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Abstract
To measure and analyze the evolution characteristics and influencing factors of China’s industrial green development level 
is of great significance in achieving carbon neutrality goal. Based on the panel data from 2000 to 2018 of 30 provinces in 
China, this research uses the super slack-based measuring model and the Malmquist-Luenberger index to calculates China’s 
industrial green total factor productivity and to describe its evolution characteristics using the kernel density function and 
moreover uses the Spatial Durbin model and the partial differential method to explores its main influencing factors. This 
study finds that China’s overall industrial green development level is not high but shows an upward trend year by year; carbon 
emissions, fiscal decentralization, and urbanization are not conducive to improving the national industrial green development 
level, whereas economic development, foreign direct investment, industrial structure, and technological progress are positive 
contributors. At the same time, the level of economic development and technological progress have significant direct and spa-
tial spillover effect. Our findings also provide some policy implications for improving China’s industrial green development.

Keywords Industrial green development · Carbon neutrality · Industrial green total factor productivity · Spatial dynamic 
panel model · Malmquist-Luenberger index · Technological progress

Introduction

World economic growth for a long time has been excessively 
dependent on energy and resource consumption; this traditional 
mode of economic development has brought serious environ-
mental problems while bringing economic prosperity (Li et al. 
2022; Chen et al. 2022a). The UN has identified that industry 
sector as a vital enabler for most of the Sustainable Development 
Goals. From a global perspective, since the industrial revolu-
tion, the carbon dioxide  (CO2) concentration has increased by 
47%, increasing the earth temperature by 1.9 Fahrenheit and sea 
level by 7 inches (IPCC 2019); fossil energy generates over 80% 
of global greenhouse gas (GHG) emissions, of which indus-
try accounts for more than half (International Energy Agency 
2015). More and more people realized that the current level 
of already stowed industrial emissions will continue to affect 
future generations. The  9th sustainable development goal in 
the 2030 Agenda for the UN Sustainable Development Goals, 
which is to “Build resilient infrastructure, promote inclusive and 
sustainable industrialization and foster innovation,” points out 
the direction and presents arduous tasks for the future industrial 
development of countries. Countries are simultaneously taking 
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a special interest in addressing industrial economic growth and 
environmental challenges, especially the way to deal with the 
current enormous industrial carbon emission reduction pres-
sure. In terms of China’s reality, during its urbanization and the 
over 40 years of reform and opening up, China’s industry has 
become an important engine of China’s rapid economic devel-
opment, with China’s industrial gross domestic product (GDP) 
already accounting for over 30% of GDP by 2020. At the same 
time, China’s industrial sector has become a major source of 
GHG such as the  CO2 (Zhu et al. 2021, 2020; Teng et al. 2019; 
Pusnik et al. 2017; Bin and Lin 2016), especially from 2001 to 
2014. China’s carbon emission intensity has been maintained at 
a growth rate of more than 8%, showing the characteristics of 
crude development with high input, high energy consumption, 
high pollution, and low efficiency (Sohail et al. 2022; Pan et al. 
2021; Chen et al. 2020a; Zhang et al. 2022a, 2022b).

China pledged in September 2020 to achieve carbon peak 
by 2030 and carbon neutrality by 2060. The so-called carbon 
neutrality which means achieving net zero emissions of  CO2, 
which means huge challenges for China’s industrial carbon 
reduction in achieving the goal of green development, also has 
strengthened China’s commitment to green and low-carbon 
development. Promoting innovation efficiency, enhancing green 
productivity, and reducing  CO2 emissions are the main targets 
of China’s industrial green development in achieving carbon 
neutrality goals (Liu et al. 2021; Zhao et al. 2022a, 2022b; 
Zou et al. 2022). In fact, the China government attaches great 
importance to resource and environmental pollution issues 
and is committed to promoting sustainable industrial develop-
ment. The country has proposed five development concepts 
of innovation, coordination, greenness, openness, and sharing 
and has issued a series of relevant laws and regulations to sup-
port industrial green development. GHG reduction needs to be 
carried out from the energy and industry dimensions, giving 
full play to the support of technological innovation, supporting 
the improvement of energy use efficiency (Sun et al. 2021a; 
Sun et al. 2021b; Chien et al. 2021a; Chen et al. 2022b). All 
these are inseparable from the transformation of prompting the 
improvement of energy structure and the adjustment of indus-
trial structure of the industrial section (Pan et al. 2021; Yang 
et al. 2022; Zhang et al. 2022a, b). To scientifically and ration-
ally evaluate China’s industrial green development level, it is 
not simply to examine its total output value or added value, but 
also to consider the level of industrial total factor productiv-
ity. Therefore, to assess the industrial green development level, 
factors such as environment and resources should be included 
in the framework, and the influencing factors in economy and 
society, such as industrial structure adjustment and technologi-
cal innovation, should be considered comprehensively, so as 
to accurately assess the economic and social welfare brought 
by industrial development and provide more meaningful refer-
ences for the decision-making of government and enterprises, 
so as to achieve the goal of coordinated economic and social 

development (Yu et al. 2020; Zhao et al. 2022c). Therefore, 
under the constraint of carbon neutrality target, industrial green 
development is to achieve carbon reduction in industrial pro-
duction while enhancing industrial green total factor productiv-
ity (IGTFP) with consideration of environment and resources 
(Cui et al. 2019; Chen and Golley 2014; Ma et al. 2020).

Since the 1980s, China has begun an attempt to reform the 
fiscal decentralization, aiming to give local governments cer-
tain tax management powers. In the context of Chinese-style 
decentralization, the environmental regulation goals of local 
governments and the central government are often not com-
pletely consistent. Due to the lack of incentives, compatibility, 
and constraints, and the performance appraisal system that 
advocates GDP, it is easy to breed local governments’ short-
sighted behavior in environmental protection work. The Pris-
oner’s Dilemma of “race to the bottom” appears when attracting 
liquidity elements (Zhao et al. 2022d; Li et al. 2022; Zhang et al. 
2011). However, it is not necessarily that fiscal decentralization 
will have a negative impact on the environment, which is closely 
related to the local government’s awareness of environmental 
protection and the concept of scientific development. Under the 
conditions of a promising government and an efficient market, 
fiscal decentralization enables local governments to better for-
mulate environmental regulatory policies that conform to the 
actual conditions of the region, and is more conducive to han-
dling the dilemma between promoting growth and protecting 
the environment (Jiang et al. 2022; Tu et al. 2021; Liu et al. 
2021). How to effectively promote China’s industrial carbon 
emission reduction is a significant way to realize the transfor-
mation of China’s industrial green development and achieve 
carbon neutrality, especially addressing the waste of resources 
and the destruction of environment generated in the process of 
industrial production. How to improve IGTFP clarifies its influ-
encing factors and then explores the path to improve the level of 
industrial green development, which not only provides a basis 
for China’s industrial transformation but also is of great theoreti-
cal and practical significance to accomplish China’s established 
 CO2 reduction tasks (You et al. 2022; Tu et al. 2021; Xue 2021).

Therefore, this paper based on panel data of 30 provinces 
from 2000 to 2018 (Tibet, Hong Kong, Macao, and Taiwan 
are not included, due to serious data deficiencies) calculates 
the industrial green total factor productivity and its evolution 
characteristics in China, and more comprehensively assesses 
the green productivity of Chinese industry, so as to clarify the 
China’s industrial green development level under the global 
GHG reduction and high-quality economic development goals. 
Furthermore, exploratory spatial analysis is selected to study 
the influencing factors of China’s industrial green development 
level, explore the direct effects and spatial spillover effects of the 
factors, and on this basis, the paper proposes relevant strategies 
to promote China’s industrial low-carbon transformation, which 
can provide some reference for China’s transformation from a 
large industrial country to an industrial power (Shi et al. 2022).
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The research arrangement of this paper is as follows: 
Sect.  2 is the literatures review, Sect.  3 is the research 
design, Sect. 4 is the empirical analysis, and Sect. 5 is the 
conclusions and recommendations.

