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Abstract
Migration of emerging contaminants (ECs) from pipes into water is a global concern due to potential human health effects. 
Nevertheless, a review of migration ECs from pipes into water distribution systems is presently lacking. This paper reviews, 
the reported occurrence migration of ECs from pipes into water distribution systems in the world. Furthermore, the results 
related to ECs migration from pipes into water distribution systems, their probable sources, and their hazards are discussed. 
The present manuscript considered the existing reports on migration of five main categories of ECs including microplastics 
(MPs), bisphenol A (BPA), phthalates, nonylphenol (NP), perfluoroalkyl, and polyfluoroalkyl substances (PFAS) from dis-
tribution network into tap water. A focus on tap water in published literature suggests that pipes type used had an important 
role on levels of ECs migration in water during transport and storage of water. For comparison, tap drinking water in contact 
with polymer pipes had the highest mean concentrations of reviewed contaminants. Polyvinyl chloride (PVC), polyamide 
(PA), polypropylene (PP), polyethylene (PE), and polyethylene terephthalate (PET) were the most frequently detected types 
of microplastics (MPs) in tap water. Based on the risk assessment analysis of ECs, levels of perfluorooctanoic acid (PFOA), 
perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorohexane sulfonate (PFHxS), and perfluorooctane 
sulfonate (PFOS) were above 1, indicating a potential non-carcinogenic health risk to consumers. Finally, there are still 
scientific gaps on occurrence and migration of ECs from pipes used in distribution systems, and this needs more in-depth 
studies to evaluate their exposure hazards on human health.
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Introduction

Emerging contaminants (ECs) are natural or synthetic 
chemicals that have the potential to enter the environment 
and cause adverse ecological or/and human health effects 
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(Ahmed et al. 2017; Geissen et al. 2015; Ouda et al. 2021). 
ECs are not commonly monitored in the environment 
because of their emerging nature (Geissen et al. 2015; Ouda 
et al. 2021). If left unregulated, contaminants represent a 
main concern. The major threats from ECs are related to 
environmental and human toxicological effects that have not 
yet been properly studied (Sharma et al. 2019). ECs include 
a wide variety of compounds such as pharmaceuticals, 
endocrine-disrupting compounds (EDCs), personal care 
products (PCPs), flame retardants, pesticides, surfactants, 
and industrial additives among others (Ahmed et al. 2017; 
Jiang et al. 2013; Matamoros et al. 2016). ECs can cause 
different risks to humans and to the environment. A risk 
assessment of ECs is mostly based on the persistence, tox-
icity, and bioaccumulation (Haddaoui and Mateo-Sagasta 
2021). Although the occurrence of ECs has been reported in 
different environmental media, as yet there are not enough 
reports on their potential environmental or human health 
risks (Naidu et al. 2016). Exposure to ECs may cause many 
different types of effects in humans, such as mutagenic and 
carcinogenic effects (Ouda et al. 2021; Yadav et al. 2019).

Tap water is potentially transferred over large distances 
through the distribution system to reach the consumer. A wors-
ening in the quality of tap water cannot be ruled out after the 
water leaves a treatment plant (Douterelo et al. 2014; Machell 
et al. 2010; Ramos et al. 2010).). Well-managed distribution 
systems are an important factor in ensuring the integrity tap 
water and in protecting it from contamination. Nevertheless, 
the management of water supply networks often receives too 
little attention. There is widespread evidence that the insuf-
ficient management of tap water has led to outbreaks of dis-
ease. The reasons for these outbreaks and the level of chemical 
risks involved are various (Brunkard et al. 2011; WHO 2014). 
There are many chemical risks that could pollute drinking 
water, such as compounds coming from substances or react-
ing with substances in the water networks, chemicals which 
have accumulated and migrated from deposits and scales, and 
compounds entering the water networks through defects and 
fractures (WHO 2014). Chlorine as the most common chemical 

added to drinking water for water disinfection and the control 
of targeted pathogens. Chlorination of drinking water gener-
ates potentially carcinogenic disinfection by-products such as 
haloacetic acids and trihalomethanes (He et al. 2017; Richard-
son and Kimura 2016). Most developed countries have created 
regulations or guidelines to minimize human exposure to dis-
infection by-products (Richardson 2003). One serious problem 
facing drinking water distribution networks is the migration of 
contaminants from pipes, and this concern has important con-
sequences for substance choice, the operation of a system, and 
regulatory compliance. Various organic and inorganic additives 
such as lubricants, antioxidants and other stabilizers, soften-
ers, and coloring agents are used in pipes to increase the life 
of the material, and to aid the manufacturing, transport, and 
installation (Zhang and Liu 2014; Zhang et al. 2014). These 
additives, as well as their degradation products, may leach into 
water distribution systems and contaminate tap water (inorganic 
or/and organic) (Brocca et al. 2002). Thus, it is probable that 
pipes can be an extra source of contaminants (regulated and/
or unregulated) in water. Consequently, the existence of ECs in 
drinking water distribution systems has been recognized and 
become a subject of public concern. The release of emerging 
and other contaminants from pipes that may adversely influ-
ence the chemical quality of drinking water and their effects 
on the health of people have been studied worldwide, in coun-
tries such as Turkey (Endirlik et al. 2019), Iran (Abdolahnejad 
et al. 2019), China (Gao et al. 2019), Germany (Mintenig et al. 
2019), and Portugal (Santana et al. 2014). Among the ECs 
released from pipes into tap water, microplastics (MPs), bisphe-
nol A (BPA), phthalates, nonylphenol (NP), perfluoroalkyl, and 
polyfluoroalkyl substances (PFAS) have received more atten-
tion. The presence of these contaminants in drinking water is 
concerning due to their effects on health. Some of the health 
effects of these contaminates are noted in Table 1.

To date (October, 2021), there are several studies on migra-
tion of MPs, BPA, phthalates, NP, and PFAS from pipes into 
tap water. But, the knowledge about the migration of ECs from 
the pipes used in drinking water distribution systems and the 
potential risks of these contaminants is still lacking. Also, 

Table 1  Some health effects of MPs, BPA, phthalates, NP, and PFAS

1 Microplastics; 2bisphenol A; 3nonylphenol; 4perfluoroalkyl and polyfluoroalkyl substances

Contaminant Health effect Ref

MPs1 Immunosuppression, immune activation, and abnormal inflammatory 
responses

(Prata 2018; Prata et al. 2020; Rahman et al. 2020)

BPA2 Estrogenic impacts, developing prostate cancer, and decreased fertil-
ity

(Batista and Rocha 2013; Nascimento and Rocha 2018)

Phthalate Developmental and reproductive harm, neurological, metabolic, and 
immune effects

(Abtahi et al. 2019; Net et al. 2015)

NP3 Effects on nervous system, immune systems, and reproductive system (Acir and Guenther 2018; Gan et al. 2015; Liu et al. 2020)
PFAS4 Cancer, immune system dysfunction, liver damage, developmental 

and reproductive harm, and tumor induction
(Liu et al. 2020; Ojo et al. 2020; Pelch et al. 2019)
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there is no review article especially related to the transmission 
of ECs from drinking water pipes into water. Hence, in this 
review, we study existing literature on the migration of ECs 
from pipes used in drinking water distribution networks into 
tap water, focusing on MPs, BPA, phthalates, NP, and PFAS. 
Even then, there are other compounds besides the compounds 
mentioned here, but in this study we only considered the stud-
ies that directly considered the mentioned ECs. Therefore, in 
the present review, the mentioned ECs are reviewed with a spe-
cific emphasis on their occurrence and source of their existence 
in tap water related to pipe types. Finally, the potential hazards 
of these contaminants in tap water are evaluated.

Materials and methods

Review methodology

In order to investigate the migration of ECs from the pipes 
used in drinking water distribution systems, published 
manuscripts were gathered by a search of the electronic 
literature Scopus, PubMed, Science Direct, Web of Sci-
ence, ProQuest, Springer Link, and Publons from January 
1, 2000 to October 30, 2021, using the keywords (“con-
taminants migration from pipes into water” OR “drinking 
water distribution systems” OR “tap water” OR “microplas-
tics” OR “bisphenol A” OR “phthalates” OR “nonylphenol” 
OR “perfluoroalkyl and polyfluoroalkyl substances”). Our 
research was limited to peer-reviewed publications in the 
“English language.” Also, we reviewed the references of 
the screened papers in order to find additional published 
manuscripts that were not found in the initial search.

After eliminating the duplicate papers, the adopted 
documents from different databases were selected and 
then screened with regard to the aim and scope of this 
review. The unsuitable studies, abstracts, reviews and edi-
torial articles, book chapters, and conference proceed-
ings were not considered. Finally, 92 papers articles were 
selected for inclusion in the present study. A flow dia-
gram of the study selection process for this review is pre-
sented in Fig. 1. Also, the number of studies investigating 
the migration of contaminants from pipes into drinking 
water distribution systems included in the present study 
is shown in Fig. 2. It should be noted that some of the 
reports studied more than one of contaminants considered 
in the present study.

Inclusion and exclusion criteria

The initial search of the databases found 12,580 arti-
cles. Duplicate articles numbered 3572 articles were 
removed by using EndNote X8.2.0 software. Also, the 

titles and abstracts of the remaining articles were con-
trolled for inclusion. After this screening, 8856 articles 
including editorials, book chapters, review articles, and 
irrelevant studies were excluded. Most of the screened 
papers were excluded from this review because they were 
not related to our topics. Furthermore, 11 related arti-
cles were included that were detected in the reference 
lists of remaining and review articles. The number sci-
entific papers chosen for full-text review was 132, and 
these were examined closely in order to ensure they met 
the inclusion criteria. Among these remaining articles, 
the papers were filtered by the following final criteria: 
(1) the articles measured MPs, BPA, phthalate, NP, and 
PFAS in drinking water distribution systems, and (2) the 
articles were published in English. Finally, after applying 
the mentioned criteria, 92 articles were included in the 
present review (Fig. 1).

