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Abstract
In-depth research on the spatiotemporal patterns and evolution trend of urban land use carbon emission intensity (ULUCEI) 
can reveal the internal relationship between urban land use and carbon emissions, which is crucial for achieving carbon emis-
sion reduction and “double carbon” targets. This paper proposed a conceptual framework of ULUCEI; the methods of kernel 
density estimation (KDE), exploratory spatial data analysis (ESDA), and spatial Markov chains were adopted for exploring 
the spatiotemporal patterns and evolution trend of China’s ULUCEI from 2000 to 2017. The following conclusions are 
drawn through research. (1) There was an increasing trend in ULUCEI in China from 0.102 in 2000 to 0.283 in 2017. From 
the regional perspective, the ULUCEI in the eastern region is markedly higher than that in the central and western regions. 
Moreover, the results of nuclear density estimation indicate that China’s ULUCEI shows an obvious upward and polarized 
trend. (2) China’s ULUCEI shows a positive spatial autocorrelation. The types of spatial agglomeration include “high-high” 
agglomeration, “high-low” polarization, “low-high” collapse, and “low-low” homogeneity, and there are obvious disparities 
in the distribution rules of cities with different spatial agglomeration forms. (3) China’s ULUCEI presents strong stability and 
“club convergence” trend. Moreover, spatial factors significantly affect the dynamic transition of China’s ULUCEI, and its 
effect on the shifting upwards gradually enhances with increasing lag type. This paper therefore suggests that policymakers 
should formulate differentiated urban land low-carbon use models and carbon emission reduction policies to reduce ULUCEI.

Keywords Carbon emission intensity · Urban land use · Spatiotemporal patterns · Evolution trend · Double carbon targets · 
China

Introduction

Carbon emissions generated by burning fossil fuels have 
seriously threatened global climate stability and sustainable 
human development (Schuur et al. 2015; Tollefson 2016; 
Cramer et al. 2018; Yang et al. 2021). Under the severe 

situation of global climate issues, carbon emission reduc-
tion has gradually become a consensus in the world (Wang 
et al. 2019a; Andiappan et al. 2019; Chen et al. 2022a). For 
a long time, developing countries have faced the dilemma of 
balancing economic growth and carbon emissions, posing a 
huge challenge to global carbon emission reduction (Xu and 
Yang 2019; Jin et al. 2020; Baloch et al. 2021; Wang et al. 
2021a). As the largest developing country around the world, 
China has become the largest carbon emitter in 2007 (Dong 
et al. 2013; Wang et al. 2021a). Notably, China’s carbon 
emissions reached 10.67 Gt in 2020, accounting for about 
30.65% of global carbon emissions (Ritchie et al. 2020). 
To address global climate issues, China has taken an active 
part in global climate governance, proposing the ambitious 
“double carbon” targets of carbon peaking by 2030 and car-
bon neutrality by 2060 (Normile 2020; Wang et al. 2021a).

As the concentration areas of socio-economic activities, 
urban areas cover less than 3% of the global land areas, con-
sume more than 66% of the global energy, and generate more 
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than 70% of the world’s carbon emissions (Grimm et al. 
2008; Romero-Lankao et al. 2014). In this case, urban areas 
play a key role in seeking solutions and mitigation strate-
gies for global climate change issues (Ribeiro et al. 2019; 
Wang et al. 2021b; Chen et al. 2022b). More importantly, 
urban land utilization is not only closely related to urban 
energy consumption and industrial activities (Carpio et al. 
2021; Zhang et al. 2022), but also carries the carbon emis-
sion intensity at the urban spatial scale (Wang et al. 2021b). 
Compared with total carbon emissions or per capita carbon 
emissions, it is more practical to reduce carbon emission 
intensity to promote carbon emission reduction (Jotzo and 
Pezzey 2007). In order to explore the internal mechanism 
between urban land use system and carbon emission system, 
this paper proposes a conceptual framework of urban land 
use carbon emission intensity (ULUCEI).

The concept of ULUCEI is developed on the basis of 
“urban land use intensity.” The biggest difference between 
them is that ULUCEI reflects the carrying pressure of car-
bon emissions on urban land areas (Huang et al. 2013; Cui 
et al. 2019), focusing on the coordinated development of 
urban land use system and carbon emission system, while 
urban land use intensity emphasizes the coupling between 
economic development and urban land areas (Kuang et al. 
2020a). Undoubtedly, the higher value of ULUCEI means 
that per unit of urban land carries more carbon emissions. 
Reducing ULUCEI within the limited urban space is helpful 
for promoting urban carbon emission reduction under the 
“double carbon” targets. Therefore, exploring the spatiotem-
poral patterns and evolution trend of China’s ULUCEI can 
contribute to reveal the internal relationship between urban 
land use and carbon emissions, which is of great practical 
significance for formulating reasonable urban carbon reduc-
tion strategies, exploring low-carbon urban development 
models, and achieving the “double carbon” targets.

