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Abstract
Faced with the requirement of carbon emission reduction in power industry, low-carbon power dispatch involving various 
low-carbon approaches has been recognized as one of effective ways. Concentrate on several important approaches: wind 
power integration and carbon reduction cooperation, it is necessary to deal with the uncertainties of wind power and carbon 
reduction modes for thermal power encountered in low-carbon power dispatch. For this purpose, this paper firstly presents a 
distributed robust optimization model synthetically considering robustness, economy, and environment. Next, wind power 
characterizations, scenario division and compression methods, and allocation algorithms of initial carbon emission rights 
are fully discussed for the convenience of model solution. Finally, empirical analysis shows that (1) the proposed model 
proves to be effective not only in coping with wind power uncertainties and reducing operating costs, (2) but also in dealing 
with the uncertainties of carbon reduction modes and reducing carbon emissions, and (3) low-carbon power dispatching 
strategies combining robustness, economy, and environment could be achieved through the proposed model and method, 
which are especially helpful to minimize interference from these two types of uncertainty more scientifically and reasonably.
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Nomenclature

Variables:
Tf   the scheduled power output for the f  th 

thermal power unit
W   the scheduled power output for wind 

power unit
Ws  the actual wind power output for sce-

nario s
Pload  the total load demand of the power 

system
Ploss  the transmission line losses
P(s)  the normalized probability for each 

generated scenario s

cf   the claim right of carbon emission for 
the f  th thermal power unit

ef   the initial carbon emission right for the 
f  th thermal power unit

Parameters:
S

′  the number of scenarios used for 
robustness comparison

M  the number of thermal power units
E  the total obligatory carbon emissions
r  the ratio of carbon emission reductions
af ,bf ,df ,gf  and hf   cost coefficients for the f  th thermal 

power unit
�f ,�f ,�f ,�f  and �f   emission coefficients for the f  th ther-

mal power unit
Tmin
f

  the minimum power generation limit of 
the f  th thermal power unit

Tmax
f

  the maximum power generation limit 
for the f  th thermal power unit

Bij,Bi0 and B00  B-coefficients for the transmission 
network power loss

List of abbreviations:
CO2  carbon oxides
ETS  emission trading system
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PDF  probability distribution function
NSGA-II  nondominated sorting genetic 

algorithm-II

Introduction

Carbon emissions of electricity mainly come from large 
thermal power plants with fewer emission sources and 
more emissions, which is convenient to achieve large-scale 
and efficient carbon reduction through various low-carbon 
approaches (Wei et al. 2018). At the same time, with the 
increasing pressure of resources and environment, the 
deepening of market-oriented reform and the continuous 
improvement of users’ requirements for electricity service 
quality, power industry is facing unprecedented challenges 
and opportunities (Zhang and Chen 2020). Building a more 
secure, economical, environment, and low-carbon power 
system has been increasingly set as target by the global 
power industry (Wang et al. 2019a, b, c). Undoubtedly, the 
development of low-carbon electricity has become a key 
strategy for promoting low-carbon economy, building smart 
power grid, and achieving sustainable development of power 
industry (Chen et al. 2021).

In the era of low-carbon electricity, the introduction of 
all kinds of low-carbon approaches will make the electric 
power industry appear obvious low-carbon characteristics 
and new operation modes, and bring extensive influence on 
power system operation (Menezes and Zheng 2018). As far 
as power dispatching is concerned, it refers to the decision-
making and invocation of the operation mode and state of 
various electrical components on the basis of load forecast-
ing, and the formation of certain dispatching plan on the cor-
responding time sequence (Hetzer and Yu 2008). In addition 
to the traditional security and economy, further attention 
should also be paid to carbon emissions from power system 
operation in the low-carbon environment; it is necessary to 
analyze the technical characteristics of various low-carbon 
power sources and impacts of their large-scale application on 
power system operation, and introduce a scientific and effi-
cient “low-carbon power dispatching mode” (Li and Huang 
2021; Xiang et al. 2021). Generally, the construction of low-
carbon power dispatch is an interdisciplinary problem based 
on the theories of optimal power system dispatching, elec-
tricity price, and economic externalities, while the imple-
mentation of low-carbon power dispatch is a complex system 
engineering closely related to power dispatching technology, 
feed-in price mechanism, and carbon reduction policy (Shao 
et al. 2019; Jin et al. 2019).

Low carbonization of power dispatching could be real-
ized in different ways, such as optimizing power sources 
structure and introducing incentive mechanism. Specifically, 
the global total installed capacity is significantly rising with 

the rapid development and application of renewable energy 
(Basu 2019). As a kind of zero-emission renewable energy, 
wind energy advanced rapidly and has progressively become 
an important option for developing clean energy. Govern-
ments around the world paid more and more attention to 
the rational use of wind energy, and wind power generation 
has gradually become a clean energy generation mode with 
great development potential (Zhao et al. 2017; Ren et al. 
2020). Meanwhile, the introduction of carbon trading can 
promote the large-scale development of wind power and 
achieve energy saving and carbon reduction of power sys-
tem. The main idea of carbon trading scheme is to control 
carbon emissions by creating legal carbon permits, or quo-
tas, that allow them to be sold and bought like a commodity 
(Lin and Jia 2019). Since wind power generation has the 
advantage of no carbon emissions, the introduction of car-
bon trading is beneficial to reduce the costs of wind power 
generation, improve the competitiveness of wind power, and 
increase the outputs for energy-saving and environmentally 
friendly thermal power units, which is conducive to the pro-
motion of low-carbon technologies (Tan et al. 2019). Above 
all, low-carbon power dispatch is facing multiple impacts 
of two low-carbon approaches: wind power integration and 
carbon reduction cooperation. Due to the uncertainties of 
wind power and carbon reduction modes for thermal power, 
low-carbon power dispatch becomes a more complex system 
with multiple uncertainties, which disturbs the safe opera-
tion of power system and poses new challenges to the current 
power dispatching process.

