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Abstract
In order to study the effect of backfill aggregate particle size on the compressive strength and failure mode of cemented 
backfill, uniaxial compression tests were carried out on seven kinds of cemented backfills with different particle size grada-
tions. By analyzing the AE characteristics during the failure process of the backfill, the damage evolution mechanism of the 
cemented backfill with different particle size gradations was discussed. The test results show that with the increase of the 
Talbot gradation index n, the compressive strength of the backfill specimens first increases and then decreases, and the failure 
mode gradually changes from shear failure to tensile failure. With the increase of particle size gradation, the particle size of 
aggregate increases, the interface between aggregate and cement matrix is more likely to be fractured, and the characteristic 
parameters of acoustic emission are more active. During the failure process of backfill, the AE energy rate increases rapidly 
in the plastic development stage, and reaches maximum value before and after the peak stress, which can be used as the pre-
cursor to judge the failure of waste rock cemented backfill. According to the test results, the damage model and constitutive 
equations of waste rock cemented backfill with different Talbot particle size gradations are established, which can provide 
engineering guidance for filling mined-out areas with waste rock to ensure safe production of mines.
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Introduction

During the mining of mineral resources, a large amount of 
solid waste (such as waste rock, tailings, and coal gangue) 
and goafs areas are generated (Li et al. 2019; Wang et al. 
2022; Wu et al. 2021a; Yao et al. 2021). According to statis-
tics, every 10,000 tons of ore mined will produce 9300 tons 
of tailings and 3400 tons of waste rock (Yan et al. 2022). 
With the increasing demand for mineral resources, the solid 
waste generated further increases. For example, the cumula-
tive of solid waste has reached 60 billion tons in China by 

2015, tailings and waste rock accounting for 14.6 billion tons 
and 43.8 billion tons (Sun et al. 2018). These solid wastes 
are usually stored in tailings ponds and storage yards, which 
is not only occupying a large amount of land resources, but 
also form an anthropogenic hazard source with high poten-
tial energy, which may lead to serious geotechnical accidents 
in extreme climates (Xin 2021). In addition, heavy metal 
ions such as copper ions, zinc ions, and lead ions in tail-
ings will cause serious pollution to the mining environment 
(Behera et al. 2021; Chen et al. 2021b; Song et al. 2022; Xu 
et al. 2019).

With the increasing requirements of environmental pro-
tection, green mining strategies have been proposed, and the 
cemented tailings backfill mining method has become the 
most commonly used mining methods (Guo et al. 2022b; 
Wen et al. 2021; Yang et al. 2020; Zhang et al. 2022). Back-
fill mining is the preparation of tailings, cement, and water 
into a slurry at the surface, and then the slurry is trans-
ported to the underground goaf by gravity or pumping (Qiu 
et al. 2020b; Xin 2021). The hardened backfill can support 
the goaf areas, reduce surface subsidence, provide a safe 
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operating environment, and can also turn waste into treasure, 
solve the problem of discharge and storage of solid waste 
in mining areas, reduce environmental pollution caused by 
mining of mineral resources and the cost of backfill mining 
(Behera et al. 2021; Bull and Fall 2020; Dong et al. 2019; 
Mahboub El et al. 2022).

As the key unit of backfill mining, the backfill plays an 
important role in maintaining the stability of the stope, espe-
cially the strength and failure law of the backfill are crucial 
to the effect of the backfill. The strength and mechanical 
properties of the backfill are closely related to the back-
fill material, cementitious material, lime-sand ratio, curing 
conditions, and other factors (Guo et al. 2022a; Li et al. 
2021a; Meng et al. 2019; Wu et al. 2021b). At present, some 
scholars have carried out relevant research on the strength 
of cement tailings backfill. Qiu et al. (2020a) conducted 
uniaxial compression tests on cemented tailings backfills 
with different cement-sand ratios and waste rock content, the 
mechanical stability and failure modes are analyzed, and dis-
cussed the effects of cement-sand ratio and waste rock con-
tent on the mechanical stability of backfill specimens. Gao 
et al. (2019) used the RSM-BBD response surface method 
to study the effects of slurry mass fraction, mortar ratio and 
mixed aggregate ratio on strength, and determined the opti-
mal mix ratio of mixed aggregate cemented backfill. Wu 
et al. (2022) studied the effect of carbon nanotube dosage 
and aggregate particle size distribution on mechanical prop-
erties and microstructure of cemented backfill. The results 
show that the microstructure of cemented rockfill with supe-
rior aggregate particle size distribution is uniform and dense, 
which is beneficial to the reinforcement of carbon nanotubes. 
Wang et al. (2020b) analyzed the strength variation law and 
failure characteristics of mixed consolidated of three kinds 
of density grade matrix through macroscopic mechanical test 
and microstructure observation, and the influence mecha-
nism of gangue on the matrix strength was clarified.

