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Abstract
Increasing evidence indicates that groundwater can contain high dissolved phosphorus (P) concentrations, thereby contrib-
uting as a potential pollution source for surface waters. However, limited quantitative knowledge is available concerning 
groundwater P fluxes to rivers. Based on monthly hydrochemical monitoring data for rivers and groundwater in 2017–2020, 
this study combined baseflow separation methods and a load apportionment model (LAM) to quantify contributions from 
point sources, surface runoff, and groundwater/subsurface runoff to riverine P pollution in a typical agricultural watershed 
of eastern China. In the studied Shuanggang River, most total P (TP) and dissolved P (DP) concentrations exceeded targeted 
water quality standards (i.e., TP ≤ 0.2 mg P L−1, DP ≤ 0.05 mg P L−1), with DP (76 ± 20%) being the major riverine P form. 
Observed DP concentrations in groundwater were generally higher than those of river waters. There was a strong correlation 
between river and groundwater P concentrations, implying that groundwater might be a considerable P pollution source to 
rivers. The nonlinear reservoir algorithm estimated that baseflow/groundwater contributed 66–68% of monthly riverine water 
discharge on average, which was consistent with results estimated by an isotope-based sine-wave fitting method. The LAM 
incorporating point sources, surface runoff, and groundwater effectively predicted daily riverine TP [calibration: coefficient of 
determination (R2) = 0.76–0.82, Nash–Sutcliffe Efficiency (NSE) = 0.61–0.77; validation: R2 = 0.88–0.98, NSE = 0.54–0.64] 
and DP loads (calibration: R2 = 0.73–0.84, NSE = 0.67–0.72; validation: R2 = 0.88–0.97, NSE = 0.56–0.83). The LAM esti-
mated point source, surface runoff, and groundwater contributions to riverine loads were 15–18%, 14–35%, and 46–70% 
for TP loads and 7–9%, 10–32%, and 59–82% for DP loads, respectively. Groundwater was the dominant riverine P source 
due to long-term accumulation of P from excess fertilizer and farmyard manure applications. The developed methodology 
provides an alternative method for quantifying P pollution loads from point sources, surface runoff, and groundwater to riv-
ers. This study highlights the importance of controlling groundwater P pollution from agricultural lands to address riverine 
water quality objectives and further implies that decreasing fertilizer P application rates and utilizing legacy soil P for crop 
uptake are required to reduce groundwater P loads to rivers.

Keywords  Phosphorus · Nonpoint source pollution · Load apportionment model · Groundwater · Surface runoff · 
Baseflow · Eutrophication

Responsible Editor: Xianliang Yi

 *	 Dingjiang Chen 
	 chendj@zju.edu.cn

1	 College of Environmental & Resource Sciences, Zhejiang 
University, Hangzhou 310058, Zhejiang Province, China

2	 Department of Natural Resources and Environmental 
Sciences, University of Illinois Urbana-Champaign, Urbana, 
IL 61801, USA

3	 Ministry of Education Key Laboratory of Environment 
Remediation and Ecological Health, Zhejiang University, 
Hangzhou 310058, China

4	 Zhejiang Provincial Key Laboratory of Agricultural 
Resources and Environment, Zhejiang University, 
Hangzhou 310058, China

5	 Zhejiang Ecological Civilization Academy, Anji 313399, 
China

6	 Academy of Ecological Civilization, Zhejiang University, 
Hangzhou 310058, China

/ Published online: 15 October 2022

Environmental Science and Pollution Research (2023) 30:19873–19889

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-022-23574-9&domain=pdf


1 3

Introduction

Increasing anthropogenic phosphorus (P) inputs have sub-
stantially elevated riverine P loads worldwide, resulting 
in a myriad of environmental issues including eutrophica-
tion, hypoxia, and harmful algal blooms in downstream 
lakes, estuaries, and coastal waters (Anderson et al. 2002; 
Gao and Zhang 2010; Meinikmann et al. 2015). Riverine P 
may originate from a range of sources, such as industrial, 
residential, and animal wastewaters (namely point source 
(PS)), as well as agricultural runoff and leaching (namely 
nonpoint source (NPS)) (Chen et al. 2016). Due to their 
different pollution processes and control strategies, it is 
necessary to identify P pollution loads derived from PS 
and NPS for a given river.

Many lumped watershed models (e.g., export coefficient 
model, load apportionment model, and SPARROW Johnes 
1996; Li et al. 2015)) and complex mechanistic models 
(e.g., AGNPS, HSPF, and SWAT Chen et al. 2015; Moriasi 
et al. 2007; Shrestha et al. 2008)) have been developed 
to identify riverine P sources at the watershed scale. The 
load apportionment model (LAM) was developed based on 
the principle that the PS pollution load is independent of 
changing runoff volume, whereas the NPS pollution load 
is appreciably increased with runoff volume (Bowes et al. 
2009; Rattan et al. 2021). Based on the hydrological differ-
ences affecting PS and NPS, the LAM is able to quantify 
PS and NPS pollution loads using a power-law function 
of flow (Bowes et al. 2008, 2009). Compared with other 
source apportionment models, the LAM does not require 
detailed watershed attribute information, but only a dataset 
comprised of paired P concentrations and river discharge 
(Greene et al. 2011; Jarvie et al. 2010). In addition, the 
LAM has few parameters and is relatively simple in format 
and application, making the calibration process straight-
forward. Once the LAM has been calibrated to produce 
an acceptable fit to the river monitoring record, its param-
eters can be applied to analyze high temporal-resolution 
river discharge data (Bowes et al. 2009; Chen et al. 2013), 
which is critical for determining nutrient sources and loads 
during the most sensitive times of the year when eutrophi-
cation is most likely to occur (Anderson et al. 2002). The 
LAM methodology has been successfully applied to a wide 
range of watersheds in England (Chen et al. 2017, 2016; 
Meinikmann et al. 2015), Ireland (Greene et al. 2011; 
Mockler et al. 2017), Canada (Rattan et al. 2021), and 
China (Chen et al. 2013).

