B). The videos were 
obtained from an upper view and for the analyses, the arena 
was virtually divided into two zones: center and periphery 
(Benvenutti et al. 2020). The following parameters were 

quantified using ANY-Maze software (Stoelting Co., USA): 
distance, crossings, absolute turn angle, mean speed, freez-
ing episodes, and freezing duration.

Social interaction test (SIT)

In the SIT, fish were placed individually in a central tank (30 
× 10 × 15 cm) flanked by two identical tanks (15 × 10 × 13 
cm) and filmed from a frontal view for 7 min (Fig. 1C). One 
of the two tanks positioned beside the central tank (test tank) 
contained only water (neutral stimulus), and the other contained 
10 zebrafish (social stimulus). All tanks were filled with water 
at a level of 10 cm and in the same conditions. The side of the 
social stimulus tank was counterbalanced to avoid any eventual 
bias (Benvenutti et al. 2020). The analyses were carried out with 
the aid of the ANY-Maze software (Stoelting Co., USA), with 
the test tank virtually divided into three equal vertical zones 
(interaction, middle, and neutral). The interaction zone was con-
sidered to be next to the tank that contained the social stimulus, 
while the neutral zone was considered to be next to the neutral 
stimulus. Animals were placed in the middle zone and had 2 
min to habituate to the tank test. After this, the behavior was 
analyzed for 5 min. The parameters quantified were distance 
traveled, number of crossings, and time in the interaction zone.

Neurochemical analysis

Following the behavioral tests, the animals were euthanized 
by hypothermic shock (2–4 °C) and decapitation. The brain 
samples were then collected to evaluate the oxidative status 
(Fig. 1D). For each independent sample, four brains were col-
lected right after the euthanasia, pooled, and homogenized in 
600 μL of phosphate-buffered saline (PBS). The mixture was 
centrifuged at 3000 g at 4 °C in a cooling centrifuge and col-
lected the supernatant, which was kept in microtubes on ice until 
the assays were performed. The protein was quantified according 
to the Coomassie blue method using bovine serum albumin.

Fig. 1   Experimental design

21146 Environmental Science and Pollution Research  (2023) 30:21144–21155

1 3



Thiobarbituric acid reactive substances (TBARS)

The lipid peroxidation was evaluated by analyses of the pro-
duction of TBARS. Samples (50 μg of proteins) were mixed 
with thiobarbituric acid (TBA, 0.5%) and trichloroacetic acid 
(TCA, 20%). The mixture was heated at 100 °C for 30 min. 
The absorbance was determined at 532 nm in a microplate 
reader. Malondialdehyde (MDA, 2 mM) was the standard. 
The detailed protocol is available at Sachett et al. (2020a).

Non‑protein thiols (NPSH)

The quantity of NPSH in the samples was determined by mixing 
the brain tissue preparation (50 μg of proteins) and trichloroacetic 
acid (TCA, 6%). Then, it was centrifugated (10,000 g, 10 min at 
4° C), and the supernatants were added to potassium phosphate 
buffer (TFK, 1 M). After that, the mixture was added to 5,5′-dith-
iobis-(2-nitrobenzoic acid) (DTNB, 10 mM) and the absorbance of 
5-thio-2-nitrobenzoic acid (TNB) formed was analyzed at 412 nm 
after 1 h. The detailed protocol is available at Sachett et al. (2020b).

Glutathione peroxidase activity (GPx)

The GPx levels were determined by a two-step method involving (I) 
neutralization of hydrogen peroxide (H2O2) by GPx in the presence 
of glutathione reduced (GSH) and (II) recycling of resulting glu-
tathione oxidized (GSSG) by glutathione reductase (GR) in the pres-
ence of nicotinamide adenine dinucleotide phosphate (NADPH). For 
the determination, the sample (30 μg of protein) was mixed with a 
reaction medium containing TFK + ethylenediaminetetraacetic acid 
(EDTA) (0.5 M, pH 7.0), NADPH (1.6 mM), GSH (10 mM), GR 
(2.5 U/mL), and 10 mM azide. Then, H2O2 (4 mM) was added and 
the decrease of NADPH absorbance per minute was read at 340 nm. 
The detailed protocol is available at Sachett et al. (2021a).

