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Abstract
Understanding energy-environmental efficiency is important for coordinating economic development and eco-environment 
protection through energy use; however, vague definitions and conflicting results confuse researchers and policymakers 
and impact China’s high-quality development. After delimiting energy-environmental efficiency, this study employed the 
intermediate adjustment situation three-stage Slacks-Based Model Data Envelopment Analysis model to explore Chinese pro-
vincial energy-environmental efficiencies from 1995 to 2018, and discussed their impacts by regional strategies. The results 
illustrated that Chinese energy-environmental efficiencies were overestimated, and their national average value dropped 
from 0.573 to 0.361 after removing the influence of external environmental factors and random interference. Moreover, 
energy-environmental efficiencies in East China performed significantly better than other regions, with expanding gaps 
between regions existed. Moreover, China maintained low-scale efficiency and high pure energy-environmental efficiency, 
and the low-scale efficiency led to the worrisome energy-environmental efficiency. Fortunately, pure energy-environmental 
efficiencies were promising, but their downward trends that started in 2002 should be a warning. Unexpectedly, the regional 
strategies held various impacts, they benefitted overall energy-environmental efficiency and scale efficiency, but not help pure 
energy-environmental efficiency, and the impacts were weak and short time. Policymakers should improve scale efficiency 
and formulate regional strategies in a timely manner to maintain energy-environmental efficiency improvement.
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Introduction

Energy has played a crucial role in China’s economic expan-
sion. In 2018, China consumed 23.56% of the total initial 
energy (BP 2020) worldwide while producing 16.07% of 
global GDP, and its energy efficiency (GDP/energy con-
sumption) was 47.57% and 38.90% of the USA and Japan 
(IBRD-IDA 2019), respectively. The energy-saving potential 
in mainland China was 59.22% of its current consumption 
(Feng et al. 2018), and energy consumption engendered over 
10 billion tons of  CO2 emissions (IEA 2019), approximately 
28.56% of the 2018 global emissions. Moreover, Chinese 
economic restructuring requires a sufficient and steady 
energy supply; however, the dependence on oil and natural 
gas imports has reached 70% and 43%, respectively, and 
escalating trade disputes could impact energy security. The 
challenges of low economic expansion efficiency, massive 
energy waste, colossal pollution emissions, and low energy 
supply due to the low energy efficiency have disturbed Chi-
na’s high-quality development and have indicated a need to 
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transform China’s traditional energy using patterns. Organi-
cally measuring the synergistic performance of energy, eco-
environment, and the economy is the premise to improve its 
performance.

Correspondingly, energy-environmental efficiency 
(EEE) is redefined by energy efficiency under ecological 
constraints, and previous researches on generalized energy-
environmental efficiency have been conducted in China with 
some disputes. Even though the index evaluation system 
is similar, the EEE is defined by various names, such as 
eco-efficiency (Liu et al. 2020), environmental efficiency 
(Chen et al. 2017), green economic efficiency (Zhuo and 
Deng 2020), total-factor energy efficiency (Huang and Wang 
2017), and ecological total-factor energy efficiency (Zhang 
et al. 2015). Moreover, the calculation results are inconsist-
ent; Zhang et al. (2015) and Wang and Feng (2015) report 
a sharp contradiction between China’s economics and eco-
environment. Conversely, Chen et al. (2020) and Zhong et al. 
(2020) reported the opposite. Unfortunately, ambiguous defi-
nitions and inconsistent results are unfavorable for improv-
ing efficiency. Therefore, after clarifying the meaning of the 
efficiency, choosing suitable eco-environmental expense 
indicators, and streamlining the measurement framework, 
we construct the improved three-stage SBM-DEA model to 
re-calculate China’s real provincial EEE.

Additionally, China has implemented the national 
regional development strategy in the twenty-first century 
includes several regional strategies to rectify the economic 
imbalance that should have had extensive and lasting impacts 
on EEE. The impacts of these strategies on the economy 
and ecology separately, such as the impact of the Western 
Development Strategy on green economic efficiency (Zhuo 
and Deng 2020), the effects of the Strategy for Revitaliz-
ing the Old Industrial Base in Northeast China on regional 
economic growth and social development (Ren et al. 2020), 
and the impact of the First Development Strategy of the 
Eastern Region in China on total factor productivity (Zhang 
et al. 2017a), have been investigated. However, the roles of 
these regional strategies in energy efficiency are vague or 
unknown; therefore, we aimed to clarify them.

To address these gaps, we applied the adjusted three-
stage SBM-DEA model to re-calculate China’s provincial 
EEE after weakening the influences of the above three parts, 
which offered an adjusted model to remove the impacts of 
external environmental factors and interference under gen-
eral adjustment, and provided actual efficiencies under 
accurate meaning and a new measurement framework. 
Furthermore, the impacts of four regional strategies on 
EEE, pure energy-environmental efficiency (PEEE), and 
scale efficiency (SE) were discussed, which expanded the 
research on the factors influencing these efficiencies. There-
fore, this study provides a clear understanding of EEE and 
its impacts by regional strategies. The results showed that 

the new model is valid for neutralizing the adverse effects 
of the traditional three-stage SBM-DEA. China’s poor real 
EEE indicate that GDP expansion and eco-environment cost 
by energy use are poorly coordinated, and SE is crucial to 
prompting its improvement. These regional strategies are 
beneficial to SE but not to PEEE.

The paper is organized as follows: the “Literature review” 
section presents a literature review; the “Methodology” sec-
tion describes the methodology; the “Variables, data, and 
empirical result” section presents the variables, data, and 
empirical results; the “Discussion” section discusses the 
impact of state strategies on energy-environmental effi-
ciency; and the “Conclusion and policy implications” sec-
tion presents the conclusions and policy implications.

Literature review

The energy‑environmental efficiency and its 
measurement

EEE is defined by various names under a similar evaluation 
system that missed the organic connections among energy, 
eco-environment, and economy. Examples include efficiency 
evaluation (Bian et al. 2015), eco-efficiency (Liu et al. 2020; 
Zhang et al. 2017b; Zhou et al. 2020), environmental effi-
ciency (Chen et al. 2017), and green economic efficiency 
(Zhuo and Deng 2020), which overlook the critical role 
of energy in production activities. Conversely, total-factor 
energy efficiency (Huang and Wang 2017), total-factor car-
bon emission efficiency (Zhang and Wei 2015), ecological 
total-factor energy efficiency (Zhang et al. 2015), green 
total-factor energy efficiency (Wu et al. 2020), and total-
factor  CO2 emission performance (Wang et al. 2016) com-
prehensively measure all elements’ contributions rather than 
the primary connections of the above three parts. These vari-
ous definitions blur our understanding of efficiency.

Fortunately, compared with the above indicators, energy 
and environmental efficiency (Wang et al. 2013) or energy-
environmental efficiency (EEE) (Wang and Zhao 2017; Chen 
et al. 2019, 2020; Zhong et al. 2020) is the efficiency in 
assessing the quality of economic development, and labor 
and capital elements are included in the connotation frame-
work. EEE could be digestible and straightforward, includ-
ing the three aspects of energy utilization, eco-environmen-
tal costs, and economic achievements, which is recognized 
in this study.