The remainder of this paper is organized as follows. “Lit-
erature review” reviews the literature of relevant studies on 
ULUCEI. “Methods and data” presents the research methods 
and data in this paper. “Results and discussion” analyzes the 
spatiotemporal patterns and evolution trend of ULUCEI in 
China from 2000 to 2017. “Conclusions and policy impli-
cations” gives the conclusions and provides some policy 
implications.

Literature review

Relevant studies on ULUCEI have focused on the following 
three aspects, which are the impact of land use/cover change 
(LUCC) on carbon emissions, the association between land 
use and carbon balance, and the inner relationship between 
urban land use and carbon emissions. LUCC caused by 
human activities is a major source of carbon emissions and 

an important driver of global climate change (Mendelsohn 
and Sohngen 2019; Simmonds et al. 2021; Tang et al. 2021). 
Exploring the carbon emissions from LUCC is a key way to 
gain insight into the impact of human activities on regional 
sustainability. Therefore, the impact of LUCC on carbon 
emissions has gradually attracted the attention of schol-
ars and policymakers. Studies on the impact mechanism 
of LUCC on regional carbon emissions show that carbon 
emissions continue to increase in the process of LUCC (Zhu 
et al. 2019; Zhang et al. 2022), and the increased carbon 
emissions are mainly concentrated in urban central areas 
(He and Zhang 2022; Zhang et al. 2022). There are also 
studies focused on the role of urban spatial form in reducing 
carbon emissions (Liu et al. 2020; Wang et al. 2020). Some 
scholars believe that the small-scale, compact, and dense 
urban land space patterns can produce less carbon emissions 
(Wang et al. 2019b, 2020), and should effectively control 
urban land sprawl to achieve low-carbon urban development 
(Xia et al. 2019).

Land utilization not only changes the carbon sequestra-
tion in land ecosystems (Bordoloi et al. 2022), but also alters 
carbon emissions in the intensive areas of human activi-
ties (Tian et al. 2021), thereby significantly affecting the 
global carbon balance (Neupane et al. 2017). Research on 
the relationship between land use and carbon balance has 
been proliferating in recent years (Cui et al. 2019; Huang 
et al. 2020; Tong et al. 2020). Integrating land use dynam-
ics and carbon balance into the urban management system, 
the impact of land use on the carbon balance indicated that 
the carbon balance rate showed a sharp downward trend in 
the Beijing-Tianjin-Hebei region from 2000 to 2015 (Wang 
et al. 2021c). In addition, the natural land use type exhib-
ited competition relationships in the urban fringe areas, 
and exacerbated the local carbon imbalance (Xia and Chen 
2020). Actually, scholars mainly evaluate the carbon balance 
changes caused by land utilization through carbon sources 
and carbon sinks (Huang et al. 2020; Tong et al. 2020). Stud-
ies of urban land use conversion rates affecting carbon bal-
ance find that the increase in construction land and decrease 
in vegetation coverage directly caused a significant decline 
in carbon storage (Zhu et al. 2019; Chuai et al. 2019; Feng 
et al. 2020). Especially in megacities and urban agglomera-
tions, urban expansion leads to higher depletion of carbon 
storage (Chuai et al. 2015a; Liu et al. 2019).

For a long time, scholars have been highly concerned 
about the relationship between urban land use and carbon 
emissions (Fang et al. 2015; Wang et al. 2016; Zhang et al. 
2018; Xia et al. 2020; Wu et al. 2022). Human activities can 
influence regional carbon emissions by changing land use 
patterns (Ou et al. 2013; Li et al. 2018). Related studies con-
sider carbon emissions of urban construction land utilization 
as the main contributors of urban carbon emissions (Chuai 
et al. 2015b; Ali et al. 2018; Wang et al. 2019c; Zhang et al. 
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2022). Optimizing urban land use structure plays a key role 
in carbon reduction and is an important policy tool worthy 
of adoption by land managers and policymakers (Cen et al. 
2015; Chuai et al. 2015b, 2016; Tang and Hu 2021). Due to 
the fact that the type of urban industrial activities directly 
affects the carbon emission effect of urban land, rational 
configuration of urban land resources is an important way to 
promote carbon emission reduction (Shu and Xiong 2019). 
Moreover, carbon emissions have gradually become an obvi-
ous obstacle to the realization of intensive urban land utiliza-
tion (Wang et al. 2019c). Implementing the green model of 
urban land utilization with “low emission, low energy con-
sumption, high growth, and high output” can continuously 
reduce carbon emissions (Campbell et al. 2012).