Human health–risk assessment

Ingestion is the major route of exposure to chemicals in 
drinking water (Abtahi et al. 2019). In this work, the chronic 
daily intake (CDI) of contaminants via ingestion was calcu-
lated according to the following equation (Bortey-Sam et al. 
2015; Wongsasuluk et al. 2014):

where C is the maximum level of target compound (items/L, 
ng/L, µg/L, and mg/L), IR is the consumption rate of the 
water being studied (3.45 and 2 L/day for adults and chil-
dren, respectively), ED is the exposure duration (70 years 
for adults and 10 years for children), EF is the frequency of 
exposure (365 days/year), BW is the average body weight 
(60 kg for adults and 25 kg for children), and AT is the 
average time, which is equal to 25,550 days for adults (i.e., 
70 years × 365 days/year) and 3650 days for children (i.e., 
10 years × 365 days/year).

The non-carcinogenic hazard index (HI) is estimated with 
dividing the value of CDI by the reference dose (RfD). The 
computation of HI for one contaminant can be conducted by 
the following equation (Kamunda et al. 2016; Wongsasuluk 
et al. 2014):

The RfD is the reference doses of exposure to contaminant 
via ingestion. The HI values are divided in two categories: less 
than 1 indicating no significant risk of relevant health effects 
and more than 1 with a significant risk of relevant health 
effects (Bortey-Sam et al. 2015; Wongsasuluk et al. 2014).

(1)CDIIngestion =
C × IR × ED × EF

BW × AT

(2)HI =
CDI

RfD
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Cancer risks (CR) were assessed as the incremental prob-
ability of an individual developing cancer over a lifetime as 
a result of exposure to a potential carcinogen. The following 
equation (Eq. 3) was used for the calculation of the carcino-
genic risk (Titilawo et al. 2018):

where CSF is the cancer slope factor (mg/kg/day)−1. Finally, 
the CR for each carcinogen compound was compared with 
the acceptable risk (Man et al. 2013; Titilawo et al. 2018).

(3)CR = CDI × CSF

Major emerging contaminants’ release 
from pipes used in water distribution 
systems

Microplastics (MPs)

In spite of the irrefutable advantages of plastics in daily life 
(e.g., packaging, medical devices, electronic and electrical 
parts), there is a growing concern due to probable harmful 
influences of plastics and MPs on human health (Koelmans 

Fig. 1  Flowchart of study selec-
tion for MPs, BPA, phthalate, 
NP, and PFAS in drinking water 
distribution systems
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et al. 2019a; Kumar et al. 2021b; Zuccarello et al. 2019). 
MPs are plastic particles with a size of smaller than 5 mm 
and have received substantial consideration as a new emerg-
ing contaminant class due to their global distribution, both 
from research societies and the community (Akhbarizadeh 
et al. 2021a, 2020b; Dobaradaran et al. 2018). Chemical tox-
icity, physical damages, and microbial risks are related to the 
effects of MPs, and these effects are probably dose-depend-
ent (Koelmans et al. 2019a; Prata et al. 2020; Rahman et al. 
2020; Rist et al. 2018). Oxidative stress, immunological 
responses, sugar biosynthesis, and hemocyte mortality are 
some of the toxicity mechanisms of MPs (Avio et al. 2015; 
Lagarde et al. 2016; Paul-Pont et al. 2016). In recent years, 
MP particles have been identified in different matrixes such 
as air (Abbasi et al. 2019; Akhbarizadeh et al. 2021b), food 
(Akhbarizadeh et al. 2020a; Liebezeit and Liebezeit 2014, 
2015), water sources (Akhbarizadeh et al. 2020b; Li et al. 
2020), wastewater effluents (Picó et al. 2021; Takdastan et al. 
2021), marine environments (Akhbarizadeh et al. 2021a; 
Dobaradaran et al. 2018), wetlands (Kumar et al. 2021a; Su 
et al. 2019), and rivers (Eo et al. 2019; Kataoka et al. 2019). 
Also, the impacts of MPs on biota and ecological systems 
have been recognized (Fu et al. 2020; Jung et al. 2021; Prata 
et al. 2020). According to the present studies, plastic pipes 
in water distribution networks are a significant source of 
MPs. However, data concerning the existence of MPs in tap 
water are very scarce and to the present time only 13 works 
focused on these contaminants. The information reported in 
the included studies is shown in Table 2.

In the study of Mintenig et  al. (2019) in Germany, 
the average number of MPs, with a size distribution of 
50–150 µm, in tap water samples was reported to be less 
than 1 particle/L (Mintenig et al. 2019), and this number is 

very low compared to the average number of MPs reported 
in other countries worldwide. Also, in another study in 
Germany, Weber et al. (2021) investigated MPs, with a 
size distribution of 10–1000 µm in tap water samples col-
lected from three house junctions, one transmission station, 
and five drinking taps. Based on the their findings, no MPs 
were identified in the tap water samples of consumption 
taps (Weber et al. 2021). Besides the differences present in 
the treatment methods employed in water treatment plants, 
the variations in the reported numbers of detected MPs, as 
shown in Table 2, can be due to differences in types of plas-
tic pipes, fittings, and tanks used in the water distribution 
systems (Mintenig et al. 2019). Based on Table 2, the high-
est abundance of MPs was detected in a study by Pivokon-
sky et al. (2018) in Czech Republic. Also, in this study, the 
MPs in the tap water samples were investigated with micro 
Raman spectrometry, and it was discovered that up to 95% 
of the detected MPs had a size of 1–10 µm (Pivokonsky et al. 
2018). However, these tiny fine particles have not detected in 
other studies performed on tap water (Kankanige and Babe 
2020; Kosuth et al. 2018; Mintenig et al. 2019; Pivokonsky 
et al. 2018; Tong et al. 2020; Zhang et al. 2020a). The differ-
ences between the published data can be ascribed to various 
parameters such as limitations in the techniques and analyti-
cal methods used, and differences in the sample volumes, 
pipe materials used in the water distribution networks, and 
the study areas (Tong et al. 2020). In a study from China, 
Zhang et al. (2019) found the average number of MPs in 7 
tap water samples, with size categories of < 100 µm [1.2%], 
100–500 µm [26%], and > 500 µm [72.8%], was 0.7 items/L. 
The lowest size of MPs reported in this study, of < 100 µm, 
was due to the analytical methods used for the determination 
of MPs size. Also, rayon, polyethylene terephthalate (PET), 

Fig. 2  The number of studies 
investigating migration of con-
taminants [microplastics (MPs), 
bisphenol A (BPA), phthalate, 
nonylphenol (NP), and per-
fluoroalkyl and polyfluoroalkyl 
substances (PFAS)] from pipes 
into drinking water distribution 
systems in the present study 
(More than one contaminant 
has been investigated in some 
studies)
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and polyethylene (PE) were the types of polymer MPs 
most frequently detected in the tap water samples in fur-
ther research from China (Zhang et al. 2020a). Based on the 
findings of a research in China, the detected average number 
of MPs was 2.2 items/L. The number of MPs in tap water, in 
the size classes of 2.7–149 and ≥ 150 µm, were 69.2% and 
38.2%, respectively. According to the results of the research 
reviewed, the presence of MPs in water can be ascribed to 
the release these particles following the mechanical abrasion 
of plastic-coated or plastic-lined water pipes and tanks (Lam 
et al. 2020). In the study of Tong et al. (2020) in China, the 
average number of MPs in water samples collected from 
distribution systems was reported to be 440 items/L with 
137 items/L in a size of < 100 µm and 303 items/L in a size 
of > 100 µm. The most abundant identified polymer types 
were PE, PP, PS, and PET. As the pipes used in the water 
supply networks in China are mostly plastic pipes, this may 
cause MPs pollution and enhance the MPs numbers in tap 
water samples (Tong et al. 2020). Based on the results of the 
a study in China, average number of MPs, in the size range 
of 1 to 100 μm, in tap water samples was reported to be 
343.5 items/L, and this was dependent on the materials used 
in the transport pipelines in the drinking water distribution 
network (Shen et al. 2021). The differences present in the 
results of the studies done in China by Shen et al. (2021) [in 
Changsha] (Shen et al. 2021), Lam et al. (2020) [in Hong 
Kong] (Lam et al. 2020), Tong et al. (2020) [in 38 cities of 
China] (Tong et al. 2020), and Zhang et al. (2020a) [in Qing-
dao] (Zhang et al. 2020a) may be due to differences in the 
regions studied, the geographical conditions, the pipelines 
used in the drinking water distribution systems, and the ana-
lytical methods. In a recent study in Sweden, Kirstein et al. 
(2021) investigated distribution pipes (mainly of stainless 
steel, cement, PE, and cast iron) with different ages to deter-
mine the potential differences in the abundance of MPs. The 
presence of PE pipes with an age of more than 10 years had 
considerable effect on the abundance of MPs in the distri-
bution system. Eight polymers of various types, comprising 
PA, polyester, acrylic, PVC, PS, PE, polyurethane (PU), and 
PP, were identified in tap water in varying amounts. Also, a 
very low number of MPs was identified in the outlets of the 
water treatment plants compared to the water samples taken 
from the distribution network. Kirstein et al. concluded that 
the occurrences of MPs in drinking water distribution sys-
tems may be due to abrasion and/or damage during pipeline 
construction (Kirstein et al. 2021). The reason for the domi-
nance of the various polymer types (PVC, PE, PA and epoxy 
resin) in tap water samples can be explained by the abra-
sion of pipes and fittings in the distribution network, which 
are mostly built of PVC, PE, and PA coated with epoxy 
resin. Though plastic is a resistant and durable substance, 
abrasion may happen and this is a probable explanation for 
the occurrence of the specified particles of plastic in tap 