Measurements have been performed in China regarding 
wide EEE. Apart from the research on firms (Zhang et al. 
2020; Chen and Ma 2021), industries (Liu et al. 2020; Wang 
and Zhao 2017; Zhang et al. 2017b; Zhou et al. 2020), sec-
tors (Song et al. 2013; Zhang and Wei 2015; Chen et al. 
2019, 2021), and cities (Chen et al. 2017; Huang and Wang 
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2017; An et al. 2019; Wang et al. 2021), regional studies 
were also the focus.

For example, studies from regional perspective of East 
China, Central China, and West China (Hu and Wang 2006; 
Bian et al. 2015; Zhang et al. 2015, 2017b, 2020; Cui et al. 
2015; Chen et  al. 2020); Northeast China, East China, 
Central China, and West China (Li and Hu 2012; Wang 
et al. 2013; Huang and Wang 2017; Liu et al. 2020; Chen 
et al. 2021); North China, Northeast China, East China, 
South-Central China, Southwest China, and Northwest 
China (Zhang et al. 2018; Feng and Li 2020); North China, 
Northeast China, East China, Central China, South China, 
Northwest China, and Southwest China (Zhao et al. 2019); 
Northeast Area, North Coast Area, East Coast Area, South 
Coast Area, Middle Yellow River Area, Middle Yangtze 
River Area, Southwest Area, and Northwest Area (Wang and 
Zhao 2017); Circum-Bohai Sea, Yangtze River Delta, Pan-
Pearl River Delta, Coastal Areas (Qin et al. 2017); Urban 
Agglomerations in Eastern China (Qin et al. 2021); Yang-
tze River Economic Zone (Chen et al. 2017; Zhong et al. 
2020); Xiangjiang River Basin (An et al. 2019); Oil and Gas 
Resource-based Area (Wang et al. 2021); High Regulated 
Regions and Low Regulated Regions (Zhang et al. 2018). 
These studies provide a detailed description of China’s 
regional energy efficiency.

However, the opposite results happened in the macro-
level studies. For one thing, some papers believe that China’s 
EEE performed much to be desired. Song et al. (2013) indi-
cated an essentially declining trend coexisting with distinct 
differences in provincial environmental efficiency in China 
from 1998 to 2009. Zhang et al. (2015) demonstrated that 
most provinces were not exhibiting high ecological total-
factor energy efficiency and significant regional technol-
ogy gaps existed from 2001 to 2010. Similarly, Wang and 
Feng (2015) also showed that China’s economics and eco-
environment by energy use were contradictory from 2002 to 
2011. Besides, Zhuo and Deng (2020) added that the green 
economic efficiency in coastal areas of China was generally 
higher than that of western China from 1995 to 2016. For 
another thing, some other studies disagree with the above 
points. For example, Chen et al. (2020) indicated that Chi-
na’s EEE improved from 1999 to 2017, and the study of 
Zhong et al. (2020) illustrated that the EEE in the Yangtze 
River urban agglomeration increased, and the regional dif-
ferences narrowed from 2008 to 2017. The opposite results 
were mainly caused by ambiguous definitions, undesirable 
output selection, and the inclusion of unrelated factors.

First, the various EEE definitions correspond to contra-
dictory results. For instance, environmental efficiency in 
Song et al. (2013) and ecological total-factor energy effi-
ciency in Zhang et al. (2015) showed that China’s EEE per-
formed poorly. Conversely, the EEE of Chen et al. (2020) 
and Zhong et al. (2020) disagreed with the above points.

Second, differences in the selection of eco-environmental 
costs inevitably lead to inconsistent EEE results. For exam-
ple, regarding wastewater, solid waste, and waste gas as eco-
environmental costs, Song et al. (2013) and Zhuo and Deng 
(2020) obtained similar EEE results, whereas Chen et al. 
(2020) and Zhong et al. (2020) chose  CO2 and  SO2 emis-
sions and obtained opposite results. As solid waste is easier 
to handle or recycle, we chose waste gas and wastewater as 
the eco-environmental costs in this study.

Third, including unrelated factors disturbs the EEE meas-
urement. The above indicators measure, but are not limited 
to, EEE because of redundant factors, such as labor and 
capital. However, the defects are represented in the EEE 
estimation, and the EEE measurement could only be more 
straightforward and fitting when including energy utiliza-
tion, eco-environmental costs, and economic achievements.

These vague definitions and conflicting results indicate 
that China’s real EEE remain unknown and are unable to 
propose related promotion policies. After clarifying the 
meaning of EEE, choosing suitable ecological expense 
indicators, and streamlining the measurement framework, 
we re-evaluated Chinese EEE. Moreover, the regional EEE 
analysis is followed the division (Li and Hu 2012; Wang 
et al. 2013; Huang and Wang 2017; Liu et al. 2020; Chen 
et al. 2021). Besides, the error caused by the calculation 
method cannot be ignored.

The IAS three‑stage SBM‑DEA model

Two types of indicators were constructed to measure energy 
efficiency. One single-factor indicator of energy efficiency 
is the ratio between GDP and energy consumption, such as 
energy intensity, which is simple and straightforward. How-
ever, it neglects the substitution between energy and other 
inputs and may lead to biased results that gradually reduce 
use by related fields. Another type of multiple-factor indica-
tor integrating the contributions of other elements and Data 
Envelopment Analysis (DEA) (Farrell 1957) and Stochastic 
Frontier Analysis (SFA) (Kumbhakar and Lovell 2000) are 
measurement methods. The disadvantage of corresponding 
to one output limits the application of SFA. Conversely, 
DEA (Farrell 1957), CCR-DEA (Charnes et al. 1978), and 
BCC-DEA (Banker et al. 1984) are well established for 
evaluating the relative efficiencies of comparable entities 
with multiple inputs and outputs. These DEA models were 
introduced by Hu and Wang (2006) for energy efficiency 
analyses. Nevertheless, efficiency is impractical when unde-
sirable outputs are not considered. Tone (2001) proposed 
that the Slacks-Based Model (SBM) overcomes this defect 
and is widely accepted.

However, their impacts of external environmental factors 
and random disturbances are neglected, and the bootstrap-
ping estimate set (Simar and Wilson 1998) and stochastic 
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DEA (Olesen and Petersen 2016) weaken these effects to a 
certain degree. However, they assume that efficiency diver-
gence arises from the heterogeneity of decision-making units 
(DMU). Instead, the three-stage DEA model proposed by 
Fried et al. (2002) was verified to eliminate the impacts 
of external environmental factors and random errors. This 
model was used in three modes: (1) closely following the 
practices of Fried et al. (2002), such as energy efficiency 
(Zhao et al. 2019) and industrial environmental regulation 
efficiency (Feng and Li 2020). (2) Adjusting the model to 
calculate efficiency, for example, environmental efficiency 
(Xie et al. 2017). (3) Combining the three-stage DEA with 
others to estimate efficiency, such as regional coal resource 
efficiency (Cui et al. 2015), total-factor energy efficiency 
(Huang and Wang 2017), and agricultural total factor pro-
ductivity (Chen et al. 2021).