Glutathione reductase activity (GR)

The GR levels were determined as the second part of the 
aforementioned GPx assay. The sample (30 μg of protein) 
was mixed with a reaction medium containing TFK + EDTA 
(154 mM, pH 7.0) and NADPH (2 mM). Then, oxidized 
glutathione (GSSG, 20 mM) was added and the decrease of 
NADPH absorbance per minute was read at 340 nm. The 
detailed protocol is available at Sachett et al. (2021b).

Glutathione‑s‑transferase activity (GST)

The GST levels were determined by the conjugating reaction of 
1-chloro-2,4-dinitrobenzene (CDNB) with GSH GST-mediated 
(Habig and Jakoby 1981). The sample (30 μg of protein) was 
mixed with a reaction medium containing 230 μL of TFK + 

EDTA (100 mM, pH 6.5) and 10 μL of GSH (75 mM). After that, 
10 μL of CDNB (30 mM) dissolved in ethanol 95% was added 
and the increase of absorbance per minute was read at 340 nm.

Statistical analysis

The sample size was calculated using G*Power 3.1.9.2 for Win-
dows. Normality and homogeneity of variances were confirmed for 
all datasets using D’Agostino-Pearson and Levene tests, respectively. 
Student’s t-test was performed to compare the control and DMSO 
groups. One-way ANOVA followed by Tukey’s post hoc test was 
used for the analyses. For behavioral data, the outliers were identified 
based on distance traveled using the ROUT statistical test (Graph-
Pad® software) and were removed from the analyses. This resulted 
in 3 outliers (2 animals from the DMSO group and 1 animal from 
OTA 2.77 mg/kg group) removed from the OTT and 3 outliers (1 
animal from the DMSO group, 1 from the 2.77 mg/kg group, and 
1 from the 5.53 mg/kg group) removed from the SIT. The tank and 
sex effects were tested in all comparisons, and no significant differ-
ences were observed. The data were expressed as mean ± standard 
deviation (S.D.). Differences were considered significant at p<0.05.

Results

DMSO did not show important modulation on behavior 
(Online Resource 2) or oxidative damage (Online Resource 
3) compared with sodium chloride control. Therefore, we only 
used DMSO as a control group.

Open tank test

Figure 2 shows the acute effects of OTA in adult zebrafish 
in the open tank test. There was a significant decrease in the 
distance (Fig. 2A, p = 0.0105), absolute turn angle (Fig. 2C, p 
= 0.0090), mean speed (Fig. 2D, p = 0.0110), and an increase 
in freezing time (Fig. 2F, p = 0.0052) at the 1.38 mg/kg dose, 
indicating locomotor impairment. The parameters of crossings 
and freezing episodes were not altered by any dose.

Social interaction test

Figure 3 shows the acute effects of OTA on adult zebrafish 
at the SIT. OTA, in the tested doses, did not alter social 
behavior in any of the analyzed parameters.

Neurochemical analysis

Figure 4 shows the effects of OTA on neurochemical parameters. 
OTA at 1.38 mg/kg increased the GPx (Fig. 4C, p < 0.0001), GST 
(Fig. 4D, p < 0.0001), and GR (Fig. 4E, p = 0.0397) levels. The 
intermediate dose of 2.77 mg/kg decreased NPSH levels (Fig. 4B, 
p = 0.0006) and increased GPx (Fig. 4C, p = 0.0016) and GST 
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(Fig. 4D, p = 0.0146) levels. The dose of 5.53 mg/kg increased 
GPx (Fig. 4C, p < 0.0001) and GR (Fig. 4E, p = 0.0238) levels.