Nowadays, settling the low-carbon power dispatching 
problem under wind power uncertainties has gained widely 
concern from academia. To improve the reliability and flex-
ibility of power system operation, Chen et al. (2016) pro-
pose a distributionally robust hydro-thermal-wind economic 
dispatch method which can not only depict wind power 
uncertainties through all possible probability distribution 
functions, but also optimize the expected operation cost in 
the worst distribution. By analyzing the power dispatching 
process as a dynamic sequential control problem, Meng et al. 
(2021) propose a Markov decision process model to formu-
late the optimal coordinated dispatching strategy which can 
deal with both load demand and wind power uncertainties. 
Integrating stochastic robust programming with interval two-
stage programming, Ji et al. (2016) present a novel robust 
model for day-ahead dispatch and risk-aversion manage-
ment involving wind power uncertainties, which can also 
retain the complete information based on low computation. 
In addition, the issues of low-carbon power dispatch under 
the influence of carbon reduction cooperation have also been 
investigated by many researchers. To supply a better view 
of the Belt & Road Initiative for coal power cooperation, 
Lin and Bega (2021) discuss the related evolutions, chal-
lenges, rationales, and prospects. Embedding the trading 
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cost of carbon emission in the traditional economic dis-
patch model, Tsai and Yen (2011) simulate and analyze the 
impacts of the different strategies for generator’s dispatch 
taking account of the carbon trading scheme. By proposing 
a novel characteristic function to describe possible minimal 
carbon emissions where power generation is prioritized by 
efficiency, Yang et al. (2020) formulate a graph restricted 
cooperative game model for the allocation of carbon reduc-
tion responsibilities among different areas. Generally speak-
ing, low-carbon power dispatching problem is influenced 
by the joint action of many low-carbon approaches, and the 
uncertainties that come with them. In order to deal with the 
disturbances from various uncertainties, on the one hand, it 
is necessary to construct a more flexible dispatching decision 
frame from dispatching level and structure adjustment. On 
the other hand, it is equally important to treat low-carbon 
power dispatching problem under the new situation with an 
uncertain perspective, establish a new theory of low-carbon 
power dispatching strategies under the uncertain operation 
condition, and guide the formation and application of new 
dispatching methods.

Faced with the requirement of carbon emission reduc-
tion in power industry, low-carbon power dispatch involving 
various low-carbon approaches has been recognized as one of 
effective ways. Concentrate on several important approaches: 
wind power integration and carbon reduction cooperation, the 
influences of their uncertainties on low-carbon power dispatch 
cannot be ignored. Therefore, it is fairly meaningful to study 
robust optimization for low-carbon dispatch of wind-thermal 
power under uncertainties. Based on this, the purpose of our 
study is to solve the distributed robust optimization problem 
in the wind power integrated system imported with carbon 
reduction cooperation. Taking the effects of cost compres-
sion, carbon emission reduction, and uncertainty handling as 
evaluation criteria, by constructing the model and designing 
relevant solutions, this study tries to find the right balance 
separately between two types of contradictions in low-carbon 
power dispatch: robustness and economy, robustness and envi-
ronment, and finally put forward low-carbon dispatching strat-
egies taking into account robustness, economy, and environ-
ment comprehensively. With increasing focus on low-carbon 
power dispatch involving various low-carbon approaches, the 
method and result in this paper may be helpful to cope with 
the disturbances from the uncertainties of wind power and 
carbon reduction modes for thermal power more scientifically 
and reasonably.

This paper is organized as follows: “Preparation of 
methods” section discusses wind power characteriza-
tions, scenario division and compression methods, 
and the allocation algorithms of initial carbon emis-
sion rights. “Problem formulation” section develops 
a distributed robust optimization model synthetically 

considering robustness, economy, and environment. 
“Case study” section presents a discussion of numeri-
cal results achieved with comparative analysis. Finally, 
“Conclusion and recommendation” section concludes 
this paper with some policy suggestions.

Preparation of methods

Wind power characterizations

In face of the fluctuations in wind power output, it is 
obviously worth discussing the characterizations of wind 
power depending upon wind speed. To be specific, both 
wind power output and wind speed are regarded as ran-
dom variables, and the former’s statistical characteristics 
could be deduced from the probability distribution func-
tion (PDF) of wind speed. Generally, several kinds of 
wind speed PDF are frequently applied in wind speed 
forecasting: Weibull distribution, Gamma distribution, 
lognormal distribution, Burr distribution and Rayleigh 
distribution, etc. (Chang 2011).