For a given watershed or catchment, NPS nutrient 
pollution loads are primarily conveyed to rivers by surface 
runoff and groundwater flow (Meinikmann et al. 2015). 
In general, farmland soil P loss to adjacent waters is 
mainly through surface runoff rather than subsurface or 

groundwater flow due to limited P mobility through soil 
profiles (Jiao et al. 2011). However, increasing evidence 
indicates that soil P loss via subsurface or groundwater 
runoff can contribute substantial dissolved P loads to 
streams and rivers. For example, P loads from groundwater 
were found to account for more than 40% of the total P 
export in Northern Germany, south-west Ireland, and 
Iowa, respectively (Meinikmann et al. 2015; Mellander 
et  al. 2016; Smith et  al. 2015). Other investigations 
found that dissolved P concentrations in groundwater 
were much higher than in receiving surface waters and 
even exceeded the typical water quality criteria used to 
assess risk to surface water systems (Kannel et al. 2008). 
In general, groundwater could contribute a high P flux to 
rivers in agricultural watersheds with long-term excessive 
P fertilizer applications (i.e., soil P accumulation), manure 
application, well-drained or intensively cultivated soils, 
low dissolved oxygen concentrations in groundwater 
(Kannel et al. 2008; Wang et al. 2003; Zhou et al. 2005) 
and watersheds with good connectivity between surface 
and groundwater (McDowell et al. 2015). The buildup 
of legacy P in soils and groundwater due to historical 
excess inputs of anthropogenic P can contribute a long-
term continuous source for leaching P to surface water 
(Chen et  al. 2018), thereby inducing algae blooms in 
sensitive seasons (Anderson et al. 2002). Therefore, it is 
warranted to address the contributions of surface runoff 
and groundwater flow to riverine P pollution loads to guide 
the development of efficient P management strategies in 
agricultural watersheds (Kannel et al. 2008). However, 
studies concerning quantifying groundwater or baseflow P 
contributions to riverine P exports in Chinese watersheds 
are still limited (He and Lu 2021; Guan et  al. 2022). 
In addition, these studies usually lacked the necessary 
validations for estimated surface runoff and groundwater 
components. More efforts are required to quantitatively 
identify contributions of surface runoff and groundwater/
baseflow to surface water P pollution.

Based on monthly hydrochemical monitoring data of rivers 
and groundwater in 2017–2020, this study integrated baseflow 
separation methods with a LAM to quantify the contribution 
of groundwater to riverine P pollution in a typical agricultural 
watershed in eastern China. The nonlinear reservoir algorithm 
(NRA) and water stable isotope-based sine-wave fitting (ISF) 
method were combined to identify the monthly contributions 
of surface runoff and groundwater to river discharge. Then 
the LAM was adopted to quantify the contributions of 
point sources, surface runoff, and groundwater to riverine P 
loads. This study improves our quantitative understanding 
of groundwater and surface water P pollution dynamics, 
providing critical information for guiding the development 
of efficient agricultural NPS pollution control practices.
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Material and methods

Study area

The Shuanggang River (120.82°–121.02°E and 
28.88°–29.04°N) is located in the subtropical region of 
eastern China (Fig. 1) and has a watershed area of 163 
km2. It is a major tributary of the Jiaojiang River, one of 
eight major river systems in Zhejiang Province that finally 
flows into Taizhou Estuary and the East China Sea. The 
estuary and coastal area commonly experience hypoxia 
(Gao and Zhang 2010; Li et al. 2007). Climate is sub-
tropical monsoon with an average annual temperature of 
17.0 °C. Average monthly precipitation and evapotranspi-
ration were 129.8 mm and 86.2 mm, respectively, during 
the study period (October 2017–December 2020, Fig. 2). 
Rainfall distribution is temporally heterogeneous and 
mainly occurs during May–June and the typhoon season 
in July–October. Annual average water discharge was 5.37 
m3 s−1 at the watershed outlet (Table 1).

Population density and domestic animal density of the 
Shuanggang River watershed in 2019 were 399 km−2 and 
94 km−2, respectively. Agricultural land averaged ~ 36% 
of the total watershed area in 2020, with forest and 
residential lands contributing ~ 55% and ~ 9%, respectively 
(Table 1). Among the three tributaries investigated in this 

study, T1 had the highest percentages of agricultural land 
(34%) and paddy fields (22%), whereas T3 had the lowest 
farmlands (Table 1). Rice, corn, vegetables, waxberry, and 
oranges are the major cultivated crops. Watershed soils 
are dominated by highly weathered and acidic soils that 
are predominantly classified as Oxisols and Ultisols (Chen 
et al. 2016). As a typical agricultural watershed, > 98% 
of total P input (~ 51.9 kg P ha−1 year−1 on agricultural 
soils) in the Shuanggang River watershed is from synthetic 
fertilizer and farmyard manure; the ratio of P application 
rates between these two fertilizer sources is 2.3:1 (Chen 
et al. 2017).

Water quality sampling and analyses

River water samples were collected on a monthly basis 
from October 2017 to December 2020 from upstream 
to downstream (4 mainstream, 3 tributaries, and 2 
groundwater sites) in the Shuanggang River watershed 
(Fig. 1). Surface water samples were collected at 3 points 
across the river channel cross section and composited 
to obtain a single depth-width integrated sample. Two 
groundwater sampling wells were established 100–200 m 
from the river channel near M1 (G1: ~ 3-m depth) and T2 
(G2: ~ 3-m depth). Groundwater samples were collected 
using a peristaltic pump to purge a minimum of 3 well 

Fig. 1   Distribution of land-use types and water quality sampling sites in the Shuanggang River watershed
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volumes of water before collecting a representative 
sample for analysis. Rainfall water samples were 
collected near T2 on an event basis and composited into 
a volume-weighted, monthly sample that was used for 
water chemistry and stable isotope analysis. All water 
samples were immediately sealed and stored at 4 °C to 
prevent fractionation from evaporation. Water electrical 
conductivity (EC) and chloride ion (Cl−) concentration 
were measured in the field using YSI electrodes (Xylem, 
NY, USA). River water width, depth, and flow rates 
were determined at the time of sampling using a 6526 
Starf low Ultrasonic Doppler (Unidata, O’Connor, 
Western Australia).

All river water samples were analyzed within 24 h of col-
lection for total phosphorus (TP) and dissolved phosphorus 
(DP, water samples filtered by 0.45-μm microfiltration mem-
brane) concentrations using the ammonium molybdate spec-
trophotometry method with a detection limit of 0.01 mg P 

L−1 (GB 11,893–89, Chen and Arai 2020). Other forms of P 
(OFP) were estimated as the difference between TP and DP, 
which includes particulate and colloidal (> 0.45 µm) bond P 
(Kovar and Pierzynski 2009; Liu et al. 2014). Water isotopic 
(i.e., δ18O-H2O and δ2H-H2O) analysis was carried out using 
an isotope-ratio mass spectrometer (Delta V Advantage, 
Thermo Scientific). Stable isotopic compositions for 18O 
and 2H were reported in δ notation (‰, parts per thousand) 
based on Vienna Standard Mean Ocean Water (VSMOW) 
(e.g., δ18O = [(18O/16Osample)/(18O/16OVSMOW)-1] × 1000‰) 
(Brand et  al. 2014). Analytical precisions were ± 0.2‰ 
and ± 1‰ for δ18O and δ2H, respectively.

