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Abstract
Reliable global solar radiation (Rs) information is crucial for the design and management of solar energy systems for 
agricultural and industrial production. However, Rs measurements are unavailable in many regions of the world, which 
impedes the development and application of solar energy. To accurately estimate Rs, particle swarm optimization (PSO) 
algorithm integrating Gaussian exponential model (GEM) was proposed for estimating daily and monthly global Rs in 
Northeast China. The PSO-GEM was compared with four other machine learning models and two empirical models to 
assess its applicability using daily meteorological data from 1997 to 2016 from four stations in Northeast China. The results 
showed that in different stations, the PSO-GEM with full climatic data as inputs showed the highest accuracy to estimate 
daily Rs with RMSE, RRMSE, MAE, R2, and Ens values of 1.045–1.719 MJ m−2 d−1, 7.6–12.7%, 0.801–1.283 MJ m−2 d−1, 
0.953–0.981, and 0.946–0.977, respectively. The PSO-GEM showed the highest accuracy to estimate monthly Rs with 
RMSE, RRMSE, MAE, R2, and Ens values of 0.197–0.575 MJ m−2 d−1, 1.5–7.0%, 0.137–0.499 MJ m−2 d−1, 0.999–1, and 
0.992–0.999, respectively. Overall, the PSO-GEM had the highest accuracy under different inputs and is recommended for 
modeling daily and monthly Rs in Northeast China.

Keywords  Global solar radiation · Gaussian exponential model · Particle swarm optimization · Machine learning models · 
Empirical models

Introduction

Solar radiation (Rs) provides the essential energy for life 
on Earth (Wild et al. 2005) and is the foundation of global 
climate formation (Antonopoulos et al. 2019). Solar energy 
is one of the most advantageous energy sources, as it is clean, 
free, abundant, and inexhaustible (Khatib et al. 2012; Desideri 
et al. 2013; Jamil and Akhtar 2017; Zhang et al. 2019). As 
the global energy demand is gradually increasing, solar 
energy has attracted increasing attention. The application of 

solar energy systems depends on the amount and intensity of 
global Rs; thus, reliable information on Rs directly affects the 
development of solar energy (Citakoglu 2015; Zhang et al. 
2019). Furthermore, the level of Rs is directly related to the 
characteristics of regional climate change and the layout of 
agricultural production, especially crop production (Bailek 
et al. 2018; Fan et al. 2019; Jiang et al. 2020; Wu et al. 2022a). 
The most accurate Rs data can be obtained by measurements 
(Fan et al. 2019). However, the high requirements and costs 
of the measuring devices have resulted in few measurements 
worldwide (Besharat et al. 2013; Oates et al. 2017; Feng et al. 
2020). China has the largest energy demand in the world. 
Among the 752 national meteorological stations in China, 
only 122 stations have measured Rs data (Pan et al. 2013). 
Thus, using other commonly available climatic data to predict 
Rs is a feasible alternative.

Various climatic variables, such as precipitation (P), 
sunshine duration (n), air temperature, and relative humidity 
(Hr), are effective factors for Rs estimation (Katiyar and 
Pandey 2010; Jamil and Akhtar 2017; Jamil and Siddiqui 
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2018; Kaba et al. 2018; Wu et al. 2022b). Thus, various 
types of models have been developed based on these climatic 
variables, including empirical models (Liu et  al. 2009; 
Citakoglu 2015; Demircan et al. 2020; Feng et al. 2021a), 
machine learning models (Hossain et al. 2017; Fan et al. 2018; 
Feng et al. 2019c), and radiative transfer models (Gueymard 
2001; Wu et al. 2020). Owing to the acceptable accuracy and 
low computational costs and input requirements, empirical 
models are the most widely applied models (Hassan et al. 
2016), among which the Hargreaves–Samani (HS) model and 
Bristow–Campbell (BC) model are two well-known empirical 
models. Liu et al. (2009) modified the HS and BC models in 
different regions of China, and found that the accuracy of the 
models was improved by 4–7% after correction.

Because Rs has a nonlinear relationship with other cli-
matic variables, as indicated by empirical models, machine 
learning models can improve the accuracy of Rs estimation 
and prediction (Chen et al. 2011). To date, many machine 
learning models have been extensively applied to estimate 
and simulate Rs (Katiyar and Pandey 2010; Jamil and Akhtar 
2017; Kaba et al. 2018; Feng et al. 2019a), such as the adap-
tive neuro-fuzzy inference system (ANFIS) (Tabari et al. 
2012), M5 model tree (Kisi 2016), random forests (Feng 
et al. 2017a), and gene expression programming (Shiri et al. 
2014). Bueno et al. (2019) evaluated the performances of 
neural networks, support vector regression, and Gaussian 
processes for Rs prediction using satellite data as inputs, and 
reported that the three machine learning models provided 
reliable estimates. Zou et al. (2017) compared the ANFIS 
model with an improved BC model and Yang’s model for Rs 
estimation, and found that machine learning models showed 
better results than the BC model and Yang’s model. Fan 
et al. (2019) compared 12 machine learning models and 
12 empirical models to estimate Rs. They showed that the 
ANFIS model, MARS model, and XGBoost model may be 
promising models in China.

Although machine learning models have improved the 
accuracy for estimating Rs, they still have some issues to 
deal with. The parameters random selection of traditional 
machine learning models can affect the calculation accuracy. 
The particle swarm optimization (PSO) algorithm can solve 
the limitations of parameters and improve the accuracy of 
traditional machine learning models. Gaussian exponential 
model (GEM) is a novel machine learning model that has 
not been applied to Rs estimation. To further improve the 
accuracy of GEM, the PSO algorithm was utilized and 
the PSO-GEM was developed in this paper. To confirm 
the accuracy of PSO-GEM and GEM, we compared the 
models with three traditional machine learning models (M5 
model tree (M5T), support vector machine (SVM), random 
forest (RF)) and two empirical models (HS and BC). China 
consumes a large amount of energy, and a significant amount 

of energy is used for economic development every year (Liu 
et al. 2017; Fan et al. 2018). Clean solar energy is of great 
significance for energy conservation and emission reduction 
(Jin et al. 2005; Feng et al. 2021b). Northeast China, which 
is the main industrial production region, accounts for 
approximately 20% of China’s energy consumption (Zheng 
et al. 2019). Therefore, determining an optimal Rs model 
for this region can provide scientific information for solar 
energy applications. However, the performance of different 
models in this region has not been well documented. 
Thus, in this paper, PSO-GEM and GEM were developed 
to estimate Rs in Northeast China with different climate 
data. The main purpose of this study was to examine the 
applicability of five machine learning models (M5T model, 
SVM model, RF model, GEM, PSO-GEM, HS, and BC) for 
Rs prediction in Northeast China.

Methods and materials

Study area and data collection

Northeast China generally consists of three provinces, 
including Liaoning, Jilin and Heilongjiang. In Liaoning 
province, the terrain is generally high in the north and 
low in the south. Mountains and hills are distributed on 
the east and west sides of Liaoning province. In Jilin 
province, the terrain is high in the southeast and low in the 
northwest. In Heilongjiang province, the terrain is higher 
in the northwest, northern and southeastern regions, and 
lower in the northeast and southwest. Northeast China has 
a temperate monsoon climate (Feng et al. 2018), where the 
average annual temperature is 6.6 °C, the annual relative 
humidity is 60%, the annual precipitation is 608.3 mm. 
In this study, long-term climatic data, including Rs, n, 
maximum and minimum air temperature (Tmax and Tmin, 
respectively), Hr, wind speed at 2 m height, and P, during 
1997–2016 were collected from four stations located in 
Northeast China (Fig. 1). Extra-terrestrial solar radiation 
(Ra) calculated from geographic information and the day 
of the year (DOY) were also used for modeling. These 
data were provided and quality examined by the China 
Meteorological Administration. We further refined the 
data based on linear interpolation according to the rules: 
(1) missing measurements; (2) Tmin ≥ Tmax; (3) n > N. Here 
N is the theoretical sunshine duration. Figure 2 shows the 
monthly variations in climatic variables. Table 1 shows the 
climatic conditions of the study region.

Gaussian exponential model

The GEM was proposed by Liu et al. (2014). The model is 
divided into three procedures. First, learning samples are 
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clustered by the k-means algorithm as the most primitive 
allocation of samples. Second, the parameter estimates of the 
sample are calculated using the maximum likelihood estima-
tion. Third, learning samples are regrouped according to the 
maximum posterior probability criterion. The model can be 
defined as follows:

where Hi is the peak amplitude, Ni is the peak time position, 
and Wi is the half-width of the Gaussian wave.