Unfortunately, these three-stage DEA models consider 
the worst situation to adjust the external environmental 
impacts on the inputs or outputs, which weakens the repre-
sentativeness and interpretive force of the results. Because 
after distinguishing the impacts of external environmen-
tal factors and random disturbances on the input or output 
slacks, the adjustments generally refer to the worst situation 
in the current period. Although all DMU are adjusted to a 
unified external environment and random interference, this 
treatment may misestimate efficiency scores. To address this, 
the best-case scenario is used to neutralize the impacts of 
the most terrible adjustment by the intermediate adjustment 
situation three-stage DEA (IAS three-stage DEA), which 
offers efficiency that reflects the general state better than the 
traditional three-stage DEA does.

When incorporating environmental costs, combining the 
three-stage DEA and SBM provides an exemplary method 
for measuring efficiency, which researchers have tried. For 
example, Huang and Wang (2017) evaluated and analyzed 
the total-factor energy efficiency of Chinese 276 cities from 
2000 to 2012, and Chen et al. (2021) explored the real agri-
cultural total factor productivity of 30 Chinese provinces 
from 2000 to 2017. However, defects remain in their three-
stage DEA models. Therefore, we applied the IAS three-
stage DEA model with the SBM method to re-calculate 
veritable EEE in 31 Chinese provinces.

The impacts of regional strategies

Multiple policies are required to meet energy efficiency 
targets (Wiese et  al. 2018); however, the functions of 
energy policies are controversial. Bertoldi and Mosconi 
(2020) alluded that energy consumption in Europe in 
2013 would have been approximately 12% higher with-
out the implementation of energy efficiency policies. Li 
and Solaymani (2021) also summarized that efficiency 
improvement policies effectively reduced the rebound 

effect and led to greater energy savings in the economy. 
Instead, the guidelines presented by Patt et al. (2019) sug-
gested that energy efficiency could be counterproductive 
to limiting climate change to 1.5 °C global warming from 
pre-industrial times.

Likewise, to leverage regional development, the Chi-
nese government has proposed the national regional devel-
opment strategy in the twenty-first century and consists 
of the Western Development Strategy (including Chong-
qing, Sichuan, Guizhou, Yunnan, Tibet, Shaanxi, Gansu, 
Qinghai, Ningxia, Xinjiang, Inner Mongolia, and Guangxi, 
and started in 2000), the Strategy for Revitalizing the Old 
Industrial Base in Northeast China (including Heilongji-
ang, Jilin, and Liaoning, and started in 2003), the Strat-
egy of Rising of Central China (including Shanxi, Anhui, 
Jiangxi, Henan, Hubei, and Hunan, and started in 2006), 
and the First Development Strategy of the Eastern Region 
in China (including Beijing, Tianjin, Hebei, Shandong, 
Jiangsu, Shanghai, Zhejiang, Fujian, Guangdong, and 
Hainan, and started in 2006). These strategies should have 
worked differently in terms of energy efficiency.

Previous studies have investigated the impact of these 
strategies on the economy and ecology separately. For 
example, Zhuo and Deng (2020) proposed that the Western 
Development Strategy enhanced regional green economic 
efficiency. Ren et al. (2020) suggested that the Strategy for 
Revitalizing the Old Industrial Base in Northeast China 
significantly increased its GDP and GDP per capita by 
25.70% and 46.00%, respectively. Zhang et al. (2017a) 
found the First Development Strategy of the Eastern 
Region in China contributed to total factor productivity. 
However, these studies are insufficient to infer whether 
the strategies have played the same role in EEE, making it 
impossible to summarize these impacts and provide sug-
gestions. Therefore, the functions of strategies on EEE and 
their decompositions require a more in-depth discussion.

Methodology

This study employs the IAS three-stage SBM-DEA model 
to evaluate real provincial EEE. The contents of the model 
are as follows: In the first stage, the initial EEE was used 
to obtain an input-oriented SBM-DEA model with three 
inputs and one desirable output. In the second stage, the 
input slacks and undesirable output slacks in the first 
stage were divided into environmental effects, manage-
rial inefficiency, and random errors, after which they were 
adjusted to refer to the intermediate adjustment situation. 
The revised data of the second step and real GDP were 
used in the SBM-DEA model to re-measure the EEE in 
the third stage.
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The first stage: the input‑oriented SBM‑DEA model

Various pollutants are by-products that are harmful to pro-
duction activities, and incorporating these pollutants under 
a DEA framework is mainly classified into five categories 
(Bian et al. 2015). In this study, we treat undesirable outputs 
as eco-environmental cost inputs. The input-oriented SBM-
DEA under constant returns to scale is written as follows:

� is called comprehensive EEE for DMU, driven by 
three inputs of energy consumption, exhaust emissions, and 
wastewater discharge, and is represented by X when i = 1, 
2, and 3, respectively; and m is the input types; and i cor-
responding to the i kind input. Moreover, s−

1
, s−

2
, s−

3
 are slacks 

of the three inputs that demonstrate how much the DMUo 
should reduce its three inputs to achieve the best practical 
level. One output of Y displays by real GDP, and � is the 
optimal weight calculated using linear programming. � = 1 
when s−

1
= s−

2
= s−

3
= 0 and DMU is efficient. Otherwise, 

the DMU is inefficient.

The second stage: adjusting inputs refer 
to the intermediate adjustment situation

Managerial inefficiency, environmental effects, and stochas-
tic disturbances (Feng and Li 2020) affect the comprehen-
sive efficiencies. To distinguish these needless effects, an 
SFA model is built using the external environmental vari-
ables as explanatory variables, and the slacks of each input 
are received from the first stage as interpreted variables:

s−
in

 represents the slack of i input in DMU n, and zn implies 
the vector of external environmental variables that influence 
the provincial EEE; hence, f i(zn;� i) is a deterministic feasi-
ble slack frontier, and � i is a parameter vector of the external 
environmental variables estimated from i input slack. 
f i(zn;�

i) = � i
0
+
∑

� i
k
Zik is the interpretation of external 

env i ronmenta l  fac tors ,  and  �in ∼ N(0, �2

�i
) and 

�in ∼ N+(�n, �2

�i
) express statistical noise and managerial 

inefficiency to the corresponding i input of DMU n. Set 
� = �2

�i
∕(�2

�i
+ �2

�i
) , assuming that �in and �in are distribute 

independently, � approaching 1 signifies that the impacts of 
managerial inefficiency dominate the energy inefficiencies 
of DMU, and the SFA method could be utilized (Zhao et al. 

(1)

� = min
�,s−

(1 −
1

m

m∑
i=1

s−
i

xio
)

s.t.

