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Abstract
Acid rain threatens crop yield and nutritional quality, and Ca2+ can regulate plant responses to abiotic stresses. To improve 
the yield and nutritional quality of crops under acid rain stress, we applied exogenous Ca2+ to regulate nitrogen assimilation 
in rice seedlings under simulated acid rain stress (pH 4.5 or 3.0), taking yield and nutritional quality of rice as evaluation 
criteria. We found that Ca2+ (5 mM) maintained the total nitrogen content of rice at the seedling and booting stages to allevi-
ate the inhibitory effect of simulated acid rain on rice yield. Meanwhile, Ca2+ improved the activity of glutamate synthase 
to eliminate the disruption of glutamine synthetase/glutamate synthase balance under simulated acid rain. It decreased the 
efficiency of nitrogen assimilation, thereby reducing the inhibition of essential amino acid content in rice. The mitigation 
effect on simulated acid rain at pH 4.5 was better than that of simulated acid rain at pH 3.0. Overall, Ca2+ may reduce the 
negative effect of acid rain on the yield and nutritional quality of crops.

Keywords  Exogenous Ca2+ · Acid rain · Nutritional quality · Essential amino acids · Nitrogen assimilation · Different 
growth stages

Introduction

Acid rain (AR) is caused by air pollution, which is one of 
three major types of pollution affecting the environment 
(Xu et al. 2015). AR has spread all over Western Europe, 
North America, and Asia, mostly affecting rice-growing 
areas. Of 25 major rice-producing countries, 17 are in Asia 
(Dugan 2015). Approximately 0.662 billion USD worth of 
annual crop loss in China is caused by AR (Feng et al. 2002). 
AR not only affects photosynthesis, antioxidant capacity, 
H+-ATPase activity of plants (Debnath and Ahammed 2020; 

Debnath et al. 2021; Hu et al. 2021a, b; Liang et al. 2020), 
and the quality of agricultural products but also causes envi-
ronmental stress. For example, heavy metals accumulating 
in rice grains can cause a health risk (Sanjay et al. 2012; Wu 
et al. 2016; Zhang et al. 2021). Moreover, AR can decrease 
the nutritional value of vegetables and wheat (Debnath et al. 
2018; Li and Liang 2019; Zhou et al. 2018), threatening 
human health by causing “hidden hunger” among consum-
ers. To face the challenge of food security and safety, it is 
crucial to find possible ways to alleviate the negative effect 
of AR on the yield and quality of crops.

Calcium (Ca) is an essential nutrient for plant growth 
(Montanaro et al. 2014; Wu et al. 2020). Ca2+ is also a sec-
ond messenger in plants; it regulates plant adaptation to 
environmental adversities (Plasencia et al. 2021) and allevi-
ates the decrease in yield and quality of crops under the con-
ditions of salinity, drought, high temperature, and hypoxic 
stress. (He et al. 2015; Wang et al. 2017). For example, 
exogenous Ca2+ can alleviate the decrease in the nutritional 
quality of cucumbers under hypoxic stress (He et al. 2018). 
However, there is limited information on the effect of exog-
enous Ca2+ on the nutritional quality of crops subjected to 
simulated acid rain (SAR) (Li and Liang 2019). Apart from 
being a part of a balanced diet, rice is the staple food for 
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more than half of the world’s population (Chen et al. 2021; 
Das et al. 2020). Approximately 20% of the world’s dietary 
energy supply is provided by rice and its derivatives (FAO/
IRRI). Proteins and amino acids are the major contributors 
to the nutritional quality of rice grains (Sangwongchai et al. 
2022). Insufficient intake of essential amino acids can affect 
human growth, nutrition, fertility, and lifespan (Giordano 
and Castellineo 1997). Glutamate, the product of nitrogen 
assimilation, is an important precursor of proteins and amino 
acids, and the efficiency of nitrogen assimilation seriously 
affects plant productivity (Hou et al. 2021; Iqbal et al. 2020; 
Navarro-Leon et al. 2016). Abiotic stress can inhibit the 
activities of nitrate reductase (NR), glutamine synthetase 
(GS), and glutamate synthetase (GOGAT), thereby reduc-
ing nitrogen assimilation and inhibiting the total protein 
content of rice (Imran et al. 2021; Zhang et al. 2021). As 
an adaptation to abiotic stress, glutamate dehydrogenase 
(GDH) pathway in crops could be enhanced to compensate 
for the weakening of the GS/GOGAT pathway (Wang et al. 
2012). Therefore, the effect of Ca2+on the yield and nutri-
tional quality of rice under SAR treatment should be studied, 
with a focus on nitrogen assimilation. Moreover, the effect of 
Ca2+ on the GDH and GS/GOGAT pathways of rice under 
SAR treatment should be clarified at the gene level. Such 
studies would eliminate the threat of AR to food security 
and safety.