The methodology for riverine P source 
apportionment

This study adopted the nonlinear reservoir algorithm 
(NRA) and isotopically based sine-wave fitting (ISF) 

Fig. 2   Monthly river water 
discharge (at site M4), mean 
temperature, precipitation, and 
evaporation in the Shuanggang 
River watershed from October 
2017 to December 2020. Blue 
bars represent the monthly 
water discharge; orange dots 
represent the monthly precipita-
tion; green squares represent the 
monthly evaporation

Table 1   Land-use distribution 
and river water discharge for 
the seven catchments in the 
Shuanggang River watershed

M mainstream, T tributary, D dry land, PF paddy field, F forest land, R residential land, PD population 
density, DA domestic animal density (the number of each type of domestic animal is converted into the 
equivalent number of pigs according to their P excretion rates)

Catchment Area D PF F R PD DA Water discharge Topo-
graphic 
gradient

(km2) (%) (%) (%) (%) (Capita km−2) (m3 s−1) (°)

M1 13 19 17 60 3 442 47 1.16 4.4
M2 23 19 19 54 4 254 96 1.44 7.2
M3 61 15 14 64 4 468 84 2.04 4.3
M4 163 18 18 55 6 589 63 5.37 4.9
T1 31 12 22 59 5 501 45 1.03 3.2
T2 35 17 14 64 4 122 60 1.14 7.3
T3 9 12 11 73 2 398 209 0.31 2.7
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method to determine surface runoff and groundwater flow/
baseflow components. Based on the estimated monthly sur-
face runoff and groundwater flow components, the load 
apportionment model (LAM) was used to quantify contri-
butions from point sources, surface runoff, and groundwa-
ter/subsurface flow to riverine P pollution (Fig. 3).

Surface runoff and groundwater components

The NRA method was conducted for mainstream sampling 
sites (e.g., M2, M3, and M4) based on the continuous stream 
water discharge records provided by the local Hydrology 
Bureau. Then the ISF method was conducted for the entire 

Fig. 3   The methodology framework for estimating point source, surface runoff, and groundwater contributions to riverine phosphorus load
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watershed (e.g., M4) to validate the NRA results using 
monthly water isotope signals in precipitation and river 
water during the study period.

The nonlinear reservoir algorithm  The nonlinear reservoir 
algorithm (NRA, Wittenberg 1999) separates river discharge 
into baseflow and direct runoff. Baseflow is defined as the sus-
taining flows in a river during low-flow periods, which includes 
groundwater and a portion of the delayed shallow subsurface 
flow (He et al. 2016). The NRA assumes a nonlinear storage–
discharge relationship to describe the baseflow recession:

where storage (S) and discharge (Q) are in m3 and m3 s−1, 
respectively, the parameter a is related to basic watershed 
characteristics (e.g., porosity and hydraulic conductivity) 
and morphological factors, and parameter b controls the 
concavity of the recession curve, usually ranging from 0 
to 1 (He et al. 2016; Wittenberg 1999). Combining Eq. (1) 
with the continuity equation of a reservoir without inflow, 
dS/dt = -Q, yields the recession curve equation (Eq. (2)) for 
the nonlinear reservoir starting at any initial discharge Q0.

The baseflow at t-Δt can be further estimated as:

The coefficient of variations (CV, Eq.  (4)) between 
observed records (Q) and the fitted values (Qcalc) with the 
NRA were used to select typical recession curves for reces-
sion analysis (Aksoy &Wittenberg 2011). The data for the 
recession curve with CV less than 0.1 would be further used 
for the subsequent parameter estimation.

By systematically varying parameter b, the parameters (a 
and b) in the nonlinear reservoir algorithm were calibrated 
using an iterative least-square method:

Calibration of typical recessions was conducted to 
determine parameter b (He et al. 2016). Based on the 
calibration of typical recessions, the parameter b varied 
between 0.34 and 0.85 with a mean and median of 0.50, 
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which was consistent with the value (b = 0.5) recom-
mended by Wittenberg (1999). As a result, the exponent 
b was set as a constant of 0.5. With a fixed b = 0.5, the 
parameter a for 91, 91, and 79 recession events during 
2010–2020 in M2, M3, and M4 was estimated according 
to Eq. (5). Based on the seasonal variations of parameter 
a, Fourier fitting was conducted to determine monthly 
values of parameter a for further estimation of baseflow 
using MATLAB software (Ver. R2020a, MathWorks, 
Natick, USA). Daily surface runoff was predicted by 
subtracting the daily baseflow from the daily river dis-
charge. Monthly and annual surface runoff and ground-
water flow/baseflow were estimated as the sum of daily 
surface runoff and baseflow, respectively.

The isotope‑based sine‑wave fitting method  The isotope-
based sine-wave fitting (ISF) method separates river dis-
charge into young (Fyw) and old (Fow) water fractions based 
on the damping and phase-shifted isotopic signals between 
precipitation and river water. Fyw is defined as the propor-
tion of the transit-time distribution younger than a threshold 
age (~ 0.2 year) (Kirchner 2016). The Fyw includes overland 
flow and rapid subsurface flow paths (e.g., subsurface lateral 
flow through upper soil horizons), whereas the Fow includes 
slow subsurface flow paths (e.g., deeper soil horizons and 
vadose zone) and groundwater. Sine wave regressions on the 
δ18O (‰) time series (McGuire and McDonnell 2006) were 
performed to determine the cosine and sine coefficients for 
precipitation and streamflow:

In Eq. (6), Cp(t) and Cs(t) are the tracer signal (δ18O) for 
precipitation and streamflow at time t, f is the frequency of 
the annual fluctuations (set to 1/365 days), kP and kS repre-
sent the vertical shift of the sine wave, and ap, bp, as, and bs 
are coefficients for determining the amplitude (i.e., AP and 
AS) of the seasonal cycles.

As indicated by Kirchner (2016), Fyw is equal to the 
amplitude ratio AS/AP. Fow was calculated as the total water 
component minus Fyw:

An uncertainty analysis was further conducted to deter-
mine the uncertainty range for Fyw following Song et al. 