Weibull distribution is relatively simple in form, which 
is explicit for wind speed, convenient for calculation, 
and has the widest application range. However, its fitting 
effect is only applicable in ordinary wind speed forecast, 
because it cannot fit some extreme values, and its PDF 
can be described as follows (Zhou et al. 2006):

where v represents the wind speed, k signifies the shape 
parameter (dimensionless), and c denotes the scale param-
eter (the same dimension of wind speed).

Besides, though lognormal distribution has a good overall 
fitting effect, the effect is not very good at too low or too 
high frequencies, and its PDF can be written as below (Jin 
et al. 2015):

where � is the location parameter; � is the scale parameter.

(1)fV (v) =
k

c

(
v

c

)k−1

exp

[
−
(
v

c

)k
]

(2)fV (v) =
1√
2��v

exp

�
−(lnv − �)2

2�2

�

Due to the wide applications of above two distributions, 
integrate them and have complementary advantages. 
That is, the mixture of Weibull and lognormal PDF may 
be particularly relevant for normal wind speed forecast. 
Furthermore, the statistical characteristics of wind power 
output can be deduced from wind speed PDF, and the cor-
responding transformations are shown in the following 
form (Wang et al. 2019a, b, c):
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where w is the wind power output, wrated represents the rated 
wind power output, vin signifies the cut-in wind speed, vr is 
the rated wind speed, and vout stands for the cut-out wind 
speed.

Scenario division and compression

In order to ensure the robustness of wind power integrated 
system, a number of representative scenarios of wind power 
outputs should be determined before distributed robust opti-
mization. Firstly, the interval of wind speed could be divided 
into multiple scenarios. Theoretically, the more wind speed 
scenarios are divided, the more accurate the description of 
wind power output will be (Aghaei et al. 2013). In particular, 
the selection of scenarios is to evenly divide the wind speed 
interval 

[
0, vr

]
 into S intervals respectively: 

[
0,

1

S
vr

]
 , 
[
1

S
vr,

2

S
vr

]

,…, [ S−1
S
vr, vr] , and the value of each wind power scenario 

( w(s), s = 1, 2, ..., S ) based upon Eq.(3) together with its cor-
responding probability ( P(s), s = 1, 2, ..., S ) from Eqs.(1, 2) 
could be deduced.

So far, all scenarios of wind power have been obtained by 
dividing intervals, yet in fact a large amount of calculation 
is required if every scenario is involved, which obviously 
needs to be simplified. Next, synchronous back-generation 
subtractive method is adopted for scenario compression, and 
selected wind power scenarios are reduced to fewer scenar-
ios for ensuring the minimum probability distance between 
the compression scenario set and the original scenario set. 
By using fewer wind power scenarios, the purpose of sce-
nario compression technology is to maximize the random-
ness of wind power output and guarantee the calculation 
accuracy of model, and the steps are specially designed as 
follows (Biswas et al. 2019):

Step 1: Determining the scenario w(s∗), s∗ ∈ (1, 2, ..., S) , 
which not only takes into account the Euclidian distance 
d(w(n),w(m)) between different scenarios w(m) and w(n) , 
but also concerns their probabilities P(s(m)) and P(s(n)) , 
therefore the most unrepresentative scenario w(s∗) is more 
likely to be eliminated:

(3)w =

⎧
⎪⎪⎨⎪⎪⎩

0, v < vin
wrated

v−vin

vr−vin
, vin ≤ v < vr

wrated,

0,

vr ≤ v < vout
v ≤ vout

(4)
P(s∗){min

s≠s∗
P(s)d(w(s),w(s∗))} = min

m∈{1,2,...,S}

P(s(m)){ min
n≠m,n∈{1,2,...,S}

P(s(n))d(w(n),w(m))}

Step 2: Selecting the scenario w(s) that is closest to sce-
nario w(s∗) , and w(s) is paired with scenario w(s∗) in step 
1.
Step 3: Recounting the probability of scenario w(s∗) , 
which is closest to the probability of the deleted scenario, 
namely:

Step 4: Updating the total number of scenarios:

Step 5: If the number of remaining scenarios is still 
greater than the number of required scenarios, then 
repeating step 1, otherwise terminating the operation.

As discussed above, the main flow chart of the synchro-
nous back-generation subtractive method is plot in Fig. 1.

Initial carbon emission rights

Considering the importance of reasonable allocation of ini-
tial carbon emission right among each thermal power unit, 
it is necessary to explore the allocation algorithms of initial 
carbon emission rights balancing equality and rationality. 
To be specific, the carbon emission corresponding to unit 
approval hours is the carbon emission claim right promised 
by the government to the unit, while the total carbon control 
target of the power industry determined by the government is 
the gross amount of resources which can be allocated. Based 
on the theory of equitable allocation of claim right, there 
are several initial allocation algorithms of carbon emission 
right: proportional method, uniform gains method, uniform 
losses method, and Talmud rule (Herrero and Villa 2001; 
Moulin 2003).

1.  Proportional method

Where ef  is the initial carbon emission right of the f  th 
thermal power generator, cf  is the claim right of carbon 
emission for the f  th thermal power generator, and E is 
the overall obligatory carbon emissions.