water (Kankanige and Babe 2020; Mintenig et al. 2019). 
High contact time of water with polymer pipes can cause 
the breakdown of polymers to a smaller size and damage to 
external structures. This damage helps promote the migra-
tion of more MPs into the drinking water. These damages 
help promote the migration of more MPs into drinking water 
(Ye et al. 2020). Additives to plastics and the components of 
plastics may also leach from the MP particles into drinking 
water distribution systems during transport and storage. All 
the additives present in MPs may leach and be absorbed in 
the human body after the drinking of tap water (Brocca et al. 
2002; Whelton and Nguyen 2013). These components may 
have various toxicological impacts on the health of people 
(Brown et al. 2001; Schirinzi et al. 2017). It should be noted 
that the application of Raman microscopy or FTIR for the 
identification of smaller MPs compared to the manual sort-
ing and subsequent identification of MPs is relatively easy to 
assess due to the measuring area of a filter (Koelmans et al. 
2019b). Thus, the identification of smaller MPs with Raman 
microscopy or FTIR increases the number of detected MPs.

Different identification methods with different capabili-
ties in the counting of MPs, different size categories in stud-
ies, and a general lack of a uniform detection and identifica-
tion method for MPs are the main problems present when 
comparing the results of studies on the occurrence of MPs in 
tap water. It should be noted that there is still a big scientific 
limitation to the ability to count and identify the MPs in 
water (as well as in any sample matrix), especially the MPs 
with a size of less than 50 µm. Because of the importance 
to health of the daily intake of drinking water, the scientific 
community they should improve the identification method 
for MPs and also extend the studies to include nanoplas-
tics (NPs), with the size range of 1–1000 nm (Schwaferts 
et al. 2019). Therefore, more sophisticated research on the 
amount, type, size, and source of MPs in water distribution 
systems, particularly by considering various types of plastic 
pipes, are needed to cover this scientific gap.

Bisphenol A (BPA) and phthalates

Bisphenol A (BPA; 2, 2-bis (4-hydroxyphenyl)propane) and 
phthalates (esters of phthalic acid–C6H4(CO2H2)2) are addi-
tives mainly used in plastics to enhance their transparency, 
durability, flexibility, and longevity (Arnold et al. 2013; 
Sakhi et al. 2014; Shi et al. 2012). These plasticizers have 
entered widely and simply into the environment as they are 
not chemically bound to the products (Yang et al. 2018). It 
was predicted that the worldwide usage of phthalate plas-
ticizers increased by 1.3% each year from 2017 to 2022 
(Luo et al. 2018). BPA and the most common phthalates 
including butyl benzyl phthalate (BBP), di-n-butyl phthalate 
(DBP), diethyl phthalate (DEP), di-(2-ethylhexyl) phthalate 
(DEHP), di-isononyl phthalate (DiNP), di-isobutyl phthalate 
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(DiBP), di-isodecyl phthalate (DiDP), di-n-butyl phthalate 
(DnBP), di-methyl phthalate (DMP), and di-n-octyl phtha-
late (DnOP) are recognized as EDCs in tap water that can 
be connected to chronic health effects (Abtahi et al. 2019; 
Moazzen et al. 2018; Santhi et al. 2012). BPA can cause 
endocrine disruption, reproductive and developmental tox-
icity, neurotoxicity, and immunotoxicity (Ma et al. 2019; 
Qiu et al. 2019). Phthalates may cause endocrine disruption, 
oxidative stress, and reproductive toxicity (Sedha et al. 2021; 
Zhang et al. 2021). The guidelines of the US Environmental 
Protection Agency (EPA) for the TDI values of BPA, BBP, 
DBP, DEHP, DEP, DiDP, DMP, and DnOP are 50, 200, 
100, 20, 800, 150, 100, and 10 µg/kg-bw/day, respectively 
(USEPA 2011). Furthermore, a standard level of 8 μg/L 
for DEHP in water is recommended by the World Health 
Organization (WHO 2008).

Until now, there have been only a limited number of stud-
ies on the concentrations of BPA and phthalates in water 
supply networks and the results are given in Tables 3 and 

4, respectively. In a recent report, Cantoni et al. (2021) in 
Italy evaluated BPA release from pipes into water with 
high-performance liquid chromatography–tandem mass 
spectrometry (HPLC–MS/MS). The average level of BPA 
was 1129 ng/L, and it was clearly highlighted that the leak-
age of BPA from plastic constituents used in drinking water 
distribution systems pipelines is a major source of BPA in 
tap drinking water (Cantoni et al. 2021). The findings of 
previous studies on BPA corroborate that this plasticizer 
may be leached from polymer pipes into water supply net-
works (Colin et al. 2014; Goeury et al. 2019; Rajasärkkä 
et al. 2016; Santhi et al. 2012; Sodré et al. 2010; Tang et al. 
2012; Zhang et al. 2019). This contamination can result 
from polymer decomposition during transport and storage 
in drinking water distribution systems (Abtahi et al. 2019). 
The concentration of BPA was 87.33 ng/L in tap drinking 
water samples from pipelines with epoxy resin lining in Fin-
land. The existence of BPA in tap water might be due to 
epoxy pipelines upstream of the sampled water (Rajasärkkä 

Table 3  The average concentration of BPA in drinking water distribution systems

1 Not reported; 2high-performance liquid chromatography–tandem mass spectrometry; 3liquid chromatography–tandem mass spectrometry; 
4ultra-performance liquid chromatography–tandem mass spectrometer; 5ultra-high-performance liquid chromatography–tandem mass spectrom-
etry; 6gas chromatography–mass spectrometry; 7ultra-performance liquid chromatography–mass spectrometer; 8online solid-phase extraction-
liquid chromatography–tandem mass spectrometry; 9gas chromatography–tandem mass spectrometry; 10liquid chromatography–liquid chroma-
tography–tandem mass spectrometry
* Median (based on reported values in the study)
** Maximum (based on reported values in the study)

Total 
number of 
samples

Concen-
tration 
(ng/L)

Country (city or area; year of sampling) Instrumental analysis Ref

3 1129 Italy  (NR1; NR) HPLC–MS/MS2 (Cantoni et al. 2021)
155 1.55 Malaysia (Putrajaya; 2018) LC–MS/MS3 (Wee et al. 2020)
20 12.80 China (20 areas; 2017) UPLC-MS/MS4 (Zhang et al. 2019)
11 1.50 Canada (Quebec and Ontario provinces; 2017–2018) UHPLC-MS/MS5 (Goeury et al. 2019)
20 28.83** South Africa (Pretoria and Cape Town; 2013–2014) UPLC-MS/MS (Van Zijl et al. 2017)
6 87.33 Finland (Helsinki; 2015) GC-MS6 (Rajasärkkä et al. 2016)
18 12** Taiwan (Taipei and Kaohsiung; NR) UPLC-MS7 (Cheng et al. 2016)
27 174 USA (New York; 2012) HPLC–MS/MS (Subedi et al. 2015)
291  < 9 France (Paris, Rennes, Lille, Strasbourg, Lyon, Bordeaux, 

Toulouse, Nice, Marseille, Corsica, Guadeloupe, Reun-
ion, Martinique, and Guyana; NR)

Online SPE-LC–MS/MS8 (Colin et al. 2014)

2 1.1 Japan (NR; 2012) LC–MS/MS (Kosaka et al. 2012)
3 37.33 Poland (South Poland; 2017) GC–MS/MS9 (Kmiecik et al. 2020)
6 14.8* Spain (Madrid; 2012) LC-LC–MS/MS10 (Esteban et al. 2014)
11 6 Spain (Valencian Community; 2012) LC–MS/MS (Carmona et al. 2014)
35 1.56* Italy (35 cities; 2012) LC-LC–MS/MS (Maggioni et al. 2013)
30 14.10 Malaysia (Kuala Lumpur; 2008–2009) GC–MS (Santhi et al. 2012)
30 160** China (Henan province; NR) NR (Tang et al. 2012)
123 0.99** Canada (Ontario; NR) LC–MS/MS (Kleywegt et al. 2011)
12 160 Brazil (Campinas; 2006) GC–MS (Sodré et al. 2010)
6 99 China (Guangzhou; NR) GC–MS (Li et al. 2010)
7 0.25** Spain (Valles area; NR) GC–MS (Casajuana and Lacorte 2003)

75141Environmental Science and Pollution Research  (2022) 29:75134–75160

1 3



Ta
bl

e 
4 

 T
he

 av
er

ag
e 

co
nc

en
tra

tio
n 

of
 p

ht
ha

la
te

s i
n 

dr
in

ki
ng

 w
at

er
 d

ist
rib

ut
io

n 
sy

ste
m

s

To
ta

l n
um

be
r 

of
 sa

m
pl

es
C

om
po

un
ds

C
on

ce
nt

ra
tio

n 
(µ

g/
L)

C
ou

nt
ry

 (c
ity

 
or

 a
re

a;
 y

ea
r o

f 
sa

m
pl

in
g)

In
str

um
en

ta
l 

an
al

ys
is

Re
f

To
ta

l n
um

be
r 

of
 sa

m
pl

es
C

om
po

un
ds

C
on

ce
nt

ra
-

tio
n 

(µ
g/

L)
C

ou
nt

ry
 (c

ity
 

or
 a

re
a;

 y
ea

r o
f 

sa
m

pl
in

g)

In
str

um
en

ta
l 

an
al

ys
is

Re
f

5
B

B
P1

0.
02

4*
**

C
hi

na
 (C

ha
ng

zh
ou

, 
Su

zh
ou

, W
ux

i, 
X

uz
ho

u,
 a

nd
 

Ya
nc

he
ng

; 2
01

0)

LC
–E

SI
–M

S/
M

S15
(S

hi
 e

t a
l. 