The common feature of the above-mentioned literature is 
that they devote to exploring the relationship between land 
use and carbon emission system. These studies can provide 
solid theoretical support for further in-depth analysis of 
ULUCEI. However, existing studies on ULUCEI need to 
further explore the following aspects. First, most of these 
studies mainly focus on urban land use and carbon emissions 
as two independent systems, and lack of considering them as 
a whole to reveal their development mechanisms. Second, 
previous studies are short of revealing the spatiotemporal 
patterns of China’s ULUCEI. Third, existing studies lack of 
exploring the evolution trend of ULUCEI. To fill the gap, 
the contribution of this study mainly concentrates on the fol-
lowing three parts. One is to construct the conceptual frame-
work of ULUCEI and measure the ULUCEI of 334 cities in 
China from 2000 to 2017. The second one is to analyze the 
spatiotemporal patterns of China’s ULUCEI by using kernel 
density estimation (KDE) and exploratory spatial data analy-
sis (ESDA). The third one is to explore the evolution trend 
by using spatial Markov chains. Through this study, we can 
obtain a systematical understanding of the current situation 
of China’s ULUCEI, which is conducive to exploring the 
practice model of China’s urban land low-carbon utilization. 
What’s more, China’s practical experiences about ULUCEI 
can provide valuable references for other developing coun-
tries that face the pressure to reduce urban carbon emissions.

Methods and data

Research area

China consists of 34 provinces, with marked differences in eco-
nomic development, industrial structure, and resource endow-
ments among the provinces. Considering the availability of the 
data, this paper focuses on 334 cities in the Chinese mainland 
from 2000 to 2017, in which Hong Kong, Macau, Taiwan, 
and Tibet are not taken into account. The Seventh Five-Year 
Plan for the National Economic and Social Development of 

the People’s Republic of China (NESDC) in 1985 has divided 
the Chinese mainland into three large regions, namely, eastern, 
central, and western regions (Fig. 1). This regional classifica-
tion has been used by many scholars to analyze spatial differ-
ences in Chinese economic phenomena (Guan et al. 2018; Liu 
et al. 2021). In this paper, this regional classification method 
is used to systematically reveal the spatiotemporal patterns 
and evolution trend of ULUCEI in China. As shown in Fig. 1, 
blue, green, and yellow colors identify the eastern, central, and 
western regions, respectively.

Empirical methods

Research methods adopted in this study mainly include KDE, 
ESDA, and spatial Markov chains. First, KDE, a nonparamet-
ric method, is used to explore the temporal evolution features 
of China’s ULUCEI. Then, ESDA is proposed to reveal the 
spatiotemporal patterns of China’s ULUCEI. Moreover, the 
method of spatial Markov chains is used to analyze the evolu-
tion trend of China’s ULUCEI.

Kernel density estimation

Kernel density estimation (KDE) is a popular nonparametric 
density estimation method (Katkovnik and Shmulevich 2002). 
This approach uses the kernel density curve to capture the 
distribution of random variables, which can effectively avoid 
the subjectivity of function settings in parameter estimation, 
thereby improving the authenticity of the estimation results 
(Qin et al. 2011). This advantage has made KDE a typical 
method for revealing the temporal evolution features (Kuang 
et al. 2020b). Therefore, this paper describes the evolution 
characteristics of ULUCEI by observing the position, shape, 
and ductility of the density function. The principle of KDE is 
as follows. Assuming that the density function of the random 
variable X is f(x), the probability density at point x can be 
expressed by Eq. (1):

In Eq. (1), K(·) is the kernel function; N is the number of 
observations. h is the bandwidth. Xi is the independent and 
identically distributed random variable, and x is the mean 
value. The kernel function satisfies K(x) ≥ 0, K(x) = K(−x), 
∫ +∞

+∞
K(x)dx = 1 , supK(x) <  + ∞, and ∫ +∞

−∞
K2(x)dx < +∞ . 

Generally speaking, h is determined by its relationship with N, 
and they should satisfy Eq. (2):

(1)f (x) =
1

Nh

N
∑
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K
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h

)

(2)K(x) =
1
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Exploratory spatial data analysis

Exploratory spatial data analysis (ESDA) is usually used 
to describe and visualize the spatial distribution pattern 
and agglomeration characteristics of attribute values (Kim 
2021). This paper uses ESDA to test the spatial patterns of 
China’s ULUCEI. ESDA includes the global spatial auto-
correlation analysis and the local spatial autocorrelation 
analysis, which can be characterized by global Moran’s 
I and local Moran’s I, respectively. Moreover, global 
Moran’s I is used to reveal the overall spatial relationships, 
and local Moran’s I is used to evaluate the local spatial 
association pattern (Anselin 1995; Anselin et al. 2006). 
This paper uses ESDA to analyze the spatial patterns of 

China’s ULUCEI. The calculation of global Moran’s I and 
local Moran’s I can be calculated as follows:

where n represents the number of sample cities, 
(

xi − x
)

 
and 

(

xj − x
)

 are the deviations of the attribute value and 
mean value on the city i and the city j, respectively. wij is 

(3)Iglobal =

n
∑

i=1

n
∑

j=1

wij

�

xi − x
��

xj − x
�

n
∑

i=1

n
∑

j=1

wij

�

xi − x
�2

(4)Ilocal = xi

n
∑

j=1

wijxj

Fig. 1  Research scope and regional classification
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the spatial weight matrix. When the city i and the city j are 
adjacent, wij = 1. Otherwise, it is 0.