Therefore, this study evaluated (1) the effect of exogenous 
Ca2+ and SAR treatment on yield (weight of 100 grains, 
seed setting rate, and the number of grains per panicle) and 
nutritional quality of rice (protein and amino acid content); 
(2) the relationship between yield, nutritional quality, and 
total nitrogen content in rice at different growth stages under 
exogenous Ca2+ and SAR treatment; (3) the role of nitrogen 
assimilation in regulating protein and amino acid content 
under exogenous Ca2+ and SAR treatment. This information 
can replenish the regulatory effect of exogenous Ca2+ on 
the nutritional quality of crops under adversity and, at the 
same time, provide a theoretical basis for alleviating “hidden 
hunger” caused by AR.

Materials and methods

Plants and conditions

The seeds (Wuyou 308, purchased from Wuxi Seed Com-
pany, China) were soaked in 0.1% HgCl2 for 10 min, then 
washed with distilled water three times, and left to germinate 
in vermiculite at 25 ± 5 °C until the second true leaf came 
out. The seedlings were transferred to foam boards with 24 
holes (two seedlings per hole). The details of the nutrient 
solution were described by Liang et al. (2021). The light/

dark cycle was 14/10 h, and the illumination intensity was 
300 µmol·m−2.

The concentrated SAR (pH 1.0) was composed of sulfuric 
acid and nitric acid in a ratio of 3:1. When rice seedlings 
grow to four leaves, SAR treatment at the seedling stage 
began and lasted for 5 days and required leaf spraying and 
root application. For leaf spraying, the deionized water was 
adjusted to pH 4.5 and pH 3.0 with the concentrated SAR. 
The rice leaves were sprayed with SAR (pH 4.5 or 3.0) until 
water droplets slipped away at 10 am and 6 pm during these 
5 days. The nutrient solution was adjusted to pH4.5 (SAR1) 
and pH3.0 (SAR2) by the concentrated SAR as root applica-
tion SAR. Adding 5 mM CaCl2 into the nutrient solution was 
as the single Ca2+ treatment. Ca2+ + SAR (pH4.5/3.0) treat-
ment with SAR (pH 4.5/3.0) spraying leaves and adjusting 
the pH of the nutrient solution while applying 5 mM CaCl2 
to the nutrient solution. The plant materials were measured 
after harvesting after SAR and Ca2+ treatment for 5 days. 
The control was sprayed with pH 7.0 deionized water leaves 
and applied with a nutrient root with pH of 5.6. The SAR 
experiment was carried out at the seedling, booting, and 
maturity stages of rice. Each stage was treated for 5 days, 
with the remainder of the culture under control conditions. 
The specific processes are shown in Fig. 1.

Determination of the protein content in rice grains

The harvested grains were dried to constant weight, peeled, 
and ground into powder. The rice powder (0.1 g) was put 
into tubes, mixed with 1 mL of deionized water at room 
temperature for 2 h, and then centrifuged at 1000 r·min–1 
for 10 min to obtain albumin. The residue was extracted in 
1 mL 5% NaCl to obtain globulin with the same conditions 
as in the previous step. To obtain prolamin and glutelin, the 
residues were extracted in 1 mL 75% ethanol and 1 mL 0.2% 
NaOH, respectively. The extraction for each component was 
repeated three times. The obtained extract was evaluated by 
the Bradford method for determining protein content (Dogan 
et al. 2005).

Determination of content of amino acids in rice

According to the method of Huifeng et  al. (2010), rice 
powder (300 mg) and 10 mL 6 mol·L–1 HCl were added 
to vacuum hydrolysis tubes. The bottles were blown with 
N2 for three minutes and sealed tightly. Thereafter, the bot-
tles were placed in the oven to digest at 110 °C for 22 h 
and then removed and left to cool. The digestion solution 
was distilled to 25 mL and passed through a 0.45-µm inor-
ganic filter membrane. The filtrate was used to determine 
amino acids content using the amino acid analyzer (Sym-
kam, Germany). The conditions of measurement were as 
follows: the 3-µm sulfonic acid cationic resin separation 
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column (4.6 mm × 60 mm), gradient elution cycle time of 
53 min, separation column temperature of 57 °C, reac-
tion column temperature of 135 °C, the buffer flow rate of 
0.40 mL·min–1, the flow rate of 0.35 mL·min–1 for ninhydrin, 
and the detection wavelength of channel 1 of 570 nm.

Calculation of relative growth rate

Following the method of Torabian et al. (2018), the rice 
powder was placed in the oven at 105 °C for 30 min and 
then dried at 80 °C to constant weight after harvesting. The 
relative growth rate (RGR) was calculated according to the 
following formula:

where W1: the dry weight before SAR treatmentW2: the dry 
weight after SAR treatment

Determination of total nitrogen content

The determination was performed according to the method 
of Barbano et al. (1990) with slight modifications. The dry 
plant samples (0.5 g) were digested with H2SO4 and H2O2. 
The samples were transferred into the digestion tubes and 
mixed with 5 mL of concentrated sulfuric acid. The diges-
tion tubes were then heated in the digestion furnace, and 
1–2 mL H2O2 was added to the tubes during the digestion 
process. The digestion process was completely done when 
the digestion solution became clear and transparent. The 
digestion solution was transferred to a test tube contain-
ing the final volume (15 mL). The supernatant (1 mL) was 
added to 1 mL Nessler’s reagent and 2.5 mL of 50 g·L–1 
potassium sodium tartrate, and pH was adjusted to 11 by 
100 g·L–1 KOH; then, the reaction system was set to 15 mL. 