Literature review

There are many studies on economic green development, 
most of which focus on the connotation, measurement, and 
evaluation of economic green development. There are rela-
tively few studies on industrial green development, which 
mainly focuses on the basic connotation of realizing eco-
nomic growth, environmental protection, and resource con-
servation by industrial green development. Some studies 
have aimed to promote the sustainable development of indus-
try and coordinate the contradiction between industry and 
environment (De Alba and Todorov 2018; Hu et al. 2011). 
In the early process of global industrialization, the exten-
sive production mode not only produced economic benefits, 
but also caused serious environmental pollution (Worrell 
2000; Chen et al. 2011). Therefore, from the perspective of 
industrial production’s characteristics, the Research Group 
of Institute of Industrial Economics (2011) defined indus-
trial green development as the industrial process of “inten-
sive utilization of energy, reduction of pollutant emissions, 
reduction of environmental impact, improvement of labor 
productivity and enhancement of sustainable development.” 
Some scholars disassemble the goal into sub-goals, includ-
ing industrial structure, technical system, energy structure, 
financial support, and environmental optimization, based on 
the direction of industrial green development (Ping et al. 
2010; Bonilla et al. 2018; Zhou et al. 2020). In order to real-
ize industrial green transformation and upgrading, it is nec-
essary to improve industrial green development efficiency by 
introducing the concept of industrial green development into 
specific industries, especially industries with high invest-
ment and energy consumption (Wu et al. 2016; Heravi et al. 
2015).

Ortiz et al. (2009) from the research of life cycle assess-
ment pointed out that the theory of industrial green develop-
ment can be used to optimize the extraction of raw materials 
in the construction industry, so as to realize the industri-
alization and sustainable development in this field. Supino 
et al. (2016) summarized the emission reduction experience 
of the cement industry in Italy and Germany, and believed 
that cement manufacturing, as an industrial process with 
the most intensive use of materials and energy, has great 
potential for carbon emission reduction. In short, with the 
increasing attention to global warming, the connotation and 
viewpoint of industrial green development are constantly 
improved and enriched when the research fields and horizons 
of it are constantly expanded. This is of great significance 

for the research on realizing carbon neutralization through 
industrial low-carbon transformation.

Most studies have evaluated industrial green develop-
ment by IGTFP, and most traditional of IGTFP is calculated 
by parameterization analysis methods, such as the Solow 
residual method, CD production function, and stochastic 
frontier analysis (SFA). However, they only considered 
expected output and input factors such as labor and capital, 
thus distorting the impact of factors such as the environ-
ment and resources on industrial sustainable development. 
In fact, China’s industrial development comes largely at the 
cost of excessive consumption of resources and continuous 
deterioration of the environment. If environmental factors 
are not considered, then the evaluation results will be dis-
torted. Therefore, based on the traditional literature, some 
scholars adopt the non-parametric method without any pre-
set model, regard environmental pollutants and energy con-
sumption as unexpected outputs, and choose the directional 
distance function (DDF) that comprehensively considers 
various inputs and outputs, in order to estimate IGTFP (Su 
et al. 2013; Chen and Golley 2014; Boyd et al. 2002; Zhang 
et al. 2011). In addition, some scholars have introduced DDF 
into the Malmquist model, decomposed IGTFP through the 
Malmquist-Luenberger (ML) index, and highlighted the 
importance of technological progress (Watanabe and Tanaka 
2007; Zhang et al. 2011; Ning et al. 2015). However, with 
some defects in the traditional DDF and ML index, some 
scholars have calculated IGTFP by adopting Super slack-
based measuring model (Super-SBM model), which compre-
hensively considers radial and non-radial indicators (Zhou 
et al. 2020; Shi et al. 2022), and the global ML (GML) 
index, which avoids spurious regression and the infeasibil-
ity of linear regression (Yan et al. 2013; Fan et al. 2015), so 
as to improve the accuracy and reliability of their results.

Interests of various aspects need to be considered for 
industrial green transformation. In combination with indus-
trial structure adjustment measurement and panel regression 
model, Zhu et al. (2019) proposed that industrial structure 
adjustment improves the green development of the whole 
industry by reducing the share of high energy-consuming 
and high-polluting enterprises on the one hand, and by sup-
porting green industries with low energy consumption, high 
technological content, and high innovation on the other. 
However, Pan et al. (2019) pointed out that the impact of 
China’s industrial structure on the green transformation of 
the industrial economy is transient, and industrial green 
development should rely more on scientific and technologi-
cal progress. Scientific and technological progress inter-
acts with labor productivity and the organic composition 
of capital to promote the transformation and upgrading of 
industrial structure and build green production and con-
sumption methods, thus improving the green development 
of industry. Some scholars have reached similar conclusions 
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when exploring the influencing factors of industrial green 
development level—that is, scientific and technological 
innovation is the most critical factor for improving the 
industrial green level (Norberg-Bohm 1999; Cheng et al. 
2018; Garetti and Taisch 2012; Yang et al. 2016). Li et al. 
(2022) further studied the impact of environmental regu-
lation on green technology innovation. There are many 
kinds of environmental regulation, including mandatory 
environmental regulation, market-incentive environmen-
tal regulation, and voluntary environmental regulation, of 
which regional heterogeneity is obvious, and their impacts 
on IGTFP are different.

From the perspective of fiscal decentralization, many 
researchers agree that the role of local governments can 
affect the technological progress of enterprises to a certain 
extent, so as to realize the upgrading of energy consumption 
structure and the reduction of energy consumption; on the 
production side, because technological progress is the core 
part of realizing green industrial development, and the effect 
of environmental regulation is closely related to enterprises 
(Chen et al. 2022a; Zhao et al. 2022c). The research and 
development of green technology is closely related to its use, 
so the superposition of environmental regulation and tech-
nological progress will better improve industrial total factor 
productivity. Huang (2017) points out that the Chinese-style 
of fiscal decentralization has closely linked the promotion of 
local officials to the state of economic development, causing 
damage to the local and surrounding environment through 
environmental “Race to the bottom” and environmental 
“free-riding,” which in turn is detrimental to the improve-
ment of industrial green development. In addition, some 
scholars have comprehensively considered internal and exter-
nal factors and regarded factors such as foreign direct invest-
ment, urbanization level, and economic development level 
as indicators affecting the level of industrial green develop-
ment, pointing out that the increase of urbanization level has 
brought about the expansion of urban development zone and 
the concentration of people, resulting in the agglomeration 
of industries and the transformation and expansion of infra-
structure, thus creating a huge load on resources, energy, and 
the environment, which is disadvantageous to the promotion 
of industrial green growth efficiency. The actual impact of 
foreign investment confirms the “pollution paradise” hypoth-
esis. The preference of foreign capital providers to invest in 
high energy consumption, high emission, and high pollution 
industries has exerted tremendous pressure to the environ-
ment, while the improvement of the economic development 
level has prompted the adoption of more complete environ-
mental protection technologies and pollution control systems, 
and improve the corresponding infrastructure, promote and 
accelerate the formation of green industrial structure, thus 
improving the level of industrial green development (Qiu 
et al. 2021; Ayamba et al. 2019; Zhong et al. 2022).