Discussion

This study showed the deleterious effects of ochratoxin A in 
adult zebrafish. Briefly, the toxin decreased the total distance 
traveled, average speed, absolute turn angle, and increased the 

freezing time. However, in the social interaction test, there 
were no behavioral changes in the evaluated parameters. Neu-
rochemical analysis showed that the compound was able to 
alter the oxidative status by triggering the oxidative defense 
system without damage as measured by TBARS.

In zebrafish, OTA has been studied with different empha-
ses, especially with larvae and embryo models (Juan-García 
et al. 2020). Increased mortality due to malformations has 
been seen (Csenki et al. 2019). There was a negative effect 

Fig. 2   Effects of OTA in the open tank test. (A) Distance, (B) cross-
ings, (C) absolute turn angle, (D) mean speed, (E) freezing episodes, 
and (F) freezing time. Data are expressed as mean ± standard devia-

tion (S.D.). n=22–24. One-way ANOVA followed by Tukey’s post 
hoc test. *p < 0.05
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on the formation of the hepatic and coagulation systems (Wu 
et al. 2018), occurrence of intracerebral hemorrhage (Wu 
et al. 2020), and genetic alteration related to nephrotoxic-
ity in a study with OTA individually (Wu et al. 2016) and 
another that combined OTA with other mycotoxins (Csenki 
et al. 2021). In other fish species, intestinal disruptions were 
also seen (Liu et al. 2020), in addition to cell damage and 
immunosuppression (Zhao et al. 2022).

Although the toxin has been studied before, there are little 
data in the literature on the behavioral effects of OTA expo-
sure not only in fish but also extending to other animals. In 
zebrafish larvae, OTA decreased the animals’ swimming speed 
but did not change parameters of distance and time spent active 
(Khezri et al. 2018). In marine water-reared sea bass (Dicen-
trarchus labrax L.), slow movement, loss of balance, and rapid 
movement of the operculum as respiratory manifestations were 
seen (El-Sayed et al. 2009). In what concerns behavior, another 
study investigated the toxic effects of OTA on Nile tilapia 
(Oreochromis niloticus) and showed sluggish swimming in the 
animals and off food patterns (Diab et al. 2018). With rodents, 
it was shown that OTA injected intraperitoneally was able to 
cause behavioral changes in gait analysis, spontaneous activ-
ity, cylinder test, and pole test, similar to Parkinsonian symp-
toms that were stabilized with the use of L-dopa (Bhat et al. 
2018). In our study, the interference of OTA on locomotion 
parameters in zebrafish was shown in the open tank test similar 
to the results previously cited in other models. A possibility 

for these findings could be the link between locomotion and 
the nigrostriatal pathway that has already been reported to be 
affected by OTA in rodent models (Sava et al. 2006a, b). How-
ever, there were no changes in social interaction parameters. 
The social behavior in zebrafish presents a schooling cohesion 
that aims to search for food, escape from predators, and repro-
duce (Pitcher 1993). Thus, being a model closely linked to 
social functions, the zebrafish has been extensively studied for 
this type of behavior (Buske and Gerlai 2011; Scerbina et al. 
2012; Dreosti et al. 2015). However, precisely because sociali-
zation is genetically preserved and has an ontogenic nature 
in zebrafish, it may be a parameter less vulnerable to milder 
modulations such as those shown in this study, since the lowest 
concentration used was about 25% of the LD50 established in 
another species. Another aspect to be considered is related to 
the cues provided by the apparatus since previous studies have 
already demonstrated the multifactorial character of social 
behavior in zebrafish being linked to visual cues (Engeszer 
et al. 2007), olfactory cues (Gerlach et al. 2007), and also sen-
sitive to alarm substances released by co-specifics (Canzian 
et al. 2017). The apparatus used in this study, however, only 
allowed the visual cues to be transmitted to the animal, so it is 
uncertain to say what the effects of OTA would be under other 
parameters involved in the animal’s social behavior.