  Correspondingly, all claim rights will form a vec-
tor ( C = (c1, c2, ..., cM)

�

 ), and the whole carbon emis-
sion right for all thermal power units adopting pro-
portional method ultimately constitute a vector 
( WPro(M,E,C) = (e1, e2, ..., eM)

�

).
2.  Uniform gains method

(5)P(s∗) = P(s∗) + P(s)

(6)S = S − 1

(7)
ef =

cf

M∑
f=1

cf

E, 1 ≤ f ≤ M.
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Where �′ is the optimal solution of the following 
function:

  Accordingly, all the carbon emission rights for the 
whole thermal power units using uniform gains method 
will form a vector ( WUg(M,E,C) = (e1, e2, ..., eM)

�

).
3.  Uniform losses method

Where � is the optimal solution of the following 
function:

  Correspondingly, the whole carbon emission right for 
all thermal power units through uniform losses method 
will constitute a vector ( WUl(M,E,C) = (e1, e2, ..., eM)

�

).
4.  Talmud rule

(8)ef = min{�
�

, cf }, 1 ≤ f ≤ M.

(9)
M∑
f=1

min{�
�

, cf } = E.

(10)ef = max{cf − �, 0}, 1 ≤ f ≤ M.

(11)
M∑
f=1

max{cf − �, 0} = E.

Where WUgf
 is the f  th element of WUg ; WUlf  is the f  th 

element of WUl.

Above four methods are important achievements of 
the theory of equitable distribution: proportional method 
expresses a neutral value orientation, similar to “work more 
and get more”; uniform gains method allocates the emission 
rights as equally as possible, and the allocation share should 
be biased toward the participants with lower claim rights; 
uniform losses method is the equal allocation from the angle 
of claim deficiency, which is beneficial to the participants 
with higher claim rights; Talmud rule is a method synthe-
sizing uniform gains method with uniform losses method, it 
tends to be egalitarian and protect the weak when the total 
amount of resources is small, while its incentive is advanced 
and the overall efficiency is improved when the total amount 
of resources is large. Since different methods are the only 
allocation schemes satisfying their respective axioms, 
comprehensive strategies can be successfully achieved by 
weighted assignments. Specifically, the weights could be 

(12)ef =

⎧⎪⎪⎨⎪⎪⎩

Wf

Ug
(M,E,

1

2
C), E <

1

2

M∑
f=1

ef

1

2
cf +Wf

Ul
(M,E −

1

2

M∑
f=1

ef ,
1

2
C) E ≥

1

2

M∑
f=1

ef

, 1 ≤ f ≤ M.

Fig. 1  Flow chart of scenario 
reduction method
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scenario    

Change the total number of 

scenarios

The number of 

remaining scenarios is greater 
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scenarios

End

No
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fixed as a simple average, or it can be set with the size of 
each claim right.

Problem formulation

Facing the disturbances from the uncertainties of wind power 
and carbon reduction modes for thermal power, it is necessary 
to ensure the robustness of the wind power integrated system 
imported with carbon reduction cooperation (Wei et al. 2016). 
Specifically, a maximization problem is required for finding 
some worse probability distributions in several generation 
output scenarios to minimize the negative externality costs 
deriving from wind power uncertainties, because those worse 
scenarios may cause remarkable rises of objective cost in the 
form of penalty. In addition, the uncertainties of carbon reduc-
tion modes for thermal power will complicate the measure-
ment of carbon emissions and further influence system robust-
ness, and therefore some worse carbon reduction scenarios 
should be singled out in the carbon emission rights constraint.

Based on these considerations, combined with the previ-
ous discussions of wind power characterizations and ini-
tial carbon emission rights, the present formulation treats 
low-carbon dispatch of wind-thermal power as a distributed 
robust optimization model which tries to minimize system 
operation costs while maximizing the disturbances from the 
uncertainties of wind power and carbon reduction modes for 
thermal power, and to meet carbon reduction requirements 
and some other general operation constraints. Comparing 
with the traditional robust optimization model only focus-
ing on the worst scenario, the proposed model aims to find 
several worse scenarios of wind power and carbon reduc-
tion. Eventually, it will determine the production levels of 
scheduled units to satisfy generation constraints, which may 
coordinate robustness, economy, and environment of power 
system simultaneously.

Objective function

To deal with wind power uncertainties and further to ensure the 
economy and robustness of power system, a minimum-maxi-
mization form of distributed robust optimization is set up in the 
objective function described by Eq. (13), which consists of two 
parts, namely fuel costs of thermal power units and negative 
externality costs of insufficient or surplus wind power output.

Where ΩW is the feasible set of wind power output scenar-
ios, P(s) is the probability of scenario s , S′ is the number of 

(13)max
s∈ΩW

⎧⎪⎨⎪⎩

S
��

s=1

P(s)min

�
M�
f=1

Cf (Tf ) + Gs(W)

�⎫⎪⎬⎪⎭

scenarios used for robustness comparison, Cf  is the fuel cost 
function of the f  th thermal power unit, Tf  is the scheduled 
power output for the f  th thermal power unit, M is the total 
number of thermal power units, Gs is the negative external-
ity cost function when the wind power output is insufficient 
or surplus, and W  is the scheduled power output for wind 
power unit.