Since achieving the goals of carbon peak and carbon neu-
trality has become China’s national strategy, industrial green 
development should be transformed according to a national 
unified arrangement. It is necessary to correctly measure 
the green development and influencing factors of China’s 
industry and to consider the impact of  CO2 on IGTFP. In 
addition, when measuring the level of industrial green devel-
opment, most studies used the non-radial SBM model to 
deal with the relaxation of input and output, ignored frontier 
efficiency ranking, did not involve comprehensive provinces, 
and did not use enough of a time span, making it difficult 
to reasonably classify the influencing factors when study-
ing industrial green development level and thus affecting 
the accuracy of the evaluation framework. In the previous 
literature, the measurement framework of industrial green 
total factor productivity, the non-desired output generally 
includes only the industrial “three wastes.” Through the col-
lection of latest literature, it is found that a few authors have 
expanded the range of the non-desired output to take into 
account the indicator of the  CO2 emissions (Ma et al. 2021). 
To sum up, based on the above research, this study offers the 
following innovations. First, fully considering the principles 
of scientific, comprehensiveness, and data availability, this 
paper selects panel data of 30 provinces from 2000 to 2018 
and uses the super-efficiency SBM model and ML index to 
calculate China’s IGTFP and evaluate China’s green devel-
opment level more comprehensively. Second, the impact of 
 CO2 is fully considered in this research on the influencing 
factors of IGTFP, and so the impact of carbon emissions 
on China’s industrial green development can be clearly dis-
played. Third, by considering spatial factors, this research 
analyzes the influencing factors of China’s industrial green 
development level by using the spatial econometric model 
and fully discusses the direct effect and spatial spillover 
effect of these influencing factors.

Research design

Research methods

Super‑efficiency SBM model containing undesirable 
outputs

Data envelopment analysis (DEA) is the main method to 
measure energy efficiency. Tone (2001) proposed the non-
radial and non-angular SBM (Slacks-Based Measure) model 
in 2001 and the SBM model containing undesirable outputs 
in 2003. In order to solve the problem that the existing SBM 
model cannot rank multiple decision-making units on the 
frontier, thus preventing a comparison among efficiency 
values, Tone (2002) proposed the super-efficiency SBM 
model. Our study considers environmental pollution when 
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calculating the green development level of China’s regional 
industry, and therefore the super-efficiency SBM model 
containing undesirable outputs can calculate the industrial 
green development level better. The specific model runs as 
follows (the assumption here is constant returns to scale; if 
the returns to scale are variable, then constraints of 

n
∑

j=1

�j = 1 
need to be added):

and

This study uses m to represent the efficiency value, which 
can be greater than 1. When m is greater than 1, the decision-
making unit is efficient; the greater the value is, the higher is 
the efficiency. When m is greater than 0 and less than 1, the 
decision-making unit is inefficient. Here, x , y , and z represent 
the slack variables of input, desirable output, and undesirable 
output, respectively; xij , yij , and zij represent input variables, 
desirable output variables, and undesirable output variables of 
the evaluated units, respectively; and m , s1 , s2 , and n represent 
the number of input indicators, desirable output indicators, 
undesirable output indicators, and decision-making units, 
respectively.

Malmquist‑Luenberger index and its decomposition

This paper calculates and decomposes change in the indus-
trial green development level by the Malmquist-Luenberger 
index. According to Chung et al. (1997), the output-oriented 
Malmquist-Luenberger index from period t to period t + 1 
goes as follows.

(1)�∗ = min

1

m

m
∑

i=1

x

xi0

1

s1+s2
(

s1
∑

r=1

y

yr0
+

s2
∑

q=1

z

zq0
)

Here, Dt
0
(xt, yt, bt;gt) and Dt

0
(xt+1, yt+1, bt+1;gt+1) respec-

tively are the SBM directional distance functions of period 
t  and period t + 1 with period t  as the reference; and 
Dt+1

0
(xt, yt, bt;gt) , Dt+1

0
(xt+1, yt+1, bt+1;gt+1) respectively rep-

resent the SBM directional distance functions of period t and 
period t + 1 with period t + 1 as the reference. The ML index 
represents the total factor productivity change considering 
undesirable outputs; when it is greater than 1, the total factor 
productivity has increased; when it is equal to 1, the total 
factor productivity remains the same; when it is less than 1, 
the total factor productivity has decreased.

This study further decomposes the ML index into tech-
nical efficiency change index ( EC ) and technological pro-
gress index ( TC ) as follows.

Here, EC and TC represent the change in economic 
growth caused by the change in internal efficiency and 
technological progress, respectively. When EC(TC ) is 
greater than 1, technical efficiency (technological pro-
gress) has improved; when EC(TC ) is equal to 1, techni-
cal efficiency (technological progress) remains the same; 
when EC(TC ) is less than 1, technical efficiency (techno-
logical progress) has decreased.

Spatial Durbin model (SDM)

It is inevitable that spatial factors influence the study of an 
economy. Therefore, this study examines the inter-regional 
spatial effect by establishing the spatial econometric 
model. Spatial econometric models mainly include spatial 
autoregressive model (SAR), spatial error model (SEM), 
and spatial Durbin model (SDM). The SAR model reflects 
the spatial spillover effect of explained variables in adja-
cent areas; the SEM model reflects the spatial dependence 
of random disturbance items and emphasizes that the spa-
tial correlation between explained variables is caused by 
the random disturbance items between regions; the SDM 
model considers that the observed value of the explained 
variable is affected by both the explained variables and 

(2)

MLt+1
t

= [
1 + Dt

0
(xt , yt , bt;gt)

1 + Dt
0
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×
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0
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0
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]
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(3)MLt+1
t

= ECt+1
t

× TCt+1
t

(4)ECt+1
t

=
1 + Dt
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0
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(5)

TCt+1
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1 + Dt+1

0
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0
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×
1 + Dt+1

0
(xt+1, yt+1, bt+1;gt+1)

1 + Dt+1
0

(xt+1, yt+1, bt+1;gt+1)
]

1∕ 2
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the explanatory variables of the adjacent area, to a greater 
extent, which can avoid the spatial spillover effects of 
omitted variables and neglected influencing factors while 
using panel data for regression, while taking into account 
the spillover effects of the “neighboring” regions, and it 
is set as follows.

Here, yit and xit represent the explained variable and the 
explanatory variable, respectively; 

N
∑

j=1

wijxjt� represents the 

spatial lagged explanatory variable of adjacent areas; N 
represents the number of regions; � represents the spatial 
autoregressive coefficient; � and � represent the unknown 
regression coefficient; wij represents the elements in the 
spatial weight matrix; �it represents the spatial individual 
effect; and �it represents the random disturbance item.

The SDM model is transformed into matrix form as 
follows.

This study shifts items to get the following form.

The partial differential matrix of the explained vari-
able to the explanatory variable of number k in different 
regions at a certain time can be expressed as follows.

The mean value of diagonal elements in the matrix rep-
resents the direct effect, while the mean value of the sum 
of row or column corresponding to off-diagonal elements 
in the matrix represents the indirect effect.

(6)

yit = �

N
∑

j=1

wijyjt + x
�

it
� +

N
∑

j=1

wijx
�

jt
� + �it + �it, �it ∼ N(0, �2)

(7)Y = �WY + X� +WX� + �∗

(8)Y = (I − �W)
−1
(X� +WX�) + (I − �W)

−1
�∗

(9)

�
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⋯
�Y
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�
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⎢
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⋯
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⎤

⎥

⎥

⎥

⎦t
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⎡
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⎢

⎢

⎣
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⋮

wN1�k

⋮

wN2�k

⋱

⋯

⋮

�k

⎤

⎥

⎥

⎥

⎦

Variable selection and data description

Input and output of industrial green development 
level

Considering the principle of availability and comparabil-
ity and based on industrial input–output panel data of 30 
provinces in China from 2000 to 2018, some of the data are 
standardized by means of price deflators in order to increase 
the authenticity of the results. This paper measures the green 
development level of various regions in the country by the 
following indicators.

(1) Labor input: the number of industrial enterprises 
employment at the end of the year in each province is 
selected as a proxy variable.