AE technology is one of the most effective nondestruc-
tive testing techniques for predicting material instability and 
structural failure (Dzaye et al. 2020; Makhnenko et al. 2020; 
Zhou et al. 2021a). During the loading process, the damage 
evolution of the material’s internal structure can be detected 
in real time, without causing additional damage to the mate-
rial, which is helpful to deepening the understanding of 
material damage and destruction (Assi et al. 2018; Kocáb 
et al. 2019; Ma and Du 2020; Song et al. 2021). Therefore, it 
has been widely used in related engineering fields in recent 
years. Wang et al. (2020a) studied the mechanical behavior, 
failure mode, and damage evolution characteristics of dif-
ferent cement tailings ratios and layered cemented backfills 
with different structural characteristics. Zhou et al. (2021b) 
studied the damage evolution process and AE aging mecha-
nism of tantalum-niobium tailings cemented backfill under 
uniaxial compression, and established a backfill damage 

model. Zhao et al. (2020) analyzed the mechanical prop-
erties and AE characteristics of tailings cemented backfill 
with different mass concentrations in uniaxial compression 
tests, determined the corresponding relationship between 
AE characteristics of failure precursors, and the change of 
slurry concentration. He et al. (2021) studied the failure law 
of cement slurry backfill and rock combination under pres-
sure, and the tailings content has a significant effect on the 
crack evolution and AE characteristics of backfill at different 
stages.

The above studies show that the slurry mass concentra-
tion, lime-sand ratio, and structural characteristics have a 
great influence on the strength and failure form of the back-
fill. The cemented waste rock backfill is a paste-like back-
fill material, and there are few studies on the strength and 
failure laws of the waste rock backfill with different particle 
size gradations. Based on this, studying the effect of waste 
rock particle size grading on the mechanical strength and 
failure characteristics of the backfill, which can optimize 
the particle size grading of the waste rock backfill, improve 
the mechanical properties and stability of the backfill, and 
is of great significance to the safe mining of mines. In this 
work, the strength and failure characteristics of cemented 
backfills with different grades of waste rock were studied by 
uniaxial compression tests, and the dynamic evolution law of 
internal damage of backfills was revealed by AE character-
istic parameters. Based on the Lemaitre strain equivalence 
principle, damage constitutive model was established, and 
its applicability and rationality were verified. The research 
results can provide a certain reference value for the waste 
rock cemented backfill to fill the goafs areas and ensure 
underground safe production.

Materials and methods

Experiment material

The waste rock used in the experiment was taken from 
Yichang, China. It is the block waste rock produced during 
the underground production development and recovery pro-
cess of phosphate mines, and was crushed by the jaw crusher 
to coarse aggregate with a maximum particle size of 12 mm. 
The chemical composition of waste rock is shown in Table 1. 
The content of toxic and harmful elements is low, and it 
does not affect the underground environment and workers’ 
health when used in underground goaf filling. In addition, 
the waste rock contains abundant CaO and MgO, which can 
provide sufficient strength support for the aggregate. The 
cementing material is 32.5 M Portland cement, which was 
widely applied in China. Table 1 gives its chemical composi-
tion, contained abundant  SiO2 (23.81%) and CaO (55.40%), 
which can provide sufficient strength and stability.
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Sample preparation

The particle size range of the coarse aggregate has a sig-
nificant effect on the properties of cemented backfill, and 
the American Society for Testing and Materials (ASTM) 
(ASTM Standard C192/C192M-13a. 2013) recommends 
that the minimum diameter of cylindrical specimen must 
be at least 3 times the maximum particle size to eliminate 
size effects. Therefore, standard cylindrical specimen with 
diameter of 50 mm and height of 100 mm was prepared by 
using waste rock with a maximum particle size of 12 mm as 
filling aggregate, and 32.5 M Portland cement as cementing 
material.