⎧⎪⎨⎪⎩

xo = X� + s−
i

yo = Y�

� ≥ 0, s−
i
≥ 0

i = 1,2, 3.m = 3

(2)s−
in
= f i(zn;�

i) + �in + �in; i = 1, ...,m.n = 1, ...,N

2019). The ordinary least squares approach can be applied 
when � approaches 0.

Based on Jondrow et al. (1982), the estimator of the con-
ditional expected value of the administration inefficiency 
term �in of input variables for each DMU can be obtained 
by the following method:

where Ê
[
�in∕(�in + �in)

]
 , �̂in , �̂i , ,and �̂i represent the evalu-

ated values of E
[
�in∕(�in + �in)

]
 , �in , �i , and �i , respec-

tively.�i =
��i

��i
,�2

i
= �2

�i
+ �2

�i
 . The density function and dis-

tribution function of the standard normal distribution are 
�(⋅) and Φ(⋅) , respectively. The elaborated mathematical pro-
cedure can be set and referred to Ref Fried et al. (2002), Zhang 
et al. (2017b), and Zhao et al. (2019). Then, �in is estimated.

Unlike in the traditional three-stage DEA model, the 
inputs are rectified to an intermediate situation. Specifically, 
we used the scenario of the best in the current period multi-
plied by the worst state adjustment and got their geometric 
average to replace the formula in Fried et al. (2002), and the 
new operation is as follows:

As shown in Eq. (5), xA
in

 and xin are adjusted, and the initial 
inputs of i input in DMU n, max(zn�̂

i)
t

 and min(zn�̂
i)

t

 are the 

upper and lower boundaries of the i input affected by external 
environmental factors in t period; hence, (max(zn�̂

i)
t

− zn�̂
i) 

and (zn�̂ i − min(zn�̂
i)

t

) are the worst and best circumstances 

under the impacts of external environmental factors. Similarly, 
max(�in)

t

 and min(�in)
t

 are the maximum and minimum values 

that are affected by random errors in t period, respectively; 
therefore, (max(�in)

t

− �in) and (�in − min(�in)
t

) are the maximal 

and minimal uncertainty circumstances in t period, 
respectively.

(max(zn�̂
i)

t

− zn�̂
i) + (max(�in)

t

− �in) is the adjustment con-

tent in Fried et al. (2002), representing that DMU n suffers the worst 
external environment and the most accidental cases of i input in t 
period. Specifically, adjusting the inputs refers to the worst situation. 
Inversely, (zn�̂ i −min(zn�̂

i)
t

)+(�in −min(�in)
t

) is the opposite of the 

above part, which means that DMU n suffers the best external 

(3)Ê
�
�in∕(�in + �in)

�
=

�̂i�̂i

1 + �̂2
i

⎡
⎢⎢⎢⎣

�(
�̂in�̂i

�̂i
)

Φ(
�̂in�̂i
�̂i

)

+
�̂in�̂i

�̂i

⎤⎥⎥⎥⎦

(4)Ê
[
�in∕(�in + �in)

]
= s

−
in
− zn�̂

i − Ê
[
�in∕(�in + �in)

]
;i = 1, ...,m.n = 1, ...,N

(5)
x
A

in
=xin +

√[
(max(zn�̂

i)
t

− zn�̂
i) + (max(�in)

t

− �in)

]

∗

√[
(zn�̂

i − min(zn�̂
i)

t

) + (�in − min(�in)
t

)

]
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environment and the least accidental cases of i input in t 
period. It is then used to multiply the adjustment content in 
the traditional three-stage DEA model and obtain their geo-
metric mean to replace the typical part. The IAS part is given 
by (6).

Therefore, it neutralizes and weakens the adverse effects 
of operations in the traditional three-stage DEA model, 
which is changed to an IAS three-stage DEA model to obtain 
meaningful efficiency values.

The third stage: the input‑oriented IAS SBM‑DEA 
model

Compared with the first stage of EEE, the third stage’s effi-
ciency gauged by the adjusted inputs and real GDP are used 
in formula (7) which is reliable (Cui et al. 2015; Zhang et al. 
2017b; Xie et al. 2017; Feng and Li 2020), which is called 
real EEE for the impacts by external environmental factors, 
and random errors are adjusted.

�∗ is the real EEE for the impacts of external environ-
mental factors and random errors are removed, and it is 
driven by adjusted energy consumption, exhaust emissions, 
and wastewater discharge, represented by XA when i = 1, 2, 
and 3, respectively. s−∗

1
, s−∗

2
, s−∗

3
 are the slacks of the three 

adjusted inputs, and Y is displayed by the real GDP. �∗ is a 
new optimal weight that is calculated using linear program-
ming. A DMU is efficient when �∗ = 1 ; otherwise, the DMU 
is inefficient.

Furthermore, efficiency decomposition provides available 
information for further analysis of EEE aspects. Banker et al. 
(1984) suggested decomposing the overall technical effi-
ciency in Charnes et al. (1978) into pure technical efficiency 
and scale efficiency. Following this method, the decomposi-
tion of EEE is as follows:

Hence, EEE is decomposed into PEEE and SE using 
formula (8). PEEE reflects how the production technology 
is applied to maximize economic achievements with fixed 
energy consumption and eco-environmental costs, and its 
high value indicates high management ability. SE reflects 

(6)

√[
(max(zn �̂

i)
t

− zn �̂
i) + (max(�in)

t

− �in)

]
∗

√[
(zn �̂

i − min(zn �̂
i)

t

) + (�in − min(�in)
t

)

]

(7)

�∗ = min
�∗,s−∗

(1 −
1

m

m∑
i=1

si
−∗

xA
io

)

s.t.

⎧⎪⎨⎪⎩

x∗
o
= XA�∗ + si

−∗

y∗
o
= Y�∗

�∗ ≥ 0, si
−∗ ≥ 0

i = 1,2, 3.m = 3

(8)�∗ = EEE = PEEE ∗ SE

the scale effectiveness and rationality of resource allocation 
in a regional economy. Its better performance signifies that 
the economy of scale effect is achieved and is advisable in 
the scale and allocation of factors.

Variables, data, and empirical result

Inputs, output, and external environmental factors

We chose energy consumption, real GDP, and exhaust emis-
sions and wastewater discharge as the input, output, and unde-
sirable outputs, respectively, under the new EEE measurement 
framework (Table 1). Furthermore, we regarded undesirable 
outputs as the eco-environmental expenses (inputs).

Notably, various energy consumptions are translated into 
standard coal according to the standard coal conversion coef-
ficient (Coal Equivalent-ENS 2019). Unlike Zhao et al. (2019), 
we divide external environmental factors into natural environ-
mental factors (forest land area and energy self-sufficiency rate) 
and social environmental factors (population density, industrial 
structure, and traffic conditions) to classify the impacts.