(2) Capital input: capital stock is selected. Since there are 
no direct accounting data of capital stock, this study 
uses industrial fixed asset investment as a proxy vari-
able for capital stock, estimates capital stock by the per-
petual inventory method, and calculates it at constant 
prices with 2000 as the base period.

(3) Energy input: the industrial energy consumption of 
each region is selected as the proxy variable. Energy 
input is not included in the traditional TFP measure-
ment as an intermediate input. However, energy con-
sumption is also the key input factor to undesirable out-
puts such as pollutant emissions, and thus this paper 
utilizes an input index. The energy input, which is 100 
million tons of equivalent coal (TEC), is calculated 
by the standard coal coefficient from various energy 
consumption values. The standard coal coefficients of 
various energy are shown in Table 1.

(4) Desirable output: considering the influence of price fac-
tors, this study converts the added value of the second-
ary industry by the producer price index for industrial 
products (PPI) to obtain the constant price gross indus-
trial output value with 2000 as the base period.

(5) Undesirable output: industrial “three wastes,” including 
industrial solid waste discharge, industrial wastewater 
discharge, and industrial sulfur dioxide discharge, are 
selected as undesirable output.

Table 1  Standard coal coefficients of various energy

Energy type Raw coal (kg) Kerosene (kg) Coke (kg) Diesel (kg) Crude oil (kg) Petrol (kg) Fuel oil (kg) Natural gas  (m3)

Standard coal coefficient 0.7143 1.4714 0.9714 1.4571 1.4286 1.4714 1.4286 1.3300
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Variable selection of the spatial Durbin model

This study refers to the research results of some scholars 
(Ma et al. 2021; Cheng et al. 2018; Qiu et al. 2021; Zhou 
et al. 2020) and constructs the following explanatory and 
explanatory variables:

(1) Explained variable

Industrial green development level ( IGTFP ). In this 
paper, the super-efficiency SBM model containing the 
undesirable outputs is used to calculate IGTFP of the 30 
provinces.

(2) Explanatory variables

Carbon emissions ( CE ) are taken as an explanatory 
variable. Carbon dioxide ( CO2 ) emissions are taken as the 
proxy variable of carbon emissions. This study works out 
provincial CO2 emissions based on Chen et al. (2020c, a, 
b)’s estimation of CO2 emissions for 2735 counties from 
1997 to 2017 and then predict the CO2 emissions in 2018 
by the ARIMA model. Areas with high carbon emissions 
tend to develop extensively and have large energy consump-
tion with low utilization efficiency, which inevitably have a 
negative impact on the environment. Therefore, this study 
speculates that high carbon emissions inhibit improvement 
of the industrial green development level.

Fiscal decentralization ( FD ) is taken as an explanatory 
variable. Referring to the practice of Huang (2017), this 
study chooses the ratio of local fiscal expenditure per capita 
to central government fiscal expenditure per capita to repre-
sent fiscal decentralization. Fiscal decentralization reflects 
the degree of local fiscal autonomy, as local government 
officials tend to pursue economic development and ignore 
the environment. Therefore, this study speculates that fiscal 
decentralization has a negative effect on the level of regional 
green industrial development.

Economic development level ( EDL ) is taken as an explan-
atory variable and reflected by regional GDP. The higher 
the regional economic development level is, the more social 
capital the region has, which may promote the improvement 
of environmental quality and production technology. There-
fore, this study speculates that the economic development 
level has a positive effect on the industrial green develop-
ment level.

Urbanization level ( UR ) is taken as an explanatory vari-
able and represented by the ratio of urban population to total 
population. Urbanization promotes population movement, 

thus leading to an increase of urban population. On the one 
hand, the living needs of the urban population promote 
the development of high energy-consuming industries, 
which may have an adverse impact on the industrial green 
development level. On the other hand, an increase of urban 
labor input promotes the expansion of enterprises’ produc-
tion scale, which may be conducive to the improvement of 
industrial green development level. Therefore, the impact 
of urbanization level on industrial green development level 
is uncertain.

Foreign direct investment ( FDI ) is taken as an explana-
tory variable and measured by the total amount of actual 
utilized foreign capital. Foreign direct investment is con-
ducive to the improvement of regional technical level and 
enterprise productivity by promoting the introduction of 
foreign advanced technology. However, with the intro-
duction of foreign direct investment, some high-polluting 
enterprises may also arise, thus aggravating environmental 
pollution. Therefore, the impact of foreign direct invest-
ment on the industrial green development level needs to be 
further tested.

Industrial structure ( IS ) is taken as an explanatory vari-
able. As China is still in the industrialization stage, it is 
reasonable to measure industrial structure by the ratio of the 
added value of the secondary industry to regional GDP. The 
rationality behind industrial structure determines the pros-
pect of economic development. This study speculates that 
industrial structure has a positive impact on the industrial 
green development level.

Technological progress ( TI ) is taken as an explanatory 
variable and measured by the regional patent application 
quantities. Patent application quantities directly reflect the 
output level of regional R&D investment and the level of 
technological progress (Xin et al. 2020; You et al. 2022). 
Since technological progress will bring more efficient and 
advanced technologies, this study speculates that it is condu-
cive to improving industrial green development level.

Population density ( PD ) is taken as an explanatory vari-
able and measured by the ratio of the regional total popula-
tion at the end of the year to regional land area. To a cer-
tain extent, population density can represent the degree of 
agglomeration of population, resources, and social activities 
in a certain area. High population density will promote the 
agglomeration of resource elements, which are theoretically 
conducive to improving the utilization efficiency of water 
resources. However, the agglomeration of human social 
activities may be unfriendly to the environment. Therefore, 
the impact of population density on the industrial green 
development level is uncertain.
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Data description

(1) Data source

This study selects panel data of 30 provinces from 2000 
to 2018 as the research object. The original data of the 
above indicators come from China Statistical Yearbook, 
China Industrial Economic Statistical Yearbook, China 
Environmental Statistical Yearbook, China Energy Statisti-
cal Yearbook, various provincial statistical yearbooks, and 
EPS database.

(2) Data descriptive statistics

In order to eliminate possible heteroscedasticity between 
variables, all variables involved in exploratory spatial data 
analysis are processed with a logarithm, as shown in Table 2.

Empirical analysis

Measurement and decomposition of China’s 
industrial green development level

Analysis of China’s regional industrial green development 
level

This study uses MaxDEA to calculate the regional industrial 
green development level of 30 provinces in China from 2000 
to 2018. The results are in Table 3.

(1) Overall analysis of change

Figure 1 illustrates the dynamic change in the mean value 
of China’s regional industrial green development level from 
2000 to 2018. In terms of the temporal evolution from 2000 
to 2018, China’s industrial green development level has been 
increasing year by year and has more than doubled, while 

not high on the whole. The average value of it for 2000–2018 
is only 0.52. Although China’s industrial green development 
level has improved, it is at a low level on the whole, thus still 
having great room for improvement. Therefore, the govern-
ment should pay attention to not only economic develop-
ment, but also the coordinated development of the economy 
and environment, so as to further improve the industrial 
green development level.

(2) Specific analysis of regions

In order to analyze the industrial green development level 
of different regions in China, this study calculates the eastern 
region and the central and western regions, respectively, as 
shown in Fig. 1. The industrial green development level of 
different regions in China varies greatly; that of the eastern 
region is the highest, with its mean value for 2000–2018 
reaching 0.61; that of the central and western regions is 
lower than the national average, with a mean value for 
2000–2018 lower than 0.50. In the initial stage the indus-
trial green development levels of the eastern region and the 
central and western regions are almost the same. In later 
years, the industrial green development level of the eastern 
region had been increasing significantly with a slight decline 
in 2008; thus, the industrial green development level hit 0.83 
in 2018; the industrial green development level of the central 
and western regions had been increasing slightly; thus, the 
gap between the eastern region and the central and western 
regions has further widened.