The broken waste rock samples were sieved into 0–2, 
2–4, 4–6, 6–8, 8–10, and 10–12 mm (as shown in Fig. 1), 
and the masses of the particles in these six intervals were 
 Y1,  Y2,  Y3,  Y4,  Y5,  Y6. In order to obtain the best filling 
effect, it was necessary to test different cemented backfill 
specimens made from different aggregate particles with 
a mass ratio of  Y1:Y2:Y3:Y4:Y5:Y6, in the 6-dimensional 
space  (Y1:Y2:Y3:Y4:Y5:Y6) to seek the optimal values of 
the peak strength, elastic modulus and deformation modu-
lus of the cemented filling. The Talbot gradation theory 

was used to determine the mass ratio of waste rock in 6 
particle size ranges, and the search space was reduced 
from 6 dimensions to 1 dimension to overcome the curse 
of dimensionality (Chen et al. 2021a; Wu et al. 2018; Wu 
et al. 2017). Assuming that the maximum particle size of 
the particles is xmax, according to Talbot gradation theory, 
the ratio of aggregate mass M with the particle size smaller 
than or equal to x in the sample to the total mass Mt of the 
aggregate particles is:

where n is the Talbot index.
According to Eq. (1), the mass of particles in the inter-

val [x1, x2] can be calculated as:

Table 2 shows the distribution of aggregate particles 
in waste rock cemented backfills under different Talbot 
gradation indices.

(1)
M

Mt

=

(
x

xmax

)n

(2)M2
1
=

[(
x2

xmax

)n

−

(
x1

xmax

)n]
Mt

Table 1  Chemical compositions 
of waste rock and cement (%)

Materials SiO2 CaO MgO Al2O3 Fe2O3 K2O P2O5 SO3 F Others

Phosphate waste rock 7.53 54.85 19.91 1.39 1.20 1.95 10.32 1.03 0.39 1.43
Cement 23.81 55.40 2.50 6.79 3.25 1.14 - 3.87 - 3.24

Fig. 1  Waste rock of different grain sizes

Table 2  Distribution of 
aggregate particles under 
different Talbot indexes

n Mass percent (%) of particles in different size intervals (mm)

0–2 2–4 4–6 6–8 8–10 10–12

0.2 69.88 10.39 6.78 5.16 4.21 3.58
0.3 58.42 13.50 9.30 7.32 6.13 5.32
0.4 48.84 15.60 11.35 9.24 7.94 7.03
0.5 40.82 16.91 12.98 10.94 9.64 8.71
0.6 34.13 17.60 14.25 12.43 11.23 10.36
0.7 28.53 17.82 15.21 13.73 12.73 11.98
0.8 23.85 17.67 15.91 14.86 14.13 13.57
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The fluidity of filling slurry is closely related to its trans-
portation performance and work efficiency. When the mass 
concentration of the slurry is too high, segregation and 
stratification are likely to occur during the transportation of 
the slurry containing coarse particles, and the initial setting 
and final setting time of the slurry are prolonged, which 
seriously affects the engineering application of cemented 
backfill, and deteriorates the mechanical and structural 
properties of the backfill (Zuo et al. 2018). Therefore, based 
on the previous exploratory test, the lime-sand ratio to 1:6 
and the slurry mass concentration to 86% was designed in 
this study. The detailed experimental scheme is shown in 

Table 3. According to the designed material ratio, the waste 
rock particles and cementing materials of different Talbot 
gradations were weighed, in turn, added quantitative water 
after, then mixed them evenly, and pour the evenly stirred 
slurry into the cylindrical mold three times. After the initial 
setting of the slurry, smooth the surface of the specimens, 
demolded the mold after standing for 48 h, and put it into 
a standard curing box with a temperature (20±2°C) and a 
humidity (95±2%) for curing. When the curing age reached 
28 days, the specimens were taken out for uniaxial compres-
sion test.