Spatial Markov chains

The method of traditional Markov chains is a Markov pro-
cess with discrete time and state, which mainly discretizes 
the continuous data into different types to reveal the prob-
ability distribution and evolution trend of each type (Ago-
vino et al. 2019). Accordingly, a 1 × k dimensional matrix 
Ft = [F1, t, F2, t, ⋯, Fk, t] is established to store the state prob-
abilities of ULUCEI of each city in year t, and the transition 
probabilities of ULUCEI in different years can be repre-
sented by the k × k dimensional matrix M (Table 1). Accord-
ing to the principle that the number of each type is similar, 
this paper divides China’s ULUCEI into four types by using 
quartile, and their values are divided into A, B, C, and D 
from small to large. The matrix M is the Markov transition 
probability matrix; the element Pij indicates the probability 
of being type i in year t and type j in year t + 1. The expres-
sion Pij is as follows:

In Eq. (5), zij denotes the total number of cities that trans-
ferred from type i to type j from year t to year t + 1 during the 
study period. zi represents the total number of cities belong-
ing to type i in the study period. If the ULUCEI of a city is 
type i in year t and remains type i in year t + 1, the transition 
type of a city is set as “smooth.” If the ULUCEI of a city 
increases, the type is set as “upward shift.” Otherwise, it is 
“downward shift.”

The method of traditional Markov chains mainly focuses 
on the development of the region itself, while ignoring 
the adjacent correlation and spatial characteristics of eco-
nomic phenomena. On the basis of the traditional Markov 
chains, the method of the spatial Markov chains expresses 
the domain state of the region by introducing the concept of 
“spatial lag,” and dynamically reveals the evolution trend 
of economic phenomena (Le Gallo 2004). By comparing 
the elements of the traditional Markov transition probability 
matrix and the spatial Markov transition probability matrix, 

(5)Pij = zij∕zi

we can judge the importance of the regional background to 
the regional change transition. Therefore, this paper intro-
duces the concept of “spatial lag” as a condition and divides 
it into k types, decomposes the traditional k × k dimensional 
transition probability matrix into the k × k × k dimensional 
transition probability matrix (Table 2), and examines the 
dynamic evolution of China’s ULUCEI. The element Pij|k 
represents the probability of being type i in year t and type j 
in the next year under the condition of the spatial lag type k. 
The spatial lag type considers the units that are geographi-
cally adjacent to the city, the spatial lag value Laga of city 
a is the weighted average of the observed value of the geo-
graphic units surrounding the city, and its expression is as 
follows:

In Eq. (6), Yb is the observed value of city b. n is the total 
number of cities. The spatial weight matrix Wab represents 
the spatial relationship between city a and city b. This 
paper uses the adjacency principle to define the spatial 
relationship.

Indicators and data sources

Indicators used to measure ULUCEI

This paper attempts to propose a conceptual framework 
for ULUCEI with reference to “urban land use intensity,” 
which refers to the carbon emissions carried by per unit 

(6)Laga =
∑n

b=1
YbWab

Table 1  Traditional Markov transition probability matrix

Type of space Status at year t Status at year (t+1)

A B C D

No lag A PAA PAB PAC PAD

B PBA PBB PBC PBD

C PCA PCB PCC PCD

D PDA PDB PDC PDD

Table 2  Spatial Markov transition probability matrix

Spatial lag 
type

Status at 
year t

Status at year (t+1)