RGR =

lnW
2
− lnW

1

5

The absorbance was measured at 425 nm, and the total nitro-
gen content of the sample was calculated.

Determination of key enzyme activities for nitrogen 
assimilation

For analysis of the activity of NR, leaves (1 g) were homog-
enized in the extract, including 10 mM cysteine, 1 mM 
EDTA-Na2, and 25 mM phosphate buffer (pH 8.7). Crude 
extracts were centrifuged at 4000 r·min–1 for 15 min at 4 °C, 
and the supernatants were enzyme extracts (Hageman and 
Reed 1980). The enzyme extract (0.2 mL), 100 mM KNO3 
(0.5 mL), and 2 mg·mL–1 NADH (0.3 mL) were added to 
test tubes, and the tubes were incubated at 25 °C for 30 min. 
Then, trichloroacetic acid (1 mL) was added to stop the 
reaction. Sulfa reagent (2 mL) and naphthylamine reagent 
(2 mL) were used to develop the color, and the absorbance 
was measured at 520 nm after 15 min.

For the analysis of GS activity, leaves (1.0  g) were 
homogenized in a 3-mL extraction buffer, and the crude 
extracts were centrifuged at 15,000 × g for 20  min at 
4 °C. The supernatants were enzyme extract. The compo-
nents of the extraction buffer included 50 mM Tris, 2 mM 
MgSO4·7H2O, 4 mM dithiothreitol, and 400 mM sucrose 
at pH 8.0. The measurements were taken as follows: 
1.6 mL reaction solution containing 100 mM Tris, 80 mM 
MgSO4·7H2O, and 19 mM L-sodium glutamate was added 
to enzyme extracts (0.7 mL) and 40 mM adenosine triphos-
phate solution (0.7 mL) and mixed. The reaction system was 
incubated at 37 °C for 30 min and then added to 1 mL of 
color reagent containing 200 mM trichloroacetic acid solu-
tion, 600 mM FeCl3·6H2O, and 5% concentrated hydrochlo-
ric acid in tubes. The absorbance was measured at 540 nm 
after the complete development of color. The activity was 
expressed as OD540 mg–1 protein·h–1 (Zhang et al. 1997).

For the analysis of the activity of GOGAT, the extrac-
tion system, same as the GS extraction system used for the 

Fig. 1   Treatment methods of SAR and exogenous Ca2+
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determination of glutamine synthetase, was employed. The 
reaction system contained 20 mM L-glutamine (0.4 mL), 
20 mM α-ketoglutarate (0.5 mL), 10 mM KCl (0.1 mL), 
3  mM NADH (0.2  mL), enzyme extract (0.3  mL), and 
25 mM Tris–HCl (pH 7.6, 1.5 mL) (Lin and Kao 1996). 
The molar extinction coefficient (value) was measured at 
340 nm every 20 s, and each measurement was repeated 11 
times. The steady decrease in optical density was considered 
as the enzyme activity.

To analyze the activity of GDH, leaves (1.0 g) were 
homogenized in extraction buffer (3 mL), which contained 
10 mM Tris–HCl, 1 mM MgCl2, 1 mM EDTA-Na2, and 
1 mM 2-mercaptoethanol, with a pH of 7.6. The crude 
extract was centrifuged at 15,000 × g for 30 min at 4 °C. 
The supernatant was the enzyme extract. The assay system 
composing of 100 mM 2-ketoglutarate (0.3 mL), 1 M NH4Cl 
(0.3 mL), 3 mM NADH (0.2 mL), enzyme extract (1 mL), 
and 0.2 M Tris–HCl (pH 8.0) was used to make up the reac-
tion system to the total volume (3 mL). The reaction was 
started by adding the enzyme extract. The extinction value 
was determined for 3 min at 340 nm. One unit of the enzyme 
activity was defined as the value of the reduction in 1 OD340 
per minute.

qRT‑PCR for determination of transcript expression 
of key enzymes for nitrogen assimilation

Fresh leaves were used to extract total RNA with TRIZOL 
reagent (Sangon Biotech, Shanghai, China). The RNA qual-
ity was assessed by NanoDrop (Thermo Fisher, America). 
The AMV First Strand cDNA Synthesis Kit (Sangon Bio-
tech, Shanghai, China) was used to perform reverse tran-
scription to obtain cDNA. The reverse transcription setup 
consisted of 0.25 µL forward primer, 0.25 µL revere primer, 
5 µL solution in the kit, 1 µL cDNA, and 3.5 µL ddH2O. The 
reaction proceeded at 95 °C for 3 min, followed by melting 
at 95 °C for 6 s, and annealing at 57 °C for 11 s (a total of 
40 cycles for melting and annealing). Relative expression 
abundance was calculated using comparative performance 
analysis (Optical System software, version 1.0). The detailed 
information about the forward and revere primers is shown 
in Table S1.