Experimental equipment and process

The YZM-30A microcomputer-controlled direct shear-
ing instrument was used for the loading test, and the 
Express-8 AE acquisition system was used for the AE 
monitoring (as shown in Fig.  2). After the samples 
reached the curing age, they were subjected to uniaxial 
compression tests. Before the loading test, choose the 
undamaged sample, grind both ends of it flat, and the fine 
particles on the surface were removed. The stress loading 
mode was used to slowly load to 0.1 kN, and then the dis-
placement loading mode was used to load the sample to 
failure, and the loading rate was 0.002 mm/s (Wang et al. 
2021b). A total of 4 probes are used in the experiment, 2 

Table 3  Experimental programs

Talbot index Cement (g) Waste rock (g) Water (g) Slump 
value 
(mm)

0.2 66.67 400 71.9 152
0.3 66.67 400 71.9 168
0.4 66.67 400 71.9 183
0.5 66.67 400 71.9 192
0.6 66.67 400 71.9 199
0.7 66.67 400 71.9 204
0.8 66.67 400 71.9 208

Fig. 2  Experimental procedure
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at the upper and 2 at the lower ends of the specimens. The 
AE test system and its probes spatial positioning map are 
shown in Fig. 3, which was set with the preamplifier gain 
which is 40 dB, waveform threshold is 40 dB, sampling 
rate is 100 kHz–10 MHz, and the sampling frequency is 
3 MHz. During the test, Vaseline was applied to the con-
tact area between the probe and the backfill specimens 
to ensure coupling contact with the sample surface. The 
operations of AE and loading equipment are carried out 
at the same time to ensure the correspondence of data 
time nodes.

Result and discussion

Uniaxial compressive strength

The uniaxial compressive strengths of different grades 
of waste rock cemented backfills are shown in Fig. 4. 
With the increase of Talbot particle size gradation index 
n, the compressive strength of cemented backfill showed 
a trend of first increasing and then decreasing. When 
the gradation index n is less than 0.4, as the gradation 
index n increases, the particle size of waste rock parti-
cles increases, which reduces the specific surface area 
of solid material in the backfill, increases the cement 
content per unit area, the cementation effect is better, 
and the compressive strength of the backfill is higher. 
When the gradation index n is greater than 0.4, with the 
increase of the gradation index n, the fine particles in 
the backfill specimens decrease, and the pores between 
the coarse particles cannot be filled completely. In addi-
tion, when the proportion of coarse particles is large, the 
cement cannot completely encapsulate them, resulting in 
the weakening of cementation effect in the backfill, and 
the compressive strength of waste rock cemented backfill 
gradually decreases.

Destruction feature mode of backfill

The typical failure morphology of waste rock cemented 
backfills with different Talbot particle size gradations under 
uniaxial compression is shown in Fig. 5. (The left and right 
pictures show the final failure state of the specimen, and the 
middle is the sketch of cracks.) When the Talbot gradation 
index n is 0.2, 0.3, and 0.4, the content of coarse aggregate 
in backfill specimens is less, and the boundary transition 
area between aggregate and cementitious matrix is larger. 
Under the loading, the cracks inside backfill specimen are 
initiated from the stress concentration at the sharp corners 
of aggregate, develop along the boundary of fine aggregate 
and then penetrate through the structure, and the failure 
mode is semi-penetrating truncation failure. When the Tal-
bot gradation index n is 0.5, and 0.6, the content of coarse 
aggregate in backfill specimen increases, and the transition 
area between aggregate and cementitious matrix decreases. 
Under the loading, the interface between coarse aggregate 

Fig. 3  AE test system and its 
probe spatial positioning map
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and cementitious matrix fractures, local cracks accumulated, 
and the failure mode of backfill specimen gradually changes 
from shear failure to tensile failure. When the Talbot grada-
tion index n was 0.7, and 0.8, the content of coarse aggre-
gate particles in backfill specimens is higher, which further 
strengthened the friction effect between coarse aggregate 
particles. Under the loading, the interface between coarse 
aggregate and cementitious matrix fractures and slips, the 
coarse aggregate particles rub and squeeze each other. The 

accumulation of local stress causes different degrees of 
fragmentation in the middle area of the backfill specimen, 
and the failure mode is tensile failure parallel to the loading 
direction.