(1)f (n) = Hi × exp

(
−
2
(
n − Ni

)

W2

i

)
, i = 1, 2,… , n

Hybrid Gaussian exponential model and particle 
swarm optimization

The PSO algorithm has been widely used in model 
optimization, and has been proved its applicability (Yu et al. 
2016; Zhu et al. 2020). In PSO, every particle has a fitness 
value. By calculating the fitness, the optimal output result 
is obtained.

In D-dimensional space, given a population with n parti-
cles (N1, N2, N3, …, Nn). The position and velocity of every 
particle i are (n1i, n2i, n3i, …, nni) and (v1i, v2i, v3i, …, vni). 
Updating of the position and velocity can be expressed as:

where ω is the weight; k is the current iteration number; 
c1and c2 are the acceleration coefficients; r1,i

k and r2,i
k are 

the empirical parameters falling [0,1].
Although GEM has been proved to have high accuracy 

and computation speed (Jia et al. 2021), the PSO algorithm 
can further optimize the structure of GEM and improve the 
model accuracy.

M5 model tree

Quinlan (1992) first developed the M5 tree (M5T) model, 
which selects the expected standard deviation after 
scanning all the possible splits (Feng et al. 2019b). The 

(2)Nid = Nid + Nid(d = 1, 2,… ,D, i = 1, 2,… n)

(3)Vk+1

id
= �Vk

id
+ c1r

k

1,i
(Pk

id
− Xk

id
) + c2r

k

2,i
(Pk

gd
− Xk

id
)

Fig. 1   The geographical distribution of the stations in Northeast 
China

Fig. 2   Monthly variations of meteorological variables at the four stations in Northeast China
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procedure that makes up the model is divided into two 
parts. First, the data are divided into several subsets to 
create decision trees. The expected error of the subsets 
can be calculated by the model. The model accuracy can 
be defined as follows:

where SD and SDR are the standard deviations, Q is a set of 
samples that reach the target value, and Qi is a subset of Q.

To improve the application efficiency of the model, 
it is necessary to traverse each node of the initial model 
tree through the pruning process to merge some subtrees 
and replace them with leaf nodes (Sattari et al. 2013). The 
detailed model procedure of the M5T model is described by 
Quinlan (1992).

Support vector machine

The SVM was first proposed by Vapink (1999). This model 
is considered the best theory for current small-sample 

(4)SDR = SD(Q) −
∑ |Qi|

|Q|
SD(Qi)

statistical estimation and prediction learning (Belaid 
and Mellit 2016; Shamshirband et al. 2016). The model 
replaces traditional experience minimization with structural 
experience minimization, which can overcome many short-
comings of neural networks (Quej et al. 2017). The SVM 
function can be expressed as follows:

where κ(xi,xj) is a higher-dimensional feature vector con-
verted from the input vector xi and xj. yi is the ordinate of 
the input vector, αi is the weight of the input vector, and b 
is the bias.

Random forest model

The RF model was proposed by Breiman (2001). The model 
introduces random attribute selection during model training. 
The model extracts data based on randomness and differ-
ence, which can greatly improve decision accuracy. The pro-
cedures of the RF model are described by Buja et al. (2008).

(5)f (x) =

n∑

i=1

�iyi�(xi, yi) + b

Table 1   Climatic conditions of 
the four stations in this study

Max, Min, Average, Sx, and Cv denote the maximum, minimum, mean, standard deviation, and variation 
coefficient of each meteorological variable, respectively

Station Longitude (°E) Latitude (°N) Variable Max Min Average Sx Cv

Harbin 126.8 45.8 U2 (m s−1) 7.6 0.0 1.9 0.9 0.5
Tave (°C) 30.9  − 30.9 5.3 15.1 2.8
n (h) 14.9 0.0 6.3 4.0 0.6
Hr (%) 100 20 60 20 20
P (mm d−1) 146.6 0.0 1.4 5.4 3.7
Rs (MJ m−2 d−1) 33.3 0.0 13.0 7.2 0.6

Jilin 125.2 43.9 U2 (m s−1) 10.5 0.0 2.4 1.2 0.5
Tave (°C) 30.4  − 30.1 6.5 14.2 2.2
n (h) 14.3 0.0 7.1 3.8 0.5
Hr (%) 100 10 60 20 30
P (mm d−1) 122.0 0.0 1.6 6.1 3.8
Rs (MJ m−2 d−1) 39.6 0.0 13.5 7.4 0.5

Shenyang 123.5 41.7 U2 (m s−1) 9.0 0.0 2.0 1.0 0.5
Tave (°C) 30.5  − 26.8 8.6 13.3 1.5
n (h) 13.9 0.0 6.5 3.9 0.6
Hr (%) 100 10 60 20 30
P (mm d−1) 145.7 0.0 1.9 7.6 4.0
Rs (MJ m−2 d−1) 33.4 0.0 13.5 7.0 0.5

Yanji 129.5 42.9 U2 (m s−1) 10.0 0.0 1.9 1.3 0.7
Tave (°C) 29.7  − 23.7 6.0 12.8 2.1
n (h) 14.0 0.0 6.3 3.7 0.6
Hr (%) 100 10 60 20 30
P (mm d−1) 124.6 0.0 1.5 5.5 3.6
Rs (MJ m−2 d−1) 32.6 0.0 13.2 6.9 0.5
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Hargreaves–Samani model

The HS model only uses Tmax and Tmin data as inputs and is 
widely reported to have acceptable accuracy for Rs estima-
tion. The model is as follows:

where Rs is the global Rs (MJ m−2 d−1), Tmax and Tmin are 
the Tmax and Tmin, respectively (℃), C is the empirical coef-
ficient, and Ra is the Ra (MJ m−2 d−1).

Bristow–Campbell model

Bristow and Campbell (1984) developed the BC model, which 
only uses Ra and the diurnal temperature range (△T) as the 
input data. The model is defined as follows:

where △T is the △T (℃) and a, b, and c are empirical 
coefficients.

Model training and testing

Five input combinations of meteorological data were 
used to train the machine learning models. Details of the 
combinations are presented in Table 2. The dataset was 
divided into two parts, i.e., 1997–2011 and 2012–2016, 
for training and testing the machine learning models, 
respectively. The coefficients of the empirical mod-
els were locally calibrated at each station by the least 
square error method using the training data (data from 
1997 to 2011). The model training/calibration and testing 
were performed in Matlab 2018a. The parameters of the 
machine models are presented in Table 3.

Statistical indicators

The root mean square error (RMSE), relative root mean 
square error (RRMSE), coefficient of determination (R2), 
mean absolute error (MAE), and coefficient of efficiency 
(Ens) were used to assess the Rs models (Feng et al. 2017b), 
as follows:

(6)Rs = [C(Tmax − Tmin)
0.5] × Ra

(7)Rs = a[1 − exp(−bΔTc)] × Ra

(8)RMSE =

√√√√ 1

m

m∑

i=1

(Yi − Xi)
2

(9)RRMSE =

�
1

m

∑m
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2
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where Xi and Yi are the trained and estimated values, respec-
tively, and X is the average value of Xi.

Owing to the excessive evaluation index, it is very 
difficult for a single evaluation index to compare differ-
ent models. Therefore, the global performance indicator 
(GPI) was introduced to comprehensively evaluate the 
model simulation results (Despotovic et al. 2015), as 
follows:

(10)R2 =
[
∑m

i=1
(Xi − X)(Yi − Y)]

2

∑m

i=1
(Xi − X)

2∑m

i=1
(Yi − Y)

2

(11)MAE =
1

m

m∑

i=1

|Yi − Xi|

(12)Ens = 1 −

∑m

i=1
(Yi − Xi)

2

∑m

i=1
(Xi − X)

2

where αj is a coefficient that is equal to 1 for the RMSE, 
RRMSE, and MAE and equal to − 1 for Ens and R2; gj repre-
sents the median of statistical indicator j, and yij represents 
the scaled value of the statistical indicator j. A higher GPI 
value indicates the better performance of the model.