With increasing global concern about the spread of myco-
toxins, the effect of these compounds on oxidative stress 
parameters has become a very debated issue (da Silva et al. 

Fig. 3   Effects of OTA in the social interaction test. (A) distance, (B) crossings, (C) interaction time. Data are expressed as mean ± standard 
deviation (S.D.). n=23–24. One-way ANOVA
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Fig. 4   Effects of OTA in 
neurochemical parameters. (A) 
TBARS, (B) NPSH, (C) GPx, 
(D) GST, and (E) GR. Data are 
expressed as mean ± standard 
deviation (S.D.). n= 6. One-way 
ANOVA followed by Tukey’s 
post hoc test. *p < 0.05
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2018; Mavrommatis et al. 2021), with emphasis on ochra-
toxin A (Sorrenti et al. 2013; Tao et al. 2018). OTA can 
interact with peroxidases that produce a phenoxyl radical 
from OTA. Glutathione (GSH) is capable of turning the phe-
noxyl radical into OTA again by forming a superoxide anion 
radical (O2

•−) that results in hydrogen peroxide (H2O2). 
H2O2 by Fenton reaction produces a hydroxyl radical (OH•) 
that is responsible for oxidative damage (Adlouni et al. 
2000). Another common pathway for OTA is the formation 
of an OTA–Fe3+ complex that is reduced in OTA–Fe2+ by 
cytochrome P450 resulting in OH• (Rahimtula et al. 1988). 
Several studies report the imbalance of oxidative status 
caused by the compound. In zebrafish larvae, there was the 
formation of reactive oxygen species (ROS) proportional to 
the increase in OTA concentration (Tschirren et al. 2018). 
A study with tambaqui (Colossoma macropomum), a fresh-
water fish, found an increase in the ROS and lipid peroxida-
tion in the animal’s muscles, as well as a decrease in the 
levels of antioxidant enzymes superoxide dismutase (SOD) 
and GPx (Baldissera et al. 2020). Similarly, an increase in 
lipid peroxidation and antioxidant enzymes activity catalase 
(CAT) and GR was seen with a decrease in SOD activity and 
GSH levels in the brain, kidney, and liver of rats (Nogaim 
et al. 2020). A study found an increase in ROS formation, 
lipid peroxidation, and decreased GSH levels in kidney cells 
(Lee et al. 2018). However, studies with birds have shown 
that in long-term exposure antioxidant defenses can increase 
against oxidative imbalance, especially the glutathione 
redox system (Kövesi et al. 2019; Fernye et al. 2021). Also, 
a study with Caenorhabditis elegans showed an increase in 
the expression of SOD and CAT in wine containing OTA 
(Schmidt et al. 2020). These studies corroborate with our 
results which showed that, in adult zebrafish, there was an 
increase in enzyme defenses with an elevation of GPx, GR, 
and GST, especially at the lowest dose. In the intermediate 
dose, there was no increase in GR as occurred in the other 
doses, which is consistent with the decrease in GSH levels 
(NPSH) in this group since GR is responsible for the recy-
cling of glutathione, which is essential for the maintenance 
of antioxidant levels. The increase in GPx under these condi-
tions indicates an attempt to control a possible increase in 
reactive oxygen species since GPx reduces H2O2 through the 
GSH oxidation, something quite common to occur in OTA 
exposures as mentioned in previous studies. The increase in 
GST levels also indicated an increase in OTA metaboliza-
tion and elimination since GST catalyzes the conjugation 
of the reduced form of glutathione to xenobiotic substrates 
for detoxification. Likewise, this activation of defenses pre-
vented the increase of ROS levels and consequently avoiding 
lipid peroxidation (TBARS levels) (Gandhi and Abramov 
2012; Dasuri et al. 2013).