By analyzing the failure characteristics of the waste 
rock cemented backfill specimens, it is known that under 
uniaxial loading, the original cracks inside the waste rock 
cemented backfill expand and connect to form macroscopic 
cracks, which eventually lead to the failure of backfill. The 

Fig. 5  Failure modes of 
cemented backfill with differ-
ent mix ratios. (a) n=0.2; (b) 
n=0.3; (c) n=0.4; (d) n=0.5; (e) 
n=0.6; (f) n=0.7; (g) n=0.8
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distribution characteristics of coarse aggregate particles have 
a significant effect on the uniaxial compressive strength and 
deformation failure characteristics of the cemented back-
fill (Yin et al. 2021). When the Talbot gradation index n is 
small, the failure form of backfill specimens is shear failure, 
and there are fewer cracks on the specimen surface. With the 
increase of the Talbot gradation index n, the failure form 
of backfill specimens gradually changed from shear failure 
to tensile failure, the number of cracks associated with the 
surface of specimens gradually increased, and the surface 
was accompanied by more block exfoliation, the damage is 
more serious.

Acoustic emission characteristics

Numerous studies have shown that AE is a concomitant phe-
nomenon of releasing strain energy externally in the form 
of elastic wave in the process of fracture development and 
expansion. The AE signals during the loading process can 
reflect the evolution law of internal fracture expansion (Guo 
et al. 2021). During the damage and destruction of backfill 
specimen, the development and expansion of the internal fis-
sures have obvious stages, and the corresponding AE signals 
have certain differences. Figure 6 shows the AE signals of 
waste rock cemented backfill with different Talbot particle 
size gradations during the deformation and failure process. 
The waste rock cemented backfill specimens can be divided 
into four stages under uniaxial compression process: I-pore 
compaction stage, II-elastic deformation stage, III-plastic 
development stage, and IV-destruction stage (Hou et al. 
2021; Li et al. 2021b; Zhao et al. 2022).

In the pore compaction stage (I) and elastic deformation 
stage (II), the primary pores in backfill specimen are gradu-
ally compacted, and the AE energy rate is at a low level. 
In the plastic development stage (III), with the increase of 
external load, the interface between aggregate and cementi-
tious matrix begins to fracture, forming new cracks. Strain 
energy is released during crack initiation and development, 
so the AE energy rate increases rapidly and reaches a maxi-
mum value before and after the peak stress. Therefore, the 
rapid increase in the AE energy rate can be regarded as a 
precursor to the failure of cemented waste rock backfill. In 
the failure stage (IV), the rapid development of micro-cracks 
gradually evolved into macro-cracks visible to the naked 
eye, the damage degree of backfill specimen increased, and 
the AE energy rate remained at a high level for a long time.

It can be seen from Fig. 6(a)–(g) that with the gradual 
increase of the Talbot particle size gradation index n, the 
AE energy rate and the cumulative energy rate gradually 
increase. This is due to the increase of Talbot gradation 
index n, the content of coarse aggregate in backfill specimen 
increases. Under the loading, the coarse aggregate particles 
squeeze each other, resulting in an increase in the fracture 

area of interface between aggregate particles and the cemen-
titious matrix, and the AE energy rate is also higher (Qiu 
et al. 2022).

Spatial evolution of acoustic emission event points

The spatial evolution of AE event points of waste rock 
cemented backfill specimens with different Talbot particle 
size gradations during uniaxial compression is shown in 
Fig. 7. The “sphere” in the figure is the AE event point. By 
analyzing the changes of the spatial position, volume size, 
number, and color of the “sphere” volume, the position, size, 
number, and corresponding time of the cracks in the backfill 
specimen can be reflected. It can be seen from Fig. 7 that 
with the increase of Talbot particle size gradation index n, 
the content of coarse aggregate particles gradually increases, 
and the number and volume of AE event points gradually 
increase. This is because the interface between coarse aggre-
gate and cementitious matrix is fractured under the load-
ing, and the coarse aggregate rubs and squeezes each other, 
which further aggravates the damage of the backfill sample.