As far as a single thermal power unit is concerned, its 
economic cost function is normally in the form of quadratic 
function. In fact, the consumption characteristic curve will 
have a superposition effect of impulse response named the 
valve point effect, when the steam turbine intake valve is 
suddenly opened. In order to ensure that the accuracy of 
model solution to be identified is not significantly affected, a 
sine function is usually added in the model, together with the 
economic cost function of the thermal power unit as follows 
(Zugno and Conejo 2015):

where af  , bf  , and df  are the generation cost coefficients of 
the f  th thermal power unit; gf  and hf  are the valve point cost 
coefficients for the f  th thermal power unit; and Tmin

f
 is the 

actual active power output lower limit of the f  th thermal 
power unit.

In terms of wind power uncertainties, if the actual wind 
power output is greater than the scheduled output, it will 
result in a certain degree of wind power output waste. On 
the contrary, power shortages need to be purchased from 
thermal power, otherwise loads will be shed. Therefore, the 
negative externality cost function Gs related to wind power 
uncertainties ought to be added into the objective function 
as shown below:

where kpenalty is the penalty coefficient; Ws is the actual wind 
power output for scenario s.

Constraint function

Real power output constraint

where Tmax
f

 is the maximum power generation limit of the 
f  th thermal power unit.

Real power balance constraint

The power balance constraint involving the system network 
loss which the power system must meet is indicated below 
(Wang et al. 2019a, b, c):

(14)
Cf (Tf ) = af T

2
f
+ bf Tf + df + |gf sin(hf (Tmin

f
− Tf ))|, 1 ≤ f ≤ M .

(15)Gs(W) = kpenalty ⋅ |W −Ws|, 1 ≤ s ≤ S.

(16)Tmin
f

≤ Tf ≤ Tmax
f

, 1 ≤ f ≤ M .
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where Pload is the total load demand of the power system; 
Ploss is the transmission line losses.

Moreover, the DC power flow method including the line 
capacity constraints is utilized to compute the power flow 
on each line. Based on the Kron’s loss formula (Wood and 
Wollenberg 1984), the format of transmission loss in Eq.(16) 
is expanded as follows:

where Bij , Bi0 , and B00 are B-coefficients for the transmission 
network power loss.

Carbon emission rights constraint

Taking account of carbon reduction modes for thermal 
power, carbon emission rights constraints could be grouped 
under two headings: non-cooperative and cooperative mode. 
As for the cooperative mode, carbon emission rights con-
straint can be summarized as follows:

where Ef  is the emissions function for the f  th thermal 
power unit, ef  is the initial carbon emission right of the f  th 
thermal power unit, and �i is a partition set of the universal 
set ΩT = {Unit1,Unit2, ......,UnitM} from all thermal power 
units. Besides,  CO2 emissions from the thermal power units 
can be measured as the superposition of a quadratic and an 
exponential function (Arula et al. 2015):

where �f  , �f  , �f  , �f  , and �f  are emission coefficients for the f  
th thermal power unit.

Theoretically, it is supposed that wind power units have 
nearly no carbon emissions, thus the total carbon emissions 
of power system should satisfy the specific carbon emission 
reduction target, whatever the mode. This, to some extent, 
guarantees the environment of power system:

where r is the ratio of carbon emission reductions; E is the 
total obligatory carbon emissions.

In particular, as for the non-cooperative mode, Eq.(19) 
could be specified as follows:

(17)
M∑
f=1

Tf +W = Pload + Ploss

(18)Ploss =

M∑
i=1

M∑
j=1

TiBijTj +

M∑
i=1

Bi0Ti + B00

(19)
∑
f∈�i

Ef (Tf ) ≤
∑
f∈�i

ef , ∀�i ∈ 2ΩT , 1 ≤ i ≤ (2M − 1).

(20)
Ef (Tf ) = �f T

2

f
+ �f Tf + �f + �f exp(�f Tf ), 1 ≤ f ≤ M .

(21)
M∑
f=1

Ef (Tf ) ≤ (1 − r)E, 0 ≤ r ≤ 1 .

To be sure, considering the uncertainties of carbon reduc-
tion modes for thermal power, a M-units power system will 
totally contain up to 

(
2M −M − 1

)
 various scenarios for car-

bon reduction cooperation through the exhaustive method, 
which obviously increases the complexity of optimization. 
Different from the non-cooperative mode, some representa-
tive scenarios in the cooperative mode need to be selected 
for the convenience of calculation. In fact, to cope with the 
uncertainties of carbon reduction modes, (M − 1) representa-
tive scenarios for the sake of system robustness are com-
posed of units with poorer performances in carbon emission 
reduction, and Eq. (19) can be simplified for cooperative 
mode as below:

where ΩR is the set of representative scenarios.

Case study

From the previous discussion, a distributed robust optimiza-
tion model considering the uncertainties of wind power and 
carbon reduction modes for thermal power, together with the 
model solution are presented to solve the low-carbon power 
dispatching problem. Furthermore, this optimization model 
in a more general form is applicable to most cases, because 
different parameters for objectives, constraints, wind power 
characterizations, and initial carbon emission rights could 
be fixed upon actual situation. With the emergence of new 
low-carbon approaches for power dispatching, optimization 
for low-carbon dispatch of wind-thermal power under uncer-
tainties needs to be investigated via the proposed model and 
solution. Specifically, taking the effects of cost compres-
sion, carbon emission reduction, and uncertainty handling 
as evaluation criteria, this study tries to find the right bal-
ance separately between two types of contradictions: robust-
ness and economy, robustness and environment of the wind 
power integrated system imported with carbon reduction 
cooperation, and finally put forward low-carbon dispatch-
ing strategies taking into account robustness, economy, and 
environment comprehensively.