20
12

)
7

B
B

P
1.

40
V

ie
tn

am
 (H

an
oi

; 
20

20
)

G
C

-M
S16

(L
e 

et
 a

l. 
20

21
)

D
B

P2
0.

11
**

*
D

M
P10

0.
35

D
EH

P3
0.

28
**

*
D

B
P

0.
79

D
iB

P4
0.

11
**

*
D

EP
1.

09
D

iD
P5

0.
09

**
*

D
C

H
P11

0.
54

D
iN

P6
0.

29
**

*
D

iB
P

0.
45

D
EP

7
0.

00
3*

**
D

EH
P

0.
45

D
nB

P8
0.

93
**

*
D

nH
P12

0.
41

D
nO

P9
0.

07
**

*
D

nO
P

5.
34

D
PP

13
0.

37
65

D
EH

P
0.

08
**

C
hi

na
 (W

uh
an

; 
N

R
)

U
H

PL
C

-M
S/

M
S17

(L
i e

t a
l. 

20
19

)
23

B
B

P
0.

03
Ta

iw
an

 (K
ao

hs
i-

un
g;

 2
01

1–
20

13
)

LC
–E

SI
–M

S/
M

S
(Y

an
g 

et
 a

l. 
20

14
b)

D
iB

P
0.

11
**

D
EH

P
0.

17
D

EP
0.

06
**

D
EP

0.
03

D
nB

P
0.

43
**

D
iD

P
0.

01
7

B
B

P
0.

01
7*

**
Sp

ai
n 

(V
al

le
s a

re
a;

 
N

R
)

G
C

–M
S

(C
as

aj
ua

na
 a

nd
 

La
co

rte
 2

00
3)

D
iN

P
0.

30
D

B
P

0.
03

2*
**

D
M

P
0.

00
2

D
EH

P
0.

33
**

*
D

nB
P

0.
09

D
EP

0.
09

**
*

D
nO

P
0.

03
12

B
B

P
0.

53
C

hi
na

 (H
on

g 
K

on
g;

 
20

17
–2

01
8)

H
PL

C
–M

S/
M

S18
(L

i e
t a

l. 
20

21
b)

89
B

B
P

 <
 0.

05
Fr

an
ce

 (N
R

; 
20

15
–2

01
6)

O
nl

in
e 

SP
E-

LC
–

M
S/

M
S19

(B
ac

h 
et

 a
l. 

20
20

)
D

B
P

0.
34

D
B

P
0.

95
D

EH
P

0.
08

D
EH

P
 <

 0.
5

D
EP

0.
10

D
EP

0.
25

D
M

P10
0.

86
D

iB
P

1.
29

D
nO

P
0.

21
40

B
B

P
A

ve
ra

ge
 le

ve
l o

f 
to

ta
l p

ht
ha

la
te

s:
 

0.
76

 *

Ir
an

 (T
eh

ra
n;

 
20

18
)

G
C

-F
ID

20
(A

bt
ah

i e
t a

l. 
20

19
)

22
5

B
B

P
0.

02
C

hi
na

 (3
5 

ci
tie

s;
 

20
09

–2
01

2)
G

C
–M

S
(L

iu
 e

t a
l. 

20
15

)
D

B
P

D
B

P
0.

01
D

EH
P

D
EH

P
0.

77
D

EP
D

EP
0.

03
D

M
P

D
M

P
0.

07
D

nO
P

D
nO

P
0.

02
1

B
B

P
0.

03
Po

rtu
ga

l  (
N

R
14

; 
N

R
)

G
C

–M
S

(S
er

ôd
io

 a
nd

 
N

og
ue

ira
 2

00
6)

5
B

B
P

0.
00

2
C

ze
ch

 R
ep

ub
lic

 
(P

ra
gu

e;
 N

R
)

G
C

21
(P

ro
ků

pk
ov

á 
et

 a
l. 

20
02

)
D

EH
P

0.
06

D
EH

P
0.

06

D
B

P
0.

52
D

EP
0.

07

D
EP

0.
19

D
M

P
0.

08

D
M

P
0.

04
D

nB
P

0.
05

75142 Environmental Science and Pollution Research  (2022) 29:75134–75160

1 3



1  B
ut

yl
 b

en
zy

l p
ht

ha
la

te
; 2 di

-n
-b

ut
yl

 p
ht

ha
la

te
; 3 di

-(
2-

et
hy

lh
ex

yl
) p

ht
ha

la
te

; 4 di
-is

ob
ut

yl
 p

ht
ha

la
te

; 5 di
-is

od
ec

yl
 p

ht
ha

la
te

; 6 di
-is

on
on

yl
 p

ht
ha

la
te

; 7 di
et

hy
l p

ht
ha

la
te

; 8 di
-n

-b
ut

yl
 p

ht
ha

la
te

; 9 di
-n

-
oc

ty
l p

ht
ha

la
te

; 10
di

-m
et

hy
l p

ht
ha

la
te

; 11
di

cy
cl

oh
ex

yl
 p

ht
ha

la
te

; 12
di

-n
-h

ex
yl

 p
ht

ha
la

te
; 13

di
ph

en
yl

 p
ht

ha
la

te
; 14

no
t r

ep
or

te
d;

 15
liq

ui
d 

ch
ro

m
at

og
ra

ph
y–

el
ec

tro
sp

ra
y 

io
ni

za
tio

n–
ta

nd
em

 m
as

s s
pe

c-
tro

m
et

ry
; 13

liq
ui

d 
ch

ro
m

at
og

ra
ph

y–
ta

nd
em

 m
as

s 
sp

ec
tro

m
et

ry
; 16

ga
s 

ch
ro

m
at

og
ra

ph
y–

m
as

s 
sp

ec
tro

m
et

ry
; 17

ul
tra

-h
ig

h-
pe

rfo
rm

an
ce

 li
qu

id
 c

hr
om

at
og

ra
ph

y–
ta

nd
em

 m
as

s 
sp

ec
tro

m
et

ry
; 18

hi
gh

 
-p

er
fo

rm
an

ce
 li

qu
id

 c
hr

om
at

og
ra

ph
y–

ta
nd

em
 m

as
s 

sp
ec

tro
m

et
ry

; 19
on

lin
e 

so
lid

-p
ha

se
 e

xt
ra

ct
io

n–
liq

ui
d 

ch
ro

m
at

og
ra

ph
y–

ta
nd

em
 m

as
s 

sp
ec

tro
m

et
ry

; 20
ga

s 
ch

ro
m

at
og

ra
ph

y–
fla

m
e 

io
ni

za
tio

n 
de

te
ct

or
; 21

ga
s c

hr
om

at
og

ra
ph

y;
 22

ul
tra

-p
er

fo
rm

an
ce

 li
qu

id
 c

hr
om

at
og

ra
ph

y–
ta

nd
em

 m
as

s s
pe

ct
ro

m
et

er
; 23

hi
gh

-r
es

ol
ut

io
n 

ga
s c

hr
om

at
og

ra
ph

y
*  B

as
ed

 o
n 

re
po

rte
d 

va
lu

es
 in

 th
e 

stu
dy

**
 M

ed
ia

n 
(b

as
ed

 o
n 

re
po

rte
d 

va
lu

es
 in

 th
e 

stu
dy

)
**

*  M
ax

im
um

 (b
as

ed
 o

n 
re

po
rte

d 
va

lu
es

 in
 th

e 
stu

dy
)

Ta
bl

e 
4 

 (c
on

tin
ue

d)

To
ta

l n
um

be
r 

of
 sa

m
pl

es
C

om
po

un
ds

C
on

ce
nt

ra
tio

n 
(µ

g/
L)

C
ou

nt
ry

 (c
ity

 
or

 a
re

a;
 y

ea
r o

f 
sa

m
pl

in
g)

In
str

um
en

ta
l 

an
al

ys
is

Re
f

To
ta

l n
um

be
r 

of
 sa

m
pl

es
C

om
po

un
ds

C
on

ce
nt

ra
-

tio
n 

(µ
g/

L)
C

ou
nt

ry
 (c

ity
 

or
 a

re
a;

 y
ea

r o
f 

sa
m

pl
in

g)

In
str

um
en

ta
l 

an
al

ys
is

Re
f

33
B

B
P

0.
05

Ir
an

 (I
sf

ah
an

; 
20

17
)

G
C

–M
S

(A
bd

ol
ah

ne
ja

d 
et

 a
l. 

20
19

)
14

6
D

EH
P

0.
17

C
hi

na
 (2

4 
ci

tie
s;

 
20

15
–2

01
8)

G
C

–M
S

(D
in

g 
et

 a
l. 