Data source

All data were obtained from the National Bureau of Statis-
tics of China (1995–2018) and China Statistical Yearbook 
(1996–2019), and missing data were supplemented from 
the Statistical Bulletin of National Economic and Social 
Development of Provinces (1996–2019) and China Envi-
ronmental Statistics Yearbook (1996–2019). According to 
the consistency and availability of the data, 31 Chinese prov-
inces (except Taiwan, Hong Kong, and Macao) from 1995 to 
2018 were collected as samples. In order to analyze regional 
EEE gaps and explore the impact of corresponding regional 
strategy, we further divide the sample into Northeast China 
(Heilongjiang, Jilin, and Liaoning), East China (Beijing, 
Tianjin, Hebei, Shandong, Jiangsu, Shanghai, Zhejiang, 
Fujian, Guangdong, and Hainan), Central China (Shanxi, 
Anhui, Jiangxi, Henan, Hubei, and Hunan), and West China 
(Chongqing, Sichuan, Guizhou, Yunnan, Tibet, Shaanxi, 
Gansu, Qinghai, Ningxia, Xinjiang, Inner Mongolia, and 
Guangxi) (follow the Ref Li and Hu 2012; Wang et al. 2013; 
Huang and Wang 2017; Liu et al. 2020; Chen et al. 2021).

Empirical result

The comprehensive energy‑environmental efficiency (stage I)

In this phase, the input-oriented SBM-DEA model under con-
stant returns to scale in the DEA-SOLVER Pro software (5.0) 
was used to calculate the initial provincial comprehensive EEE 
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in 31 provinces in China from 1995 to 2018, without consider-
ing the impacts of environmental factors and random errors.

The initial provincial EEE is shown in Fig. 1. Firstly, Shan-
dong, Fujian, Guangdong, Hainan, Shaanxi, Chongqing, and 
Tibet with EEE equaled 1 in 1995 accounted for 22.58% of 
the total. However, some changes happened in 2018; only four 
provinces, Beijing, Tianjin, Chongqing, and Tibet, remained 
on the optimal production frontier in 2018. Other disappeared 
benchmark provinces, such as Shandong, Fujian, Guangdong, 
Hainan, Shaanxi, and Inner Mongolia, may have reduced their 
GDP expansion quality for the persistent pollutants.

Secondly, China’s EEE first increased from 0.550 to 0.654 
during1995–2001, then fluctuated and decreased to 0.479 in 
2018, showing an inverted U shape rather than an upward 
trend (Chen et al. 2020).

Thirdly, the differences were noticeable regionally. East 
China had the highest efficiency, followed by West China, 
and Northeast China had the lowest scores. Additionally, the 
top eight EEE provinces, Beijing, Tianjin, Shandong, Chong-
qing, Jiangsu, Fujian, Guangdong, and Tibet were located in 
East China and West China. Instead, the five bottom EEE 
provinces, Shanxi, Ningxia, Qinghai, Guizhou, and Gansu, 
were in Central China and West China. However, the impact 
of external environmental factors on EEE was not considered.

The impact of external environmental factors 
on energy‑environmental efficiency (stage II)

In this part, we seen the slacks of input as independent vari-
ables and selected five external environmental factors as 

dependent variables in the SFA model and estimated them 
by the software Frontier 4.1.

As shown in Table 2, the SFA models’ robustness was 
validated by the γ and the LR examination results of the 
three models. That is, the managerial inefficiency dominates 
baneful EEE performance. Thus, disturbances caused by 
environmental factors and random errors must be avoided. If 
the regression coefficient of an external environmental factor 
is positive, an increase in the variable will lead to resource-
wasting, negatively influencing EEE, and vice versa. The 
estimation results are as follows.

The forest land area represents each province’s absorption 
capacity to the pollutants (especially waste gas) aroused by 
energy consumption. The larger the value is, the stronger 
ability to deal with the pollutants. The results hint at the 
index positively impacting energy consumption, exhaust 
emissions, and wastewater discharge at the significance of 
1%, 10%, and 1%. The provincial forest land area signifi-
cantly negatively affected EEE. The stronger the self-purifi-
cation capacity of the natural environment, the more energy 
is consumed by the provinces, resulting in a decreased EEE.

The population density reflects economic activeness. 
The higher this indicator implies the province keens to 
consume more energy. The population density coefficients 
are all positive. The effects of the population density on 
input slacks are positive; therefore, they negatively influ-
ence EEE. That is, high population density could reverse 
the direction of EEE.

The traffic conditions denote the economic basis of a 
region. Under significant of 1%, the regression results depict 

Table 1  The factors in the new energy-environmental efficiency measurement framework

Stage Variable category Variable Unit Variable description

SBM stage 
(the first 
and third 
stage)

Input Energy consumption 10 thousand tons It is summarized after converting electricity, 
coke, coal, kerosene, gasoline, fuel oil, natural 
gas, crude oil, and diesel consumption into 
standard coal

Undesirable output Exhaust emissions 10 thousand tons The sum of  CO2 and  SO2 emissions
Wastewater discharge 10 thousand tons Industrial Wastewater Discharge

Desirable output Real GDP 100 million CNY The GDP data is adjusted by the multiply price 
index based on the period of 1995

SFA stage 
(the 
second 
stage)

Slacks Energy consumption slacks 10 thousand tons Identical to the corresponding variable
Exhaust emissions slacks 10 thousand tons Identical to the corresponding variable
Wastewater discharge slacks 10 thousand tons Identical to the corresponding variable

Natural environmental factors Forest land area Million ha The sum of forest area and crop planting area
Energy self-sufficiency rate % Energy consumption/energy production

Social environmental factors Population density Thousand people The percentage of the total permanent popula-
tion at the end of the year to the corresponding 
province area

Industrial structure % The proportion of secondary industry GDP in the 
total

Traffic conditions km/km2 A rate of the sum of roads, waterways, and rail-
ways to the area of corresponding provinces
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the traffic conditions holding positive impacts on energy 
consumption and exhaust emissions but negatively affected 
wastewater discharge, which means that the impact of traffic 
conditions on EEE are weak and complicated. The EEE in 
provinces with good traffic conditions may perform better, 

which could also mean consuming more energy and pollu-
tion simultaneously.

The energy self-sufficiency rate reflects a region’s 
resource endowment. The larger the value means the 
more sufficient energy the province supplies. The energy 

Fig. 1  The comprehensive 
energy-environmental efficiency 
(in the first stage)

Table 2  SFA estimation results

***, **, and * indicate the 1%, 5%, and 10% significance level of the t-statistics of the coefficients

Explanatory variable
(input slacks)

Energy consumption Exhaust emissions Wastewater discharge

Constant term 6187.48*** 46,298.24*** 268,399.62***
(15.188) (499.848) (268.061)

Forest land area 15.83*** 3.34* 121.23***
(16.145) (1.734) (8.641)

Population density 0.98 11.24** 77.95**
(− 0.656) (3.616) (3.4830)

Traffic conditions 7248.75*** 14,758.37***  − 62,737.95***
(7.798) (9.519) (− 53.531)

Energy self-sufficiency rate  − 12,402.90***  − 18,186.55***  − 146,205.22***
(− 9.84) (− 24.284) (− 14.61)

Industrial structure 15,335.40***  − 24,995.82*** 451,089.64***
(21.458) (− 34.730) (45.102)

σ^2 189,366,780 614,327,660 67,662,071,000
γ 0.79 0.77 0.89
LR test 544.388 424.423 873.611
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self-sufficiency rate plays negative roles in energy consump-
tion, wastewater discharge, and exhaust emissions at the 
level of 1%. A high energy self-sufficiency rate hints at the 
potency of energy production, which significantly increases 
the EEE of the region.