Despite the zebrafish being a model used for decades 
in research in several areas, many gaps still exist in the 

model, especially in the area of toxicology. In recent years 
there has been a considerable increase in studies in this 
field due to initiatives to standardize this type of analy-
sis in fish (Gonçalves et al. 2020), including the OECD 
protocols (OECD Guidelines for the Testing of Chemi-
cals 1992). However, for adult animals, the methodolo-
gies tend to be limited to direct exposure to the animals’ 
water, which is not suitable for all protocols. In the case of 
OTA, the formulation of the compound and the difficulty 
in storing or disposing of waste made this type of exposure 
impracticable so the intraperitoneal injection standardized 
in the laboratory was chosen. The use of intraperitoneal 
injection to assess the effects of OTA has already been 
used in other models, being effective in detecting deleteri-
ous effects on the metabolism mechanism in rats (Størmer 
et al. 1985), on the immune system (Prior and Sisodia 
1982) and neurotoxicity in mice (Miki et al. 1994; Tamaru 
et al. 1988). In fish, OTA was injected peritoneally into 
rainbow trout (Salmo gairdneri) acutely (96 h) for toxi-
cological evaluation by histology and determination of 
LD50 (5.53 mg/kg) (Doster et al. 1974). However, these 
data were never detailed in other species and the use of 
zebrafish to evaluate the effects of OTA remained limited 
with little information regarding the effects of the toxin 
in this species.

The large distribution of OTA among products also 
makes the toxin’s presence in the environment very impor-
tant. Sun et al. determined a range of 0.0005 mg/kg to 
0.0019 mg/kg of OTA found in fish, which is way below 
the doses used in this study. However, the main focus of 
OTA contamination is food, specialty cereals, wine, and 
coffee (Li et al. 2021). (Gruber-Dorninger et al. 2019) 
determined a large range of OTA on food and its maximum 
value was 2 mg/kg on cereals. The wide contamination of 
OTA allows many different dose ranges according to the 
commodities and in this context, the doses of this study 
(1.38 mg/kg, 2.77 mg/kg, and 5.53 mg/kg) are relevant to 
that matter, and the following previous findings.

Due to these important gaps in the literature, another 
point to be clarified is the dose-response reaction of zebrafish 
against OTA. In this study, the doses that were more behav-
iorally and neurochemically reactive were the lowest doses, 
with the highest dose changing a few parameters in oxidative 
status. Thus, in this study, we speculate that OTA showed 
a hormetic effect in adult zebrafish. Hormesis is a bipha-
sic dose-response characterized by stimulation at low doses 
and inhibition at high doses (Calabrese and Baldwin 2002). 
For OTA, this type of curve has already been reported in 
an in vitro study (Li et al. 2014), however, this is the first 
time that this behavior has been seen in an in vivo model. 
A biphasic curve can indicate the biological plasticity of 
the target organism (Calabrese and Mattson 2011), and the 
zebrafish is a widely studied model precisely because of its 
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capacity for neuroplasticity and regeneration (Cosacak et al. 
2015; Ghosh and Hui 2016). Thus, it is possible that the hor-
metic behavior of OTA, in this case, is linked to the animal’s 
biological characteristics. Moreover, hormetic curves often 
occur with endocrine disruptors (Vandenberg et al. 2012) 
and other studies have demonstrated the potential of OTA 
to interfere with hormone production (Frizzell et al. 2013; 
Woo et al. 2013). For all these reasons, toxicological results 
for low doses should not be ignored.

Conclusion

Although concern about controlling OTA levels is increas-
ing, more efforts are still needed. For this, understanding 
the effects of the toxin on organisms is essential. This study 
demonstrated the potential that the toxin has for causing del-
eterious effects in adult zebrafish through behavioral changes 
by locomotion impairment and neurochemical modulation 
of oxidative stress components; however, more studies are 
needed to elucidate the compound’s mechanism of action 
and its effects on other organisms to further contribute to 
the field of toxicology and environment.
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