20
19

)
D

B
P

0.
01

D
iB

P7
0.

10
D

EH
P

0.
17

D
EP

0.
00

5
D

EP
0.

04
D

M
P

0.
01

7
D

B
P

0.
79

V
ie

tn
am

 (H
an

oi
; 

20
20

)
G

C
–M

S
(L

e 
et

 a
l. 

20
21

)
4

D
EH

P
0.

03
Ta

iw
an

 (N
R

; 
20

11
–2

01
2)

LC
–E

SI
–M

S/
M

S
(Y

an
g 

et
 a

l. 
20

14
a)

D
EP

1.
09

D
iB

P
0.

03
4

D
M

P
0.

35
D

nB
P

0.
02

D
iB

P
0.

45
20

D
B

P
1.

06
**

*
So

ut
h 

A
fr

ic
a 

(P
re

to
ria

 a
nd

 
C

ap
e 

To
w

n;
 

20
13

–2
01

4)

U
PL

C
-M

S/
M

S22
(V

an
 Z

ijl
 e

t a
l. 

20
17

)
3

D
B

P
0.

6*
**

Fr
an

ce
 (P

ar
is

; 
20

08
)

H
RG

C
 23

(M
ar

tin
e 

et
 a

l. 
20

13
)

D
EH

P
5.

15
**

*
D

EH
P

0.
66

**
*

D
iN

P
1.

25
**

*
D

EP
0.

9*
**

6
B

B
P

0.
53

C
hi

na
 (T

ia
nj

in
; 

20
19

)
G

C
–M

S
(W

an
g 

et
 a

l. 
20

21
)

5
D

EH
P

0.
93

G
re

ec
e 

(N
R

; N
R

)
G

C
–M

S
(P

si
lla

ki
s a

nd
 K

al
o-

ge
ra

ki
s 2

00
3)

D
B

P
0.

54
D

EP
0.

30
D

EH
P

1.
33

D
nB

P
1.

04
30

D
B

P
0.

93
C

hi
na

 (H
en

an
 

pr
ov

in
ce

; N
R

)
N

R
(T

an
g 

et
 a

l. 
20

12
)

N
M

D
B

P
0.

19
Sp

ai
n 

(N
or

th
-W

es
t 

of
 S

pa
in

; N
R

)
G

C
–M

S
(R

eg
ue

iro
 e

t a
l. 

20
08

)
D

EH
P

12
.4

8
N

M
D

B
P

0.
17

Po
la

nd
 (Z

ab
rz

e;
 

N
R

)
G

C
-F

ID
(B

od
ze

k 
et

 a
l. 

20
04

)
D

EP
44

7
D

B
P

0.
63

Sp
ai

n 
(M

ad
rid

; 
20

12
)

G
C

(D
om

ín
gu

ez
-

M
or

ue
co

 e
t a

l. 
20

14
)

4
D

EH
P

0.
32

Po
rtu

ga
l (

Li
sb

on
 

an
d 

th
re

e 
sm

al
l 

ne
ig

hb
or

 c
iti

es
; 

N
R

)

G
C

–M
S

(S
an

ta
na

 e
t a

l. 
20

14
)

D
EP

0.
38

D
iB

P
0.

17

3
D

B
P

0.
00

1
C

hi
na

 (W
uh

an
; 

N
R

)
G

C
–M

S
(L

uo
 e

t a
l. 

20
12

)
6

D
EP

0.
09

C
hi

na
 (W

uh
an

; 
N

R
)

G
C

-F
ID

(X
u 

et
 a

l. 
20

07
)

75143Environmental Science and Pollution Research  (2022) 29:75134–75160

1 3



et al. 2016). In a study in South  wAfrica, the maximum 
concentration of BPA was 28.83 ng/L. Based on the find-
ings of the studies reviewed, although various processes in 
water treatment plants can eliminate BPA from the water 
leaving the plants, this contaminant may migrate from the 
pipes used in the water distribution system and contaminate 
the water available to the consumer (Van Zijl et al. 2017). 
Also, the the difference in the results of the studies done in 
Spain by Esteban et al. (2014) and Cantoni et al. (2021) may 
be due to differences in the pipelines used in drinking water 
supply networks and the geographical conditions as well as 
in the analytical methods. It should be noted that the use of 
different analytical methods, such as such as gas chroma-
tography–mass spectrometry (GC–MS), liquid chromatog-
raphy–mass spectrometry (LC–MS), and high-performance 
liquid chromatography (HPLC), is one of the reasons for the 
difference between BPA concentrations found in the pub-
lished studies (Xue et al. 2013). The findings of Santhi et al. 
(2012) indicated that the average level of BPA in tap water 
was higher for polymer pipes than in pipes made of other 
substances (Santhi et al. 2012). Most of the preliminary 
substances such as epoxy resins that are used to produce 
polymer pipes would not be envisaged to include BPA, but 
cross pollution of BPA through the production of polymer 
material may be associated with tap water contamination 
(Colin et al. 2014). Epoxy resins are commonly applied as 
lacquers to protect water pipes and water supply reservoirs 
against corrosion, especially when the water is left stand-
ing in the pipes. The use of epoxies in small-diameter pipes 
(such as water service lines), which have high proportions 
of surface area to volume and flow intermittently, maximizes 
the potential for BPA to leach into water distribution sys-
tems (Lane et al. 2015). Due to the few studies available at 
present, more study is required to specify the exact impact 
of pipelines in enhancing BPA release into drinking water 
distribution systems as well as the health effects of BPA 
from drinking water for humans.

Regarding phthalates, several scientific studies investi-
gated their presence in drinking water pipes as shown in 
Table 4. The impact of pipe type on the potential release 
of phthalates into the water distribution systems have been 
examined in various studies. For instance, Abtahi et al. 
(2019) examined the effects of plumbing pipe type on the 
phthalate concentrations of tap water, and reported all that 
polymer pipes increased the levels of phthalate includ-
ing DBP, BBP, DEP, DMP, DEHP, and DnOP in drinking 
water distribution systems. These findings showed that water 
phthalate levels can increase after even a short time con-
tact of tap water with plastic materials (Abtahi et al. 2019). 
Likewise, Abdolahnejad et al. (2019) evaluated the con-
centrations of BBP [0.05 µg/L], DBP [0.01 µg/L], DEHP 
[0.17 µg/L], and DEP [0.04 µg/L] with GC–MS in water 
samples taken from iron and plastic pipes used in water 

distribution systems. They reported that, except for BBP, 
the average levels of phthalates in plastic pipes were more 
than in metal pipes (Abdolahnejad et al. 2019). Ding et al. 
(2019) reported a detection frequency of investigated phtha-
lates including DEHP, DiBP, DEP, and DMP of more than 
90% in 24 cities throughout China, with the exception of 
DnOP which was found in only 9% of the water samples 
(Ding et al. 2019). Liu et al. (2015) also detected the six 
target phthalates including DBP, BBP, DEP, DEHP, DMP, 
and DnOP from plastic pipes with GC–MS in drinking water 
distribution systems with average concentrations of 0.02, 
0.01, 0.77, 0.03, 0.07, and 0.02 µg/L, respectively (Liu et al. 
2015). It is worth to mention that the different results in 
studies from China may be due to differences in the regions 
studied, the geographical conditions, the pipelines used in 
the water distribution systems, and the analytical methods. 
Similar findings demonstrated that the average levels of 
phthalates in water samples gathered from polymer pipes 
were more than from other pipes (Abdolahnejad et al. 2019; 
Abtahi et al. 2019; Serôdio and Nogueira 2006). Accord-
ing to the findings of research in Greece, the mean levels 
of phthalates in tap water, analyzed with GC–MS, includ-
ing DEP, DEHP, and DnBP, were 0.93, 0.3, and 1.04 µg/L, 
respectively (Psillakis and Kalogerakis 2003). The results 
were higher than in all the other studies in China [analyzed 
with a gas chromatography–flame ionization detector (GC-
FID)] (Xu et al. 2007) and in the Czech Republic [analyzed 
with by gas chromatography (GC)] (Prokůpková et al. 2002). 
This may be due to the use of polymer equipment in water 
supply network and to different used techniques and analyti-
cal methods being used (Psillakis and Kalogerakis 2003). 
Despite the removal of phthalates in water treatment pro-
cesses, these contaminants may migrate from pipes into 
water (Casajuana and Lacorte 2003; Van Zijl et al. 2017). 
The use of different techniques, such as liquid–liquid extrac-
tion (LLE), semi-automated solid-phase extraction (SPE), 
and solid-phase micro-extraction (SPME)], and analytical 
methods [such as GC–MS and LC–MS] for the analysis of 
phthalates in the drinking water supply networks may be 
among the reasons for the differences in the concentrations 
of this contaminant found in the various studies (Bach et al. 
2020). The use of polymer pipes in the urban distribution 
system or polymer pipes and reservoirs in the domestic dis-
tribution system can influence the concentration level of 
phthalates in tap water (Abdolahnejad et al. 2019). Scission 
of polymer chains and degradation of additives can cause 
the entry of phthalates from pipes into drinking water dur-
ing transport and storage (Whelton and Nguyen 2013). High 
surface areas of polymer pipes and, in consequence, the high 
contact of water to pipes will accelerate the release pro-
cess of phthalates such as DBP. More phthalate compounds 
can migrate to water freely, since additives were physically 
dispersed in the polymer structure rather than being linked 
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through bonds (Ye et al. 2020). Therefore, the selection of 
suitable additives in the production of pipes can reduce the 
release of additives, such as phthalates and BPA, into drink-
ing water distribution systems.