The industrial structure determines the way resources use. 
The higher the indicator implies the province depend more 
heavily on the secondary industry expansion. The indus-
trial structure affects the slacks negatively. Unlike Cui et al. 
(2015), the aggregation of industrial structure espouses EEE 
augmentation, resulting from the increasingly intensive use 
of energy and other resources that lead to the shrinking of 
polluting industries. Most external environmental variables 
are ineffective in improving EEE, particularly natural envi-
ronmental factors. The rewarding environmental factors 
require strengthening, while unhelpful aspects should be 
restricted.

The real energy‑environmental efficiency (stage III)

To re-calculate real EEE, the original and adjusted inputs 
were input into model (7). The results are shown in Fig. 2.

Figure 2 presents the real EEE of 31 Chinese provinces. 
The real EEE was between 0.250 and 0.500 in most prov-
inces during 1995–2018, and the average value was 0.361. 

The top and bottom three provinces were Guangdong, Shan-
dong, and Jiangsu in East China, and Tibet, Qinghai, and 
Ningxia in West China (with fragile natural eco-environment 
and weak economic and social development), respectively. 
Similar to Zhang et al. (2015), 50% of the provinces mainly 
distributed in West China had decreasing EEE, indicating a 
worsening contradiction in these areas.

The fundamental EEE differences between provinces 
were expanded, similar to the views of Zhang et al. (2015) 
and Chen et al. (2020). For example, Tianjin, Shandong, 
Shanghai, Zhejiang, and Fujian in East China were far away 
from the frontier because these provinces rely too heavily on 
high energy consumption and polluting industries, which has 
brought related eco-environmental issues and has decreased 
EEE. Similarly, Shanxi, Inner Mongolia, Tibet, Qinghai, 
Xinjiang, and Gansu in West China moved away from the 
national average and were sliding to a lower level because of 
low-efficiency resource utilization and severe environmental 
pollution disturbing their EEE improvement. Instead, Bei-
jing, Jiangsu, Hubei, Hunan, Chongqing, and Sichuan prov-
inces have increased their EEE tremendously. Guangdong 
and Jiangsu, with a mean EEE = 1, have become the learn-
ing model for other provinces. In conclusion, the low EEE 
in China indicate that the economic achievements and eco-
environmental costs due to energy use were not coordinated.

Fig. 2  The real energy-environ-
mental efficiency (in the third 
stage)
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Comparison of comprehensive and real 
energy‑environmental efficiency

A comparison of Figs. 1 and 2 shows declining real EEE of 
the 31 provinces. The national average EEE dropped from 
0.573 to 0.361, which is different from the point of Zhao 
et al. (2019). The number of provinces at the EEE frontier 
decreased from four in 1995 (Beijing, Tianjin, Chongqing, 
and Tibet) to two in 2018 (Jiangsu and Guangdong). Moreo-
ver, the 4 regions were originally at the EEE frontier, but 
vanished later, indicating that these regions experienced 
more helpful external environments than others. Conversely, 
Shandong, Jiangsu, and Guangdong had the highest EEE 
after adjusting, which indicate that external environments 
hinder their high-quality development.

Figure 3 compares the comprehensive and real provin-
cial EEE of 31 provinces during 1995–2018. As illustrated, 
EEE in most provinces decreased, indicating that China’s 
internal environment was helpful to their EEE. The average 
EEE after adjusting for Tibet, Chongqing, Hainan, Beijing, 
Tianjin, Shaanxi, Inner Mongolia, and Shanxi decreased by 
0.981, 0.733, 0.575, 0.487, 0.535, 0.428, 0.254, and 0.056, 
respectively. Beijing, Tianjin, Tibet, and Chongqing culti-
vated a sustainable environment to improve technological 
innovation and urbanization and promote EEE improvement. 
For example, the Zhongguancun Science Park in Beijing in 
2014 topped state-level high-technology zones (Zhao et al. 
2019). For Hainan, several eco-environmental protection 
laws and regulations implemented since 2007 have created 

a friendly external environment to improve EEE (Zhang 
et al. 2017b).

With abundant coal resources, Shaanxi, Inner Mongolia, 
and Shanxi are built as fossil energy bases for China’s eco-
nomic development, and these regions benefited from whole 
economic and energy consumption structures to improve 
EEE. Xinjiang, Qinghai, Gansu, Ningxia, Guizhou, and 
Yunnan with lower real EEE than other provinces, but higher 
R&D investment, changed external environmental factors 
to improve their EEE. Similarly, Jilin’s local government 
devoted efforts to developing green industry and strengthen-
ing the supervision of the polluting industry, which signifi-
cantly increased in the nation.

Conversely, Liaoning, Shandong, Jiangsu, Guangdong, 
and Henan experienced increases of 0.024, 0.130, 0.050, 
0.131, and 0.045 in their average real EEE, respectively. 
Guangdong, Shandong, and Jiangsu have heavily depended 
on energy-intensive and polluting industries, such as iron 
and steel smelting and the textile industry; therefore, exter-
nal environmental factors have led to decreased EEE in these 
provinces. Liaoning is an essential traditional industrial base 
in China; however, its industries face transformation difficul-
ties that negatively affect EEE. The weak implementation of 
regulations and relatively low levels of economic develop-
ment comprise Henan’s unfavorable external environment 
(Zhang et al. 2017b; Zhao et al. 2019), and its real EEE 
increased after the above adjustment. Furthermore, slight 
changes occurred in Heilongjiang, Anhui, Jiangxi, Hunan, 
Hubei, Sichuan, and Guangxi.

Fig. 3  The comprehensive and real energy-environmental efficiencies
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The regional spatiotemporal characteristics are shown in 
Fig. 4. The comprehensive EEE were significantly higher 
than the real EEE, and the average values decreased by 
37.00%, 21.96%, 22.90%, 19.21%, and 64.74% in 31 prov-
ince, Northeast China, East China, Central China, and West 
China, respectively, which differs from Zhao et al. (2019). 
That is, the external environment is generally beneficial 
to EEE. In particular, the regions that benefited the most 
and least are West China and Central and Northeast China, 
respectively. These gaps may be caused by their locations’ 
and policies’ differences.

Notably, East China maintained the best comprehensive 
and real EEE, whereas West China achieved the worst per-
formances. The comprehensive EEE presents an inverted 
U-shaped trend, while the real EEE presents more features, 
such as the U-shape in Central and East China and fluctua-
tions in West China.

Decompositions of the real energy‑environmental 
efficiency

Learning from Banker et al. (1984), EEE is decomposed into 
two parts: PEEE and SE. The average EEE, PEEE, and SE 
among regions are shown in Fig. 5.