Statistical analysis

Each treatment was repeated three times. The data were 
obtained and analyzed by SPSS 18.0 software. The experi-
mental results were presented as mean ± standard devia-
tion (SD). The least significant difference (LSD) was used 
to compare the mean between different treatment groups 
(P < 0.05).

Results

Effect of exogenous Ca2+ and SAR on rice yield

Figure  2 depicts the effect of exogenous Ca2+ on the 
weight of 100 seeds (a), seed setting rate (b), and grain 
number per panicle (c) in rice subjected to SAR. Com-
pared with the control, SAR1 (pH 4.5) treatment had no 
significant effect on the weight of 100 seeds, seed setting 
rate, and grain number per panicle (P > 0.05). In contrast, 
SAR2 (pH 3.0) treatment significantly reduced the values 
of these three parameters (P > 0.05). The single exogenous 
Ca2 + treatment had no significant effect on the weight of 
100 seeds, seed setting rate, and grain number per pani-
cle (P > 0.05). In the SAR1 (pH 4.5) + Ca2+ treatment 
group, the weight of 100 seeds was higher than that in the 
control and SAR1 (pH 4.5) treatment groups (P < 0.05). 
However, compared with the control and SAR1 (pH 4.5) 
treatment groups, the seed setting rate and grain number 
per panicle did not change in the SAR1 (pH 4.5) + Ca2+ 
treatment group. No significant difference in the weight of 
100 seeds, seed setting rate, and grain number per panicle 
was observed between the SAR2 (pH 3.0) + Ca2+ treat-
ment and control groups (P > 0.05). However, the values 
for these three parameters were higher in the SAR2 (pH 
3.0) + Ca2+ treatment group than in the SAR2 (pH 3.0) 
treatment group (P < 0.05).

Effect of exogenous Ca2+ and SAR on the nutritional 
quality of rice

As depicted in Fig. 3, the content and components of 
proteins (a) and amino acids (b), especially the content 
of essential amino acids (c), were the indicators of rice 
nutritional quality. The rice protein can be classified into 
albumin, globulin, prolamin, and glutelin. Essential amino 
acids include threonine, valine, methionine, phenylalanine, 
leucine, isoleucine, and lysine. Compared with the con-
trol group, the content and components of proteins did not 
change (P > 0.05) in the SAR1 (pH 4.5) treatment group, 
but the total amino acid content and the contents of six 
essential amino acids (except methionine) significantly 
decreased (P < 0.05). In the SAR2 (pH 3.0) treatment 
group, the contents of total protein, four protein com-
ponents, total amino acid, and six essential amino acids 
except isoleucine were lower than those in the control 
and SAR1 (pH 4.5) treatment groups (P < 0.05). Single 
Ca2+ treatment had no significant effect on the contents 
of total protein, total amino acid, and essential amino 
acids (P > 0.05). In the SAR1 (pH 4.5) + Ca2+ treatment 
group, the content and components of protein were not 
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significantly different from those in the control and SAR1 
(pH 4.5) treatment group (P > 0.05). Moreover, in the 
SAR1 (pH 4.5) + Ca2+ treatment group, the contents of 
total amino acids and total essential amino acids did not 
differ from that in the control group (P > 0.05); however, 
the contents were higher than those in the SAR1 (pH 4.5) 
treatment group (P < 0.05). In the SAR2 (pH 3.0) + Ca2+ 
treatment group, the contents of total protein and the 
three components (albumin, globulin, and glutenin) were 
not significantly different from that in the control group 
(P > 0.05); however, the contents were higher than those in 
the SAR2 (pH 3.0) treatment group (P < 0.05). Moreover, 
in the SAR2 (pH 3.0) + Ca2+ treatment group, the contents 
of prolamin, total amino acids, and six essential amino 
acids (except isoleucine) were lower than those in the con-
trol group (P < 0.05) but higher than those in the SAR2 
(pH 3.0) treatment group (P < 0.05).

Effect of exogenous Ca2+ and SAR on RGR and total 
nitrogen content of rice at different growth stages

Figure 4 depicts the effect of exogenous Ca2+ on RGR (a) and 
total nitrogen content (b) of rice under SAR treatment at the 
seedling, booting, and maturity stages. SAR1 (pH 4.5) treat-
ment did not change RGR and total nitrogen content at the 
three growth stages; however, the total nitrogen content was 
higher than that of the control at the seedling stage. SAR2 
(pH 3.0) treatment reduced RGR at the seedling and booting 
stages, as well as reduced total nitrogen content at the seedling, 
booting, and maturity stages (P < 0.05). In the single exog-
enous Ca2+ treatment group, RGR and total nitrogen content 
at three growth stages were not different from those in the 
control group (P > 0.05). In the SAR1 (pH 4.5) + Ca2+ treat-
ment group, RGR and total nitrogen content at the seedling 
and booting stages were higher than those in the control and 