A B C D

I A PAA| I PAB| I PAC| I PAD| I

B PBA| I PBB| I PBC| I PBD| I

C PCA| I PCB| I PCC| I PCD| I

D PDA| I PDB| I PDC| I PDD| I

II A PAA| II PAB| II PAC| II PAD| II

B PBA| II PBB| II PBC| II PBD| II

C PCA| II PCB| II PCC| II PCD| II

D PDA| II PDB| II PDC| II PDD| II

III A PAA| III PAB| III PAC| III PAD| III

B PBA| III PBB| III PBC| III PBD| III

C PCA| III PCB| III PCC| III PCD| III

D PDA| III PDB| III PDC| III PDD| III

IV A PAA| IV PAB| IV PAC| IV PAD| IV

B PBA| IV PBB| IV PBC| IV PBD| IV

C PCA| IV PCB| IV PCC| IV PCD| IV

D PDA| IV PDB| IV PDC| IV PDD| IV
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of urban land area (Huang et al. 2013; Cui et al. 2019). 
As the spatial carrier of terrestrial ecosystems, urban land 
use carries carbon emissions generated by urban produc-
tion and life (Carpio et al. 2021; Zhang et al. 2022). In the 
process of rapid urbanization, the disorderly expansion 
and blind construction of urban land have not only caused 
the loss of carbon storage in urban land (Chuai et  al. 
2016), but also led to the increase of carbon emissions 
associated with urban land use (Zhou et al. 2021). Specif-
ically, ULUCEI aims to explore the inherent relationship 
between urban land use and carbon emissions by measur-
ing the carbon emission carrying the pressure of urban 
land use, so as to guide the low-carbon use of urban land. 
Exploring the spatiotemporal patterns and evolution trend 
of China’s ULUCEI is of great value for formulating car-
bon reduction policies and achieving the “double carbon” 
targets on schedule. The formula  ULUCEIit =  Carbonit/
Landit was used to calculate the value of China’s ULUCEI 
from 2000 to 2017. Where  Carbonit represents the total 
carbon emissions of city i year t,  Landit represents the 
total urban area land of city i year t,  ULUCEIit expresses 
the ULUCEI of city i year t, and the unit is million tons/
square kilometer.

Data sources

Taking 334 cities in the Chinese mainland as the research 
objects, this paper collected the annual statistical data of 
each city from 2000 to 2017. In fact, there is no official 
carbon emission data at the city level. Excitingly, the China 
Emission Accounts and Datasets (CEADs) released a set of 
county-level carbon emissions datasets covering the period 
1997 to 2017 (https:// www. ceads. net/ data/ county/). These 
datasets are estimated by unifying the scale of DMSP/OLS 
and NPP/VIIRS satellite imagery using the particle swarm 
optimization-back propagation (PSO-BP) algorithm (Chen 
et al. 2020). In addition, these datasets are considered com-
prehensive and effective by previous studies (Shan et al. 
2021; Liu et al. 2022). Therefore, this paper obtains China’s 
city-level carbon emission data by aggregating county-level 
carbon emission data in CEADs. The land area data of each 
city is obtained from the China Urban Construction Statisti-
cal Yearbook (CUCSY) and China City Statistical Yearbook 
(CCSY).

Results and discussion

Temporal characteristics of ULUCEI

There was an increasing trend of ULUCEI in China and 
three large regions during the sample period. According 

to Fig. 2, China’s ULUCEI increased from 0.102 in 2000 
to 0.283 in 2017. This temporal feature is closely related 
to China’s urbanization and industrialization trends. In the 
twenty-first century, China’s urbanization and industriali-
zation have entered a stage of rapid development, and the 
extensive and sprawling urban land development model 
has occupied a large amount of ecological space, resulting 
in a rapid increase in carbon emissions (Zhou et al. 2021; 
Li et al. 2021). From the regional perspective, ULUCEI in 
China’s three large regions showed an upward trend from 
2000 to 2017. Specifically, the average value of ULUCEI in 
the eastern region rose from 0.192 in 2000 to 0.525 in 2017, 
the central region increased from 0.089 in 2000 to 0.231 in 
2017, and the western region increased from 0.041 in 2000 
to 0.132 in 2017. Entering the twenty-first century, China’s 
urban population agglomeration, industrial scale expansion, 
and infrastructure construction promote urban space expan-
sion, which also brings a lot of energy consumption and 
carbon emissions (Liu and Zhang 2022). Obviously, China’s 
ULUCEI shows a gradually decreasing regional difference 
from east to west, and the intensity level and growth rate 
in the eastern region are markedly higher than those in the 
central and western regions. Eastern cities with developed 
economies, agglomerated populations, and complete infra-
structure have huge advantages in attracting foreign direct 
investment and large-scale industrial development, which 
not only stimulate urban spatial expansion but also exacer-
bate urban carbon emissions. Compared with the east, the 
cities in the central and western regions are relatively dis-
advantaged in terms of population size, economic level, and 
industrial structure, and the carbon emissions of the cities 
are relatively low.

From the perspective of changing trends, after 2011, 
China’s ULUCEI has changed from rapid improvement to 
stable development. Actually, this changing trend is closely 
related to urban carbon reduction policies enacted by the 
Chinese government. These policies mainly include the 
three batches of low-carbon city pilots released by the 
National Development and Reform Commission of the 
People’s Republic of China (NDRC) in 2010, 2012, and 
2017 (Zou et al. 2022), the carbon emissions trading pilot 
in 2011 (Zhang et al. 2021), and the new-type urbaniza-
tion in 2014 (Sheng and Guo 2016). With the successive 
implementation of these policies, the transformation of 
urban industrial structure, optimization of land resource 
allocation, and enhancement of green technology innova-
tion reduce urban carbon emissions and lead to a gradual 
stabilization of ULUCEI.