(6)
Cp(t) = ap cos (2�ft) + bp sin (2�ft) + kp
Cs(t) = as cos (2�ft) + bs sin (2�ft) + ks
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(2017) and Stockinger et al. (2016). The 95% confidence 
limits for the coefficients (i.e., ap, bp, as, or bs) obtained from 
the sine wave regressions were used as parameter boundaries 
for 10,000 Monte Carlo simulations to estimate the range of 
Fyw values. The sine-wave fitting and Monte Carlo simula-
tions were conducted in MATLAB software.

Application of the load apportionment model (LAM)

In the conventional LAM, point (PS) and nonpoint (NPS) 
source pollution loads are identified as a constant param-
eter and a power-law function of river discharge, respec-
tively (Bowes et al. 2008, 2009). In this study, we further 
apportioned the NPS pollution load into surface runoff and 
groundwater components using a power-law function of 
surface runoff and groundwater flow, respectively. There-
fore, riverine P load at the outlet on the ith month (Li, kg P 
month−1) can be expressed as:

where Qs,i and Qg,i are monthly surface runoff and ground-
water flow on the ith month (m3 month−1), respectively, and 
a, b, c, d, and e are unknown fitting parameters. In Eq. (10), 
the parameter a represents the PS-contributed pollution load 
(kg P month−1) based on the assumption that the P load 
from PS pollution is discharged from domestic, industrial, 
and animal wastewater and remains constant throughout 
the study period. The second term represents the NPS P 
load from surface runoff (kg P month−1) and is based on 
the consideration that the surface runoff-contributed NPS 
P load is flow-dependent and increases with increasing sur-
face runoff volume. The third term represents the NPS P 
load from groundwater (kg P month−1) and assumes that the 
groundwater-contributed NPS P load is flow-dependent and 
increases with increasing groundwater flow volume.

Using monthly river discharge and riverine TP/DP 
loads, the Markov chain Monte Carlo (MCMC) program 
was implemented to calibrate parameters (a, b, c, d, and 
e) for sampling sites M2, M3, and M4 using the MAT-
LAB software (Vrugt 2016). To provide realistic solu-
tions, parameters a, b, and d values were set to be ≥ 0, as 
P loads from all three sources must be non-negative. In 
addition, parameter c and e values were set to be ≥ 0, as 
NPS P inputs from surface runoff and groundwater flow 
should not decrease with increasing water flow (Rattan 
et al. 2021). For calibration purposes, all parameters were 
assumed to be normally distributed (Chen et al. 2019). 
The MCMC simulation was performed using 20,000 runs 
to find the optimum parameter set that maximized the 
log-likelihood function. At each sampling site, 70% of 
the available data was used for model calibration, with the 

(10)Li = a + bQc
s,i
+ dQe

g,i

remaining 30% retained for validation. Model efficiency 
was evaluated using correlation of determination (R2) 
and Nash–Sutcliffe Efficiency (NSE) coefficient metrics 
(Nash and Sutcliffe 1970). Uncertainties associated with 
predictions of riverine P loads were expressed by 95% 
confidence intervals.

Finally, using the validated LAM models for TP and DP, 
monthly riverine TP or DP loads (kg P month−1) derived 
from point sources, surface runoff, and groundwater were 
estimated as a, bQc

s,i
 , and dQe

g,i
 , respectively. Monthly river-

ine OFP loads derived from point sources, surface runoff, 
and groundwater were estimated as the difference between 
DP and TP loads. Annual point sources, surface runoff, and 
groundwater contributions to riverine TP/DP/OFP loads 
were calculated as the sum of monthly loads over a given 
time period.

Other data sources and statistical analysis methods

Daily precipitation and evaporation for the Shuanggang 
River watershed and daily river discharge for the outlet in 
2017–2020 were obtained from the local Weather Bureau 
and Hydrology Bureau, respectively. We categorized the 
water year into three different flow regimes according to 
monthly average water discharge: high flow regime (upper 
30% of the flow regime), low flow regime (lower 30% of 
the flow regime), and median flow regime (30–70% of the 
flow regime) (Hu et al. 2018). Land-use distribution and 
catchment characteristics were derived from a watershed 
DEM (30-m resolution) using ArcGIS 10.8. Analysis of 
variance (ANOVA), independent sample t-tests, and regres-
sion analyses were performed using SPSS (Ver. 26.0, SPSS, 
Chicago, USA). One-way ANOVA was conducted to reveal 
temporal and spatial variations in P concentrations across 
the Shuanggang River watershed. Univariate ANOVA was 
used to assess differences between P concentrations in river 
water and groundwater. An independent sample t-test was 
conducted to examine the parameter values for the LAM. 
Regression analyses were used to assess relationships among 
variables.

Results and discussion

P dynamics in river water and groundwater

Average TP, DP, and OFP concentrations for the 7 river 
sampling sites in the Shuanggang River watershed were 
0.12, 0.09, and 0.03 mg P L−1 in 2017–2020, respectively. 
A total of 89% of riverine TP concentrations exceeded tar-
geted water quality standards (i.e., Grade III, ≤ 0.2 mg P 
L−1) in terms of Chinese National Environmental Quality 
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Standards for Surface Water (GB 3838–2002). Similarly, 
69% of DP concentrations exceeded the critical concen-
tration of 0.05 mg P L−1 established as the maximum DP 
concentration to reduce the risk of excessive algal growth 
(Li et al. 2010). These concentrations were much higher 
than observed average riverine TP (0.03 mg P L−1) and DP 
(0.02 mg P L−1) concentrations in a nearby forest-dominated 
catchment (agricultural land + residential land < 4%, Hu 
et al. 2020a, b, c) and imply the substantial P contribution 
from agricultural activities. Riverine DP (76 ± 20%) was 
the major component of TP, which was significantly higher 
than OFP (24 ± 20%) across all sampling sites. This implies 
that DP from PS pollution or groundwater flow should be 
major potential cause of river P pollution (Kannel et al. 
2008). Observed electrical conductivity (EC) and Cl− con-
centrations in river water (EC: 84.0–138.2 μS cm−1, Cl−: 
2.15–5.03 mg L−1) and in groundwater (EC: 131.3–232.0 μS 

cm−1, Cl−: 2.36–4.56 mg L−1) sampling sites were also much 
high than those observed in a nearby forest-dominated catch-
ment (EC: 47.6 μS cm−1 and Cl−: 1.25 mg L−1 in river water; 
EC: 45.1 μS cm−1 and Cl−: 0.93 mg L−1 in groundwater, Hu 
et al. 2020a, b, c). In addition, significant correlations were 
observed between DP concentrations with EC (p < 0.001, 
r = 0.258) and Cl− concentrations (p = 0.012, r = 0.166) in 
river water. These higher EC values and Cl− concentrations 
as well as the positive correlation between DP concentration 
and EC in the Shuanggang River watershed further indicated 
potential contributions of sewage and groundwater to river 
water pollution in terms of previous studies (Yu et al. 2019).