Results and discussion

Results

Evaluation of the models on a daily basis

The statistical performance of the models at the four sta-
tions is presented in Table  4. At Harbin station, the 
PSO-GEM1 showed the highest accuracy under input 

(13)GPIi =

5∑

j=1

�j(gj − yij)

Table 3   Parameters applied 
for different machine learning 
models in this study

Model Key parameters

M5T model Minimum leaf size = 10, minimum parent size = 20
SVM Kernel function type = Gaussian function, gamma = 30, cost = 40
RF model Maximum depth of the tree = 3, number of trees = 500
GEM Kernel function type = Gaussian function, gamma = 2, cost = 10
PSO-GEM Particle swarm number = 50, acceleration factor = 1.5, inertia weight = 0.5

Kernel function type = Gaussian function, gamma = 2, cost = 10

Table 4   Statistical performances of daily Rs of different models at the four stations. The best model in each station is marked in bold

Station Indicators M5T1 M5T2 M5T3 M5T4 M5T5 SVM1 SVM2 SVM3 SVM4 SVM5 PSO-GEM1 PSO-GEM2 PSO-GEM3 PSO-GEM4 PSO-GEM5 RF1 RF2 RF3 RF4 RF5 GEM1 GEM2 GEM3 GEM4 GEM5 HS BC

Harbin RMSE (MJ·m-2·d-1) 5.207 4.132 2.900 2.809 2.824 5.749 3.791 2.518 2.497 2.406 2.893 3.068 1.944 2.033 1.719 5.404 4.044 2.813 2.766 2.700 5.049 3.398 2.149 2.161 1.797 4.229 4.127

RRMSE (%) 38.4 30.5 21.4 20.7 20.8 41.4 27.9 18.6 18.4 17.7 36.1 22.6 15.4 15.0 12.7 39.8 29.8 20.7 20.4 19.9 37.2 25.0 15.8 15.9 13.2 31.2 30.4

R2
0.516 0.705 0.904 0.914 0.911 0.424 0.746 0.919 0.923 0.929 0.569 0.842 0.952 0.948 0.964 0.483 0.721 0.913 0.919 0.924 0.541 0.803 0.941 0.942 0.960 0.689 0.705

Ens 0.505 0.688 0.847 0.856 0.854 0.397 0.738 0.884 0.886 0.894 0.563 0.828 0.931 0.925 0.946 0.467 0.702 0.856 0.860 0.867 0.535 0.789 0.916 0.915 0.941 0.674 0.689

MAE (MJ·m
-2

·d
-1

) 4.015 3.096 2.237 2.164 2.187 4.718 2.791 1.892 1.869 1.798 3.742 2.305 1.456 1.525 1.283 4.110 3.067 2.178 2.149 2.108 3.886 2.524 1.604 1.632 1.353 3.270 3.187

Jilin RMSE (MJ·m-2·d-1) 5.543 4.465 2.049 1.982 1.962 19.887 3.937 1.839 1.830 1.760 5.393 3.157 1.513 1.543 1.245 6.020 4.105 1.947 1.972 1.869 5.550 3.471 1.610 1.538 1.410 4.377 4.207

RRMSE (%) 40.7 32.8 15.1 14.6 14.4 146.1 28.9 13.5 13.4 12.9 43.6 23.2 11.1 11.3 9.1 44.2 30.2 14.3 14.5 13.7 40.8 25.5 11.8 11.3 10.4 32.2 30.9

R2 0.474 0.661 0.929 0.934 0.933 0.147 0.734 0.942 0.943 0.947 0.503 0.835 0.961 0.959 0.974 0.384 0.712 0.935 0.934 0.941 0.473 0.795 0.956 0.960 0.966 0.672 0.696

Ens 0.472 0.658 0.928 0.933 0.934 0.105 0.734 0.942 0.943 0.947 0.501 0.829 0.961 0.959 0.973 0.378 0.711 0.935 0.933 0.940 0.471 0.793 0.956 0.959 0.966 0.671 0.696

MAE (MJ·m
-2

·d
-1

) 4.125 3.062 1.427 1.377 1.358 15.663 2.714 1.249 1.256 1.183 4.030 2.211 1.013 1.072 0.844 4.462 2.888 1.337 1.392 1.271 4.147 2.403 1.077 1.067 0.945 3.248 3.069

Shenyang RMSE (MJ·m
-2

·d
-1

) 5.697 4.407 2.619 2.539 2.484 5.994 3.983 2.274 2.387 2.119 5.355 3.227 1.876 2.010 1.658 5.919 4.283 2.465 2.526 2.347 5.586 3.565 2.019 2.088 1.754 4.557 4.479

RRMSE (%) 40.1 31.0 18.4 17.9 17.5 42.2 28.0 16.0 16.8 15.5 37.7 22.7 13.2 14.1 11.7 41.6 30.1 17.3 17.8 16.5 39.3 25.1 14.2 14.7 14.1 32.1 31.5

R2 0.440 0.656 0.882 0.890 0.894 0.389 0.717 0.909 0.901 0.916 0.503 0.822 0.940 0.930 0.953 0.392 0.676 0.897 0.891 0.908 0.457 0.776 0.929 0.925 0.947 0.634 0.648

Ens 0.421 0.654 0.878 0.885 0.890 0.359 0.717 0.908 0.898 0.914 0.489 0.814 0.937 0.928 0.951 0.375 0.673 0.892 0.886 0.902 0.444 0.773 0.927 0.922 0.945 0.630 0.642

MAE (MJ·m-2·d-1) 4.557 3.284 1.836 1.797 1.764 4.741 2.912 1.566 1.642 4.836 4.265 2.412 1.299 1.407 1.147 4.644 3.234 1.778 1.799 1.703 4.466 2.637 1.394 1.481 1.206 3.526 3.483

Yanji RMSE (MJ·m
-2

·d
-1

) 5.402 3.849 1.746 1.675 1.743 6.879 3.454 1.509 3.521 1.434 5.030 2.809 1.226 1.259 1.045 5.571 3.767 1.686 1.671 1.682 5.209 3.118 1.274 1.319 1.149 4.063 3.885

RRMSE (%) 39.3 28.0 12.7 12.2 12.7 50.0 25.1 11.0 25.6 10.4 36.6 20.4 8.9 9.2 7.6 40.5 27.4 12.3 12.2 12.2 37.9 22.7 9.3 9.6 8.4 29.6 28.3

R2 0.406 0.716 0.946 0.952 0.947 0.430 0.961 0.953 0.762 0.963 0.484 0.849 0.973 0.971 0.981 0.376 0.727 0.952 0.952 0.957 0.445 0.812 0.971 0.969 0.977 0.677 0.707

Ens 0.396 0.693 0.937 0.942 0.937 0.021 0.753 0.959 0.744 0.958 0.476 0.837 0.969 0.967 0.977 0.358 0.706 0.941 0.942 0.941 0.439 0.799 0.966 0.964 0.973 0.659 0.688

MAE (MJ·m-2·d-1) 4.296 2.980 1.322 1.297 1.332 5.197 2.628 1.169 2.655 1.101 3.973 2.194 0.943 0.970 0.801 4.347 2.962 1.306 1.300 1.316 4.138 2.431 0.977 1.018 0.877 3.320 3.132
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scenario 1 with RMSE, RRMSE, R2, Ens, and MAE val-
ues of 2.893  MJ  m−2  d−1, 36.1%, 0.569, 0.563, and 
3.742 MJ m−2 d−1, respectively. Under input scenario 2, the 
PSO-GEM2 showed the highest accuracy, considering the 
values of their evaluation indices. Under input scenario 3, 
the five machine learning models had higher accuracies than 
the models under input scenarios 1 and 2, with an RMSE 
value of less than 2.900 MJ m−2 d−1, RRMSE value of less 
than 21.4%, R2 value of greater than 0.952, Ens value of 
greater than 0.931, and MAE of less than 2.237 MJ m−2 d−1. 
This indicated that introducing climatic variables into the 
model training greatly improved the model performance. 
Among the models under input scenario 3, the PSO-GEM3 
had the highest accuracy, considering the values of their 
evaluation indices. The PSO-GEM4 showed the highest 
accuracy under input scenario 4, considering the values of 
their evaluation indices. Under input scenario 5, the PSO-
GEM5 showed the highest accuracy with RMSE, RRMSE, 
R2, Ens, and MAE values of 1.719 MJ m−2 d−1, 12.7%, 0.964, 
0.946, and 1.283 MJ m−2 d−1, respectively.

At Jilin station, the PSO-GEM1 showed the highest 
accuracy under input scenario 1 with RMSE, RRMSE, R2, 
Ens, and MAE values of 5.393 MJ m−2 d−1, 43.6%, 0.503, 
0.501, and 4.030 MJ m−2  d−1, respectively. Under input 
scenario 2, the PSO-GEM2 showed the highest accuracy, 
considering the values of their evaluation indices. Under 
input scenario 3, the PSO-GEM3 had the highest accuracy, 
considering the values of their evaluation indices. Under 
input scenario 4, the PSO-GEM4 showed the highest accu-
racy. The five machine learning models under input sce-
nario 5 showed the highest accuracies among the models 
under different input scenarios. The PSO-GEM5 showed 
the highest accuracy with RMSE, RRMSE, R2, Ens, and 
MAE values of 1.245 MJ m−2 d−1, 9.1%, 0.974, 0.973, and 
0.844 MJ m−2 d−1, respectively.