To further reveal the temporal evolution features of Chi-
na’s ULUCEI, this paper adopted the method of KDE to 
plot kernel density curves of ULUCEI in China and three 
large regions by using EViews 10.0 software (Fig. 3). From 
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the perspective of the peak height of the curve, China and 
three large regions showed a gradually decreased trend from 
2000 to 2017. From the perspective of the peak position 
of the curve, China and three large regions shifted to the 
right from 2000 to 2017. In terms of the number of curve 
peaks, from 2000 to 2017, China and the central region were 
dominated by a single peak, and the eastern and western 
regions changed from “multi-peak” to “single peak.” In 
terms of the shape of curve peaks, China and the western 
regions were dominated by “spiky peak,” and the eastern and 
central regions evolved from “spiky peak” to “broad peak” 
from 2000 to 2017. In general, the results of KDE indicate 
that China’s ULUCEI shows an obvious upward and polar-
ized trend. The frequent socio-economic activities such as 
industrial restructuring, population growth, and urbanization 

construction aggravate the transition from carbon sink land 
to carbon source land (Zhang et al. 2022). Urban carbon 
emissions have increased significantly, which has led to the 
reduction in the polarization of ULUCEI.

Spatial pattern of ULUCEI

To visually present the spatial evolution disparities of 
ULUCEI in China from 2000 to 2017, this paper selected 
2000, 2005, 2010, and 2017 as the years of investigation. 
According to the calculation results of ULUCEI, grading 
similar values into the same group facilitates comparison. 
Therefore, this study used the equal interval classification 
method of ArcGIS, with 0.10 as the equal interval, and Chi-
na’s ULUCEI is divided into four level groups, namely low 

Fig. 2  Average value of ULU-
CEI in China and three large 
regions from 2000 to 2017
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intensity (0 <ULUCEI≤ 0.10), medium-low intensity (0.10 
<ULUCEI≤ 0.20), medium-high intensity (0.20<ULU-
CEI≤0.30), and high intensity (ULUCEI>0.30). As shown 
in Fig. 4, China’s ULUCEI shows an obvious increasing 
trend, with the number of high-intensity cities increasing 
nearly sixfold from 21 in 2000 to 121 in 2017. During the 
study period, there are significant regional differences in 
the spatial distribution of China’s ULUCEI. Low-intensity 
and medium-low-intensity cities are mainly distributed in 
the western region. The medium-high-intensity and high-
intensity cities are mostly distributed in the eastern region, 
which are concentrated in the Beijing-Tianjin-Hebei, Yang-
tze River Delta, Pearl River Delta, and other urban agglom-
erations. Owing to the large populations, active economies, 
and developed industries, urban agglomerations have large 
and concentrated carbon emissions (Cai et al. 2018; Wang 
et al. 2022), which inevitably leads to a higher level of ULU-
CEI in these regions.

To reveal the global spatial characteristics of ULU-
CEI in China, this study conducted spatial autocorrela-
tion tests on ULUCEI in China from 2000 to 2017, and 
obtained the value of Moran’s I and Z statistic (Fig. 5). 

The results showed that the values of Moran’s I were 
positive and passed the 1% significance test from 2000 
to 2017, indicating that China’s ULUCEI showed a posi-
tive spatial autocorrelation. The values of Moran’s I have 
experienced a dynamic process from “rapid rise” to “high 
steady growth,” rising from 0.3942 in 2000 to 0.5295 
in 2017, indicating that the spatial agglomeration of 
ULUCEI showed a rapid increase followed by a gradual 
slowdown. It should be noted that China’s urbanization 
has shown a spatially and geographically concentrated 
development, gradually forming a regional development 
pattern dominated by urban agglomerations (Ouyang 
et al. 2021), promoting the rapid enhancement of the spa-
tial agglomeration of China’s ULUCEI. However, with 
the implementation of policies such as low-carbon city 
pilots, new-type urbanization construction, and carbon 
emissions trading pilots, the coordinated development of 
large, medium, and small cities in China has been advo-
cated (Chen et al. 2018). The ULUCEI of each city has 
increased significantly, the gap between cities has gener-
ally shown a slowing trend, and the spatial agglomeration 
has gradually stabilized.

Fig. 4  ULUCEI in China during 2000–2017. Note: this figure is calculated and drawn by using ArcGIS 10.2
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To further present the local spatial characteristics of Chi-
na’s ULUCEI, this paper used the LISA (Local Indicators of 
Spatial Association) cluster maps to divide China’s 334 cities 
into four types (Fig. 6), namely “high-high” agglomeration, 

“high-low” polarization, “low-high” collapse, and “low-low” 
homogeneity. Specifically, “high-high” agglomeration indi-
cates that cities with relatively high ULUCEI are surrounded 
by cities with also high ULUCEI, showing a significant 

Fig. 5  Global Moran’s I of 
ULUCEI in China from 2000 
to 2017

9.00

10.00

11.00

12.00

13.00

14.00

15.00

0.35

0.37

0.39

0.41

0.43

0.45

0.47

0.49

0.51

0.53

0.55

Z 
(I

)

M
or

an
`s

 I 

Year

Moran’s I 
Z (I)

Policy: 1 2 3 4 5

Policy 1: Low carbon 

city pilot (first batch)

Policy 2: Carbon 

emission trading pilot

Policy 3: Low carbon 

city pilot (second 

batch)