According to the present studies, the use of plastic pipes 
and reservoirs in municipal distribution systems are the 
major sources of phthalate pollution in tap water (Serôdio 
and Nogueira 2006). Thus, further research on the levels 
of phthalates in tap drinking water during the transfer and 
storage of drinking water are needed.

Nonylphenol (NP)

Alkylphenols (APs) are a group of EDCs that has raised much 
environmental concern due to their estrogenic activity (Jie 
et al. 2017). NP is one of the most common APs that are 
widely utilized in the production of paints and latex paints, 
inks, adhesives, pesticides, petroleum recovery chemicals, 
paper industry, washing agents, textile and leather industry, 
metal working liquids, cleaners and detergents, personal care 
products, plastics, additives, and resins (Priac et al. 2017). In 
recent years, the consumption of NP has increased, especially 
in developing countries (Barber et al. 2015; Jie et al. 2017) 
and polluted water and food are the major sources of human 
exposure to NP (Raecker et al. 2011). NP is widely used in the 
production of polymer pipes, as an additive in epoxy resins, to 
enhance some properties, such as polymerization, drying, and 
plasticity (Liu et al. 2020; Ruczyńska et al. 2020; Saravanan 
et al. 2019). Growth and developmental toxic effects, the trig-
gering of respiratory toxicity in cells, an estrogenic effect and 
reproductive toxic effects, are some toxicity mechanisms of 

NP (Soares et al. 2008; Zha et al. 2008). The EPA guideline 
for TDI of NP is 5 μg/kg-bw/day (USEPA 2011).

There is little data about NP concentrations in tap drink-
ing water (Table 5). In a study in China, the NP level in 10 
tap water samples was investigated and it was in a range 
of 0.32–5.43 μg/L. The findings of this study indicate 
that NP can migrate from polymer pipes into the water 
distribution network, and the NP concentration in the tap 
water increased as the contact time in the polymer pipes 
increased (Jie et al. 2017). Cheng et al. (2016) evaluated 
the presence of NP in tap drinking water with different 
pipes. The levels of NP in tap water samples taken from 
PVC pipes were more than the NP concentrations in tap 
water samples taken from other pipes, such as stainless 
steel and galvanized (Cheng et al. 2016). In two research 
studies, in France (Colin et al. 2014) and China (Sodré 
et al. 2010), it was stated that the occurrence of NP in tap 
water may be due to the presence of pipes coated with 
epoxy resins. The differences in results of research done in 
Italy by Maggioni et al. (2013) [analyzed by liquid chroma-
tography-electrospray ionization-tandem mass spectrom-
etry (LC–ESI–MS/MS) in 35 cities] (Maggioni et al. 2013) 
and Loos et al. (2007) [analyzed by liquid chromatography-
tandem mass spectrometry (LC–MS/MS) in 7 cities] (Loos 
et al. 2007) may be because of differences in the regions 
studied and the geographical conditions, the pipes used in 
water supply networks and the analytical methods.

Although NP can be eliminated from water by water 
treatment processes, NP may still migrate into drinking 
water from the pipes used in the distribution systems 
(Casajuana and Lacorte 2003; Van Zijl et al. 2017). Epoxy 
coatings that are applied in water distribution network and 

Table 5  The range of NP concentration in drinking water distribution systems

1 High-performance liquid chromatography; 2ultra-performance liquid chromatography–tandem mass spectrometry; 3ultra-performance liquid 
chromatography–mass spectrometry; 4liquid chromatography–mass spectrometry; 5liquid chromatography–liquid chromatography-tandem mass 
spectrometry; 6liquid chromatography–electrospray ionization–tandem mass spectrometry; 7gas chromatography–mass spectrometry; 8liquid 
chromatography–tandem mass spectrometry
* Limit of detection

Total 
number of 
samples

Concentration (μg/L) Country (city or area; year of sampling) Instrumental analysis Ref

10 0.32–5.43 China (Zunyi; 2015) HPLC1 (Jie et al. 2017)
20  <  LOD* South Africa (Pretoria and Cape Town; 2013–2014) UPLC-MS/MS2 (Van Zijl et al. 2017)
18 0.06–0.19 Taiwan (Taipei and Kaohsiung; 2011–2012) UPLC-MS3 (Cheng et al. 2016)
291  < LOD to 0.14 France (Paris, Rennes, Lille, Strasbourg, Lyon, Bordeaux, 

Toulouse, Nice, Marseille, Corsica, Guadeloupe, Reun-
ion, Martinique, and Guyana; 2011–2012)

LC-MS4 (Colin et al. 2014)

6 0.002–0.02 Spain (Madrid; 2012) LC-LC–MS/MS5 (Esteban et al. 2014)
35  < 0.007–0.08 Italy (35 cities; 2009) LC–ESI–MS/MS6 (Maggioni et al. 2013)
12 0.19–1.07 Brazil (Campinas; 2006) GC-MS7 (Sodré et al. 2010)
6  < 0.01 Italy (Arolo, Ispra, Angera, Sesto Calende, Arona, Stresa, 

and Verbania; 2006)
LC–MS/MS8 (Loos et al. 2007)

75145Environmental Science and Pollution Research  (2022) 29:75134–75160

1 3



household water supply pipelines can release NP into tap 
drinking water (Liu et al. 2020; Ruczyńska et al. 2020). 
NP concentrations in water increase with the increase of 
contact time with the pipe materials (Cheng et al. 2016). 
Pipe type is an important factor in water quality that can 
affect the levels of NP released from pipelines into tap 
drinking water. Further studies are required for considering 
the impact of this factor on release of NP in drinking water 
distribution systems.

Perfluoroalkyl and polyfluoroalkyl substances 
(PFAS)

PFAS are known as a category of man-made contaminants 
that include a completely or partly fluorinated hydropho-
bic alkyl chain linked to a hydrophilic end group. From 
the 1940s, PFAS have been widely applied in different 
household and industrial usages because of their specific 
chemical and physical characteristics such as oxidative 
resistance and thermal stability (Arvaniti and Stasinakis 
2015; Thomaidi et al. 2020). They are widely utilized in 
cookware, paper products, surfactants, fire-fighting foams, 
and textiles. Furthermore, PFAS are applied in the aviation 
and automotive industries, electronics, and semiconduc-
tor production (Ahrens 2011; De Voogt and Sáez 2006). 
PFAS can cause neurotoxicity, developmental toxicity, and 
immunotoxicity (Gaballah et al. 2020; Neagu et al. 2021). 
According to the recent studies, perfluoropentanoic acid 
(PFPeA), perfluorobutanoic acid (PFBA), perfluorohep-
tanoic acid (PFHpA), perfluorohexanoic acid (PFHxA), 
PFNA, perfluorooctanoic acid (PFOA), perfluorodecanoic 
acid (PFDA), perfluorohexane sulfonate (PFHxS), per-
fluorobutane sulfonate (PFBS), and perfluorooctane sul-
fonate (PFOS) are the main compounds of PFAS that have 
been identified in tap drinking water (Endirlik et al. 2019; 
Lu et al. 2017; Park et al. 2018; Schwanz et al. 2016). PFAS 
are relatively new chemicals and, although under scrutiny 
from water providers, there are at present few standards 
on the acceptable values for them in water. In the present 
standards, the values of 70 ng/L for combined PFOS and 
PFOA and 70 ng/L for PFOA and PFHxS are recommended 
for the lifetime drinking water health (Park et al. 2018). 
Also, the European Commission (EC) has determined a 
standard level of 0.5 μg/L for total PFAS in water (Euro-
pean-Commission 2020). Furthermore, the EPA guidelines 
for TDI levels of PFOA and PFOS are identical, with a 
level of 20 ng/kg-bw/day (USEPA 2016a). These levels are 
estimated for acute exposure while long-term exposures 
may be more appropriate for water (Schwanz et al. 2016).

The concentrations of PFAS as reported in former stud-
ies are given in Table 6. In a recent study in China, 16 
PFAS compounds in 72 tap water samples, examined by 
HPLC–MS/MS, were investigated. More compounds of 

PFAS were detected in this study compared to the other stud-
ies. Also, the concentrations of more detected compounds 
of in this study were higher than in the other studies (Chen 
et al. 2021). In another study in China, Chen et al. (2019) 
investigated the levels of PFAS in tap water by high-perfor-
mance liquid chromatography–liquid chromatography-mass 
spectrometry (HPLC-LC/MS) and compared the results with 
global levels (Chen et al. 2019). The PFAS levels in tap 
water in this study were higher than in those reported in 
some tap water samples analyzed by HPLC–MS/MS in the 
USA (Dasu et al. 2017) and Ghana (Essumang et al. 2017) 
but at the same levels as those reported in tap water samples 
analyzed by HPLC–MS in China (Lu et al. 2017). Accord-
ing to the findings of a study done by Chen et al. (2019), 
the pipeline distribution process may have a considerable 
effect on the levels of PFAS in tap water. Short-chain PFAS 
have great stability in the water phase and may travel to 
the far end of the pipeline (Chen et al. 2019). Park et al. 
(2018) investigated 44 samples of tap water samples from 
South Korea with high-performance liquid chromatogra-
phy–electrospray ionization–tandem mass spectrometry 
(HPLC–ESI–MS/MS). The most commonly found PFAS 
were PFHxS, PFOA, PFHeA, and PFPxA, with the average 
levels of 15.1, 5.83, 5.51, and 5.52 ng/L, respectively (Park 
et al. 2018). These results were comparable to the results of 
former studies in different countries (Schwanz et al. 2016; 
Zafeiraki et al. 2015). In 2016, Schwanz et al. investigated 
16 PFAS in 58 tap water samples with LC–MS/MS from 
three different countries (France, Spain, and Brazil with 8, 
29, and 21 samples, respectively). The findings revealed 
that PFBS was the most prevalent compound in Brazilian 
tap water with a 61.3% occurrence (Schwanz et al. 2016). 
The findings of a study by Heo et al. (2014) revealed that 
tap water was the main human exposure route for PFAS, 
accounting for up to 50% of the PFOA exposure for an adult, 
but it has to be mentioned that this research was restricted 
by the tap water samples being gathered from one particular 
area (Heo et al. 2014). The difference between the PFAS 
concentrations in drinking water distribution systems in vari-
ous studies may be due to the many physical, chemical, and 
even biological processes that happen in the pipelines of a 
water network (Chen et al. 2019). On the other hand, the 
differences between the published data may be explained by 
the different analytical methods (online and off-line meth-
odologies) used to determine of the PFAS concentrations in 
the drinking water distribution systems (Haug et al. 2010; 
Llorca et al. 2012). A longer distance from a water treatment 
plant to a consumer in a water distribution system would 
increase the contact of the water with the pipe materials, 
and therefore increase the possibility raising the PFAS level 
(Park et al. 2018).