Fig. 2   Effect of exogenous Ca2+ on 100-grain weight (a), seed setting rate (b), and grain number per panicle of rice (c) under SAR. Different let-
ters represented significant difference (P < 0.05)
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SAR1 treatment groups (P < 0.05), whereas RGR and total 
nitrogen content at the maturity stage were not different from 
that in control and SAR1 (pH 4.5) treatment groups (P > 0.05). 
In the SAR2 (pH 3.0) + Ca2+ treatment group, RGR and total 
nitrogen content at the seedling and booting stages were higher 
than that in the SAR2 (pH 3.0) treatment group (P < 0.05); 
however, RGR at the seedling stage did not differ from that 
in the control group (P > 0.05). Moreover, in the SAR2 (pH 
3.0) + Ca2+ treatment group, RGR and total nitrogen content 
at the maturity stage did not differ from that in the control and 
SAR2 (pH 3.0) treatment groups (P > 0.05).

Effect of exogenous Ca2+ and SAR on the activities 
of NR, GS, GOGAT, and GDH in rice seedling leaves

Figure 5 illustrates the effect of exogenous Ca2+ on the activ-
ities of key enzymes for nitrogen assimilation, including 

NR (a), GS (b), GOGAT (c), and GDH (d) in rice under 
SAR treatment. Compared with the control group, NR 
and GDH activities increased, GOGAT activity decreased 
(P < 0.05), and GS activity did not change in the SAR1 (pH 
4.5) treatment group (P > 0.05). Compared with the control 
group, NR activity decreased (P < 0.05), and GDH activity 
increased in the SAR2 (pH 3.0) treatment group; the GDH 
activity was higher than that in the SAR1 (pH 4.5) treatment 
group (P < 0.05). In the SAR2 (pH 3.0) treatment group, GS 
activity was higher than that in the control group (P < 0.05), 
whereas GOGAT activity was lower than those in the control 
and SAR1 (pH 4.5) treatment groups (P < 0.05). The single 
exogenous Ca2+ treatment had no significant effect on the 
activities of four key enzymes (P > 0.05). In the SAR1 (pH 
4.5) + Ca2+ treatment group, NR and GDH activities were 
higher than that in the control group; the GDH activity was 
also higher than that in the SAR1 (pH 4.5) treatment group 

Fig. 3   Effect of exogenous Ca2+ on components of protein (a), con-
tent of total amino acid (b), and content of essential amino acid (c) of 
rice under SAR. Uppercase letters represented significant difference 
of total amount of protein (or the total amount of essential amino 

acid) among the treatment groups (P < 0.05), and lowercase letters 
represented significant difference of protein compositions (or seven 
essential amino acids) among the treatment groups (P < 0.05)
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(P < 0.05). In the SAR1 (pH 4.5) + Ca2+ treatment group, 
GS and GOGAT activities were not different from those in 
the control group; the GOGAT activity was also higher than 
that in the SAR1 (pH 4.5) treatment group. In the SAR2 

(pH 3.0) + Ca2+ treatment group, NR and GOGAT activities 
were not different from those in the control group but were 
higher than those in the SAR2 (pH 3.0) treatment group. 
Moreover, in the SAR2 (pH 3.0) + Ca2+ treatment group, 

Fig. 4   Effect of exogenous Ca2+ 
on RGR (a) and total nitrogen 
content (b) of rice at seedling 
stage, booting stage, and mature 
stage under SAR. Different 
letters represented significant 
difference at different stages 
(P < 0.05)
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GS and GDH activities were higher than those in the control 
group (P < 0.05), whereas GS activity was lower and GDH 
activity was higher than that in the SAR2 (pH 3.0) treatment 
group (P < 0.05).

Effect of exogenous Ca2+ on the expression of genes 
encoding NR, GS, GOGAT, and GDH

Figure 6 depicts the effect of exogenous Ca2+ on the expres-
sions of genes encoding NR, GS, GOGAT, and GDH in 
rice under SAR treatment. NR was encoded by OsNR1 and 
OsNR2 (a), while GS was encoded by three genes; namely, 
OsGS1;1, OsGS1;2, and OsGS1;3 (b). Moreover, GOGAT 
was encoded by OsNADH-GOGAT1 and OsNADH-GOGAT2 
(c), and GDH was encoded by OsGDH1, OsGDH2, 
OsGDH3, and OsGDH4 (d). Compared with the control, 
SAR1 (pH 4.5) treatment upregulated the expressions of 
OsNR1, OsNR2, OsGDH1, and OsGDH4 in rice seedling 
leaves (P < 0.05), whereas the treatment downregulated the 
expressions of OsNADH-GOGAT1, OsNADH-GOGAT2, 