Scenario determinations for uncertainties

First of all, a 6-unit test system including non-smooth fuel 
cost and emission level functions along with one wind farm 
is used for ease of simulation. Some parameters are set as 
below: the operating parameters of thermal power units and 
the basic parameters of wind power units are respectively 

(22)Ef (Tf ) ≤ ef , 1 ≤ f ≤ M.

(23)

∑
f∈𝜙i

Ef (Tf ) ≤
∑
f∈𝜙i

ef , ∀𝜙i ∈ ΩR ⊂ 2ΩT , 1 ≤ i ≤ (M − 1).
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provided in Table 3 and Table 4 of Appendix, while the sys-
tem load is 1731.5 MW and the total obligatory carbon emis-
sions is 800 lb. Besides, losses should not be neglected, and 
the transmission loss matrix is also supplied in Appendix. To 
depict the characterizations of wind power output depending 
on wind speed, 1 month’s wind speed data from Rudong, East 
China’s Jiangsu Province, are collected to fit wind speed PDF 
(CMDN n.d.). To be specific, maximum likelihood method is 
applied to estimate the parameters of Weibull and lognormal 
distribution function discussed in “Objective function” sec-
tion, and its parameter estimates are obtained: shape param-
eter k = 3.071 , location parameter � = 0.784 , scale parameter 
c = 1.625 , � = 0.703 . Then the linear weighting method syn-
thesizing lognormal distribution and Weibull distribution can 
be constructed as a mixture distribution, where its weight � 
relies on the fitting effects of above two distributions:

Next, to verify the fitting effects of wind speed PDFs, fit-
ting curves of Weibull, lognormal, Weibull-lognormal distri-
bution functions comparing to the wind speed histogram are 
plotted in Fig. 2, where wind speed interval is set as [0 m/s, 
20 m/s] and the step size of equilateral points are defined 
as 0.05 m/s accordingly. Moreover, the Euclidean distances 
denoting the fitting effects between Weibull distribution, 
lognormal distribution, Weibull-lognormal distribution, 
and histogram are separately 0.127, 0.088, and 0.079, which 
reveals that mixture distribution of Weibull and lognormal 
distribution is more appropriate for actual wind speed data, 
and � can be specially calculated as 0.591.

(24)

f = �

�
k

c

�
v

c

�k−1

exp

�
−
�
v

c

�k
��

+ (1 − �)

�
1√
2��v

exp

�
−(ln v − �)2

2�2

��

After obtaining the statistical characteristic of wind 
speed, wind power characterizations can be deduced from 
the relationship between wind power and wind speed, and 
the operating ranges of wind power outputs are subdivided 
into 16 different small intervals in Table 5 of Appendix. 
For the convenience of calculation, wind power scenarios 
are simplified as 5 scenarios via the method of synchronous 
back-substitution subduction, and their probabilities as well 
as different working situations are specially described in 
Table 1.

In terms of the uncertainties of carbon reduction modes, 
the 6-unit test system will have as much as 57 different 
scenarios for carbon reduction cooperation through the 
exhaustive method, which indeed increases the complex-
ity of optimization. To simplify the calculation, it is nec-
essary to choose some representative scenarios according 
to units’ emission characteristics. As for the characteristic 
differences between 6 thermal power units, their carbon 
emissions per-unit generating capacity are shown in Fig. 3. 
Moreover, their emission intensities are sorted in ascend-
ing order: Unit6<Unit3<Unit5<Unit4<Unit2<Unit1. 

Table 1  Statistical characteristics for reduced scenarios

Scenario Wind speed inter-
val (m/s)

Wind power (MW) P(s)

1 (0, 1.25) 0 0.21
2 (1.25, 2.5) 0 0.338
3 (2.5, 3.75) 17.857 0.218
4 (3.75, 6.25) 285.714 0.177
5 (6.25, 20) 1000 0.057

Table 2  Operating costs 
and carbon emissions 
for cooperative and non-
cooperative mode

Coop1 r 0 0.1 0.2 0.3 0.4 0.5
Costs ($) 83,231.04 86,120.05 89,606.63 93,538.35 98,244.81 104,911.35
Emissions (lb) 791.36 720 640 560 480 400

Coop2 r 0 0.1 0.2 0.3 0.4 0.5
Costs ($) 82,992.05 86,120.05 89,606.63 93,538.35 98,244.81 104,911.35
Emissions (lb) 797.49 720 640 560 480 400

Coop3 r 0 0.1 0.2 0.3 0.4 0.5
Costs ($) 81,130.32 84,370.75 88,018.4 92,284.49 97,712.52 104,902.58
Emissions (lb) 797.49 720 640 560 480 400

Coop4 r 0 0.1 0.2 0.3 0.4 0.5
Costs ($) 78,963.3 82,675.67 87,087.62 91,978 97,704.48 104,902.58
Emissions (lb) 797.49 720 640 560 480 400

Coop5 r 0 0.1 0.2 0.3 0.4 0.5
Costs ($) 78,849.09 82,675.67 87,087.62 91,978 97,704.48 104,902.58
Emissions (lb) 800 720 640 560 480 400