Short-chain PFAS (mainly PFBA) levels were nearly sta-
ble from water treatment plant to tap waters, but long-chain 
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PFAS (mainly PFOA) showed a considerable decrease in 
level, which can be due to their accumulation by the loose 
deposits in water networks (Chen et al. 2019). Higher lev-
els of short-chain PFAS may be due to the breakdown of 
longer chain PFAS precursors and contamination coming 
from the polymer water pipes (or other PFAS-containing 
materials) during the distribution process (Li et al. 2022). 
PFAS have wide-ranging applications in polymer pipes that 
may be released into tap water via supply networks during 
transport and storage of water in storage tanks, pipe leaks, 
and corroded parts (Lee and Schwab 2005; Park et al. 2018). 
Based on the current knowledge, sources of PFAS in water 
distribution systems due to pipe types are not known yet. 
Thus, further studies are required on the PFAS levels in tap 
water with a focus on pipe types, especially polymer pipes. 
Also, further works are needed to reveal the hazard of PFAS 
due to tap drinking water.

Main factors affecting on emerging 
contaminants’ release from pipes used 
in water distribution systems

Several factors, such as the features of the distribution net-
work, the water quality, and the environmental conditions, 
can potentially influence the leaching of contaminants from 
pipes used in water distribution system into drinking water 
(Makris et al. 2014). Different studies have reported various 
parameters affecting the release of contaminants from pipes 
into drinking water. For example, the findings of a study 
in Sweden showed a direct relationship between the age of 
polymer pipes and abundance of MPs (Kirstein et al. 2021). 
The chemical composition (such as metal ions) and hardness 
of drinking water may influence the MP release from plastic 
materials (Shi et al. 2022). Paint peeling and aging in cast 
iron pipes can cause the release of epoxy resin. The aging 
of plastic pipes and fittings may lead to the appearance of 
PE, PA, and PP (Mintenig et al. 2019). The pH and surface 
structure of the pipe scales play an important role on the dis-
tribution of MPs in tap water (Chu et al. 2022). In the case of 
BPA, a study in Malaysia reported the impact of temperature 
on the release of this contaminant in tap drinking water. 
The concentration of this contaminant was considerably 
greater in dry and warm months compared to rainy months 
(Santhi et al. 2012). The results of another study in Tai-
wan indicated higher release of NP and BPA into drinking 
water distribution systems with increased contact time with 
the pipes, especially in the case of polymer pipes, and with 
ambient temperature (Cheng et al. 2016). According to the 
findings of two studies, phthalate concentrations were higher 
in summer than in winter, as the higher temperature led to 
an increase of phthalate migration into the drinking water 
(Abdolahnejad et al. 2019; Rudel and Perovich 2009). In a 

study in China, pH and ionic strength were found to have 
only a minor effect on phthalate release from PVC material 
(Yan et al. 2021). Also, in another study, increasing the con-
tact time of water with polymer pipes increased the phthalate 
concentrations in tap drinking water (Abtahi et al. 2019). 
Based on the result of a study in China, plastic features such 
as plasticizer content, particle size, and aging of plastics had 
a big impact on the leaching of DBP (Yan et al. 2021). The 
dynamic behavior of water is a factor that may cause the 
release of phthalates from pipes and reservoirs (Casajuana 
and Lacorte 2003).

In the case of PFAs, it was reported that water quality 
factors (such as dissolved organic carbon) and pipeline dis-
tribution process factors (such as the transfer distance of 
the water, the presence of loose deposits in the pipes in the 
distribution system, and hydraulic disturbances due to the 
presence of a pressure booster) may have an influence on 
the fate and the migration of PFAS in water distribution 
systems (Chen et al. 2019). Therefore, there is a high need 
for further studies on the ECs levels in tap drinking water 
which consider the features of the distribution network, the 
water quality, and the environmental conditions during the 
transfer and storage of the drinking water, such as contact 
time with pipe materials, transfer distance of water in the 
distribution network, temperature and season, the practical 
lifetime of pipes, and the water quality parameters.

Risk assessment

Drinking water is an essential commodity for human beings 
that has to be protected from contamination to avoid it 
becoming a relevant source of contaminant uptake (Zhang 
et al. 2019). Human exposure to ECs such as MPs, BPA, 
phthalate, NP, and PFAS may cause adverse health effects. 
In recent years, some health impacts have become known of 
MPs (such as oxidative stress, cytotoxicity, neurotoxicity, 
reproductive toxicity, and disruption of immune function) 
(Prata et al. 2020; Rahman et al. 2020), BPA (such as breast 
cancer, infertility, cognitive dysfunction, and cardiovascu-
lar diseases (Catenza et al. 2020; Nascimento and Rocha 
2018), phthalate (such as diabetes, obesity, insulin resist-
ance, renal effects) (Net et al. 2015; Radke et al. 2019), NP 
(such as fecundity reduction, mutations, gonadal develop-
ment inhibition, and fertility reduction) (Liu et al. 2020; 
Vargas-Berrones et al. 2020), and of PFAS (such as cancer, 
immune system dysfunction, liver damage, developmental 
and reproductive harm, and hormone disruption) (Ojo et al. 
2020; Pelch et al. 2019).

The determined CDI, HI, and CR values for adults and 
children according to the maximum concentration of MPs, 
BPA, phthalate, NP, and PFAS in tap drinking water are 
presented in Table 7. Based on the data in Table 7, some 
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contaminants in the tap drinking water of some countries 
raise a potential health risk for humans as the HI val-
ues determined for them were above 1. PFAS, including 
PFOA in Germany, PFNA in France, and PFHxS in South 
Korea for adult and children as well as PFOS in Ghana 
for children, had values > 1 for non-carcinogenic health 
effects. Also, the CR values determined for DEHP and 
BBP showed a carcinogenic health risk for adults and 
children. So, as presented here, the output of drinking 
water from pipelines can be an important pathway for 
exposure to emerging contaminants. Besides tap drinking 
water, there are other exposure routes for emerging con-
taminants, such as beverages, food, and inhalation (Colin 
et  al. 2014; Kosuth et  al. 2018; Schwanz et  al. 2016; 
Sodré et al. 2010), and these also need to be considered 
in order to have a better understanding of the risk of these 
contaminants for human health.

Challenges and recommendations

A drinking water distribution system includes diverse com-
ponents such as pipes, valves, and water reservoir tanks 
(Abdolahnejad et  al. 2019). During the distribution of 
drinking water through a pipeline, the quality of water may 
be affected by different processes, such as the leaching of 
chemicals from the pipes (Liu et al. 2017). Based on the 
results of some studies, contaminants can leach from pipes 
into drinking water supply network and cause adverse human 
health effects (Abdolahnejad et al. 2019; Chen et al. 2019; 
Weber et al. 2021; Whelton and Nguyen 2013). Generally, 
the release of contaminants, especially ECs, from pipelines 
into drinking tap water, is an important global concern. 
Some of the recommendations for the effective mitigation 
of the release of ECs from pipes into drinking water are 
listed as follow:

• ECs are rarely monitored in a worldwide scale (Yadav 
et al. 2021), especially in tap water, so more studies on 
these contaminants and their potential ecological and 
human health effects are needed.

• The features of pipes such as material pipes, aging 
pipes, and loose deposits are important parameters that 
can influence the quality of water due to release of con-
taminants (Liu et al. 2017). For example, in some stud-
ies the release of MPs (Chu et al. 2022), BPA (Cheng 
et al. 2016), phthalates (Jin et al. 2009), NP (Cheng 
et al. 2016), and PFAS (Chen et al. 2019) from pipes, 
especially from polymer pipes, are reported. Therefore, 
the choice of a suitable type of water pipe that will not 
pose undesirable environmental or human health conse-
quences under all circumstances is of the utmost impor-
tance in public health and safety. Also, regular pipe 

cleaning of drinking water distribution systems can be 
helpful to minimize ECs level in tap water.

• The released contaminants into water distribution net-
work, especially ECs, may be in low concentrations or 
under the detection limits due to dilution with a large 
volume of water (Liu et al. 2017). Measurements at mul-
tiple locations in the distribution system, including at the 
beginning of a network (after the treatment plant) and 
throughout the network, can provide more accurate data 
for comparison.