Policy 4: New-type 

urbanization

Policy 5: Low carbon 

city pilot (third batch)

Fig. 6  LISA map of ULUCEI in China during 2000–2017. Note: this figure is calculated and drawn by using GeoDa and ArcGIS 10.2

18221Environmental Science and Pollution Research (2023) 30:18213–18226



1 3

positive correlation. Cities of this type show an obvious 
expansion trend and concentrate in urban agglomerations 
such as Beijing-Tianjin-Hebei, Yangtze River Delta, Pearl 
River Delta, and Central Plains. “High-low” polarization 
represents cities with high ULUCEI surrounded by cities 
with low ULUCEI, showing a significant negative correla-
tion. Cities of this type are mainly scattered in the central 
and western regions. “Low-high” collapse denotes cities 
with low ULUCEI surrounded by cities with high ULUCEI, 
showing a significant negative correlation and remaining 
relatively stable in spatial distribution and quantity. “Low-
low” homogeneity indicates that cities with relatively low 
ULUCEI are surrounded by cities with also low ULUCEI, 
showing a significant positive correlation. Cities of this type 
are mainly distributed in Xinjiang, Inner Mongolia, Yunnan, 
and other provinces in the western region, presenting a pat-
tern of concentrated contiguous distribution.

Evolution trend of ULUCEI

This study applies the traditional Markov chains to explore 
the evolution trend of China’s ULUCEI. To be consistent 
with the above-mentioned content, the quartile method is 
used to divide China’s ULUCEI into four levels, namely 
low rank (A), medium-low rank (B), medium-high rank 
(C), and high rank (D). Subsequently, the transition prob-
ability matrix of the traditional Markov chains is obtained 
(Table 3). From the traditional Markov transition probability 
matrix, it can be seen that the transition probability of each 
rank has strong stability. Without the effect of the spatial 
lag, the probabilities of maintaining steady state for the rank 
of A, B, C, and D are 93.2%, 90.2%, 90.7%, and 99.3%, 
respectively. The values on the diagonal are significantly 
higher than other values in the peer group, indicating that it 
is relatively difficult to achieve the spatiotemporal transition 
of China’s ULUCEI. Moreover, the probabilities of transfer-
ring upwards range from 6.8 to 9.1%, while the probabilities 
of shifting downwards range from 0.6 to 1.6%. The prob-
abilities of transferring upwards are significantly higher than 
that of shifting downwards, which indicates that there is an 
increasing evolution trend of China’s ULUCEI. Although 

there are possibilities of transferring to the adjacent states, 
the probability of cross-rank transition is smaller.

The “space lag” is added to the Markov transition prob-
ability matrix, and four types of space lags are set from low 
to high, namely I, II, III, and IV (Table 4). The results show 
that the spatial lag affects the transition between cities of 
different ranks. Under the influence of the spatial lag type I, 
the probabilities of maintaining steady state of ranks A, B, C, 
and D are 96%, 94.4%, 93.8%, and 100%, respectively. The 
probabilities of shifting upwards range from 3.9 to 4.9%, 
while the probabilities of transferring downwards range from 
0.7 to 2.3%. When the spatial lag type is II, the probabili-
ties of maintaining steady state of ranks A, B, C, and D are 
86.7%, 90.7%, 92.6%, and 98.9%, respectively. The prob-
abilities of shifting upwards range from 4.1 to 13.3%, while 
the probabilities of transferring downwards range from 0.7 
to 3.3%. When the spatial lag type is III, the probabilities of 
maintaining steady state of ranks A, B, C, and D are 87.3%, 
89%, 92.5%, and 99.2%, respectively. The probabilities of 
shifting upwards range from 6.9 to 12.7%, while the prob-
abilities of transferring downwards range from 0.5 to 0.8%. 
When the spatial lag type is IV, the probabilities of maintain-
ing steady state of ranks A, B, C, and D are 100%, 68.5%, 
83.6%, and 99.3%, respectively. The probabilities of shifting 
upwards range from 14.1 to 31.5%, while the probabilities of 
transferring downwards range from 0.7 to 2.3%.

Analyzing the results can be found that the probabilities 
of maintaining steady state are higher than shifting upwards 
or transferring downwards, which implied that China’s ULU-
CEI presents strong stability and “club convergence” trend. 