OsGDH2, and OsGDH3 (P < 0.05). At the same time, 
SAR1 (pH 4.5) treatment did not affect the expressions of 
four genes encoding GS (P > 0.05). SAR2 (pH 3.0) treat-
ment downregulated the expressions of OsNR1, OsNR2, 
OsNADH-GOGAT1, OsNADH-GOGAT2, OsGDH2, and 
OsGDH3 (P < 0.05), whereas the treatment upregulated the 
expressions of four genes encoding GS, including OsGDH1 
and OsGDH4 (P < 0.05). The single exogenous Ca2+ treat-
ment did not significantly affect the expressions of genes 
encoding NR, GS, GOGAT, and GDH (P > 0.05). In the 
SAR1 (pH 4.5) + Ca2+ treatment group, the expressions 
of OsNR1, OsNR2, OsNADH-GOGAT1, OsGDH1, and 
OsGDH4 were higher than that in the control and SAR1 
(pH 4.5) treatment groups (P < 0.05); however, the expres-
sions of OsNR1 and OsNR2 were not different from that in 
the SAR1 (pH4.5) treatment group (P > 0.05). In the SAR1 
(pH 4.5) + Ca2+ treatment group, the expressions of the four 
genes encoding GS were similar to that in the control group 
(P > 0.05). In the SAR2 (pH 3.0) + Ca2+ treatment group, 
the expressions of OsNR1, OsNR2, OsGS1;1, OsGS1;2, 

Fig. 5   Effect of exogenous Ca2+ on the activities of NR (a), GS (b), GOGAT (c), and GDH (d) in leaves of rice seedlings under SAR. Different 
letters represented significant difference (P < 0.05)
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OsGS1;3, OsNADH-GOGAT1, OsNADH-GOGAT2, 
OsGDH1, and OsGDH4 were higher than that in the control 
and SAR2 (pH3.0) treatment groups (P < 0.05); however, the 
expressions of three genes encoding GS were lower than that 
in the SAR2 (pH 3.0) treatment group (P < 0.05), and the 
expression of OsNADH-GOGAT1 did not differ from that 
in the control group (P > 0.05).

Discussion

Effect of exogenous Ca2+ on yield and grain 
nutritional quality of rice under SAR

The nutritional quality of rice is mainly determined by the 
protein content and amino acid content, especially essential 
amino acid content (Sarkadi 2019). Proteins can be divided 

into albumin, globulin, prolamin, and glutelin, of which glu-
telin is rich in essential amino acids and is a high-quality 
protein (Guo et al. 2018). In our experiments, SAR1 (pH 
4.5) treatment did not affect 100-seed weight, seed setting 
rate, and grain number per panicle in rice, while decreased 
the contents of total amino acids and essential amino acids. 
SAR2 (pH3.0) treatment decreased the yield and nutritional 
quality of rice grains, including total amino acids, essential 
amino acids, total protein, and glutelin content. This indi-
cates that SAR1 (pH 4.5) declined the nutritional quality of 
rice grains, although it did not affect rice yield. SAR2 (pH 
3.0) caused greater damage to the yield and nutritional qual-
ity of rice. Exogenous Ca2+ increased the 100-seed weight 
of rice under SAR1 (pH 4.5) treatment, even higher than the 
control level, and effectively alleviated the decline in total 
amino acids and essential amino acids. In the SAR2 (pH 
3.0) + Ca2+ treatment, exogenous Ca2+ alleviated decreased 

Fig. 6   Effect of exogenous Ca2+ on expressions of NR genes (OsNR1 
and OsNR2), GS genes (OsGS1;1, OsGS1;2, and OsGS1;3), GOGAT 
genes (OsNADH-GOGAT1 and OsNADH-GOGAT2), and GDH genes 

(OsGDH1, OsGDH2, OsGDH3, and OsGDH4) in leaves of rice seed-
lings under SAR. Different letters represented significant difference 
(P < 0.05)
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yield and the total content of rice protein and amino acids 
and essential amino acids. However, alleviating the effect 
of exogenous Ca2+ on total amino acids and essential amino 
acid contents were limited in the SAR2 (pH 3.0) + Ca2+ 
treatment. This shows that exogenous Ca2+ can effectively 
guarantee the yield under SAR(pH 4.5/3.0), but the regula-
tory effect on the nutritional quality of rice was limited by 
the intensity of acid rain. As the important nutritional qual-
ity of rice (Mirtaleb et al. 2021), essential amino acids are 
essential for a healthy human diet (Borack and Volpi 2016; 
Mereu 1967). The addition of exogenous Ca2+ alleviated 
the decrease of essential amino acids caused by SAR (pH 
4.5/3.0), which may help to alleviate the lack of nutrient 
intake caused by AR and avoid the occurrence of “hidden 
hunger.”

Effect of exogenous Ca2+ on growth and total nitrogen 
content of rice at different growth stages under SAR