At Shenyang station, the PSO-GEM1 showed the highest 
accuracy under input scenario 1 with RMSE, RRMSE, R2, 
Ens, and MAE values of 5.355 MJ m−2 d−1, 37.7%, 0.503, 
0.489, and 4.265 MJ m−2  d−1, respectively. Under input 
scenario 2, the PSO-GEM2 showed the highest accuracy, 
considering the values of their evaluation indices. Under 
input scenario 3, all the machine learning models had higher 
accuracies than the models under input scenarios 1 and 2, 
with an RMSE value of less than 2.619 MJ m−2 d−1, RRMSE 
of less than 18.4%, R2 of over 0.882, Ens of over 0.878, and 
MAE of less than 1.836 MJ m−2 d−1. The PSO-GEM3 had 
the highest accuracy. The PSO-GEM4 showed the highest 
accuracy under input scenario 4, considering the values of 
their evaluation indices. Under input scenario 5, the PSO-
GEM5 showed the highest accuracy with RMSE, RRMSE, 
R2, Ens, and MAE values of 1.658 MJ m−2 d−1, 11.7%, 0.953, 
0.951, and 1.147 MJ m−2 d−1, respectively.

At Yanji station, the PSO-GEM1 showed the highest 
accuracy under input scenario 1 with RMSE, RRMSE, R2, 
Ens, and MAE values of 5.030 MJ m−2 d−1, 36.6%, 0.484, 
0.476, and 3.973 MJ m−2  d−1, respectively. Under input 
scenario 2, the PSO-GEM2 showed the highest accuracy, 
considering the values of their evaluation indices. Under 
input scenario 3, the five models had higher accuracies than 
the models under input scenarios 1 and 2, with an RMSE 
of less than 1.746 MJ m−2 d−1, RRMSE of less than 12.7%, 
R2 of over 0.946, Ens of over 0.937, and MAE of less than 
1.322 MJ m−2 d−1. The PSO-GEM3 had the highest accu-
racy. The PSO-GEM4 showed the highest accuracy under 
input scenario 4, considering the values of their evaluation 
indices. Under input scenario 5, the PSO-GEM5 showed 
the highest accuracy with RMSE, RRMSE, R2, Ens, and 
MAE values of 1.045 MJ m−2 d−1, 7.6%, 0.981, 0.977, and 
0.801 MJ m−2 d−1, respectively.

As for the empirical models, the HS and BC mod-
els showed lower accuracies compared with those of the 
machine learning models with the same inputs (input sce-
nario 3), with an RMSE of 3.885–4.557 MJ m−2 d−1, R2 of 
0.634–0.707, RRMSE of 28.3–32.2%, Ens of 0.630–0.696, 
and MAE of 3.069–3.526 MJ m−2  d−1. The accuracy of 
the machine learning models considering n was signifi-
cantly higher than that of the models without n input, with 
the RMSE reduced by 44.3–79.9%, RRMSE reduced by 
44.2–91.2%, MAE reduced by 40.2–80.6%, R2 increased by 
67.7–95.6%, and Ens increased by 67.4–124.9%.

The boxplots of the statistical indicators of daily Rs 
for different models in the study area are presented in 
Fig. 3. Under input scenario 1, the five machine learn-
ing models showed low prediction accuracies for the 
whole region, with average RMSE, RRMSE, MAE, 
and Ens values of 4.668–9.627 MJ m−2 d−1, 38.8–69.9%, 
4.002–7.579 MJ m−2 d−1, and 0.220–0.507, respectively. The 
PSO-GEM1 showed the highest accuracy among the five 
models. Under input scenario 2, the PSO-GEM2 was the 
best model, considering the values of their evaluation indi-
ces. The five models under input scenario 3 showed higher 
prediction accuracies than the models under input scenarios 
1 and 2, which did not consider climatic variables as inputs. 
The PSO-GEM3 showed the best results, considering the 
values of their evaluation indices. Under input scenario 4, 
the PSO-GEM4 showed the highest accuracy, considering 
the values of their evaluation indices. Under input scenario 
5, the PSO-GEM5 showed the highest accuracy with average 
RMSE, RRMSE, MAE, and Ens values of 1.417 MJ m−2 d−1, 
10.26%, 1.019 MJ m−2 d−1, and 0.962, respectively. The 
HS and BC models showed much lower prediction accu-
racies compared with those of the machine learning mod-
els, with average RMSE, RRMSE, MAE, and Ens values 
of 4.306 MJ m−2 d−1 and 4.174 MJ m−2 d−1, 31.23% and 
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30.26%, 3.341 MJ m−2 d−1 and 3.218 MJ m−2 d−1, and 0.658 
and 0.679, respectively.

The GPI values of the different models at the four stations 
are presented in Fig. 4. The SVM1, M5T1, GEM1, RF1, 
and PSO-GEM1 models under input scenario 1 showed the 
lowest prediction accuracies compared with those of models 
under other input scenarios, with average GPI values of − 
3.915, − 3.101, − 2.883, − 3.357, and − 2.163, respectively. 
Under input scenario 2, the PSO-GEM2 showed the highest 
accuracy, followed by the GEM2, SVM2, RF2, and M5T2 
models. Under input scenario 3, the PSO-GEM3 showed the 
highest accuracy, considering the values of their evaluation 

indices. The PSO-GEM4 was the best model under input 
scenario 4, followed by the GEM4, RF4, M5T4, and SVM4 
models with average GPI values of 0.434, 0.375, 0.033, 
0.019, and − 0.211, respectively. Under input scenario 5, 
the PSO-GEM5 and GEM5 showed much higher accuracies 
with average GPI values of 0.641 and 0.560, respectively. 
The accuracies of the HS and BC models were higher than 
those of the M5T1, SVM1, GEM1, RF1, and PSO-GEM1 
models without climatic inputs, with average GPI values 
of − 1.745 and − 1.622, respectively. Relatively good esti-
mates and high accuracies could be obtained from models 
with at least the DOY, Ra, and n as inputs, including models 

Fig. 3   Boxplots of the statistical indicators of daily Rs for different models
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under input scenarios 3, 4, and 5. These results further con-
firm that n is the most important variable for estimating Rs.

Evaluation of the models on a monthly basis

The accuracy index of monthly Rs of different models in dif-
ferent stations is presented in Table 5. As shown in Table 5, 
in Harbin station, the PSO-GEM1 showed the highest 

accuracy under input scenario 1, with RMSE, RRMSE, R2, 
Ens, and MAE of 0.878 MJ m−2 d−1, 13.5%, 0.984, 0.943, 
and 0.803 MJ m−2 d−1, respectively. Under input scenario 
2, the PSO-GEM2 showed the highest accuracy, followed 
by the GEM2, considering the values of their evaluation 
indices. Under input scenario 3, the five models had higher 
accuracy than the models under input scenario 1 and sce-
nario 2, with RMSE less than 0.825 MJ m−2 d−1, RRMSE 

Fig. 4   GPI values of daily Rs 
of different models at the four 
stations in Northeast China

Table 5   Statistical performances of monthly Rs of different models at the four stations. The best model in each station is marked in bold

Stations
Evaluation

index
M5T1 M5T2M5T3 M5T4 M5T5 SVM1 SVM2 SVM3 SVM4 SVM5 PSO-GEM1 PSO-GEM2 PSO-GEM3 PSO-GEM4 PSO-GEM5 RF1 RF2 RF3 RF4 RF5 GEM1 GEM2 GEM3 GEM4 GEM5 HS BC

Harbin

RMSE 1.155 1.145 0.825 0.802 0.790 1.941 0.848 0.593 0.592 0.593 0.878 0.692 0.601 0.506 0.575 1.16 1.175 0.783 0.802 0.739 0.885 0.814 0.655 0.594 0.456 1.186 1.193

RRMSE 13.5 13.4 8.5 8.3 8.2 14.3 13.3 8.3 8.6 8.3 13.5 11.1 7.5 7.2 7.0 12.6 14.7 8.2 8.3 7.8 12.5 11.0 7.5 7.8 7.1 8.8 8.8 

R2 0.972 0.991 0.999 0.999 0.999 0.947 0.992 0.999 0.999 0.999 0.984 0.997 1 0.999 1 0.971 0.988 0.999 0.999 0.999 0.984 0.996 0.999 0.999 1 0.977 0.976