Non-coop-
erative 
mode

r   0 0.1 0.2 0.3 0.4 0.5
Costs ($) 85,435.27 87,586.01 90,492 93,905.78 98,244.81 104,911.35
Emissions (lb) 791.36 720 640 560 480 400
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Based on this, to meet the robustness of the power system 
affected by the uncertainties of carbon reduction modes, 
units with poorer performances in carbon emission reduc-
tion are selected into representative scenarios for carbon 
reduction cooperation: Unit1 only cooperate with Unit2 
( Coop1 scenario with 2 units), Unit1, Unit2, and Unit4 can 

cooperate with each other ( Coop2 scenario with 3 units); 
Unit1, Unit2, Unit4, and Unit5 can cooperate with each 
other ( Coop3 scenario with 4 units); Unit1, Unit2, Unit4, 
Unit5, and Unit3 can cooperate with each other ( Coop4 
scenario with 5 units); and all units can cooperate with 
each other ( Coop5 scenario with 6 units).

Fig. 2  Wind speed distribution

Fig. 3  Unit emission between different generators
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Robustness and economy of the model

Having finished the determinations of scenarios for wind 
power and carbon reduction cooperation, the distributed 
robust optimization model proposed could be optimized by 
NSGA-II through MATLAB programming (Li et al. 2015). 
In particular, the optimal front-end individual coefficient is 
set to 0.6, and the population size is fixed at 100 to guaran-
tee the diversity and convergence of evolution population 
in optimization process. Besides, the maximum number of 
iterations is fixed at 200, the maximum evolutionary algebra 
is set to 2000, while the deviation of fitness function value is 
set as 0.01. Due to the research focus of this section, several 
general carbon reduction modes might as well be selected 
in the carbon emission rights constraint, where r is fixed 
at 0. In addition, the allocations of initial carbon emission 
rights through proportional method are offered in Table 6 of 
Appendix. To test the robustness and economy of the pro-
posed model, comparisons of operating costs from the tra-
ditional robust optimization model, the stochastic program-
ming model and the distributed robust optimization model 
are depicted in Fig. 4.

Whatever the carbon reduction mode selected, the oper-
ating cost of every distributed robust optimization model 
( S�

= 2, 3, 4 ) lies in the middle of the other two models: the 
traditional robust optimization model ( S�

= 1 ) and the sto-
chastic programming model ( S�

= 5 ) in Fig. 4. The reasons 
for this phenomenon are as follows: the traditional robust 
method is to search the total cost under the worst wind 

power scenario, whose decision-making results focus more 
on robustness. While the stochastic programming method 
is used to calculate the expected cost with all various wind 
power scenarios, whose decision-making results concentrate 
more on economy. Combining the advantages of above two 
models, the distributed robust optimization model integrat-
ing several worse scenarios can achieve a good compromise 
between robustness and economy of the power system.

To verify the accuracy of the optimizations, Fig. 5 repre-
sents the scheduled power generation of all units including 
one wind farm for an optimal solution under various carbon 
reduction requirements. To be sure, without loss of general-
ity, S′ is set to 3 and non-cooperative mode is selected.

From Fig. 5, the optimal dispatching solutions for ther-
mal and wind power units fluctuate with the parameter r 
increasing from 0 to 0.5, which puts added pressure on car-
bon emission reduction in the wind power integrated system. 
Concrete manifestations are thermal power units with lower 
generation costs undertake more scheduled power output, 
such as Unit1 and Unit3, while Unit4 and Unit6 undertake 
less. As the carbon reduction requirement is getting more 
and more rigorous, wind power unit takes on more and more 
scheduled power output (from 734 to 952 MW), namely 
higher and higher proportions of load demand (from 42.39 
to 54.98%). So far, low-carbon power dispatching strate-
gies with robustness and economy could be obtained by the 
distributed robust optimization model, which proves to be 
effective in coping with wind power uncertainties and reduc-
ing operating costs.

Fig. 4  Cost comparisons between different models

20989Environmental Science and Pollution Research  (2023) 30:20980–20994

1 3



Robustness and environment of the model

Although the robustness and economy of wind power inte-
grated system have been guaranteed under the influence of 
wind power uncertainties, higher proportions of wind power 
will be unfavorable for the system reliability according to 
the present technical conditions, especially under stricter 
carbon reduction requirements. In this context, thermal 
power units also need to tap greater potential for carbon 
emission reduction through the cooperative way. Specifi-
cally, faced with the uncertainties of carbon reduction mode, 
5 representative scenarios for the sake of system robust-
ness have been determined in “Scenario determinations for 
uncertainties” section. To compare the effects of different 
carbon reduction mode, take S�

= 3 as an example, as the 
parameter r  increases, fluctuations in operating costs and 
carbon emissions of cooperative and non-cooperative mode 
are presented in Table 2.