Figure 8 shows the proportion of AE energy ratios of 
waste rock cemented backfills with different Talbot particle 
size gradations in different loading stages. It can be seen 
from Fig. 8 that with the increase of Talbot particle size 
gradation index n, the proportion of AE energy rate of back-
fill specimen gradually decreases in pore compaction stage 
and elastic deformation stage, and increases in failure stage. 
Due to the increase of particle size gradation index n, the 
proportion of coarse aggregate particles increases, and the 
fine aggregate and cementitious matrix cannot completely 
fill the pores between skeletons, resulting in the increase of 
primary pores in the backfill specimen. In the pore compac-
tion stage and elastic deformation stage, when the particle 
size gradation index is larger, there are more pores in the 
specimen, fewer microcracks are generated under loading, 
and the proportion of AE energy rate is lower. Therefore, 
in pore compaction stage, the proportion of AE energy rate 
gradually decreased from 13.83 to 1.03%, in elastic defor-
mation stage, it gradually decreased from 18.66 to 6.22%. 
In failure stage, when the particle size gradation index n is 
larger, the fracture area of interface between aggregate parti-
cles and cementitious matrix is larger, the number of cracks 
produced is more, and the proportion of AE energy rate is 
higher. Thereby, in destruction stage, the proportion of AE 
energy gradually increased from 42.68 to 74.99%.

Damage model and constitutive equation of waste 
rock cemented backfill

The waste rock cemented backfill specimen is regarded as an 
isotropic continuous medium, and the damage is a continu-
ous process under the action of external load. According to 
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the Lemaitre strain equivalence principle (Liu et al. 2018; 
Wang et al. 2020a; Wang et al. 2019; Zhao et al. 2019), the 
damage stress of the filling body under uniaxial compression 
can be defined as Eq. (3).

In Eq. (3): σ is the effective stress of the backfill; E is 
the elastic modulus of the backfill; ε is the strain value of 

(3)� = E�(1 − D)
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Fig. 6  AE energy, cumulative energy and stress-time curve of cemented backfill.  (a) n=0.2; (b) n=0.3; (c) n=0.4; (d) n=0.5; (e) n=0.6; (f) 
n=0.7; (g) n=0.8
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the backfill; D is the damage factor of the backfill. When 
D = 0, the backfill is in a non-damaged state; When D = 
1, the backfill is completely destroyed.

According to the characteristics of the stress-strain rela-
tionship curve after the failure of the filling sample, it can 
be described by the density function of the Weibull statistical 
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distribution (Wang et al. 2018). Since the strength σ of the 
backfill obeys the Weibull distribution, combined with the 
relationship between D and σ in Eq. (3), the damage variable 
D of the backfill also obeys the Weibull distribution, and the 
relationship between the damage variable and the strain is 
derived as in Eq. (4):

Substituting Eq. (4) into Eq. (3), the damage constitutive 
equation of the backfill specimens can be obtained, such as 
Eq. (5).

(4)D = 1 − exp

[
−
1

k

(
�

�p

)|k|
]

(5)� = E� exp

[
−
1

k

(
�

�p

)|k|
]

In Eq. (5), εp is the peak strain; k is a parameter related 
to material properties.

The calculation formula of k value is as Eq. (6):

According to the stress-strain relationship curve 
obtained by the uniaxial compression test of the backfill 
specimens, the elastic modulus E, property parameters 
k and 1/k were calculated, and the damage constitutive 
equation of waste rock cemented backfill with different 
Talbot particle size gradations was obtained, as shown 
in Table 4.

According to the damage constitutive equation of 
waste rock cemented backfill with different Talbot 
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Fig. 8  Proportion of AE energy rate of waste rock cemented backfill in different failure stages. (a) pore compaction stage; (b) elastic deforma-
tion stage; (c) plastic development stage; (d) destruction stage

80118 Environmental Science and Pollution Research (2022) 29:80109–80122



1 3

particle size grading in Table 4, the comparison between 
theoretical and experimental curves of waste rock 
cemented backfill with different particle size grada-
tion is obtained, as shown in Fig. 9. The development 
trend of the theoretical curve of backfill specimen is the 
same as that of the experimental curve, and the over-
all agreement is good. Due to the existence of pores 
compaction stage, elastic deformation stage, and yield 
stage in the loading process of backfill specimen, it is 
difficult for theoretical formula to simulate the real situ-
ation of different loading stages at the same time (Wang 
et al. 2021a). But in general, the theoretical curve is 
in good agreement with the experimental curve, which 
can objectively characterize the uniaxial compression 
process of cemented waste rock backfill.