Longitudinally, average TP and DP concentrations 
increased by 50% from upstream (M1) to downstream (M4) 
along the mainstream (Table 2) due to the increasing cumu-
lative P inputs from PS and NPS inputs. Average TP, DP, 
and OFP concentrations of tributaries were all significantly 

Table 2   Spatial and seasonal 
variations of riverine total 
phosphorus (TP), dissolved 
phosphorus (DP), and forms of 
P (OFP) concentrations in the 
Shuanggang River watershed

P concentrations are expressed as “mean ± standard error.” The lowercase letters (“a”, “b,” and “c”) denote 
the differences of each P concentration (TP, DP, and OFP) among different flow regimes for each sampling 
site. The uppercase letters (“A”, “B,” and “C”) denote the differences of annual averages for each P concen-
tration across different sampling sites

Sampling sites P forms High flow regime 
(mg P L−1)

Median flow regime 
(mg P L−1)

Low flow regime 
(mg P L−1)

Annual  
(mg P L−1)

M1 TP 0.07 ± 0.02a 0.09 ± 0.01a 0.07 ± 0.01a 0.08 ± 0.01C

DP 0.05 ± 0.01a 0.07 ± 0.01a 0.04 ± 0.01a 0.06 ± 0.01C

OFP 0.02 ± 0.01ab 0.01 ± 0.00b 0.03 ± 0.01a 0.02 ± 0.00B

M2 TP 0.10 ± 0.01a 0.13 ± 0.02a 0.11 ± 0.02a 0.11 ± 0.01C

DP 0.08 ± 0.01a 0.10 ± 0.02a 0.09 ± 0.01a 0.09 ± 0.01C

OFP 0.02 ± 0.01a 0.03 ± 0.01a 0.02 ± 0.01a 0.02 ± 0.00B

M3 TP 0.09 ± 0.02a 0.08 ± 0.01a 0.07 ± 0.03a 0.08 ± 0.01C

DP 0.08 ± 0.02a 0.06 ± 0.01ab 0.04 ± 0.01b 0.06 ± 0.01C

OFP 0.01 ± 0.00a 0.02 ± 0.00a 0.03 ± 0.02a 0.02 ± 0.01B

M4 TP 0.10 ± 0.01a 0.13 ± 0.01a 0.11 ± 0.02a 0.12 ± 0.01C

DP 0.08 ± 0.01a 0.11 ± 0.01a 0.09 ± 0.02a 0.10 ± 0.01BC

OFP 0.02 ± 0.01a 0.02 ± 0.01a 0.02 ± 0.01a 0.02 ± 0.00B

T1 TP 0.10 ± 0.01a 0.09 ± 0.01a 0.11 ± 0.04a 0.10 ± 0.01C

DP 0.08 ± 0.01a 0.07 ± 0.01a 0.05 ± 0.01a 0.07 ± 0.01C

OFP 0.02 ± 0.01a 0.02 ± 0.00a 0.06 ± 0.03a 0.03 ± 0.01B

T2 TP 0.12 ± 0.01a 0.14 ± 0.02a 0.12 ± 0.02a 0.13 ± 0.01BC

DP 0.08 ± 0.01a 0.11 ± 0.02a 0.08 ± 0.02a 0.09 ± 0.01BC

OFP 0.04 ± 0.02a 0.02 ± 0.01a 0.04 ± 0.02a 0.03 ± 0.01B

T3 TP 0.17 ± 0.08a 0.16 ± 0.03a 0.31 ± 0.07a 0.21 ± 0.04A

DP 0.06 ± 0.01c 0.13 ± 0.02b 0.20 ± 0.03a 0.13 ± 0.02AB

OFP 0.11 ± 0.08a 0.03 ± 0.01a 0.11 ± 0.06a 0.08 ± 0.03A

G1 TP 0.22 ± 0.05a 0.11 ± 0.03a 0.24 ± 0.07a 0.19 ± 0.03A

DP 0.15 ± 0.04a 0.07 ± 0.02a 0.21 ± 0.06a 0.15 ± 0.03A

OFP 0.07 ± 0.03a 0.03 ± 0.01a 0.03 ± 0.01a 0.04 ± 0.01AB

G2 TP 0.10 ± 0.04a 0.26 ± 0.09a 0.18 ± 0.07a 0.18 ± 0.04AB

DP 0.08 ± 0.03a 0.20 ± 0.08a 0.12 ± 0.04a 0.13 ± 0.03AB

OFP 0.02 ± 0.01a 0.07 ± 0.02a 0.06 ± 0.03a 0.05 ± 0.01AB
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(p < 0.05) higher than that of the mainstream, potentially 
resulting from dilution effects (Jarvie et al. 2012). TP, DP, 
and OFP concentrations in T3 were the highest (p < 0.05) 
among the river sampling sites (Table 2), which may be due 
to the low water discharge (0.31 m3 s−1, Table 1) and high 
domestic animal density (209 km−2, Table 1). No signifi-
cant (p > 0.05) correlations were observed between average 
riverine TP/DP/OFP concentrations and area percentages 
for different land-use type across the subwatersheds. This 
may result, in part, from the low number of catchments, as 
well as interactions among multiple, complex hydrological 
processes within each subwatershed.

In terms of seasonal variations, there were no significant 
(p > 0.05) correlations between riverine TP/DP/OFP con-
centrations and river discharge (Table 2), implying a mixture 
of pollution sources and complex pollution processes in the 
Shuanggang River watershed. Average riverine TP and DP 
concentrations were generally higher in the low flow regime 
(TP = 0.13 mg P L−1, DP = 0.85 mg P L−1) than in the high 
flow regime (TP = 0.11 mg P L−1, DP = 0.73 mg P L−1), 
which might reflect the higher P concentration contributed 
by groundwater during the low flow regime (Flores-López 
et al. 2011). During the high flow regime (corresponding 
to the summer growing season in this area), 68% of the riv-
erine DP concentrations exceed the critical concentration 
(0.05 mg P L−1), implying a high risk for algal blooms in 
the river and downstream water bodies (Bowes et al. 2009).