It can be seen from the above analysis that thanks to the 
high industrial green development level of the eastern region, 
the mean value of China’s industrial green development level 
remains above 0.5. In the future, the improvement space of 
industrial green development level of the eastern region is 
limited, but there is great potential for its improvement in the 
central and western regions, offering a direction for further 
enhancing China’s industrial green development level.

In order to further compare the industrial green devel-
opment level among different provinces in China, this 
study calculates the average IGTFP for 2000–2018 of the 

Table 2  Descriptive statistics Variable Meaning N Mean Std dev Min Max

lnIGTFP Industrial green development level 570  − 0.7321 0.3965  − 1.4623 0.1395
lnCE Carbon emissions 570 5.1667 0.8304 2.7306 6.7118
lnFD Fiscal decentralization 570 0.0887 0.4134  − 0.6593 1.5594
lnEDL Economic development level 570 10.0775 0.8462 7.9226 11.8509
lnUR Urbanization level 570 3.8813 0.2968 3.1485 4.4954
lnFDI Foreign direct investment 570 4.9219 1.7150  − 1.2203 7.7219
lnIS Industrial structure 570 3.8090 0.2062 2.9248 4.1190
lnTI Technological progress 570 9.4478 1.7201 4.8203 13.5846
lnPD Population density 570 5.4569 1.2841 2.0083 8.3158
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30 provinces, and the results are in Fig. 2. It can be seen 
that IGTFP of most provinces in China is low: the aver-
age IGTFP for 2000–2018 of Hebei, Henan, Shanxi, Anhui, 
Hubei, and most western regions are less than 0.5. However, 
IGTFP of the eastern region such as for Tianjin, Guangdong, 
Hainan, and Shanghai is generally high. Although Hebei is 
in the eastern region with a relatively developed economy, 
its IGTFP is low due to serious industrial pollution. IGTFP 
of the central region in China is about 0.5, while IGTFP of 
Henan is relatively low and below 0.4. IGTFP of the west-
ern region in China is low and between 0.2 and 0.5, except 

for Qinghai, Ningxia, and Chongqing whose IGTFP values 
are higher than 0.5. Although the economic development of 
Qinghai, Ningxia, and Chongqing is not high, these areas 
have less industrial pollution, thus having relatively high 
IGTFP.

From Table 3, the main trends of IGTFP change can 
be divided into four kinds: gradual upward trend, fluctu-
ating upward trend, stability trend, and fluctuating down-
ward trend. The fluctuating upward trend is the most and 
accounts for 40%, represented by Tianjin, Shanghai, Zhe-
jiang, Guangdong, and Jilin; followed by gradual upward 
trend and stability trend, which account for 23.33% each. 
Only IGTFP of Hainan, Heilongjiang, Qinghai, and Ningxia 
shows a fluctuating downward trend. Comparing IGTFP of 
2000 with that of 2018, IGTFP of Shaanxi, Guangxi, Shanxi, 
Gansu, and Beijing increased more than twice, while IGTFP 
of Heilongjiang, Ningxia, and Qinghai deteriorated to vary-
ing degrees, with IGTFP of Heilongjiang decreasing more 
than 70%.

The difference between the IGTFP change trend of dif-
ferent provinces is mainly caused by the following rea-
sons. First, most provinces with improved IGTFP did not 
have high IGTFP in the initial stage; these areas have 
been gradually improving their economic development 
conditions, making innovations in technology and con-
trolling the emission of pollutants, thus improving their 
industrial green development level. Second, provinces 

Fig. 1  Trends of IGTFP from 2000 to 2018

Fig. 2  Average IGTFP of 
China’s 30 provinces for 
2000–2018
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with decreasing IGTFP tended to have high IGTFP in 
the initial stage: IGTFP of Ningxia, Qinghai, and Hainan 
exceeded 1 in 2000, but in the process of economic devel-
opment later, they might have introduced production tech-
nologies that did not match their economy and ignored 
the impact of the environment; on the other hand, their 
own development may be insufficient: for example, in 
Yunnan and Xinjiang the level of human capital is not 
high, and their own economic development is relatively 
weak, thus lagging behind in the process of industrial 
green development.

ML index analysis of China’s regional industrial 
green development

Table 4 lists the ML indices and their decomposition of 
China’s industrial green development level over the years. 

The mean value of the TFP index of its industrial green 
development level for 2000–2018 is 1.040, which indicates 
that this development level shows an upward trend on the 
whole. The TFP index is relatively stable during the sam-
ple period. The TFP index of a few years is less than 1, 
which indicates that the industrial green development level 
has decreased, and green technology innovation may have 
problems such as insufficient motivation. From the per-
spective of the source of growth, the changes in technical 
efficiency and technological progress fluctuated from 2001 
to 2018, with an average of 1.054 and 1.045, respectively, 
indicating that the improvement of the industrial green 
development level is caused by both technical efficiency 
and technological progress. Therefore, increasing invest-
ment in technological innovation and improving technical 
efficiency are important ways to improve industrial green 
development level.

Table 4  ML index and its 
decomposition of China’s 
industrial green development 
level

TFP refers to the change trend of China’s industrial green development level between 2 years: if its value is 
greater than 0, then the industrial green development level has improved compared with the previous year, 
and otherwise it decreases

Period TFP EC TC Period TFP EC TC

2000–2001 0.991 0.955 1.144 2009–2010 1.118 1.052 1.104
2001–2002 0.971 1.134 0.920 2010–2011 1.110 1.497 1.034
2002–2003 0.998 0.927 1.144 2011–2012 1.044 1.149 0.957
2003–2004 1.067 0.969 1.103 2012–2013 1.050 0.959 1.122
2004–2005 0.932 1.001 0.948 2013–2014 0.991 0.962 1.041
2005–2006 1.056 0.985 1.097 2014–2015 0.959 0.957 1.022
2006–2007 1.056 1.039 1.018 2015–2016 0.997 0.979 1.031
2007–2008 1.204 1.021 1.203 2016–2017 1.071 1.142 1.000
2008–2009 0.895 1.170 0.812 2017–2018 1.206 1.079 1.119
/ / / / Mean 1.040 1.054 1.045

Table 5  ML index and its decomposition of industrial green development level of China’s different regions

Region ML EC TC Region ML EC TC Region ML EC TC

Beijing 1.132 1.121 1.075 Jilin 1.089 1.113 1.063 Inner Mongolia 1.068 1.120 1.121
Tianjin 1.103 1.061 1.100 Heilongjiang 1.017 1.017 1.098 Guangxi 1.163 1.150 1.070
Hebei 1.080 1.050 1.091 Shanxi 1.172 1.235 1.160 Chongqing 1.132 1.147 1.083
Shanghai 1.118 1.056 1.120 Anhui 1.094 1.090 1.080 Sichuan 1.119 1.098 1.104
Jiangsu 1.121 1.064 1.123 Jiangxi 1.107 1.134 1.072 Guizhou 1.078 1.073 1.065
Zhejiang 1.119 1.065 1.123 Henan 1.086 1.059 1.087 Yunnan 1.055 1.039 1.076
Fujian 1.098 1.070 1.107 Hubei 1.123 1.102 1.099 Shaanxi 1.143 1.135 1.093
Shandong 1.092 1.053 1.151 Hunan 1.128 1.112 1.084 Gansu 1.185 1.209 1.141
Guangdong 1.147 1.058 1.147 Qinghai 1.048 1.056 1.045
Hainan 1.040 1.831 1.417 Ningxia 1.061 1.083 1.045
Liaoning 1.073 1.072 1.087 Xinjiang 1.037 1.016 1.082
Eastern region 1.102 1.136 1.140 Central and 

western 
regions

1.100 1.105 1.088
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EC technical efficiency, TC technical progress

From the regional perspective (Table 5), the TFP indices 
of the eastern region and the central and western regions 
are 1.102 and 1.100, respectively. The levels of technical 
efficiency and technological progress of the eastern region 
are also higher than that of the central and western regions. 
Compared with the central and western regions, the eastern 
region has higher levels of industrialization, human capital, 
and economic development, which provide a basis for its 
high technical efficiency. From the provincial perspective 
(Table 5), the TFP index, technical efficiency, and techno-
logical progress of all provinces are greater than 1, indicat-
ing that the industrial green development level has improved. 
In addition, the TFP growth of the eastern provinces mainly 
comes from industrial technological progress, while the TFP 
growth of the central and western regions mainly comes 
from industrial technical efficiency.