• Reduction of the usage of ECs and the introduction of 
statutory/regulatory limitations to the use of ECs are 
required (Kumar et al. 2021b). Also, rigorous control is 
needed over the various substances and processes that are 
linked to the diverse components of drinking water distri-
bution system (during manufacturing and with evaluation 
before use).

• Therefore, a greater focus on developing strategies is 
required to reduce or/and prevent the migration of ECs 
migration from pipes into drinking water distribution sys-
tems and consequently of their potential adverse health 
effects.

It should be noted that the detection of ECs in the envi-
ronment can be a challenge due to their trace concentrations. 
This problem may be solved by the development of analyti-
cal methods that are highly sensitive and selective (Gogoi 
et al. 2018). Thus, the application of an instrument that is 
highly efficient for the analysis of ECs would be very useful 
for the detection of these contaminants.

Research directions

The type of pipe used in water distribution may have 
a marked influence on the release of ECs into tap water. 
These contaminants can effect on human health. Research 
on ECs in tap drinking water has been done in some parts 
of the world, with the amount being done being greater in 
some countries than in others. The status of research on ECs 
including MPs, BPA, phthalates, NP, and PFAS migration 
from pipes into drinking water in the worldwide has been 
shown in Fig. 3. These contaminants are categorized in three 
groups including a high number of studies (> 10), medium 
research (3–10) and low research (< 3) (Ouda et al. 2021) 
that have been highlighted in blue, green, and red, respec-
tively. Also, high-risk countries for PAFS (calculated in 
Table 6) are shown in purple.

While the studies in China on ECs in tap drinking 
water had the highest number in world, low number of 
researches were done in some countries (Fig. 3). Based 
on Fig. 3, most studies on ECs in tap water in worldwide 
have focused on phthalate and PFAS, and only a low 
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level of research attention has been given to other ECs 
including MPs, BPA, and NP. Also, research on ECs in 
Asia, Africa, and America is less widespread compared 
to Europe. It should be noted some countries having no 
or only a small number of studies on ECs may be due 
to a lack of advanced analytical facilities and qualified 

researchers (Ouda et al. 2021). According to Fig. 3 and 
Table 6, PFAS in South Korea (PFNA), France, the USA, 
and Ghana (PFHxS) were the contaminants with health 
risk for humans. Thus, more research on these contami-
nants in tap drinking water with a particular focus on pipe 
type are needed in these countries, as well as in other 

Table 7  Estimated CDI, HI, and CR of ECs (maximum concentration of each contaminant) through the consumption of tap drinking water

1 Tolerable daily intake; 2chronic daily intake; 3hazard index; 4cancer risk

Contaminant TDI1 (µg/kg-bw/day)/
CSF (µg/kg-bw/day)
[Ref]

Concentration (unit)Coun-
try [Ref]

CDI2 (unit) HI3/CR4

Adult Children Adult Children

Non-carcinogenic effects
MPs - 1409 (items/L)

Czech Republic (Pivokon-
sky et al. 2018)

≈811.76 (items /kg-bw/
day)

≈112.72 (items /kg-bw/
day)

- -

BPA 50
(USEPA 2011)

160 (ng/L)
Italy (Cantoni et al. 2021)

≈92.11 (ng/kg-bw/day) ≈92.11 (ng/kg-bw/day) 0.001 0.0002

Phthalates
BBP 200

(USEPA 2011)
0.54 (µg/L)
China (Li et al. 2021b)

≈0.30 (µg/kg-bw/day) ≈0.04 (µg/kg-bw/day) 0.001 0.0002

DBP 100
(USEPA 2011)

1.06 (µg/L)
South Africa (Van Zijl 

et al. 2017)

≈0.61 (µg/kg-bw/day) ≈0.08 (µg/kg-bw/day) 0.006 0.0008

DEHP 20
(USEPA 2011)

12.48 (µg/L)
China (Tang et al. 2012)

≈7.19 (µg/kg-bw/day) ≈0.99 (µg/kg-bw/day) 0.35 0.04

DEP 800
(USEPA 2011)

44 (µg/L)
China (Tang et al. 2012)

≈25.34 (µg/kg-bw/day) ≈3.52 (µg/kg-bw/day) 0.03 0.004

DiDP 150
(SCHER 2008)

0.09 (µg/L)
China (Shi et al. 2012)

≈0.05 (µg/kg-bw/day) ≈0.007 (µg/kg-bw/day) 0.0003 0.00004

DMP 100
(USEPA 2011)

0.86 (µg/L)
China (Li et al. 2021b)

≈0.49 (µg/kg-bw/day) ≈0.06 (µg/kg-bw/day) 0.004 0.006

DnOP 10
(USEPA 2011)

0.21 (µg/L)
China (Li et al. 2021b)

≈0.12 (µg/kg-bw/day) ≈0.01 (µg/kg-bw/day) 0.12 0.016

NP 5
(USEPA 2011)

5.43 (µg/L)
China (Jie et al. 2017)

≈3.12 (µg/kg-bw/day) ≈0.43 (µg/kg-bw/day) 0.62 0.08

PFAS
PFOA 0.02

(USEPA 2016b)
519 (ng/L)
Germany (Skutlarek et al. 

2006)

≈299.01 (ng/kg-bw/day) ≈41.52 (ng/kg-bw/day) 14.95 2.07

PFNA 0.0003
(Reade et al. 2019)

46.75 (ng/L)
France (Schwanz et al. 

2016)

≈26.93 (ng/kg-bw/day) ≈3.74 (ng/kg-bw/day) 89.77 12.46

PFBS 10
(USEPA 2018)

29 (ng/L)
China (Lu et al. 2017)

≈16.70 (ng/kg-bw/day) ≈2.32 (ng/kg-bw/day) 0.001 0.0002

PFHxS 0.002
(Reade et al. 2019)

189.6 (ng/L)
South Korea (Park et al. 

2018)

≈109.40 (ng/kg-bw/day) ≈14.92 (ng/kg-bw/day) 54.70 7.46

PFOS 0.02
(USEPA 2016a)

168 (ng/L)
Ghana (Essumang et al. 

2017)

≈96.78 (ng/kg-bw/day) ≈13.44 (ng/kg-bw/day) 4.83 0.67

Carcinogenic effects
DEHP 0.014

(USEPA 2011)
0.54 (µg/L)
China (Li et al. 2021b)

≈7.19 (µg/kg-bw/day) ≈0.99 (µg/kg-bw/day) 0.10 0.01

BBP 0.0019
(USEPA 2011)

12.48 (µg/L)
China (Tong et al. 2020)

≈0.30 (µg/kg-bw/day) ≈0.04 (µg/kg-bw/day) 0.0006 0.0008
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countries. While ECs including MPs, BPA, phthalates, 
NP, and PFAS has been considered in various aquatic 
environments such as sea water, surface water, and bot-
tled water (Akhbarizadeh et al. 2020b; Bhandari et al. 
2021; Courtene-Jones et al. 2017; Egessa et al. 2020; 
Gao et al. 2019; Groffen et al. 2021; Lan et al. 2019; 
Ouda et al. 2021; Ozhan and Kocaman 2019; Zhang et al. 
2020b), the migration of these contaminants from pipes 
into drinking water distribution systems and their health 
risk has not been fully investigated. Therefore, more 
studies are needed to measure these contaminants, their 
occurrence and their quantities in actual water supply 
systems, to understand better the factors that promote 
leaching and their interaction, and to improve knowledge 
on the processes that control the release of contaminants 
from pipelines into water. In future studies on the levels 
of ECs in tap water in tap water, the effects should be 
considered of the analytical techniques used, the method 
of sample collection (with or without previous flush-
ing), and the sample pretreatment. A critical approach is 
needed to expanding to the fact that these contaminants 
that are included are just a small fraction of what is actu-
ally there in tap water. Also, more studies need to obtain 
data from other surface water bodies and expand them in 
the context of drinking water distribution systems.

Conclusions

Although contaminants can be removed by various water 
treatment processes, they can also migrate from pipes into 
drinking water. Several contaminants including MPs, BPA, 
phthalates, NP, and PFAS in drinking water distribution net-
works may stem from migration from pipes or reservoirs. 
This review showed that the pipes type, especially polymer 
pipes had an important role on ECs release from pipes into 
tap water during transport and storage. The risk assessment 
of studied ECs also showed that PFAS (including PFOA, 
PFNA, and PFHxS) and phthalates (including DEHP and 
BBP) in tap water had non-carcinogenic and carcinogenic 
effects for consumers in some countries, respectively. There-
fore, more research is required to indicate trace levels of the 
various types of ECs that migrate from pipes into drink-
ing water distribution networks. According to the findings 
obtained in this review, the pipes have an irrefutable role in 
the release of contaminants into the drinking water. Further-
more, the knowledge about the migration of ECs from pipes 
into drinking water distribution systems is not yet complete. 
Overall, this review highlights the significant need for fur-
ther work on the migration of ECs from pipes into drinking 
water distribution networks the in the world.

Fig. 3  Numbers of studies (published in English) on ECs including 
microplastics (MPs), bisphenol A (BPA), phthalates, nonylphenol 
(NP), perfluoroalkyl, and polyfluoroalkyl substances (PFAS) and 
sum numbers of studies on these contaminants (displayed with ECs) 

migration from pipes into water distribution systems in the world 
[high: > 10 (blue); medium: 3–10 (green); low: < 3 (red)] and as well 
as high-risk countries for PFAS (purple)
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