Average groundwater TP concentrations in G1 and G2 
were 0.19 mg P L−1 and 0.18 mg P L−1, respectively, which 
were significantly (p < 0.05) higher than their correspond-
ing river water samples in M1 and T2 (Table 2). Ground-
water TP concentrations were much higher than those 
observed in a nearby forest-dominated catchment (0.03 mg 
P L−1, Hu et al. 2020a, b, c) and measured in other areas 
of eastern China (0–0.18 mg P L−1, Kang and Xu 2017; 
Qian et al. 2011). These high groundwater TP levels reflect 
the high agricultural soil P contents (32–90 mg Olsen P 
kg−1) resulting from long-term excessive chemical ferti-
lizer and farmyard manure applications in the Shuanggang 
River watershed (Chen et al. 2017). The positive correla-
tion observed between P concentrations in river water and 
groundwater (R2 = 0.76–0.88, p < 0.05, Fig. 4) support the 
inference that groundwater is a potential source of riverine 
P pollution.

Surface runoff and groundwater contributions 
to river discharge

Using the nonlinear reservoir algorithm (NRA) method, 
estimated monthly groundwater or baseflow contribution to 
river discharge ranged within 30–96%, 30–96%, and 28–96% for 
M2, M3, and M4, respectively, with surface runoff contributions 
of 4–70%, 4–70%, and 4–72% (Fig. 5). The large estimates for 

groundwater contributions were supported by the low isotopic 
variability of river water (CV: 16.7% for δ2H-H2O; 15.0% 
for δ18O-H2O) compared to that of precipitation (CV: 69.3% 
for δ2H-H2O; 50.0% for δ18O-H2O). This damping effect is 
consistent with substantial contributions of groundwater to river 
discharge (Hu et al. 2020c). The lowest groundwater contribution 
occurred in August 2019 and coincided with “Typhoon Likima” 
that resulted in a cumulative rainfall of > 400 mm. The intensive 
storm exceeded the soil infiltration capacity generating high 
surface runoff. The highest groundwater contribution occurred 
in June 2020 during the low flow regime when high temperature 
and strong evapotranspiration limited surface runoff (Fig. 2). The 
positive correlation between monthly groundwater contribution 
and temperature (r = 0.486–0.491, p < 0.01) highlights the role 
of evapotranspiration in limiting surface runoff (Fig. 5). This 
is also consistent with the considerably lower slope of the 
Local River Water Line (LRWL: δ2H = 5.66δ18O–2.37‰, 
n = 27, R2 = 0.90, p < 0.001) compared to that of the Local 
Meteoric Water Line (LMWL: δ2H = 7.05δ18O + 10.22‰, 
n = 27, R2 = 0.90, p < 0.001), which further implies that high 
evapotranspiration reduced the surface runoff contribution and 
increases the relative groundwater contribution (Gonfiantini 
1986). Estimated monthly groundwater contributions showed a 
consistent longitudinal trend along the sampling site progression 
of M2, M3, and M4 (Fig. 5), with similar annual groundwater 
contributions (M2: 68%, M3: 68%, and M4: 66%, Table 3). 
Such similar temporal trends were associated with similar 

Fig. 4   Relationships between observed total phosphorus (TP) or dis-
solved phosphorus (DP) concentrations in river water (at sampling 
sites M1 and T2) and groundwater (at sampling sites G1 and G2) in 
the Shuanggang watershed. Blue line represents the regression line 
for TP of M1 and TP of G1; red line represents the regression line for 
DP of M1 and G1; blue dot-dash line represents the regression line 
for TP of T2 and TP of G2; red dot-dash line represents the regres-
sion line for DP of T2 and G2
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topographic attributes (e.g., topographic gradients and soil 
types) across catchments of M2, M3, and M4 (Table 1), resulting 
in homogeneous hydrological characteristics.

Based on the observed δ2H and δ18O values in precipita-
tion and river water (Table 3), the isotope-based sine-wave 
fitting method (ISF) estimated an average young water 

Fig. 5   The nonlinear reservoir algorithm estimated monthly sur-
face runoff and groundwater contributed river water discharges at 
sampling sties M2 (a), M3 (b), and M4 (c) in the Shuanggang River 

watershed. “L”, “M,” and “H” represent the low, median, and high 
flow regimes, respectively. Error bars denote the 95% confidence 
intervals
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fraction (Fyw) of 29% (95% CI: 15–60%) for the entire 
watershed (M4), implying that the majority (71%) of total 
streamflow originates from old water (Fow). The Fow includes 
groundwater and slow subsurface flows (Hu et al. 2020c), 
which are similar in principle to the components of baseflow 
(groundwater and a portion of delayed shallow subsurface 
flows, He et al. (2016)). The estimated Fow contribution 
from the ISF method was fully consistent with the estimated 
groundwater contribution from the NRA method (Table 3). 
Moreover, the high baseflow contribution was comparable 
with estimates from a lumped-model simulation for this 
same watershed (82%, Hu et al. 2018), supporting the reli-
ability of our NRA results. Our estimated baseflow contribu-
tion (66–68%) was also similar to results (58–74%) from a 
nearby agricultural watershed (He et al. 2016).

The variations in groundwater contribution may be pri-
marily related to landscape characteristics. The high per-
centage of paddy fields (Table 1) in the Shuanggang River 
watershed is prone to hold a certain level of water during the 
rice production season, thereby enhancing evapotranspira-
tion and water infiltration into the soil where it may become 
subsurface flow and/or groundwater. This would lead to 
delayed transport of the young water fraction to rivers (Peng 
et al. 2011). Additionally, the agricultural and forest lands 
typically have high vegetation cover, which promotes the 
interception of precipitation and the infiltration processes 
and thereby increases subsurface flows (Du and Shi 2012).

Riverine P source apportionment

Using estimated surface runoff and groundwater flow/base-
flow components along with riverine P concentrations in 
2017–2020, the load apportionment model (LAM) was cali-
brated for the Shuanggang River. Calibrated parameters (i.e., 
a, b, c, d, and e) of the LAM were statistically significant 
(p < 0.001) for all three mainstream sampling sites (M2, M3, 
and M4), indicating that a satisfactory fraction of the vari-
ance was explained by each model component (Table 4). The 

TP-LAM accounted for 75–82% (R2) of the variability in 
TP concentrations with a NSE of 0.61–0.77 for the calibra-
tion, compared to a R2 = 0.88–0.98 and NSE = 0.54–0.64 for 
the validation (Fig. 6). Similarly, the DP-LAM explained 
73–84% (R2) of the variability in DP concentrations with 
a NSE of 0.67–0.72 for the calibration and R2 = 0.88–0.97, 
NSE = 0.56–0.83 for the validation (Fig. 6). The higher 
accuracy observed in the validation step for each LAM (TP 
and DP) compared to their respective calibration step dem-
onstrates the robustness of the LAM for the Shuanggang 
River. The efficiency metrics for the LAM (R2 = 0.73–0.98, 
NSE = 0.54–0.83) were satisfactory and comparable with 
other monthly model simulation results using SWAT, 
AGNPS, and HSPF (R2 > 0.50 and NSE > 0.50, Moriasi 
et al. 2007). Notably, these results were comparable or supe-
rior to nutrient simulations for other watersheds using the 
LAM (R2 = 0.26–0.98, NSE = 0.70–0.98; Chen et al. 2013; 
Greene et al. 2011; Mockler et al. 2017; Stevenson et al. 
2021). Collectively, these assessments validate the feasibility 
of using the LAM for apportioning PS, surface runoff and 
groundwater contributions of P to the Shuanggang River.