Dynamic evolution in the distribution of China’s 
regional industrial green development level

In order to further explore the dynamic distribution char-
acteristics and evolution law of China’s regional industrial 
green development level, this study employs the Epane-
chikov Kernel function and the optimal bandwidth to work 
out the Kernel density estimation, as shown in Figs. 3 (a), 
(b), (c).

As shown in Fig. 3, the Kernel density curve of indus-
trial green development level shows a unimodal distribu-
tion, and the peak position falls year by year and shows a 
right shift trend, indicating that the overall industrial green 
development level is increasing. There are multiple peaks in 
the initial stage, but less peaks later, which means that the 
distribution of industrial green development level tends to 
be more concentrated, the gap of industrial green develop-
ment level among provinces is gradually narrowing, and the 
overall distribution tends to be balanced.

Analysis on the influencing factors of China’s 
provincial industrial green development 
level

Spatial autocorrelation test

Based on the adjacent spatial weight, this study conducts 
global and local spatial autocorrelation tests on the industrial 
green development level of the 30 provinces from 2000 to 
2018. The global Moran’s I is shown in Table 6. According 
to the results, this study concludes that the industrial green 
development level has positive spatial autocorrelation.

In order to further study the spatial agglomeration char-
acteristics of industrial green development level among 
regions, this study selects 2003, 2007, 2011, and 2015 as the 
time nodes of spatial agglomeration analysis for local auto-
correlation analysis. The industrial green development level 
in most regions shows positive spatial autocorrelation—that 
is, high-value spatial clustering (H–H) and low-value spa-
tial clustering (L-L); this verifies the above conclusions, as 
shown in Table 7.

Spatial panel regression

According to the above results of the spatial autocorrela-
tion test, there is spatial correlation in China’s industrial 
green development level. The traditional OLS will cause 
estimation deviation, and therefore this study should con-
sider spatial factors and estimate them by the spatial econo-
metric model. According to the result of the Hausman test 
(− 29.63), the original hypothesis of the random effect can-
not be rejected. Compared with the spatial lag model and 
spatial error model, the spatial Durbin model has the greatest 
goodness of fit R2 and relatively small Akaike information 
criterion ( AIC ) and Bayesian information criterion ( BIC ), 
thus being the most suitable choice. Analysis of the results 
of the spatial Durbin model (Table 8) is shown as follows.

The influence coefficient of carbon emissions on indus-
trial green development level is − 0.5809, which passes the 
significance test of 1%, indicating that carbon emissions 
have a negative effect on industrial green development level; 
when carbon emissions increase by 1 unit, industrial green 
development level decreases by 0.5809 units. The increase of 
 CO2 emissions means that energy consumption is increasing, 
which will lead to more environmental pollution, thus hav-
ing an adverse impact on the industrial green development 
level. With the continuous increase of carbon emissions, 
the relevant industrial departments will spend more to deal 
with the environmental problems under the pressure of the 
national policy of energy conservation and emission reduc-
tion, which will then inhibit the improvement of industrial 
total factor productivity. In addition, the increase of  CO2 
emissions also means that energy efficiency is low, which 
will further limit the expansion of industrial production scale 
and thus restrain industrial total factor productivity, too.

The elasticity coefficient by the regression estimation 
of fiscal decentralization is − 0.5637, which passes the sig-
nificance test of 1%, indicating that when fiscal decentrali-
zation increases by 1 unit, industrial green development 
level decreases by 0.5637 units. An increase in the fiscal 
autonomy of local governments causes a large number of 
resources and capital to be used to develop the economy. 
Thus, the source of environmental pollution increases, and 
so the increase of fiscal decentralization has a negative effect 
on the industrial green development level.
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Fig. 3  Dynamic evolution of 
China’s industrial green devel-
opment level for 2000–2018

(a) Dynamic evolution of national industrial green development level for 2000-2018.

(b) Dynamic evolution of industrial green development level of the eastern region for

2000-2018.

(c) Dynamic evolution of industrial green development level of the central

and western regions for 2000-2018.
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The economic development level has a significantly pos-
itive impact on the national industrial green development 
level, and the elasticity coefficient is 0.6878. With improve-
ment of the regional economic development level, the capital 
owned by the region will gradually increase. After accumu-
lation of capital, the investment in R&D and green sustain-
able development will increase, making this conducive to 
improvement of the industrial green development level.

The influence coefficient of urbanization level on indus-
trial green development level is − 0.3269, which passes the 
significance test of 5%. This indicates that urbanization level 
has a negative effect on industrial green development level; 
when urbanization level increases by 1 unit, industrial green 
development level decreases by 0.3269 units. An improve-
ment in urbanization level increases the urban population, 
which drives the large-scale expansion of resource-inten-
sive industries such as coal and steel. The aggravation of 
industrial pollution causes great external pressure on the 
environment, which is not conducive to improvement of the 
industrial green development level.

The impact of industrial structure on the national indus-
trial green development level is significantly positive at the 
1% level, and the elasticity coefficient is 0.8929, indicat-
ing when the industrial structure increases by 1 unit that 
the industrial green development level increases by 0.8929 
units. The main reason is that while China is in the stage of 
industrial development, the industrial structure is reason-
ably adjusted according to national demand and resource 

Table 6  Moran’s I of industrial green development level of the 30 
provinces from 2000 to 2018

Year Moran’s I E (I) Std (I) Z statistic P value

2000 0.041  − 0.034 0.119 0.630 0.264
2001 0.141  − 0.034 0.119 1.481 0.069
2002 0.113  − 0.034 0.118 1.243 0.107
2003 0.166  − 0.034 0.120 1.673 0.047
2004 0.171  − 0.034 0.121 1.698 0.045
2005 0.250  − 0.034 0.123 2.314 0.010
2006 0.320  − 0.034 0.121 2.934 0.002
2007 0.361  − 0.034 0.120 3.288 0.001
2008 0.181  − 0.034 0.123 1.749 0.040
2009 0.222  − 0.034 0.121 2.125 0.017
2010 0.272  − 0.034 0.122 2.512 0.006
2011 0.238  − 0.034 0.122 2.232 0.013
2012 0.150  − 0.034 0.123 1.499 0.067
2013 0.088  − 0.034 0.124 0.983 0.163
2014 0.133  − 0.034 0.124 1.348 0.089
2015 0.189  − 0.034 0.124 1.803 0.036
2016 0.183  − 0.034 0.125 1.750 0.040
2017 0.310  − 0.034 0.125 2.766 0.003
2018 0.132  − 0.034 0.124 1.340 0.090
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conditions, promotes the optimal allocation of resource ele-
ments among various industrial departments, and improves 
the utilization efficiency of resources, thus helping to lift the 
industrial green development level.

The elasticity coefficient of technological progress is 
0.1039, which is significant at the 1% level, indicating 
that when technological progress increases by 1 unit, 

industrial green development level increases by 0.1039 
units. Technological progress is the fundamental driving 
force of industrial green development. Improvement of the 
technological level greatly raises resource utilization effi-
ciency and promotes the development of green production 
technology, so as to achieve the goal of energy conserva-
tion and emission reduction and maintain the coordinated 
development of the economy, resources, and environment. 
Therefore, technological progress obviously promotes the 
improvement of industrial green development level.