By analyzing the theoretical damage curve of backfill 
specimens, it is known that the damage variable is closely 
related to the deformation characteristics of backfill. The 
damage curves of cemented backfill with Talbot graded 
waste rock all show an increasing trend of “S”. When 
the peak strain of backfill specimen is small (as shown in 
Fig. 9(b), (c), (d), and (e)), the curve of damage variable 
is more obvious before the peak stress, the damage vari-
able increases slowly, and the damage variable that cor-
responds to the peak stress is small (D < 0.3). In contrast, 
when the peak strain is large (as shown in Fig. 9(f), and 
(g)), the damage variable curve does not bend significantly 
before the peak stress, the damage variable increases rap-
idly, and the damage variable corresponding to the peak 
stress is higher (D > 0.4). After the peak stress, due to the 
strong plasticity of backfill specimen, the bearing capacity 
decreases slowly, and the damage variable increases slowly.

Conclusions

In this paper, waste rock cemented backfill samples with 
different Talbot particle size gradations were designed and 
obtained, and then the mechanical properties and dam-
age evolution law of backfill were studied by uniaxial AE 
emission test. Finally, the damage constitutive model of 

cemented backfill of waste rock with different particle size 
gradations is established, and the main conclusions are as 
follows:

(1) With the increase of Talbot particle size gradation 
index n, the compressive strength of backfill first 
increased and then decreased. When the particle size 
gradation index n increases, the particle size of waste 
rock increases, which reduces the specific surface 
area of aggregate in the backfill, increases the amount 
of hydration products per unit area, and improves the 
compressive strength of the backfill. When the con-
tent of coarse aggregate is too large, the fine particles 
are not enough to completely encapsulate the coarse 
aggregate, which leads to the weakening of cementa-
tion effect between the coarse aggregates and reduces 
the compressive strength of the backfill.

(2) With the increase of Talbot particle size gradation index 
n, the internal structure of backfill specimen changed. 
When the particle size gradation index n is 0.2, 0.3, 
and 0.4, the crack develops along the weak part of 
interface between cementation matrix and aggregate, 
finally penetrates the backfill specimen, and the fail-
ure mode of backfill is shear failure. As the gradation 
index n increases, the proportion of coarse aggregate 
increases, the coarse aggregates squeeze each other, 
cracks accumulate in the middle area of the specimen, 
and the failure mode gradually changes from shear fail-
ure to tensile failure.

(3) During the loading process, with the increase of the 
particle size gradation index n, the AE energy rate and 
the cumulative energy rate both increased. In pore com-
paction stage and elastic deformation stage, the AE rate 
is at a low value. With the increase of external load, the 
AE energy increases rapidly and reaches the maximum 
value at the peak stress, which can be used as a precur-
sor of backfill failure.

(4) By comparing the theoretical curve and experimental 
curve, the overall agreement between the two is good, 
indicating that the established damage constitutive model 
of the cemented waste rock backfill is reliable and has 
certain guiding significance for engineering applications.

Table 4  Damage constitutive 
equation for cemented backfill 
of waste rock with different 
particle size gradation

Talbot index Damage stress equation σ Damage evolution equation D

0.2 σ=817.32εexp[-0.37(ε/0.0131)2.72] D=1-exp[−0.37(ε/0.0131)2.72]
0.3 σ=1097.65εexp[−0.24(ε/0.0094)4.16] D=1-exp[−0.24(ε/0.0094)4.16]
0.4 σ=887.09εexp[−0.21(ε/0.0097)4.68] D=1-exp[−0.21(ε/0.0097)4.68]
0.5 σ=930.19εexp[−0.29(ε/0.0091)3.41] D=1-exp[−0.29(ε/0.0091)3.41]
0.6 σ=709.52εexp[−0.32(ε/0.0108)3.17] D=1-exp[−0.32(ε/0.0108)3.17]
0.7 σ=727.18εexp[−0.64(ε/0.0134)1.56] D=1-exp[−0.64(ε/0.0134)1.56]
0.8 σ=529.64εexp[−0.6(ε/0.0164)1.68] D=1-exp[−0.6(ε/0.0164)1.68]
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