The LAM estimated that PS contributions to annual river-
ine TP (15–18%) and DP (7–9%) loads were limited (Fig. 7), 
with a higher contribution of OFP from PS (38–65%) in the 
Shuanggang River watershed. Estimated PS contributions 
to longitudinal riverine TP loads followed M4 > M3 > M2, 
which is consistent with the distribution of residential lands 
in the watershed (Table 1). In terms of seasonal variation 
among mainstream sites, estimated PS contributions to 
TP and DP loads during the low flow regime (TP = 36%, 
DP = 21%) were considerably higher than for the median and 
high flow regimes (TP = 11–19%, DP = 5–9%). We attribute 
this seasonal pattern to lower river discharge and weaker 
dilution effects during the dry season (Jarvie et al. 2012).

The LAM estimated that surface runoff contributed 
14–35%, 10–32%, and 35–55% of annual riverine TP, 
DP, and OFP loads in the Shuanggang River, respectively 
(Fig. 7). This indicates that riverine OFP pollution loads 

Table 3   Observed δ2H and δ18O values in precipitation and river water as well as estimated annual surface runoff and groundwater flow compo-
nents in the Shuanggang River watershed

Relationship between δ2H and δ18O for precipitation: δ2H = 7.05δ18O + 10.22, n = 27, R2 = 0.90**

Relationship between δ2H and δ18O for river water: δ2H = 5.66δ18O-2.37, n = 27, R2 = 0.71**

ISF isotope-based sine-wave fitting method, NRA nonlinear reservoir algorithm, ** p < 0.01, CV coefficient of variation, 95% CI 95% confidence 
interval

ISF Samples Average δ2H (‰) Average δ18O (‰) Amplitude (95% CI, ‰) Fyw (95% CI) Fow/BFI
Precipitation  − 32.2 ± 22.3 (CV: 69.3%)  − 6.0 ± 3.0 (CV: 50.0%) 2.75 (0.80 − 4.80) - -
River water  − 35.9 ± 6.0 (CV: 16.7%)  − 5.9 ± 0.9 (CV: 15.0%) 0.81 (0.34–1.32) 0.29 (0.15–0.60) 0.71

NRA Sites Monthly ‘a’ values of NRA BFI BFI 95% CI
M2 5.22–13.21 0.68 0.30–0.96
M3 8.34–21.10 0.68 0.30–0.96
M4 15.67–29.89 0.66 0.28–0.96
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were mainly derived from PS and surface runoff. Estimated 
TP and DP loads from surface runoff followed the order of 
M2 > M4 > M3, which is consistent with the percentage of 
agricultural lands associated with the three sampling sites 
(Table 1). This infers that agricultural lands are a primary 
source of riverine P via surface runoff (McDowell et al. 
2001). As expected, surface runoff contributed the highest 
riverine OFP loads during the high flow regime (222 kg P 
month−1), being significantly (p < 0.05) higher than the low 
(64 kg P month−1) and median (112 kg P month−1) flow 
regimes. This is consistent with heavy rainfall events causing 
surface runoff and soil erosion that transports OFP from the 
landscape to stream channel (Cheng et al. 2021).

The LAM estimated that groundwater contributions to 
annual riverine TP (46–70%) and DP (59–82%) loads were 
relatively high with very limited OFP loads in the Shuang-
gang River (Fig. 7). Similar results were found in a nearby 
agricultural watershed where the annual groundwater DP 
load contributed ~ 64% of the annual riverine DP load in 
2003–2012 (He and Lu 2021). Estimated groundwater con-
tributions to riverine TP and DP loads in M3 (TP = 62%, 
DP = 76%) were higher than that in M2 (TP = 42%, 
DP = 56%) and M4 (TP = 42%, DP = 60%), which we ascribe 
to the low percentage of paddy fields in M3 (Table 1). The 
plow pan within paddy field soil profiles has been shown to 
hinder P leaching into the groundwater system (Wang et al. 
2012).

High groundwater contributions to riverine P loads are 
due to a combination of high groundwater contributions 
to river discharge (Fig. 5) and high DP concentrations in 
groundwater (Table 2). As a typical agricultural catchment, 
the annual P fertilizer application rate to agricultural lands 

within the Shuanggang River watershed was 51.3 kg P 
ha−1 year−1 in 1980–2010 (Chen et al. 2017). This P appli-
cation rate was nearly three times higher than that in the 
Yangtze River basin (~ 13.47 kg P ha−1 year−1, Hu et al. 
2020b) and more than twice that of the maximum P appli-
cation standards in Europe (14.2–20.7 kg P ha−1 year−1, 
Amery and Schoumans 2014). However, P uptake by crops 
comprised only 27% of the total annual P input to the stud-
ied area (Chen et al. 2017). As a result, agricultural soil P 
contents (32–90 mg Olsen P kg−1) in 2009 often exceeded 
the critical concentration of 60 mg Olsen P kg−1 that is con-
sidered conducive to soil P leaching (Hesketh and Brookes 
2000). Moreover, application of farmyard manure (average P 
application rate of 15.7 kg P ha−1 year−1 during 1980–2010, 
Chen et al. 2017) in the Shuanggang River watershed adds 
additional P and inhibits P adsorption by soils, thereby 
accelerating soil P leaching to groundwater (Spiteri et al. 
2007). Thus, the accumulation of large soil P pools (i.e., 
legacy P) associated with chemical fertilizer and farmyard 
manure application over long time periods, coupled with 
high groundwater contributions to river discharge, result in a 
high groundwater contribution of P to the Shuanggang River.