As illustrated in Table 2, the operating costs of coopera-
tive mode are significantly less than that from non-cooper-
ative mode through the vertical comparison, although there 
are some differences between scenarios for carbon reduction 
cooperation. And the rank of superior mode with lower oper-
ating costs has the following sequence: Coop5 mode, Coop4 
mode, Coop3 mode, Coop2 mode, Coop1 mode, and non-
cooperative mode. Moreover, cooperative mode’s carbon 
emissions are as much as that from non-cooperative mode, 
and they all satisfy the same carbon reduction requirements. 
The reason for this phenomenon is that more and more effi-
cient thermal power units participate in the cooperative 

mode with the expansion of cooperation, which naturally 
reduces operating costs and relieves carbon reduction pres-
sure. In the horizontal comparison, the negative externality 
costs gradually improve as r increases from 0 to 0.5, no mat-
ter what kind of carbon reduction mode, which is mainly due 
to the proportion rising of wind power with the increases 
of carbon reduction pressure. To further analyze the above 
conclusion, Fig. 6 quantitatively depicts all units’ scheduled 
power generation for cooperation scenarios under various 
carbon reduction requirements.

As can be seen from Fig. 6, the proportion of wind power 
has been falling contrasted with the non-cooperative mode 
in Fig. 5, and these changes are more explicit under lower 
carbon reduction requirement. To vividly illustrate such 
differences, Fig. 7 describes the comparisons of scheduled 
power generation among several carbon reduction modes 
under various carbon reduction requirements.

From Fig. 7, carbon reduction modes based on represent-
ative scenarios are sorted by wind power proportion (larg-
est to smallest): non-cooperative mode, Coop mode, Coop2 
mode, Coop3 mode, Coop4 mode, and Coop5 mode. With the 
expansion of carbon reduction cooperation, more and more 
scheduled power generation could be undertaken by thermal 
power units under the same carbon reduction requirement, 
which can tap greater potential of thermal power units for 
carbon emission reduction and facilitate the achievement of 
carbon reduction targets. Furthermore, the decline in wind 
power proportion (as low as 37.88%) also ensures the robust-
ness of wind power integrated system to a certain extent. 
In brief, low-carbon power dispatching strategies with 

Fig. 5  Scheduled power generation for non-cooperative mode
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robustness and environment could be achieved through the 
distributed robust optimization model, which proves to be 
effective in dealing with the uncertainties of carbon reduc-
tion modes and reducing carbon emissions.

Conclusion and recommendation

To deal with the uncertainties of wind power and car-
bon reduction modes for thermal power encountered in 

Fig. 6  Scheduled power generation for cooperative mode

Fig. 7  Comparisons among several carbon reduction modes under various r
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low-carbon power dispatch, this paper firstly constructed a 
distributed robust optimization model and designed relevant 
solutions. Next, taking the effects of cost compression, car-
bon emission reduction, and uncertainty handling as evalu-
ation criteria, this study has found the right balance sepa-
rately between two types of contradictions: robustness and 
economy, robustness and environment of the wind power 
integrated system imported with carbon reduction coopera-
tion, and finally put forward low-carbon power dispatching 
strategies taking into account robustness, economy and envi-
ronment comprehensively.

The meaningful results obtained are mainly in the fol-
lowing two aspects: Firstly, combining the advantages of 
the traditional robust optimization model and the stochas-
tic programming model, the distributed robust optimization 
model integrating several worse scenarios of wind power in 
the objective cost function can achieve a good compromise 
between robustness and economy of the power system, which 
proves to be effective in coping with wind power uncertainties 
and reducing operating costs. Secondly, to ensure both robust-
ness and environment of the power system, some representa-
tive scenarios in the cooperative mode for thermal power are 

selected in the carbon emission rights constraint of the dis-
tributed robust optimization model, which proves to be valid 
in dealing with the uncertainties of carbon reduction modes 
and reducing carbon emissions. Specifically, carbon reduction 
cooperation in various forms is demonstrated to tap greater 
potential of thermal power units for carbon emission reduc-
tion, and further facilitate the achievement of carbon reduc-
tion targets. Based on this, low-carbon power dispatching 
strategies combining robustness, economy, and environment 
could be achieved through the proposed model and method, 
which will be helpful to cope with the disturbances from the 
uncertainties of wind power and carbon reduction modes for 
thermal power more scientifically and reasonably.

Aiming at two types of uncertainty mentioned above, this 
paper tries to solve the distributed robust optimization prob-
lem for low-carbon dispatch of wind-thermal power under 
uncertainties. However, the above problem may be influ-
enced by some other uncertainties, and this will require that 
we carry on investigating their characterizations and then 
exploring reasonable coping style, which may coordinate 
low-carbon power dispatching strategies from more com-
prehensive perspectives.

Table 3  Parameters of thermal 
power units

Unit 1 2 3 4 5 6

Tmin
f

(MW) 100 50 80 50 50 50
Tmax
f

(MW) 500 200 300 150 200 120
af ($/(MW)2) 0.007 0.0095 0.009 0.009 0.008 0.0075
bf ($/MW) 7 10 8.5 11 10.5 12
df ($) 240 200 220 200 220 190
gf ($) 130 110 120 110 120 100
hf (Rad/MW) 0.0315 0.03 0.045 0.03 0.04 0.0052
�f (lb/(MW)2) 0.00583 0.00461 0.00381 0.00513 0.00419 0.00319
�f (lb/MW) 0.32767 0.32767 − 0.54551 − 0.54551 − 0.51116 − 0.51116
�f (lb) 13.85932 15.85932 40.2669 40.2669 42.89553 42.89553

Table 4  Parameters of wind power units

vin(m/s) vr(m/s) vout(m/s) wrated(MW)

3 10.8 25 100

Appendix

See Tables 3, 4, 5 and 6
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