Figure 5 illustrates the average real EEE, PEEE, and SE 
of 31 provinces from 1995 to 2018. As illustrated, for all the 
provinces, PEEE are remarkably higher than EEE and SE, 

which indicates that the managers have effectively utilized 
under given energy consumption and eco-environmental 
costs to maximize output. Compared with PEEE, the SE are 
as problematic as EEE, which means that energy consump-
tion with pollutants and GDP matched unreasonably. Enter-
prises in West China, Central China, and Northeast China 
can expand their economic scale. Qin et al. (2017) indicated 
that pure efficiency was the most vital part of energy effi-
ciency; however, we agree with Chen et al. (2019) and assert 
that SE is the main obstacle to improving EEE in China, for 
the variation of EEE is mainly determined by SE.

Moreover, the EEE, PEEE, and SE in the East China of 
Jiangsu, Shandong, and Guangdong provinces were over 
0.80; they have become learning models owing to their 
excellent performances. Conversely, these efficiencies in 
the Shanxi, Guangxi, Hainan, Chongqing, Guizhou, Yun-
nan, Shaanxi, Gansu, Tibet, Qinghai, Ningxia, and Xinjiang 
located in West China need more support and helpful policies 
to improve.

The spatiotemporal features of the real EEE and its 
decomposition are shown in Fig. 6A–C. Regional PEEE are 
ranked first, followed by SE and EEE. The best PEEE, SE, 
and EEE were in East China, whereas the worst PEEE, SE, 
and EEE were in Central and Northeast China and West 
China, respectively. The SE and EEE were similar, and their 
morphologies were consistent, indicating that the SE played 
a decisive role in the change in EEE. Notably, PEEE in all 

Fig. 4  The spatiotemporal features of comprehensive and real energy-environmental efficiency
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regions have shown significant fluctuations and decreasing 
tendencies since 2002. This is likely caused by China join-
ing the WTO in 2001, which triggered fierce competition 
in GDP expansion and pressured the eco-environment that 
negatively impacted their PEEE.

Statistical features of the energy‑environmental efficiency 
and its decompositions in three adjustment situations.

Comparisons between the worst, intermediate, and best 
cases were performed based on the unified data to verify 
model credibility. First, compared to EEE, PEEE, and SE 
in the worst adjustment state, the changes in the intermedi-
ate adjustment scenario were − 0.005, 0.067, and − 0.039, 
respectively. A similar worst adjustment case result in an 
intermediate adjustment scenario, indicating that best case 
indeed plays a neutralization role, but has a weak impact on 
the calculation results and does not affect the conclusion.

Second, the three reference cases maintain the same evo-
lution trends (Fig. 7A1–C1), which are U-shaped with a ris-
ing tendency, slight decrease, and U-shaped with a rising 
tendency in EEE, PEEE, and SE, respectively, and those 
in the intermediate adjustment case are between the other 
two extreme cases. The neutralization makes EEE, PEEE, 
and SE change smoothly rather than dramatically, as in the 
worst-case and best-case scenarios, and does not change the 
trend of EEE, PEEE, and SE in the worst adjustment case.

Third, after neutralization by the ideal adjustment case, 
the 25–75% concentrations of intermediate adjusted EEE, 
PEEE, and SE are similar and slightly less than that in the 
worst adjustment state (Fig. 7A2–C2). Additionally, their 
fluctuation ranges changed by 0.39%, − 37.45%, and 0.39% 
compared with the worst adjustment state. That is, the neu-
tralization effect in the best adjustment situation will not 
affect the distribution range of EEE and SE but will narrow 
the gaps in PEEE.

The IAS three-stage SBM-DEA model reduces EEE and 
SE while increasing PEEE and narrowing PEEE differences 
among provinces, without changing the overall conclu-
sion. Although the change is simple, more reliable results 
compared with the traditional three-stage SBM-DEA were 
achieved. Before more actions are conducted into practice 
to improve EEE, the situations faced by each province need 
specific analysis.

Grouping according to pure energy‑environmental 
efficiency and scale efficiency

According to the average real PEEE and SE, the 31 Chi-
nese provinces were divided into high-high, high-low, 
low–high, and low-low groups (Fig. 8).

The “high-high” group comprises Guangdong, Jiangsu, 
Shandong, Beijing, Fujian, and Zhejiang that all located 
in East China and topped the EEE ranking list. These 

Fig. 5  The real energy-envi-
ronmental efficiency and its 
decompositions
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provinces have similar PEEE values, ranging from 0.900 
to 0.990, but vary in SE. Guangdong, Shandong, and 
Jiangsu are 60% higher than Beijing and Fujian, and the 
scale economy has promotion potential.

The “high-low” group displays that the provinces 
obtained high SE and low PEEE, and Shanghai, Sichuan, 
Hunan, Anhui, Hubei, Hebei, Henan, and Liaoning are 
classified in the category. For these provinces, excepting to 
achieve economies of scale, advanced technology and expe-
rience must be introduced to maximize economic output 
and coordinate their relationships with the eco-environment.

The “low–high” group with low SE and high PEEE 
includes Tibet, Ningxia, Hainan, Qinghai, Chongqing, 
Tianjin, Shaanxi, and Jiangxi. These provinces have simi-
lar PEEE, between 0.900 and 1.000, but obviously differ-
ent SE. SE in Chongqing, Tianjin, Shaanxi, and Jiangxi are 
about 0.300 higher than those in Tibet, Qinghai, Ningxia, 
and Hainan. Reducing pollutant emissions, promoting 
resource efficiency, and appropriately matching resources 

are the primarily measures to improve SE. Besides, promot-
ing PEEE improvement in these provinces is also essential.

The “low-low” group comprises the provinces of Yunnan, 
Gansu, Guangxi, Xinjiang, Heilongjiang, Jilin, Guizhou, Inner 
Mongolia, and Shanxi, whose PEEE and SE are both low. 
High dependence on resource endowments and short industry 
chains that are unable to form a favorable technological inno-
vation system are the main reasons (Zhang et al. 2017b; Zhao 
et al. 2019). Hence, both PEEE and SE should be improved 
by improving innovation capabilities and expanding industry 
chains to enhance EEE. Additionally, more environmental 
protection policies are needed to foster their economies.

Discussion

The Chinese government has formulated multiple regional 
strategies to narrow economic gaps, and the impact of 
these strategies has been extensively studied. However, no 

Fig. 6  The regional spatiotemporal features of real energy-environmental efficiency and its decompositions
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comparison was presented, and the commonalities of these 
effects could not be summarized. We discuss the impact of 
these strategies on EEE and their decompositions below.