The yield and quality of rice are the results of long-term 
plant growth and development; the sensitivities of differ-
ent growth stages to environmental changes are different. 
In addition, nitrogen is an essential macronutrient for the 
growth and production of nitrogen-containing organic com-
pounds in crops (Han et al. 2020). Therefore, the level of 
nitrogen in crops has a decisive impact on the productivity 
and quality of crops (Zhou et al. 2021). Our results show 
that SAR1 (pH 4.5) treatment had no effect on the growth of 
rice at all three growth stages and the total nitrogen content 
in rice at the booting stage and maturity stages, whereas it 
increased the total nitrogen content in rice at the seedling 
stage. However, SAR2 (pH 3.0) significantly reduced the 
growth and total nitrogen content of rice at the seedling and 
booting stages. This indicates that the growth of rice at the 
seedling and booting stages was more sensitive to SAR than 
it was at the maturity stage. It was consistent with other stud-
ies that the activity of Mg2+-ATPase in the rice chloroplast 
was more sensitive to the SAR treatment at the seedling and 
booting stages than at the maturity stage (Zhang et al. 2018). 
This may be related to the stronger defense mechanism of 
rice at the maturity stage. We found that the seed setting rate 
and number of seed per panicle of rice under pH 4.5 SAR 
treatment did not change. The reason may be that we treated 
rice at each stage with SAR for 5 days and then moved them 
under the control condition to recovery as shown in Fig. 1. 
Besides, our previous study found that rice can tolerant low 
acidity of SAR such as pH 4.5 SAR, showing strong toler-
ance to acid rain stress (Liang et al. 2020). In this study, we 
also found that pH 4.5 SAR had no significant effect on the 
relative growth rate of rice at each growth stage, and finally 
did not change the seed setting rate of rice and number of 
seed per panicle. Combined with no significant effect on 
the rice yield and a decrease in the total amino acids and 

essential amino acids contents of rice under SAR1 (pH 4.5) 
stress, we found that the maintenance of total nitrogen level 
in rice under SAR1 (pH 4.5) stress was beneficial for keep-
ing the final yield of rice but cannot maintain the nutritional 
quality. It may be because SAR1 (pH 4.5) did not inhibit 
nitrogen absorption but affected the utilization process, 
which contributed more to forming amino acids. Similar to 
our result, it has been found that earthworm casts improve 
amino acid contents in rice, which is related to amino acid 
metabolism, rather than changes of total nitrogen content in 
grains (Huang et al. 2018). Combining with the significant 
decrease in yield and contents of total amino acids, essen-
tial amino acids, and total protein in of rice under SAR2 
(pH 3.0), it has also been proved again that the decrease in 
total nitrogen level in in rice at different growth stages was 
one of the reasons for the decrease in the productivity and 
quality of rice. Moreover, a positive relationship between 
the total nitrogen content and the yield of rice exposed to 
SAR at each growth stage was observed in our experiment. 
In the SAR1 (pH 4.5) + Ca2+ treatment, the growth and total 
nitrogen content of rice at the seedling and booting stages 
were higher than the control. In the SAR2 (pH 3.0) + Ca2+ 
treatment, the growth increased to the control level, the total 
nitrogen content was still lower than the control at the seed-
ling stage. In contrast, growth was lower than the control, 
and total nitrogen content increased to the control at booting 
stage. This shows that exogenous Ca2+ had the best regula-
tory effect on the growth at the seedlings stage under SAR. 
This phenomenon was also found in our previous research 
about soybeans (Li and Liang 2019). Combined with yield 
and nutritional quality in the SAR(pH 4.5/3.0) + Ca2+ treat-
ment, we found exogenous Ca2+ alleviated the decrease 
of yield and the decline of amino acids by promoting the 
growth and total nitrogen content at the seedling and boot-
ing stages. The regulatory effect of Ca2+ may depend on the 
absorption and utilization of nitrogen.

Effect of exogenous Ca2+ on activities and genes 
expression of key enzymes in nitrogen assimilation 
in rice leaves under SAR

According to a previous analysis on growth and total nitro-
gen content in rice, we found the regulating effect of exog-
enous Ca2+ on rice growth at the seeding stage was the 
strongest among the three growth stages. Hence, we selected 
rice at the seedling stage to explore the effect of exogenous 
Ca2+ on the nitrogen assimilation process in which the 
inorganic nitrogen is converted into organic nitrogen under 
SAR. NR is the rate-limiting enzyme for assimilation of 
NO3

– (Andrews and Raven 2022). GS/GOGAT is in charge 
of assimilation of NH4

+, while GS activity is more abundant 
in plants, and GOGAT activity is the key to affecting the GS/
GOGAT cycle (Lee et al. 2020). GS/GOGAT is divided into 
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cytoplasmic GS1 and cytoplasmic NADH-GOGAT, respon-
sible for assimilating NH4

+ absorbed from soil to glutamate, 
and plastid GS2 and Fd-GOGAT responsible for assimilat-
ing NH4

+ produced by photorespiration (Gayatri et al. 2021; 
Masclaux-Daubresse et al. 2006). GDH is another way to 
assimilate NH4

+ (Liu et al. 2016). In our experiments, SAR1 
(pH 4.5) treatment increased expressions of OsNR1 and 
OsNR2 as well as the activity of NR. In contrast, it did not 
affect expressions of three genes encoding GS and the activ-
ity of GS. However, SAR2 (pH 3.0) decreased expressions of 
OsNR1 and OsNR2 as well as the activity of NR, increased 
expressions of three genes encoding GS, and the activity 
of GS. Both in the SAR(pH 4.5/3.0) treatment, the expres-
sions of OsNADH-GOGAT1 and OsNADH-GOGAT2, and 
the activity of GOGAT decreased, and the expressions of 
OsGDH1 and OsGDH4, and the activity of GDH increased; 
moreover, the activity of GOGAT under SAR2 (pH 3.0) 
treatment was lower than under SAR1 (pH 4.5) treatment. 
This shows that SAR2 (pH 3.0) treatment caused more 
damage to the GS/GOGAT cycle to reduced assimilation 
of NH4