The impact of foreign investment on industrial green 
development level is positive, and the impact of population 
density on industrial green development level is negative, 
but neither of them passes the significance test of 10%. 
Therefore, foreign investment and population density have 
no significant impact on industrial green development level.

According to the effect decomposition method of the spa-
tial panel model described above, the effects of explanatory 
variables on the explained variables are decomposed into 
direct effects and indirect effects. The decomposition results 
are shown in Table 9.

It can be seen from the table that the direct and indirect 
effects of carbon emissions on the national industrial green 
development level pass the significance test of 1%, indicat-
ing that the increase of carbon emissions in a certain region 
not only significantly inhibits the improvement of industrial 
green development level in this region, but also has a sig-
nificantly negative impact on industrial green development 
level in adjacent regions. The direct effect of fiscal decen-
tralization on the national industrial green development level 
is significantly negative at the 1% level, while the indirect 
effect is positive at the 5% significance level, meaning that 

Table 8  Results of spatial panel model regression

The values in brackets are z statistics

Variable Spatial lag model Spatial error model Spatial Durbin 
model

lnCE  − 0.6601***  − 0.6781***  − 0.5809***
[− 12.98] [− 12.83] [− 10.66]

lnFD  − 0.3652***  − 0.3950***  − 0.5637***
[− 4.66] [− 5.02] [− 5.69]

lnEDL 0.3671*** 0.4084*** 0.6878***
[6.15][7.70] [8.79]

lnUR  − 0.1422  − 0.1302  − 0.3269**
[− 0.96] [− 0.86] [− 2.02]

lnFDI 0.013 0.0139 0.014
[0.91] [0.94] [0.96]

lnIS 0.8959*** 0.8932*** 0.8929***
[9.89] [9.58] [9.01]

lnTI 0.1530*** 0.1560*** 0.1039***
[6.12] [5.79] [3.83]

lnPD  − 0.003  − 0.006  − 0.0236
[− 0.09] [− 0.18] [− 0.55]

Constant  − 5.2299***  − 5.7153***  − 4.8078***
[− 9.24] [− 10.37] [− 4.37]

WlnCE — —  − 0.2921***
[− 2.65]

WlnFD — — 0.3747**
[2.46]

WlnEDL — —  − 0.3453***
[− 2.59]

WlnUR — —  − 0.0073
[− 0.03]

WlnFDI — — 0.0570**
[2.06]

WlnIS — — 0.1626
[0.90]

WlnTI — — 0.1418***
[3.35]

�∕� 0.1492*** 0.0792 0.1004*
[2.85] [1.21] [1.72]

sigma2_e 0.0365*** 0.0370*** 0.0333***
[16.27] [16.29] [16.23]

N 570 570 570
R2 0.5526 0.5449 0.5906
AIC  − 149.4800  − 143.0041  − 176.3159
BIC  − 97.33239  − 90.8565  − 93.74877

Table 9  Decomposition of the spatial spillover effect

Variable Direct effect Indirect effect Total effect

lnCE  − 0.5875***  − 0.3751***  − 0.9626***
[− 10.67] [− 3.38] [− 8.66]

lnFD  − 0.5585*** 0.3569**  − 0.2017
[− 5.90] [2.24] [− 1.25]

lnEDL 0.6915***  − 0.3098** 0.3817***
[6.49] [− 2.42] [3.83]

lnUR  − 0.3319**  − 0.0728  − 0.4047
[− 2.17] [− 0.25] [− 1.33]

lnFDI 0.0156 0.0653** 0.0809**
[1.09] [2.08] [2.21]

lnIS 0.8977*** 0.2643 1.1620***
[9.33] [1.42] [6.01]

lnTI 0.1062*** 0.1675*** 0.2738***
[3.84] [3.83] [5.89]

lnPD  − 0.025  − 0.0031  − 0.028
[− 0.60] [− 0.53] [− 0.60]
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an increase of local fiscal autonomy significantly reduces a 
region’s industrial green development level, but promotes 
adjacent regions’ industrial green development level, partly 
because the competitive behavior between regions causes the 
adjacent regions to pay more attention to the environment. 
The direct effect of economic development level on indus-
trial green development level is positive and the indirect 
effect is negative, which pass the significance levels of 1% 
and 5% respectively, indicating that economic development 
level has a positive impact on industrial green development 
level in a region, but has a negative impact on its adjacent 
regions.

The improvement of a certain region’s economic devel-
opment level attracts resources, capital, and labor from 
adjacent regions, thus reducing their available resources 
and inhibiting improvement of the industrial green devel-
opment level of these adjacent regions. The direct effect of 
urbanization level on national industrial green development 
level is significantly negative at the 5% level, but the indirect 
effect is not significant, indicating that although a higher 
urbanization rate inhibits the progress of industrial green 
development level in a region, it has no impact on its adja-
cent regions. The indirect effect of foreign investment on 
industrial green development level is significantly positive, 
but the direct effect is not significant, indicating that foreign 
investment greatly promotes the improvement of industrial 
green development level of adjacent areas.

From the enterprise perspective, foreign-funded enter-
prises in a certain region bring advanced technologies and 
experiences. Enterprises in adjacent areas then apply these 
technologies and experiences to their own enterprises and 
improve them after study, exchange, and cooperation, mak-
ing them conducive to the improvement of industrial green 
development levels. The direct effect of industrial structure 
on industrial green development level is significantly posi-
tive at the 1% level, while the indirect effect is not signifi-
cant, indicating that a reasonable adjustment of industrial 
structure can promote this region’s industrial green develop-
ment level. The direct and indirect effects of technological 
progress on industrial green development level are signifi-
cantly positive at the 1% level, indicating that the progress 
of science and technology promotes this region’s industrial 
green development level and the adjacent regions’. Popula-
tion density has no significant impact on the industrial green 
development level of this region and adjacent regions.

Stability test

In view of the purpose of this paper, this study only tests 
robustness on national samples. Two methods are used 
to verify the robustness of the empirical results: the first 
method replaces the adjacent spatial weight matrix with the 
economic spatial weight matrix and also uses the spatial 

Durbin model for regression fitting; the second method 
eliminates the sample data of 2000 and also uses the spa-
tial Durbin model for modeling analysis on the remaining 
sample data of 2001–2018. After the Hausman test is con-
ducted with stata15.0 software, this study finds that the two 
robustness test methods still choose random effects, and the 

Table 10  Results of robustness test

Variable Replace spatial weight 
matrix

Eliminate the 
sample data of 
2000

lnCE  − 0.6200***  − 0.5869***
[− 12.77] [− 10.85]

lnFD  − 0.3944***  − 0.5262***
[− 4.42] [− 5.25]

lnEDL 0.5390*** 0.6539***
[5.85][5.28]

lnUR 0.175  − 0.2901
[1.17] [− 1.63]

lnFDI 0.0074 0.0085
[0.53] [0.58]

lnIS 0.9688*** 0.9556***
[9.61] [9.56]

lnTI 0.1307*** 0.0869***
[5.17] [3.22]

lnPD  − 0.007  − 0.006
[− 0.21] [− 0.14]

Constant  − 2.6115***  − 5.2581***
[− 2.59] [− 4.40]

WlnCE  − 0.1024
[− 1.11]

 − 0.2656**
[− 2.46]

WlnFD 0.0897
[0.67]

0.3216**
[2.01]

WlnEDL  − 0.0361
[− 0.28]

 − 0.2603*
[− 1.93]

WlnUR  − 1.7422***
[− 5.74]

0.0005
[0.00]

WlnFDI  − 0.1198***
[− 3.41]

0.0594**
[2.17]

WlnIS 0.1365
[0.98]

0.0907
[0.50]

WlnTI 0.2164*** 0.1181***
[4.24] [2.75]

�∕� 0.1947*** 0.1150*
[3.46] [1.92]

sigma2_e 0.0314*** 0.0308***
[16.22] [15.76]

N 570 540
R2 0.6036 0.6085
AIC  − 217.6098  − 203.2268
BIC  − 135.0427  − 121.687
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regression results are shown in Table 10. From the table, 
it has been seen that except for urbanization level, which 
has no significant impact on industrial green development 
level, the regression results of other variables are completely 
consistent with the results in Tables 5, 6, 7, and 8. Com-
pared with the regression results of the spatial Durbin model 
in Table 8, the goodness of fit of the regression models of 
the two robustness test methods is higher, and the Akaike 
information criterion and Bayesian information criterion 
are relatively lower. Therefore, the results of robustness test 
are very good and also indicate that the previous empirical 
results are accurate.