ENS 0.953 0.954 0.984 0.987 0.989 0.868 0.925 0.972 0.968 0.988 0.943 0.953 0.984 0.987 0.989 0.935 0.952 0.989 0.987 0.994 0.923 0.937 0.973 0.985 0.988 0.951 0.95

MAE 1.523 1.502 0.545 0.525 0.513 1.586 1.552 0.621 0.664 0.616 0.803 0.702 0.467 0.463 0.499 1.236 1.113 0.608 0.627 0.603 1.494 1.371 0.568 0.548 0.411 0.955 0.951

Jilin

RMSE 0.495 0.542 0.41 0.359 0.407 1.078 0.772 0.307 0.317 0.312 0.69 0.525 0.256 0.245 0.197 0.685 0.547 0.394 0.36 0.377 0.692 0.648 0.264 0.221 0.242 0.672 0.643

RRMSE 5.6 4.0 3.0 2.6 3.0 7.9 3.5 2.3 2.3 2.3 3.6 2.4 1.9 1.8 1.5 5.0 3.3 2.9 2.6 2.8 5.6 2.6 1.9 1.6 1.8 5.4 4.7 

R
2

0.984 0.983 0.995 0.996 0.994 0.956 0.984 0.997 0.997 0.999 0.954 0.907 0.998 0.998 0.999 0.918 0.976 0.995 0.996 0.995 0.844 0.897 0.998 0.998 0.998 0.872 0.991

ENS 0.871 0.989 0.994 0.995 0.997 0.856 0.892 0.996 0.996 0.996 0.891 0.926 0.998 0.998 0.999 0.902 0.973 0.994 0.995 0.997 0.891 0.915 0.997 0.998 0.998 0.971 0.984

MAE 0.593 0.417 0.321 0.26 0.304 0.743 0.363 0.217 0.218 0.211 0.364 0.261 0.176 0.164 0.137 0.526 0.390 0.279 0.246 0.249 0.381 0.276 0.189 0.149 0.159 0.520 0.559

Shenyang

RMSE 1.225 0.828 0.606 0.633 0.612 1.415 0.705 0.376 0.398 0.318 0.932 0.579 0.340 0.341 0.313 1.227 0.919 0.617 0.629 0.614 0.962 0.687 0.347 0.32 0.351 0.856 0.962

RRMSE 8.6 6.4 4.3 4.5 4.3 10.0 5.9 3.1 3.0 2.9 6.6 4.7 2.4 2.8 2.2 8.6 6.4 4.3 4.6 4.5 6.8 4.7 2.4 3.0 2.5 6.0 6.8 

R2 0.981 0.987 0.995 0.995 0.996 0.953 0.973 0.997 0.996 0.998 0.971 0.986 0.999 0.998 0.999 0.972 0.988 0.996 0.994 0.996 0.979 0.986 0.999 0.998 0.998 0.939 0.926

ENS 0.938 0.964 0.985 0.983 0.985 0.917 0.993 0.994 0.993 0.996 0.964 0.984 0.995 0.994 0.996 0.938 0.964 0.984 0.983 0.983 0.962 0.984 0.995 0.995 0.995 0.970 0.962

MAE 0.996 0.625 0.477 0.497 0.478 1.079 0.497 0.305 0.309 0.305 0.750 0.496 0.276 0.301 0.256 1.005 0.785 0.513 0.51 0.512 0.788 0.390 0.268 0.293 0.273 0.680 0.790

Yanji

RMSE 1.215 1.149 0.694 0.695 0.693 0.800 0.745 0.552 0.607 0.506 0.795 0.661 0.455 0.454 0.463 0.976 0.787 0.536 0.523 0.533 0.989 0.786 0.467 0.475 0.447 1.305 1.239

RRMSE 10.7 8.4 5.1 5.2 5.3 8.8 7.4 4.0 4.8 4.1 8.1 4.8 3.6 3.3 3.0 9.1 7.9 5.4 5.3 5.4 9.0 6.7 3.4 3.6 3.3 9.5 9.0 

R2 0.915 0.992 0.998 0.998 0.999 0.951 0.974 0.998 0.998 0.998 0.991 0.998 0.999 0.999 1 0.978 0.993 0.998 0.998 0.999 0.992 0.977 0.999 0.999 0.999 0.979 0.984

ENS 0.929 0.936 0.977 0.979 0.980 0.949 0.973 0.985 0.989 0.989 0.977 0.979 0.991 0.992 0.992 0.934 0.943 0.974 0.975 0.976 0.947 0.97 0.989 0.988 0.992 0.917 0.926

MAE 1.198 1.039 0.649 0.648 0.642 0.701 0.608 0.514 0.526 0.522 0.627 0.603 0.408 0.409 0.384 0.864 0.78 0.523 0.533 0.528 0.804 0.713 0.436 0.438 0.407 1.133 1.092
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less than 8.5%, R2 over than 0.999, Ens over than 0.972, 
MAE less than 0.621 MJ m−2 d−1. The PSO-GEM3 had the 
highest accuracy. The PSO-GEM4 showed the best preci-
sion under input scenario 4, considering the values of their 
evaluation indices. Under input scenario 5, the PSO-GEM5 
and GEM5 showed much higher accuracy among the five 
models, considering the values of their evaluation indices. 
HS and BC models showed much poorer prediction accuracy 
with RMSE of 1.186 and 1.193 MJ m−2 d−1, with RRMSE 
of 8.8% and 8.8%, R2 of 0.977 and 0.976, MAE of 0.955 and 
0.951 MJ m−2 d−1, and Ens of 0.951 and 0.950, respectively.

In Jilin station, the PSO-ELM1 showed the highest accu-
racy under input scenario 1, with RMSE, RRMSE, R2, Ens, 
and MAE of 0.932 MJ m−2 d−1, 6.6%, 0.971, 0.964, and 
0.750 MJ m−2 d−1. Under input scenario 2, the PSO-ELM2 
had the best precision, considering the values of their evalu-
ation indices. Under input scenario 3, the PSO-ELM3 had 
the highest accuracy, considering the values of their evalua-
tion indices. Under input scenario 4, the PSO-ELM4 showed 
the best precision, with RMSE, RRMSE, R2, Ens, and MAE 
of 0.341 MJ m−2 d−1, 2.8%, 0.998, 0.994, and 0.301 MJ m−2 
d−1. The five models under the input scenario 5 showed the 

Fig. 5   Boxplots of the statistical indicators monthly Rs for different models
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highest accuracy among the models under other inputs. The 
PSO-ELM5 showed the highest accuracy, followed by the 
GEM5, with RMSE, RRMSE, R2, Ens, and MAE of 0.197 
and 0.242 MJ m−2 d−1, 1.5% and 1.8%, 0.999 and 0.998, 0.999 
and 0.998, and 0.137 and 0.159 MJ m−2 d−1.

In Shenyang station, under input scenario 1, the PSO-
GEM1 showed the highest accuracy, followed by GEM1, 
with RMSE, RRMSE, R2, Ens, and MAE of 0.932 and 
0.962 MJ m−2 d−1, 6.6% and 6.8%, 0.971 and 0.979, 0.964 
and 0.962, and 0.750 and 0.788 MJ m−2 d−1. Under input 
scenario 2, the PSO-GEM2 showed the best precision, con-
sidering the values of their evaluation indices. Under input 
scenario 3, the PSO-GEM3 and GEM3 model showed higher 
accuracy, considering the values of their evaluation indices. 
The PSO-GEM4, GEM4 and SVM4 models showed bet-
ter precision under input scenario 4, considering the values 
of their evaluation indices. Under input scenario 5, PSO-
GEM5 showed the highest accuracy, followed by GEM5, 
with RMSE, RRMSE, R2, Ens, and MAE of 0.313 and 
0.351 MJ m−2 d−1, 2.2% and 2.5%, 0.999 and 0.998, 0.996 
and 0.995, and 0.256 and 0.273 MJ m−2 d−1, respectively.

In Yanji station, the PSO-GEM1 showed the highest 
accuracy under input scenario 1, considering the values of 
their evaluation indices. Under input scenario 2, the PSO-
GEM2 showed the highest accuracy, with RMSE, RRMSE, 
R2, Ens, and MAE of 0.661 MJ m−2 d−1, 4.8%, 0.998, 0.979, 
and 0.603 MJ m−2 d−1. Under input scenario 3, the five mod-
els had higher accuracy than the models under input scenario 
1 and scenario 2, with RMSE less than 0.694 MJ m−2 d−1, 
RRMSE less than 5.4%, R2 over than 0.998, Ens over than 

0.974, and MAE less than 0.649 MJ m−2 d−1. The PSO-
GEM3 had the highest accuracy, considering the values of 
their evaluation indices. The PSO-GEM4 model showed the 
best precision under input scenario 4, considering the values 
of their evaluation indices. Under input scenario 5, the PSO-
GEM5 showed the highest accuracy, followed by the GEM5, 
considering the values of their evaluation indices.