+ and restricted the assimilation and utilization of 
NO3

– by inhibiting the activity of NR, resulting in a greater 
reduction in the efficiency of nitrogen assimilation than that 
of SAR1 (pH 4.5). This may be one of the reasons for a more 
dramatic reduction in nutritional quality under SAR2 (pH 
3.0). It was consistent with other studies that the activity of 
GOGAT is a key factor for the efficiency of the GS/GOGAT 
cycle (Lee et al. 2020). Moreover, we found that the increase 
in activity of GS led to a decrease in the nutritional qual-
ity of rice. However, it was different from other studies in 
that the increased activity of GS during the filling stage was 
found to improve nitrogen metabolism efficiency and pro-
mote the synthesis of amino acids and proteins (Zhengxun 
et al. 2007). It was also found that nanomaterials improve the 
activity of GS in plants, promoting the synthesis of nitrogen 
assimilation products (Hu et al. 2021a, b). This difference 
in results may be related to different growth stages and the 
responses of species to stress. Similar to our result, it has 
been found that high-temperature stress increased the activ-
ity of GOGAT and reduced the activity of GS, and grain pro-
tein content increased (Liang et al. 2011). As the substrate of 
GDH, the increased NH4

+ content may stimulate the activity 
of GDH (Wei et al. 2021). At the same time, the increase in 
the activity of GDH may be the mode of action for plants 
to adapt to SAR(pH 4.5/3.0), which could compensate for 
the inhibition of GS/GOGAT caused by SAR(pH 4.5/3.0) 
to a certain extent and alleviate the negative effect of SAR 
on the efficiency of nitrogen assimilation. The addition of 
exogenous Ca2+ can maintain the higher expression levels 
of OsNR1 and OsNR2 and ensure the activity of NR under 
SAR (pH 4.5/3.0). Moreover, exogenous Ca2+ increased the 
expression of OsNADH-GOGAT1 and OsNADH-GOGAT2 
to maintain the activity of GOGAT to the control level under 

SAR and increased the expression of OsGDH1 and OsGDH4 
to increase the activity of GDH under SAR (pH 4.5/3.0). But 
under SAR2 (pH 3.0) treatment, the expression of OsGS1;1, 
OsGS1;2, and OsGS1;3 and the activity of GS were still 
higher than the control. These indicated that exogenous Ca2+ 
was beneficial to the activity of NR under SAR and could 
adjust the balance of the GS/GOGAT cycle and increase the 
activity of GDH. However, exogenous Ca2+ could not effec-
tively reduce the activity of GS to the control level under 
SAR2 (pH 3.0), resulting in lower nitrogen assimilation effi-
ciency than in control. Combined with Ca2+ alleviated the 
decrease of total amino acids, essential amino acids, and 
protein contents limited by the intensity of SAR2 (pH 3.0), 
we can speculate that exogenous Ca2+eliminate the disrup-
tion of GS/GOGAT balance for maintaining the nutritional 
quality of rice under SAR. Under other abiotic stresses, the 
regulatory effects of exogenous Ca2+ on the activities of NR, 
GOGAT, and GDH were also reported (Liang et al. 2011; 
Su et al. 2016). Therefore, when the acid rain issue cannot 
be addressed from the source, exogenous Ca2+ could be an 
effective way to control the yield and mitigate the reduc-
tion in quality. It will be instructive to explore the effect of 
exogenous Ca2+ on yield and nutritional quality of the crop 
in field experiments in the future.

Conclusion

Exogenous Ca2+ alleviated the decrease in the yield under 
SAR (pH 4.5/3.0) treatment and even improved the yield 
of rice under SAR1 (pH 4.5) treatment. Exogenous Ca2+ 
alleviated the decrease in the total amino acids and essential 
amino acid contents, and the degree was limited by the inten-
sity of SAR. The alleviating effect of exogenous Ca2+ on the 
yield and nutritional quality of rice was achieved by alleviat-
ing the decrease of growth and total nitrogen content at the 
seedling and booting stages. In addition, exogenous Ca2+ 
could also increase the expression of OsNR1 and OsNR2, as 
well as OsGDH1 and OsGDH4, to ensure the enhanced NR 
and GDH activities when SAR was applied, to compensate 
for the decrease in the efficiency of the GS/GOGAT cycle. 
The difference in the regulation of rice nutritional quality 
under the influence of different intensities of SAR was due 
to the fact that exogenous Ca2+ could not downregulate the 
expression of the four genes encoding GS under SAR2 (pH 
3.0) treatment, resulting in a decrease in the efficiency of the 
GS/GOGAT cycle. Considering the emission of NOx and 
SO2 cannot be controlled effectively so far, our findings can 
provide a theoretical basis for forming effective measures 
to alleviate the negative effect of acid rain on food security 
and safety.
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