First, Fig. 9A shows that before and after 2000, slight 
changes occurred in the EEE, PEEE, and SE curves; in 
particular, PEEE rose after that period, demonstrating the 
impacts of Western Development Strategy. It has positively 
worked on PEEE, and the effect disappeared 2 years later, 
whereas it weakly and negatively affected EEE and SE, in 
contrast to Zhuo and Deng (2020). This is because the strat-
egy stimulated western provinces to strengthen the economy 
and attract various investments that promote PEEE improve-
ment. However, this strategy did not reduce the carbon inten-
sity or improve the soft environment. Moreover, the weak 
economic foundation and incomplete industrial support lim-
ited the strategy’s role in improving the EEE and SE.

Second, compared with other areas, Northeast China is 
the old industrial base and has abundant qualified labor and 
rich land. However, the PEEE curve was almost unchanged, 
while the EEE and SE curves rose after 2003, implying 
that the Strategy for Revitalizing the Old Industrial Base in 

Northeast China had a weak and positive effect on EEE and 
SE, but negative impacts on PEEE (Fig. 9B). The explanation 
is that, with a solid economic and industrial foundation, the 
strategy brought about advanced technology, eased eco-envi-
ronmental costs, and improved EEE and SE. Nevertheless, 
the strategy did not improve infrastructural roads and educa-
tion investment (Ren et al. 2020), and the strategy depended 
the dependence on traditional industries that conflicted with 
the energy conservation policy and threatened PEEE.

Third, raising development in Central China with a large 
population, intensive traditional cultures, and an agriculture-
based economy is problematic. Figure 9C shows that the 
EEE and SE curves changed before and after 2006, whereas 
PEEE did not, demonstrating that the Strategy of Rising of 
Central China is conducive to affecting EEE and SE but inef-
fective in supporting PEEE. This is because the industries 
transferring from the coastal areas coexist with the strategy 
to bring advanced technology and resources to these prov-
inces, improving their EEE and SE. However, an unreasona-
ble economic structure and inefficient cooperation disturbed 
the strategy to improve PEEE. Additionally, the outflow of 

Fig. 7  Statistical features of the energy-environmental efficiency and its decompositions in three adjustments scenarios
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various resources to East China from central provinces did 
not change, weakening the strategic functions.

Fourth, the First Development Strategy of the Eastern 
Region in China expects East China to develop sustainably. 
Figure 9D shows that the EEE and SE curves decreased in 
2007 but increased rapidly after 2007, demonstrating that the 
First Development Strategy of the Eastern Region in China 
is helpful to EEE and SE, similar to Zhang et al. (2017a). 
However, the strategy is ineffective in supporting PEEE 
because the declining PEEE unchanged. A possible expla-
nation for this is that this strategy promoted that East China 
enhanced its innovation capabilities and reconstructed the 
economic structure thereby decreased EEE and SE first and 
then improved them. Nevertheless, the responses the 2008 
financial crisis reactivated the outdated industries; therefore, 
they intensified pressure on the environment and decreased 
EEE, PEEE, and SE.

In summary, these strategies benefit EEE and SE because 
they bring resources, advanced technology, and policy sup-
port to the corresponding areas; however, they are ineffec-
tive for improving the ability to manage and operate estab-
lished resources. Second, a strategy can be more effective if 
hardware conditions support it. For instance, with the help 
of solid economic and industrial foundations in Northeast 
China and East China, the strategy promoted their green 
GDP expansion. Conversely, the outdated economy sup-
ported the Western Development Strategy and the Strat-
egy of Rising Central China’s function on EEE, PEEE, and 

SE. Third, the targeted strategy (fewer areas covered) was 
accompanied by pronounced impacts. For example, the 
impacts were significant in the Strategy for Revitalizing the 
Old Industrial Base in Northeast China, the Strategy of Ris-
ing of Central China, and the First Development Strategy of 
the Eastern Region in China compared to the Western Devel-
opment Strategy, because they implement fewer provinces. 
Furthermore, all impacts are weak and short.

Conclusion and policy implications

In recent decades, the increasing contradiction between 
economic development and environmental damage trig-
gered by energy use has forced China to transform its 
mode of development. However, EEE is inconsistently 
estimated by ambiguous definitions, undesirable output 
selection, and unrelated factors, which are ineffective for 
high-quality Chinese development. Moreover, the func-
tions of regional strategies on efficiencies have not been 
concluded. This study employed the IAS three-stage 
SBM-DEA model to re-measure EEE from 1995 to 2018, 
after controlling for the above factors. Additionally, we 
discuss and summarize the effects of these strategies on 
EEE, PEEE, and SE. The results are as follows: (1) The 
IAS three-stage SBM-DEA model reduced EEE and SE 
while increasing PEEE and narrowing its differences 
among provinces without changing the overall conclusion, 

Fig. 8  Groups according to pure 
energy-environmental and scale 
efficiencies
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indicating that the adjustment in the model is feasible and 
valuable. (2) China’s EEE are low and overestimated. 
East China performed better than the other regions, and 
the gaps among the regions were expanding. (3) EEE are 
decomposed into PEEE and SE. High PEEE with low SE 
are the main characteristics in China, and the poor SE 
led to worrisome EEE. Notably, the downward tendency 
that started in 2002 in PEEE should be vigilant. (4) These 
strategies promoted EEE and SE, but were ineffective for 
improving PEEE. A strategy could effectively function 
on efficiencies with the support of a solid economic and 
industrial base and a clear target range.

Controlling the adverse effects of external environmental 
factors by evolving more suitable models to measure EEE 
is necessary. Moreover, the current external environment is 
generally conducive to improving EEE; therefore, maintain-
ing the current environment is essential. Besides, other ways 
need to be cultivated.

(1) To improve EEE, it is essential to accelerate low carbon 
and transform a green developed model, such as shifting 

from fossil fuels to solar energy, wind energy, and hydro-
power, and limiting the high energy consumption and 
pollution industries. Additionally, narrowing efficiency 
gaps is needed, and all provinces should share obliga-
tions and cooperate. Developed areas can exchange car-
bon emissions and pollution rights through investments 
and technologies from less advanced regions. Mean-
while, the less developed provinces must learn from the 
eastern coastal provinces to promote energy conserva-
tion and environmental protection technology. Moreover, 
the central government should provide policies for bal-
anced and sustainable development.

(2) Instead of increasing various resource inputs, improv-
ing the ability to manage and operate established 
resources, reasonably arranging the combination of 
elements, and improving technology and equipment in 
energy use will promote SE and PEEE improvement. In 
particular, the provinces in the low-low group need to 
provide their own executable goals, such as controlling 
total energy consumption and formulating specific and 
easily attainable pollutant reduction targets, to maintain 

Fig. 9  The impacts on real provincial energy-environmental efficiency and its decompositions by regional strategies
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efficiency performance. Their governments should not 
lower environmental regulation standards, even if they 
encounter emergencies.

(3) The abovementioned strategies played a limited role 
in promoting EEE and their decompositions. To form 
a targeted and practical strategy, policymakers should 
consider regional differences such as restricted resource 
endowment, development phase gaps, and geographical 
characteristics. Future strategies need to be improved 
over time and anchored in the long run. Moreover, the 
impact of unknown events must be considered to avoid 
uncertainties and instability, and emergency measures 
must be drafted in advance.
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