The boxplots of the statistical indicators of monthly Rs for 
different models in the study area are presented in Fig. 5. Under 
input scenario 1, the five models showed lower prediction accu-
racy in the whole studied area, with RMSE, RRMSE, MAE, Ens 
of 0.824–1.308 MJ m−2 d−1, 8.0–10.3%, 0.636–1.077 MJ m−2 
d−1, 0.898–0.944, respectively. The PSO-GEM1 showed the 
highest accuracy among the five models. Under input scenario 
2, the PSO-GEM2 model was the best, considering the values 
of their evaluation indices. The five models under the input 
scenario 3 showed higher accuracy than the models under the 
input scenarios 1–2. The PSO-GEM3 showed the best preci-
sion, followed by the GEM3, considering the values of their 
evaluation indices. Under input scenario 4, the PSO-GEM4 
showed the highest accuracy. Under input scenario 5, the PSO-
GEM5 and GEM5 showed higher accuracy, considering the 
values of their evaluation indices. HS model and BC model 
showed poorer prediction accuracy with RMSE of 1.005 and 
1.009 MJ m−2 d−1, with RRMSE of 7.3% and 7.4%, MAE 
of 0.822 and 0.848 MJ m−2 d−1, and Ens of 0.952 and 0.955, 
respectively.

GPI of monthly Rs of different models in the whole stud-
ied area is presented in Fig. 6. As shown in Fig. 6, SVM1, 
M5T1, RF1, GEM1 and PSO-GEM1 models under input 

Fig. 6   GPI values of monthly Rs 
of different models at the four 
stations in Northeast China
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scenario 1 showed the lowest prediction accuracy, with aver-
age GPI of − 2.957, − 2.406, − 1.979, − 1.553, and − 1.034, 
respectively. Under input scenario 2, the PSO-GEM2 showed 
the highest accuracy, considering the values of their evalua-
tion indices. Under input scenario 3, the PSO-GEM3 showed 
the best precision, followed by the GEM3 model, consider-
ing the values of their evaluation indices. The PSO-GEM4 
was the best model under input scenario 4, followed by the 
GEM4 model, with average GPI of 0.755 and 0.686, respec-
tively. Under input scenario 5, the PSO-GEM5 showed the 
best precision, with average GPI of 0.855, respectively. The 
accuracy of HS and BC models was high than M5T1, SVM1, 
and RF1 models, with average GPI of − 1.734 and − 1.742 
respectively. Machine learning models with complete data 
inputs had the highest precision. Meanwhile, the models 

which considered n, Tmax and Tmin, n and P showed similar 
precision compared to the models as for seven-inputs. The 
models only considered DOY and Ra showed the lowest 
prediction accuracy, with GPI of − 4.114 to − 0.588. The 
accuracy of the monthly Rs models which considered DOY, 
Ra, Tmax, and Tmin was higher than the models for two inputs, 
with GPI increased by 17.5–29.4%. The increase in accu-
racy was not significant. In the calculation of monthly Rs, 
sunshine duration was the most significant variable in the 
studied area.

Discussion

The PSO can further improve the accuracy of GEM, as PSO 
can improve the iteration rate of GEM and avoid the initialized 

Fig. 7   Taylor diagrams of daily 
Rs of different machine learning 
models at different stations
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weights. Under different input scenarios, the PSO-GEM showed 
the highest accuracy. The GEM can better reflect the nonlinear 
relationship between radiation and meteorological factors by 
calculating the Gaussian exponents. The accuracy of GEM has 
been proven (Lesser et al. 2011; Jia et al. 2021.). Wu et al. (2021) 
showed that the PSO can improve the accuracy of the extreme 
learning machine models and have better ability in optimizing 
the parameters. It confirmed generalizability and robustness of 
PSO-GEM. Machine learning models generally had a higher 
accuracy than the HS and BC models when climatic variables 
were included as inputs. The machine learning models that 

considered only the DOY and Ra showed the lowest accuracies 
at the four stations, especially the SVM1 and RF1 models. Fan 
et al. (2019) showed that in China, the SVM and RF models had 
worse rankings, which agrees with our conclusion.

To further confirm the reliability of PSO-GEM for Rs esti-
mation, the Taylor diagrams of different models at four stations 
were analyzed. The standard deviation and correlation coef-
ficient of the statistical indicators by the models over the sta-
tions are listed in Figs. 7 and 8. It was clear that PSO-GEM5 at 
different stations have the lowest standard deviation, the lowest 
mean square error and the highest correlation coefficient with 

Fig. 8   Taylor diagrams of 
monthly Rs of different machine 
learning models at different 
stations
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the standard values. These results further confirmed the perfor-
mance of PSO-GEM5 at different stations in Northeast China.

The results of this study showed that the models with com-
plete inputs had the highest accuracy. This indicated that the 
effect of each meteorological factor on Rs estimation was posi-
tive. However, the models with Tmax and Tmin as inputs showed 
lower accuracy, especially the HS and BC models. The mod-
els considering n (input scenarios 3, 4, and 5) showed a much 
higher accuracy, which revealed that n is the most important 
factor affecting Rs estimation in Northeast China. Mecibah et al. 
(2014) investigated the performance of different Rs models and 
found that the accuracy of models with n was much higher than 
that of models with air temperature. The same conclusion was 
also reported by Zhang et al. (2018) because the magnitude of 
n directly affects the Rs reaching the surface of the earth. The 
amount of solar radiation reaching the Earth’s surface is closely 
related to sunshine duration. Clouds and the weather patterns 
are also the most important atmospheric phenomena limiting 
solar radiation on the Earth’s surface. These are the main rea-
sons for the higher accuracy of the models considering sun-
shine duration and precipitation. The solar radiation reaching 
the Earth’s surface is absorbed by the atmosphere or emitted 
into the air in the form of long-wave radiation. The long-wave 
radiation absorbed by the atmosphere will increase the tempera-
ture. Thus, the temperature is also one of the important factors 
affecting solar radiation. But there are many factors affect the 
atmospheric temperature, the relationship between solar radia-
tion and temperature does not correspond exactly. It is why the 
accuracy of the temperature-based models is lower than the 
sunshine-duration-based models.

The PSO-GEM can be recommended to estimate Rs in 
Northeast China. The proposed model can provide scientific 
support for evapotranspiration estimation, agricultural 
irrigation management and solar energy development. In this 
study, we considered a simple data set assignment for training 
machine learning models. K-fold cross-validation is an efficient 
training method recommended for training models (Shiri et al. 
2015). In future research, we can combine PSO-GEM and 
K-fold cross-validation to further improve the accuracy of Rs 
estimation.

Conclusions

Five machine models with five groups of input param-
eters and two empirical models were evaluated for Rs pre-
diction using meteorological data from four stations in 
Northeast China. The PSO-GEM with full climatic data as 
inputs showed the highest accuracy with RMSE, RRMSE, 
MAE, and Ens values of 1.416  MJ  m−2  d−1, 10.27%, 
1.018 MJ m−2 d−1, and 0.962, respectively. The PSO-GEM 
showed the highest accuracy under other input scenarios. 

n is the most influential factor affecting Rs estimation by 
machine learning models.

Overall, the PSO-GEM5 is recommended for estimating 
Rs in Northeast China when all the meteorological variables 
are available. The PSO-GEM3 is recommended when only 
n and air temperature data are accessible. The PSO-GEM4 
and GEM4 are recommended only when sunshine data and 
P data are available.

Acknowledgements  We wish to thank the China Meteorological 
Administration for providing the data for this study.

Author contribution  YJ analyzed and calculated the data and wrote 
the manuscript. HW got the data of the manuscript. PL, YS, and FW 
calculated the data and made the tables of the manuscript. SH made 
the figures for the manuscript. All authors read and approved the final 
manuscript.

Funding  The research was funded by the Scientific Research Program 
of Higher Education in Hebei Province (QN2021227), the Water 
Conservancy Research and Extension Project of Hebei Province 
(2020–64), the Hebei Province Innovation Ability Promotion Plan, 
Soft Science Research (20557682D), the Colleges and Universities in 
Hebei Province Science and Technology Research (ZD2020348), and 
the Doctoral Scientific Research Foundation of Hebei University of 
Water Resources and Electric Engineering (SYBJ1902).