Implications for watershed‑scale P pollution control

Quantitative information concerning monthly point source, 
surface runoff, and groundwater contributions to riverine 
P pollution loads provides critical information for guid-
ing development of efficient P pollution control strategies 
(Fig. 7). Although the PS contribution to riverine P pollu-
tion was limited, its impact can be significant, especially 
during the low flow regime (Withers et al. 2012), when 

Table 4   Calibrated parameters 
of the load apportionment 
model (LAM) for riverine total 
phosphorus (TP) and dissolved 
phosphorus (DP) loads in the 
Shuanggang River watershed

***  p < 0.001

Parameters Values TP-LAM DP-LAM

M2 M3 M4 M2 M3 M4

a Mean 2.2486*** 5.5798*** 10.2502*** 1.0280*** 2.1409*** 3.0037***
5% 2.0068 5.0437 9.2715 0.9314 1.9359 2.7138
95% 2.3868 6.0921 11.2037 1.1254 2.3444 3.2813

b (× 10−3) Mean 3.7642*** 2.3719*** 2.2027*** 1.0780*** 1.4014*** 2.8096***
5% 3.4152 2.1409 1.9844 0.9748 1.2670 2.5416
95% 4.1279 2.5962 2.3734 1.1801 1.5317 3.0800

c Mean 0.7265*** 0.7008*** 0.7901*** 0.8015*** 0.7038*** 0.7273***
5% 0.6834 0.6329 0.7841 0.7561 0.6367 0.6955
95% 0.7523 0.7509 0.8024 0.8362 0.7634 0.7571

d (× 10−3) Mean 0.1939*** 2.4992*** 2.2239*** 1.2630*** 2.4980*** 1.8763***
5% 0.1746 2.2597 2.0069 1.1457 2.2616 1.7020
95% 0.2116 2.7338 2.4418 1.3850 2.7371 2.0507

e Mean 0.9268*** 0.7498*** 0.7478*** 0.7674*** 0.7499*** 0.7639***
5% 0.8930 0.7175 0.7224 0.7305 0.7129 0.7433
95% 0.9464 0.7698 0.7699 0.7834 0.7674 0.7745
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the average DP concentration of ~ 0.1 mg P L−1 was sig-
nificantly higher than the critical concentration (0.05 mg 
P L−1) for eutrophication control (Table 2). Therefore, 
improvements in sewage collection and treatment, which 
are lacking in some areas within the Shuanggang River 
watershed (Chen et al. 2016), are warranted to reduce 
domestic, industrial, and animal wastewater discharge to 
the river system. Surface runoff contributes a substantial 

OFP load to the river system during the high flow regime 
due to soil erosion primarily from agricultural lands 
(Fig. 7). Thus, promoting conservative tillage and crop 
residue management to reduce soil erosion are practical 
methods to reduce OFP loss via surface runoff (storm 
events) in croplands (Kleinman et al. 2011). Further, con-
structing wetlands, ponds, and vegetation buffer zones 
can slow runoff velocity and decrease flood peak flows, 

Fig. 6   Calibration (a, c) and validation (b, d) results of the load apportionment model for riverine total phosphorus (TP) and dissolved phospho-
rus (DP) loads in the Shuanggang River watershed

19885Environmental Science and Pollution Research (2023) 30:19873–19889



1 3

thereby reducing surface runoff and associated P loads 
(Wu et al. 2017).

This study highlights the importance of designing control 
strategies to reduce P pollution loads from groundwater in the 
Shuanggang River watershed (Fig. 7). Given the considerable 
lag time of groundwater flows between precipitation inputs 
and river discharge, it will likely take several years for 
groundwater-directed BMPs to become evident in streamflow 
reductions in P loads. A first step is to reduce P leaching by 
utilizing/recycling legacy P stored in soils through cessation 
or reduction of P fertilizer/manure application. Long-term 
field studies indicate that after cessation of P fertilization, 
legacy P in soils can be effectively utilized by crops with 
minimal reduction in crop yields for several years to 
decades (Liu et al. 2015; Rowe et al. 2016; Sharpley et al. 
2013). Enhancing bioavailability of legacy soil P for crop 
production through using P activators (i.e., bio-inoculants, 
bio-fertilizers, low-molecular-weight organic acids, zeolites) 

and deep rooted crops is warranted to attenuate groundwater 
P pollution (Zhu et al. 2018). Expanding paddy field area 
provides a potential avenue to improve P use efficiency and 
deplete the legacy soil P pool. For example, previous studies 
in China showed that cereal crops in paddy fields (43%) have 
a higher P use efficiency than non-cereal crops in dryland and 
garden fields (19%) (Chen et al. 2017). Finally, intercepting 
P during subsurface hydrologic transport using artificial 
ditches and P removal materials (e.g., fly ash and steel slag) 
could be beneficial for reducing groundwater DP loads before 
discharge to rivers (Penn et al. 2014).

Conclusion

Based on monthly hydrochemical monitoring data in 
2017–2020, this study combined baseflow separation 
methods and a LAM to assess P dynamics and riverine 

Fig. 7   The LAM estimated point sources, surface runoff, and ground-
water contributions to monthly riverine total phosphorus (TP) and 
dissolved phosphorus (DP) loads at mainstream sampling sites M2, 
M3, and M4 in the Shuanggang River watershed. “L”, “M,” and “H” 

represents the low, median, and high flow regimes, respectively. Error 
bars denote the 95% confidence intervals from Monte Carlo simula-
tions
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P sources in the Shuanggang River watershed. The 
LAM effectively predicted riverine P pollution loads 
with reasonable accuracy metrics for both calibration 
and validation steps. Point sources, surface runoff, and 
groundwater contributed an estimated 15–18%, 14–35%, 
and 46–70% of the annual riverine TP load and 7–9%, 
10–32%, and 59–82% of the riverine DP pollution load, 
respectively. A notably high groundwater contribution to 
riverine P loads resulted from the combination of high 
groundwater contributions to river discharge (66–68%) and 
high groundwater DP concentrations. High groundwater P 
concentrations were associated with considerable cropland 
soil P accumulations coupled with farmyard manure 
application over long time periods. Therefore, to reduce 
P loads in the Shuanggang River watershed, pollution 
control strategies must address reducing the groundwater 
P load, such as decreasing P fertilizer application rates 
and utilizing/recycling soil legacy P for crop uptake. The 
integrated methodology developed in this study provides 
a relatively simple method to quantify P pollution loads 
from point sources, surface runoff, and groundwater 
to rivers. This study highlights the importance of 
considering groundwater pollution in regulating P loads 
in agriculturally dominated watersheds.
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