Table 3  Traditional Markov transition probability matrix of China’s 
ULUCEI from 2000 to 2017

Type of space Status at 
year t

Status at year (t+1)

A B C D

No lag A 0.932 0.068 0 0
B 0.006 0.902 0.091 0.001
C 0 0.016 0.907 0.077
D 0 0.001 0.006 0.993

Table 4  Spatial Markov transition probability matrix of China’s 
ULUCEI from 2000 to 2017

Type of space Status at 
year t

Status at year (t+1)

A B C D

I A 0.96 0.04 0 0
B 0.007 0.944 0.049 0
C 0 0.023 0.938 0.039
D 0 0 0 1

II A 0.867 0.133 0 0
B 0.007 0.907 0.084 0.001
C 0 0.033 0.926 0.041
D 0 0.011 0 0.989

III A 0.873 0.127 0 0
B 0.005 0.89 0.105 0
C 0 0.006 0.925 0.069
D 0 0 0.008 0.992

IV A 1 0 0 0
B 0 0.685 0.315 0
C 0 0.023 0.836 0.141
D 0 0 0.007 0.993
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The probabilities of shifting upwards are much greater than 
that of transferring downwards, indicating that China’s 
ULUCEI shows an increasing trend. Moreover, spatial fac-
tors significantly affect the dynamic transition of China’s 
ULUCEI, and its effect on the shifting upwards gradually 
enhances with increasing lag type.

Conclusions and policy implications

Conclusions

This paper constructed a conceptual framework of ULUCEI 
and measured the ULUCEI of 334 cities in China from 2000 
to 2017. On this basis, KDE and ESDA are used to explore 
the spatiotemporal patterns of China’s ULUCEI. Moreover, 
the method of spatial Markov chains is used to analyze the 
evolution trend of China’s ULUCEI. The main conclusions 
are as follows:

1. There was an increasing trend of ULUCEI in China and 
three large regions during the sample period. China’s 
ULUCEI increased from 0.102 in 2000 to 0.283 in 2017. 
From the regional perspective, the ULUCEI in the east-
ern region is markedly higher than that in the central 
and western regions. Specifically, the ULUCEI in the 
eastern region rose from 0.192 in 2000 to 0.525 in 2017, 
the central region increased from 0.089 in 2000 to 0.231 
in 2017, and the western region increased from 0.041 
in 2000 to 0.132 in 2017. After 2012, China’s ULUCEI 
has changed from rapid improvement to stable develop-
ment. Moreover, the results of nuclear density estimation 
indicate that China’s ULUCEI shows an obvious upward 
and polarized trend.

2. The spatial distribution of China’s ULUCEI has obvious 
regional differences during the sample period. The results 
of the global space autocorrelation indicate that China’s 
ULUCEI shows a positive spatial autocorrelation, and the 
spatial agglomeration shows a rapid increase followed by 
a gradual slowdown. There are obvious disparities in the 
distribution rules of cities with different spatial agglom-
eration forms. Specifically, “High-high” agglomeration 
cities show an obvious expansion trend and concentrate 
in urban agglomerations. “High-low” polarization cities 
are mainly scattered in the central and western regions. 
The spatial distribution and number of “low-high” col-
lapse cities remain relatively stable. “Low-low” homoge-
neity cities present a pattern of concentrated contiguous 
distribution.

3. Without the effect of the spatial lag, the probabilities of 
remaining stable are higher than 90%, which indicates 
that it is relatively difficult to achieve the spatiotemporal 
transition of China’s ULUCEI. Under the influence of 

the spatial lag, the probabilities of maintaining steady 
state are still higher than shifting upwards or transfer-
ring downwards, which implied that China’s ULUCEI 
presents strong stability and “club convergence” trend. 
Moreover, spatial factors significantly affect the dynamic 
transition of China’s ULUCEI, and its effect on the shift-
ing upwards gradually enhances with increasing lag type.

Policy implications

According to the main research results obtained in this 
paper, the following several policy implications for reducing 
ULUCEI and promoting urban carbon emission reduction in 
China were proposed.

First, formulating the differentiated urban land low-car-
bon use models and carbon emission reduction strategies 
based on the spatiotemporal patterns and evolution trend of 
China’s ULUCEI. The eastern region should exert its tech-
nological innovation capabilities and industrial development 
advantages, improve the economic output of urban land, 
minimize carbon emissions, and explore new models of low-
carbon utilization of urban land. The central region should 
explore the integration mechanism of industrial development 
and urban land utilization, improve the regional integrated 
development model, and promote the coupled development 
between economic growth and carbon emission reduction. 
The western region should rely on the national development 
strategy of western development, promote the close connec-
tion between infrastructure construction, industrial develop-
ment, and low-carbon economy, and improve the potential 
of urban land low-carbon utilization.

Secondly, transforming the urban land use model to pro-
mote urban carbon emission reduction. On the one hand, 
changing the urban land use mode from “high energy con-
sumption, high emission, and low output” to “low energy 
consumption, low emission, and high output.” On the other 
hand, exploiting the potential of urban land use, limiting the 
disorderly expansion of urban space, and reducing carbon 
emissions caused by urban land expansion.

Finally, optimizing urban spatial layout to promote urban 
carbon emission reduction. Combining industrial structure 
upgrading with urban land use planning, strictly limiting 
energy-intensive, high-emission, and high-pollution indus-
trial land indicators to reduce carbon emissions. Improving 
the land supply for high-tech industries, reducing urban car-
bon emissions, and promoting low-carbon use of urban land.
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