Data availability  The data that support the findings of this study are 
available from National Meteorological Science Data Center (https://​
data.​CMA.​cn/) but restrictions apply to the availability of these data, 
which were used under license for the current study, and so are not 
publicly available. Data are however available from the authors upon 
reasonable request and with permission of National Meteorological 
Science Data Center (https://​data.​CMAcma.​cn/).

Declarations 

Ethics approval and consent to participate  Not applicable.

Consent for publication  Not applicable.

Competing interests  The authors declare no competing interests.

References

Annandale J, Jovanovic N, Benade N, Allen R (2002) Sofware for 
missing data error analysis of Penman-Monteith reference evapo-
transpiration. Irrig Sci 21(2):57–67

Antonopoulos VZ, Papamichail DM, Aschonitis VG, Antonopoulos 
AV (2019) Solar radiation estimation methods using ANN and 
empirical models. Comput Electron Agric 160:160–167

Bailek N, Bouchouicha K, Al-Mostafa Z, El-Shimy M, Aoun N, Slim-
ani A, Al-Shehri S (2018) A new empirical model for forecasting 
the diffuse solar radiation over Sahara in the Algerian Big South. 
Renew Energy 117:530–537

Belaid A, Mellit A (2016) Prediction of daily and mean monthly global 
solar radiation using support vector machine in an arid climate. 
Energy Convers Manag 118:105–118

12782 Environmental Science and Pollution Research (2023) 30:12769–12784

https://data.CMA.cn/
https://data.CMA.cn/
https://data.CMAcma.cn/


1 3

Besharat F, Dehghan AA, Faghih AR (2013) Empirical models for 
estimating global solar radiation: a review and case study. Renew 
Sustain Energy Rev 21:798–821

Breiman L (2001) Random forests. Mach Learn 45:5–32
Bristow KL, Campbell GS (1984) On the relationship between 

incoming solar radiation and daily maximum and minimum 
temperature. Agric for Meteorol 31(2):159–166

Bueno CL, Mateo CC, Justo JS, Sanz SS (2019) Machine learning 
regressors for solar radiation estimation from satellite data. Sol 
Energy 183:768–775

Buja A, Swayne DF, Littman ML, Dean N, Hofmann H, Chen L 
(2008) Data visualization with multidimensional scaling. J 
Comput Graph Stat 17(2):444–472

Chen JL, Liu HB, Wu W, Xie DT (2011) Estimation of monthly 
solar radiation from measured temperatures using support vec-
tor machines – a case study. Renew Energy 36:413–420

Chukwujindu NS (2017) A comprehensive review of empirical mod-
els for estimating global solar radiation in Africa. Renew Sus-
tain Energy Rev 78:955–995

Citakoglu H (2015) Comparison of artificial intelligence techniques 
via empirical equations for prediction of solar radiation. Com-
put Electron Agric 118:28–37

Demircan C, Bayrakçı HC, Keçebaş A (2020) Machine learning-
based improvement of empiric models for an accurate estimat-
ing process of global solar radiation. Sustain Energy Technol 
Assess 37:100574

Desideri U, Zepparelli F, Morettini V, Garroni E (2013) Comparative 
analysis of concentrating solar power and photovoltaic technologies: 
technical and environmental evaluations. Appl Energy 102:765–784

Elias CL, Calapez AR, Almeida SFP, Chessman B, Simoes N, Feio 
MJ (2016) Predicting reference conditions for river bioassess-
ment by incorporating boosted trees in the environmental filters 
method. Ecol Ind 69:239–251

Emamgolizadeh S, Bateni SM, Shahsavani D, Ashrafi T, Gorbani 
H (2015) Estimation of soil cation exchange capacity using 
genetic expression programming (GEP) and multivariate adap-
tive regression splines (MARS). J Hydrol 529(3):1590–1600

Fan J, Wang X, Wu L, Zhou H, Zhang F, Yu X, Lu X, Xiang Y 
(2018) Comparison of support vector machine and extreme gra-
dient Boosting for predicting daily global solar radiation using 
temperature and precipitation in humid subtropical climates: 
a case study in China. Energy Convers Manag 164:102–111

Fan JL, Wu LF, Zhang FC, Cai HJ, Zeng WZ, Wang XK, Zou HY 
(2019) Empirical and machine learning models for predicting 
daily global solar radiation from sunshine duration: a review and 
case study in China. Renew Sustain Energy Rev 100:186–212

Feng Y, Cui NB, Gong DZ, Zhang QW, Zhao L (2017) Evaluation 
of random forests and generalized regression neural networks 
for daily reference evapotranspiration modeling. Agric Water 
Manag 193:163–173

Feng Y, Jia Y, Cui N, Zhao L, Li C, Gong D (2017) Calibration of 
Hargreaves model for reference evapotranspiration estimation in 
Sichuan basin of southwest China. Agriculture Water Manag 181:1–9

Feng Y, Jia Y, Zhang Q, Gong D, Cui N (2018) National-scale 
assessment of pan evaporation models across different climatic 
zones of China. J Hydrol 564:314–328

Feng Y, Cui N, Chen Y, Gong D, Hu X (2019) Development of data-
driven models for prediction of daily global horizontal irradi-
ance in northwest China. J Clean Prod 223:136–146

Feng Y, Cui N, Hao W, Gao L, Gong D (2019) Estimation of soil 
temperature from meteorological data using different machine 
learning models. Geoderma 338:67–77

Feng Y, Gong D, Zhang Q, Jiang S, Zhao L, Cui N (2019) Evaluation 
of temperature-based machine learning and empirical models 
for predicting daily global solar radiation. Energy Convers Man-
age 198:111780

Feng Y, Hao W, Li H, Cui N, Gong D, Gao L (2020) Machine 
learning models to quantify and map daily global solar 
radiation and photovoltaic power. Renew Sustain Energy Rev 
118:109393

Feng Y, Zhang X, Jia Y, Cui N, Hao W, Li H, Gong D (2021) High-
resolution assessment of solar radiation and energy potential in 
China. Energy Convers Manage 240:114265

Feng Y, Ziegler AD, Elsen PR, Liu Y, He X, Spracklen DV, Holden J, 
Jiang X, Zheng C, Zeng Z (2021) Upward expansion and accelera-
tion of forest clearance in the mountains of Southeast Asia. Nature 
Sustain 4(10):892–899

Friedman JH (2001) Greedy function approximation: a gradient boost-
ing machine. Ann Stat 29(5):1189–1232

Gueymard CA (2001) Parameterized transmittance model for direct 
beam and circumsolar spectral irradiance. Sol Energy 71:325–346

Hargreaves GH, Samani ZA (1982) Estimating potential evapotranspi-
ration. J Irrig Drain Div 108(3):225–230

Hassan GE, Youssef ME, Mohamed ZE, Ali MA, Hanafy AA (2016) 
New temperature-based models for predicting global solar radia-
tion. Appl Energy 179:437–450

Hossain M, Mekhilef S, Olatomiwa L, Danesh M, Shamshirband S 
(2017) Application of extreme learning machine for short term 
output power forecasting of three grid-connected PV systems. J 
Clean Prod 167:395–405

Jahani B, Dinpashoh Y, Nafchi AR (2017) Evaluation and development 
of empirical models for estimating daily solar radiation. Renew 
Sustain Energy Rev 73:878–891

Jamil B, Akhtar N (2017) Estimation of diffuse solar radiation in 
the humid-subtropical climatic region of India: comparison 
of diffuse fraction and diffusion coefficient models. Energy 
131:149–164

Jamil B, Siddiqui AT (2018) Estimation of monthly mean diffuse 
solar radiation over India: performance of two variable models 
under different climatic zones. Sustain Energy Technol Assess 
25:161–180

Jia Y, Wang FC, Li PC, Huo SY, Yang T (2021) Simulating refer-
ence crop evapotranspiration with different climate data inputs 
using Gaussian exponential model. Environ Sci Pollut Res 
28:41317–41336

Jiang S, Liang C, Cui N, Zhao L, Liu C, Feng Y, Hu XT, Gong DZ, 
Zou Q (2020) Water use efficiency and its drivers in four typi-
cal agroecosystems based on flux tower measurements. Agric for 
Meteorol 295:108200

Jin Z, Ye ZW, Gang Y (2005) General formula for estimation of 
monthly average daily global solar radiation in China. Energy 
Convers Manage 46(2):257–268

Kaba K, Sarıgül S, Avcı M, Kandırmaz M (2018) Estimation of 
daily global solar radiation using deep learning model. Energy 
162:126–135

Katiyar AK, Pandey CK (2010) Simple correlation for estimating the 
global solar radiation on horizontal surfaces in India. Energy 
35(12):5043–5048