Conclusions and suggestions

Conclusions

In previous studies, scholars have mostly used China’s indus-
trial green total factor productivity to measure the level of 
China’s industrial green development, which includes the 
industrial “three wastes” as non-desired outputs in the meas-
urement framework, providing a quantitative indicator for 
assessing the level of China’s industrial green development 
and effectively evaluating the real level of China’s indus-
trial development. At the same time, the influencing factors 
of China’s industrial development level are explored from 
the economic and social and other macro levels. However, 
most scholars mostly adopt the static efficiency evaluation 
system, ignore the  CO2 emissions, and pay attention to the 
influencing factors of China’s industrial development level 
from a single perspective. Therefore, based on panel data 
of 30 provinces in China from 2000 to 2018, this research 
uses the super-efficiency SBM model containing undesirable 
outputs to calculate the industrial green development level, 
decomposes technical efficiency and technological progress 
by the ML index, and dynamically analyzes the changes of 
industrial green development level with the Kernel density 
function. This study explores the impact of variables such as 
carbon emissions on the industrial green development level 
through the spatial Durbin model and partial differential 
equations and decomposes them into direct effect and spatial 
spillover effect. Our study draws the following conclusions.

(1) China’s industrial green development level has been 
increasing year by year and is not high on the whole, 
but the level of the eastern region is generally higher 
than that of the central and western regions. The dif-
ferences in industrial green development level between 
different provinces are great, but have gradually 
decreased. The technical efficiency and technological 
progress of the eastern region are higher than those of 
the central and western regions. The TFP growth of the 

industrial green development level of the eastern region 
mainly comes from industrial technological progress, 
while that of the central and western regions mainly 
comes from industrial technical efficiency.

(2) There is a positive spatial autocorrelation in ITFP of the 
30 provinces. Carbon emissions, fiscal decentralization, 
and urbanization are not conducive to improvement of 
the national industrial green development level. Eco-
nomic development, foreign direct investment, indus-
trial structure, and technological progress can signifi-
cantly promote industrial green development level, 
while population has no significant impact on it.

(3) The increase of regional carbon emissions not only sig-
nificantly inhibits improvement of a region’s industrial 
green development level, but also has a significantly 
negative impact on adjacent areas’ industrial green 
development level. Economic development level has a 
positive impact on a region’s industrial green develop-
ment level, but a negative impact on that in adjacent 
areas. Technological progress often plays a good role 
in promoting a region’s industrial green development 
level and that of adjacent areas. Greater local fiscal 
autonomy significantly reduces a region’s industrial 
green development level, but positively promotes that 
in adjacent areas. Urbanization level and industrial 
structure have direct effects on industrial green devel-
opment level, but their spatial spillover effects are not 
significant. Foreign direct investment has a contrary 
effect, while population density’s effect is not signifi-
cant.

Suggestions

(1) From a dynamic perspective, to construct a more com-
prehensive measurement framework of green total fac-
tor productivity, and to explore the factors influencing 
the level of green total factor development of China’s 
industry from multiple perspectives and levels. On 
the one hand, future research should include the  CO2 
emissions in the non-expected output in order to more 
realistically assess the level of green development of 
China’s industry, and on the other hand, this paper 
builds a multi-faceted model of the factors influencing 
industrial green total factor productivity from three lev-
els: macro, medium, and micro, and sinks the attention 
angle into industries to the industry to provide coun-
termeasure suggestions for the green transformation of 
each specific industry.

(2) Maintain the goal of high-quality economic develop-
ment and lay the foundation for the synergistic effects 
of industrial green transformation and high-quality eco-
logical civilization: Contemporary China must change 
the industrial development pattern, promote the estab-
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lishment of an efficient, safe, clean, low-carbon, and 
green industrial energy structure, and promote indus-
trial green transformation for high-quality economic 
development.

(3) Promote the upgrading of industrial structure and build 
a green industrial development system: On the one 
hand, controlling traditional high pollution industries 
and promoting power transition and cleaner production 
are meaningful. On the other hand, cultivating high-end 
manufacturing with low energy consumption and high 
added value and comprehensively breaking through the 
technical barriers in clean energy and renewable energy 
are also conducive to reducing industrial carbon emis-
sions, thus achieving carbon peak and carbon neutrali-
zation.

(4) Deepen fiscal decentralization reform, and establish 
a fiscal system suitable for China’s green industrial 
development level: To promote China’s industrial green 
development level, reduce regional differences, and 
arrange fiscal decentralization levels according to local 
conditions, the central government should also improve 
environmental regulation policies and the importance 
of green development in local assessment, thus guid-
ing local industrial green transformation at the strategic 
level.

(5) Promote the level of green technological innovation and 
build regional technological innovation networks: The 
government can use environmental regulation policies 
to guide enterprises’ green technological innovation 
and create a strong innovation environment for green 
technology. Strengthen policies and financial support 
for industrial green technology innovation, encourage 
leading enterprises in industry to form joint technol-
ogy R&D centers with universities and research insti-
tutes, and build joint innovation platforms. construct 
an advanced green manufacturing technology support 
system, and promote the joint construction of high-
tech parks between regions. In addition, the govern-
ment should encourage the free flow of technological 
innovation elements, promote the optimal allocation of 
resources, actively carry out technological innovation 
activities, and promote the spillover of green technol-
ogy diffusion.

(6) Promote the construction of new-type urbanization, 
improve the quality of China’s urbanization, and real-
ize the mutually beneficial development of urbaniza-
tion and industry. Delineate the boundaries of urban 
development, transform the development model of 
closed towns to intensive and compact ones, improve 
land use efficiency, establish multi-functional urban 
development land, establish industrial parks, and rea-
sonably avoid environmental pollution and resource 
waste caused by disorderly competition and overcapac-

ity. Promote the transition from rural to urban popula-
tion in an orderly manner, enhance the comprehensive 
carrying capacity of cities and towns for population 
and factors, and promote the upgrading of consumption 
structure.

Limitation and future research directions

Although we have expanded the related research from both 
theoretical and practical aspects, there are still the follow-
ing shortcomings. First, our research focuses on provincial 
administrative units and fails to cover data on prefecture-
level cities and enterprises. Subsequent research should fur-
ther analyze the data of prefecture-level cities or enterprises, 
and conduct detailed research according to the industrial 
layout of urban agglomerations and the nature of enterprises. 
Second, this study lacks an examination of different types of 
industries. Future research should divide specific industries 
and further investigate the role of factor allocation ratios 
between different industries in the impact of environmental 
regulation on industrial green development. Third, we only 
test the influence of  CO2 emission, technological progress, 
and fiscal decentralization, while the green development 
effect of environmental regulation may also be affected by 
other factors, especially the role of government behavior and 
its results. Subsequent research should be expanded from 
other perspectives such as government competition, market 
segmentation, and factor distortion.
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