Khatib T, Mohamed A, Sopian K (2012) A review of solar energy 
modeling techniques. Renew Sustain Energy Rev 16:2864–2869

Kisi O (2016) Modeling reference evapotranspiration using three 
different heuristic regression approaches. Agric Water Manage 
169:162–172

Kisi O, Sanikhani H, Zounemat-Kermani M, Niazi F (2015) Long-
term monthly evapotranspiration modeling by several data-driven 
methods without climatic data. Comput Electron Agric 115:66–77

Lesser B, Mucke M, Gansterer WW (2011) Effects of reduced precision 
on floating-point SVM classification accuracy. Procedia Comput 
Sci 4:508–517

Liu X, Mei X, Li Y, Wang Q, Jensen JR, Zhang Y, Porter JR (2009) 
Evaluation of temperature-based global solar radiation models in 
China. Agric Meteorol 149:1433–1446

12783Environmental Science and Pollution Research (2023) 30:12769–12784



1 3

Liu C, Zheng D, Zhao L, Liu C (2014) Gaussian fitting for carotid and radial 
artery pressure waveforms: comparison between normal subjects and 
heart failure patients. Bio-Med Mater Eng 24:271–277

Liu Y, Zhou Y, Wang D, Wan Y, Li Y, Zhu Y (2017) Classification of 
solar radiation zones and general models for estimating the daily 
global solar radiation on horizontal surfaces in China. Energy 
Convers Manag 154:167–179

Mecibah SM, Boukelia ET, Tahtah R, Gairaa K (2014) Introducing 
the best model for estimation the monthly mean daily global solar 
radiation on a horizontal surface (Case study:Algeria). Renew 
Sustain Energy Rev 36:194–202

Oates MJ, Ruiz-Canales A, Ferrández-Villena M, Fernández López A 
(2017) A low cost sunlight analyser and data logger measuring 
radiation. Comput Electron Agric 143:38–48

Pan T, Wu SH, Dai EF, Liu YJ (2013) Estimating the daily global solar 
radiation spatial distribution from diurnal temperature ranges over 
the Tibetan Plateau in China. Appl Energy 107:384–393

Persson G, Bacher P, Shiga T, Madsen H (2017) Multi-site solar power 
forecasting using gradient boosted regression trees. Sol Energy 
120:423–436

Qiu RJ, Wang YK, Wang D, Qiu WJ, Wu JC, Tao WY (2020) Water 
temperature forecasting based on modified artificial neural network 
methods: two cases of the Yangtze River. Sci Total Environ 737:1–12

Quej VH, Almorox J, Arnaldo JA, Saito L (2017) ANFIS, SVM and 
ANN soft-computing techniques to estimate daily global solar 
radiation in a warm sub-humid environment. J Atmos Solar Terr 
Phys 155:62–70

Quinlan JR (1992) Learning with continuous classes. 5th Australian 
Joint Conference on Artificial Intelligence 92:343–348

Sattari MT, Pal M, Apaydin H et al (2013) M5 model tree application 
in Daily River flow forecasting in Sohu Stream Turkey. Water 
Resour 40(3):233–242

Shamshirband S, Mohammadi K, Tong CW, Zamani M, Motamedi S, Ch 
S (2016) A hybrid SVM-FFA method for prediction of monthly mean 
global solar radiation. Theoret Appl Climatol 125:53–65

Shiri J, Nazemi AH, Sadraddini AA, Landeras G, Kisi O, Fard AF, 
Marti P (2014) Comparison of heuristic and empirical approaches 
for estimating reference evapotranspiration from limited inputs in 
Iran. Comput Electron Agric 108:230–241

Shiri J, Sadraddini AA, Nazemi AH, Martí P, Fard AF, Kisi O, Lan-
deras G (2015) Independent testing for assessing the calibration 
of the Hargreaves-Samani equation: New heuristic alternatives for 
Iran. Comput Electron Agric 117:70–80

Tabari H, Kisi O, Ezani A, Talaee PH (2012) SVM, ANFIS, regression 
and climate based models for reference evapotranspiration mod-
eling using limited climatic data in a semi-arid highland environ-
ment. J Hydrol 44:78–89

Tian H, Zhao YQ, Luo M, He QQ, Han Y, Zeng ZL (2021) Estimat-
ing PM2.5 from multisource data: a comparison of different 
machine learning models in the Pearl River Delta of China. Urban 
Clim 35:100740

Vapink V (1999) The nature of statistical learning theory[M]. Springer-
Verlag, New York

Wang L, Kisi O, Zounemat-Kermani M, Salazar GA, Zhu Z, Gong 
W (2016) Solar radiation prediction using different techniques: 
model evaluation and comparison. Renew Sust Energy Rev 
61:384–397

Wang Y, Witten IH (1997) Inducing model trees for continuous classes, 
In Proceedings of the ninth European conference on machine 
learning, pp 128–137

Wild M, Gilgen H, Roesch A, Ohmura A, Long CN, Dutton EG, For-
gan B, Kallis A, Russak V, Tsvetkov A (2005) From dimming to 
brightening: decadal changes in solar radiation at Earth’s surface. 
Sci 308(5723):847–850

Wu J, Lakshmi V, Wang D, Lin P, Pan M, Cai X, Wood EF, Zeng Z 
(2020) The reliability of global remote sensing evapotranspiration 
products over Amazon. Remote Sensing 12(14):2211

Wu ZJ, Cui NB, Hu XT, Gong DZ, Wang XS, Feng Y, Jiang SZ, Lu 
M, Han L, Xing LW, Zhu SD, Zhu N, Zhang YX, Zou QY, He 
ZL (2021) Optimization of extreme learning machine model with 
biological heuristic algorithms to estimate daily reference crop 
evapotranspiration in different climatic regions of China. J Hydrol 
603:127028

Wu J, Feng Y, Liang L, He X, Zeng Z (2022) Assessing evapotranspi-
ration observed from ECOSTRESS using flux measurements in 
agroecosystems. Agric Water Manag 269:107706

Wu J, Wang D, Li LZ, Zeng Z (2022) Hydrological feedback from 
projected Earth greening in the 21st century. Sustainable Horizons 
1:100007

Yu HH, Chen YG, Hassan SG, Li DL (2016) Prediction of the tempera-
ture in a Chinese solar greenhouse based on LSSVM optimized by 
improved PSO. Comput Electron Agric 155:257–282

Zhang QW, Cui NB, Feng Y, Jia Y, Li Z, Gong DZ (2018) Comparative 
analysis of global solar radiation models in different regions of 
China. Advances in Meteorology 2018:1–21

Zhang Y, Cui N, Feng Y, Gong D, Hu X (2019) Comparison of BP, 
PSO-BP and statistical models for predicting daily global solar 
radiation in arid Northwest China. Comput Electron Agric 
164:104905

Zheng MG, Hu SY, Liu XW, Wang W, Yin XC, Zheng L, Wang L, Lou 
YH (2019) Levels and distribution of synthetic musks in farmland 
soils from the Three Northeast Provinces of China. Ecotoxicol 
Environ Saf 172:303–307

Zhu B, Feng Y, Gong DZ, Jiang SZ, Zhao L, Cui NB (2020) Hybrid 
particle swarm optimization with extreme learning machine for 
daily reference evapotranspiration prediction from limited climatic 
data. Comput Electron Agric 173:105430

Zou L, Wang L, Xia L, Lin A, Hu B, Zhu H (2017) Prediction and 
comparison of solar radiation using improved empirical mod-
els and adaptive neuro-fuzzy inference systems. Renew Energy 
106:343–353

Despotovic M, Nedic V, Despotovic D, Cvetanovic S (2015) Review 
and statistical analysis of different global solar radiation sunshine 
models. Renew Sustain Energy Rev 52:1869–1880

Publisher's note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); 
author self-archiving of the accepted manuscript version of this article 
is solely governed by the terms of such publishing agreement and 
applicable law.

12784 Environmental Science and Pollution Research (2023) 30:12769–12784


	Particle swarm optimization algorithm with Gaussian exponential model to predict daily and monthly global solar radiation in Northeast China
	Abstract
	Introduction
	Methods and materials
	Study area and data collection
	Gaussian exponential model
	Hybrid Gaussian exponential model and particle swarm optimization
	M5 model tree
	Support vector machine
	Random forest model
	Hargreaves–Samani model
	Bristow–Campbell model
	Model training and testing
	Statistical indicators

	Results and discussion
	Results
	Evaluation of the models on a daily basis
	Evaluation of the models on a monthly basis

	Discussion

	Conclusions
	Acknowledgements 
	References


